1
|
Dong X, Liu C, Miao J, Lin X, Wang Y, Wang Z, Hou Q. Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:922-936. [PMID: 36287778 PMCID: PMC9574616 DOI: 10.5187/jast.2022.e50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.
Collapse
Affiliation(s)
- Xusheng Dong
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Chen Liu
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Jialin Miao
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Xueyan Lin
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Yun Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Zhonghua Wang,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15005485951, E-mail:
| | - Qiuling Hou
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Qiuling Hou,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15064175925, E-mail:
| |
Collapse
|
2
|
Marrero MG, Field SL, Skibiel AL, Dado-Senn B, Driver JP, Laporta J. Increasing serotonin bioavailability alters gene expression in peripheral leukocytes and lymphoid tissues of dairy calves. Sci Rep 2020; 10:9712. [PMID: 32546841 PMCID: PMC7297988 DOI: 10.1038/s41598-020-66326-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
Dairy calves are born with a naïve immune system, making the pre-weaning phase a critical window for immune development. In the U.S., 40-60% of dairy farms feed milk replacer to pre-weaned calves, which are devoid of bioactive factors with immunological roles. Serotonin is a bioactive factor with immunoregulatory properties naturally produced by the calf and present in milk. Human and rodent immune cells express the serotonin machinery, but little is known about the role of serotonin in the bovine immune system. Supplementing milk replacer with 5-hydroxytryptophan (serotonin precursor) or fluoxetine (reuptake inhibitor) increases serotonin bioavailability. We hypothesized that increased serotonin bioavailability promotes serotonergic signaling and modulates the expression of immune related genes in peripheral leukocytes and immune-related tissues of dairy calves. The present experiment targeted candidate genes involved in serotonin production, metabolism, transport, signaling and immune regulation. We established that bovine peripheral leukocytes express all known serotonin receptors, and can synthesize, uptake and degrade serotonin due to the expression of serotonin metabolism-related genes. Indeed, we showed that increasing serotonin bioavailability alters gene expression of serotonin receptors and immune-related genes. Further research will determine whether manipulation of the serotonin pathway could be a feasible approach to bolster dairy calves' immune system.
Collapse
Affiliation(s)
- M G Marrero
- Department of Animal Sciences, University of Florida, Florida, USA
| | - S L Field
- Department of Animal Sciences, University of Florida, Florida, USA
| | - A L Skibiel
- Department of Animal Sciences, University of Florida, Florida, USA
- Department of Animal and Veterinary Science, University of Idaho, Idaho, USA
| | - B Dado-Senn
- Department of Animal Sciences, University of Florida, Florida, USA
| | - J P Driver
- Department of Animal Sciences, University of Florida, Florida, USA
| | - J Laporta
- Department of Animal Sciences, University of Florida, Florida, USA.
| |
Collapse
|
3
|
Amundson LA, Rowson AD, Crump PM, Prichard AP, Cheng AA, Wimmler CE, Klister M, Weaver SR, Bascom SS, Nuzback DE, Zanzalari KP, Hernandez LL. Effect of induced hypocalcemia in nonlactating, nonpregnant Holstein cows fed negative DCAD with low, medium, or high concentrations of calcium. J Anim Sci 2019; 96:5010-5023. [PMID: 30321366 DOI: 10.1093/jas/sky371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023] Open
Abstract
The main objective of this study was to determine how feeding different dietary calcium (Ca) concentrations in combination with a negative dietary cation-anion difference (DCAD) would affect the cow's response to induced hypocalcemia. We conducted an experiment with multiparous, nonlactating, nonpregnant Holstein cows fed a negative DCAD (average -18.2 across all diets) for 21 d with low (LC; 0.45% Ca; n = 5), medium (MC; 1.13% Ca; n = 6), or high (HC; 2.02% Ca; n = 6) concentrations of dietary Ca. Urine and blood samples were collected and urine pH measured daily during the 21-d feeding period prior to hypocalcemia challenge. Cows were then subjected to a controlled induction of hypocalcemia to determine how dietary Ca intake affected the response to a hypocalcemia challenge. On days 22, 23, and 24, hypocalcemia was induced with an intravenous infusion of 5% EGTA in 2 different cows from each treatment daily. During infusion, blood samples were collected every 15 min until 60% of prechallenge ionized calcium (iCa) concentrations were achieved. Samples were collected postinfusion at 0, 2.5, 5, 10, 15, 30, and every 30 min thereafter until 90% of prechallenge iCa was reached. Blood pH, hematocrit, and serum total Ca (tCa), sodium (Na), potassium (K), phosphorous (P), magnesium (Mg), and serotonin did not differ (P > 0.05) among treatments during the feeding period. Blood iCa (P = 0.04) and glucose (P = 0.03) were significantly elevated in HC compared with LC and MC cows during the feeding period. Urine pH was less than 6.0 in all cows, but was lowest in LC (P = 0.02) compared with MC and HC cows during the feeding period. Urine Ca, P, Mg, and deoxypyridinoline did not differ among treatments (P > 0.05). Cows fed HC maintained higher concentrations of iCa (P = 0.03) during the challenge period than MC (P = 0.04), and LC (P = 0.004), and required a longer time to reach 60% of whole blood iCa, and required more EGTA to reach 60% iCa than MC or LC cows (P = 0.01). Serum tCa decreased in all cows during infusion (P < 0.0001) but did not differ among treatments. Serotonin concentrations were elevated in MC cows compared with HC and LC cows during EGTA infusion (P = 0.05), suggesting an interdependent relationship between iCa and serotonin. Cows fed HC had a slower rate of decrease in iCa, but not tCa, when induced with hypocalcemia, indicating potential metabolic benefits of feeding higher dietary Ca in combination with a negative DCAD.
