1
|
Manikandan A, Muthusamy S, Wang ES, Ivarson E, Manickam S, Sivakami R, Narayanan MB, Zhu LH, Rajasekaran R, Kanagarajan S. Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review. FRONTIERS IN PLANT SCIENCE 2024; 15:1468675. [PMID: 39588088 PMCID: PMC11586226 DOI: 10.3389/fpls.2024.1468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Global protein consumption is increasing exponentially, which requires efficient identification of potential, healthy, and simple protein sources to fulfil the demands. The existing sources of animal proteins are high in fat and low in fiber composition, which might cause serious health risks when consumed regularly. Moreover, protein production from animal sources can negatively affect the environment, as it often requires more energy and natural resources and contributes to greenhouse gas emissions. Thus, finding alternative plant-based protein sources becomes indispensable. Rapeseed is an important oilseed crop and the world's third leading oil source. Rapeseed byproducts, such as seed cakes or meals, are considered the best alternative protein source after soybean owing to their promising protein profile (30%-60% crude protein) to supplement dietary requirements. After oil extraction, these rapeseed byproducts can be utilized as food for human consumption and animal feed. However, anti-nutritional factors (ANFs) like glucosinolates, phytic acid, tannins, and sinapines make them unsuitable for direct consumption. Techniques like microbial fermentation, advanced breeding, and genome editing can improve protein quality, reduce ANFs in rapeseed byproducts, and facilitate their usage in the food and feed industry. This review summarizes these approaches and offers the best bio-nutrition breakthroughs to develop nutrient-rich rapeseed byproducts as plant-based protein sources.
Collapse
Affiliation(s)
- Anandhavalli Manikandan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saraladevi Muthusamy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eu Sheng Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajeswari Sivakami
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manikanda Boopathi Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ravikesavan Rajasekaran
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
2
|
Pulido RG, Beltran IE, Aleixo JA, Morales ÁG, Gutierrez M, Ponce M, Melendez P. Effect of Replacing Corn Grain and Soybean Meal with Field Peas at Different Levels on Feed Intake, Milk Production, and Metabolism in Dairy Cows under a Restrictive Grazing. Animals (Basel) 2024; 14:2830. [PMID: 39409779 PMCID: PMC11475134 DOI: 10.3390/ani14192830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
This study assessed the effects of