Collapse
Affiliation(s)
- Laura A Amundson
- Department of Dairy Science, University of Wisconsin-Madison, Madison.,Department of Animal Science, University of Wisconsin-Madison, Madison
| | | | - Peter M Crump
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Austin P Prichard
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Adrienne A Cheng
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Collin E Wimmler
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Marisa Klister
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Samantha R Weaver
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | | | | | | | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| |
Collapse
|
4
|
Weaver SR, Hernandez LL. Could use of Selective Serotonin Reuptake Inhibitors During Lactation Cause Persistent Effects on Maternal Bone? J Mammary Gland Biol Neoplasia 2018; 23:5-25. [PMID: 29603039 DOI: 10.1007/s10911-018-9390-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The lactating mammary gland elegantly coordinates maternal homeostasis to provide calcium for milk. During lactation, the monoamine serotonin regulates the synthesis and release of various mammary gland-derived factors, such as parathyroid hormone-related protein (PTHrP), to stimulate bone resorption. Recent evidence suggests that bone mineral lost during prolonged lactation is not fully recovered following weaning, possibly putting women at increased risk of fracture or osteoporosis. Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants have also been associated with reduced bone mineral density and increased fracture risk. Therefore, SSRI exposure while breastfeeding may exacerbate lactational bone loss, compromising long-term bone health. Through an examination of serotonin and calcium homeostasis during lactation, lactational bone turnover and post-weaning recovery of bone mineral, and the effect of peripartum depression and SSRI on the mammary gland and bone, this review will discuss the hypothesis that peripartum SSRI exposure causes persistent reductions in bone mineral density through mammary-derived PTHrP signaling with bone.
Collapse
Affiliation(s)
- Samantha R Weaver
- Endocrine and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Hernandez LL. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows. J Anim Sci 2018; 95:5711-5719. [PMID: 29293773 DOI: 10.2527/jas2017.1673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium pathway. Our data in rodents and cows indicate that serotonin and calcium are working through a unique feedback loop with PTHrP during lactation to regulate milk calcium and maternal calcium homeostasis.
Collapse
|
6
|
Weaver SR, Prichard AS, Maerz NL, Prichard AP, Endres EL, Hernández-Castellano LE, Akins MS, Bruckmaier RM, Hernandez LL. Elevating serotonin pre-partum alters the Holstein dairy cow hepatic adaptation to lactation. PLoS One 2017; 12:e0184939. [PMID: 28922379 PMCID: PMC5602632 DOI: 10.1371/journal.pone.0184939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Serotonin is known to regulate energy and calcium homeostasis in several mammalian species. The objective of this study was to determine if pre-partum infusions of 5-hydroxytryptophan (5-HTP), the immediate precursor to serotonin synthesis, could modulate energy homeostasis at the level of the hepatocyte in post-partum Holstein and Jersey dairy cows. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 d pre-partum with either saline or 1 mg/kg bodyweight of 5-HTP. Blood was collected for 14 d post-partum and on d30 post-partum. Liver biopsies were taken on d1 and d7 post-partum. There were no changes in the circulating concentrations of glucose, insulin, glucagon, non-esterified fatty acids, or urea nitrogen in response to treatment, although there were decreased beta-hydroxybutyrate concentrations with 5-HTP treatment around d6 to d10 post-partum, particularly in Jersey cows. Cows infused with 5-HTP had increased hepatic serotonin content and increased mRNA expression of the serotonin 2B receptor on d1 and d7 post-partum. Minimal changes were seen in the hepatic mRNA expression of various gluconeogenic enzymes. There were no changes in the mRNA expression profile of cell-cycle progression marker cyclin-dependent kinase 4 or apoptotic marker caspase 3, although proliferating cell nuclear antigen expression tended to be increased in Holstein cows infused with 5-HTP on d1 post-partum. Immunofluorescence assays showed an increased number of CASP3- and Ki67-positive cells in Holstein cows infused with 5-HTP on d1 post-partum. Given the elevated hepatic serotonin content and increased mRNA abundance of 5HTR2B, 5-HTP infusions may be stimulating an autocrine-paracrine adaptation to lactation in the Holstein cow liver.
Collapse
Affiliation(s)
- Samantha R. Weaver
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Allan S. Prichard
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Noah L. Maerz
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Austin P. Prichard
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth L. Endres
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Matthew S. Akins
- Department of Dairy Science, University of Wisconsin-Marshfield, Marshfield, Wisconsin, United States of America
| | | | - Laura L. Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
7
|
Suárez-Trujillo A, Casey TM. Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function. Front Physiol 2016; 7:301. [PMID: 27471474 PMCID: PMC4945644 DOI: 10.3389/fphys.2016.00301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/29/2016] [Indexed: 12/23/2022] Open
Abstract
Since lactation is one of the most metabolically demanding states in adult female mammals, beautifully complex regulatory mechanisms are in place to time lactation to begin after birth and cease when the neonate is weaned. Lactation is regulated by numerous different homeorhetic factors, all of them tightly coordinated with the demands of milk production. Emerging evidence support that among these factors are the serotonergic and circadian clock systems. Here we review the serotoninergic and circadian clock systems and their roles in the regulation of mammary gland development and lactation physiology. We conclude by presenting our hypothesis that these two systems interact to accommodate the metabolic demands of lactation and thus adaptive changes in these systems occur to maintain mammary and systemic homeostasis through the reproductive cycles of female mammals.
Collapse
Affiliation(s)
- Aridany Suárez-Trujillo
- Animal Production and Biotechnology Group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran CanariaArucas, Spain
| | - Theresa M. Casey
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|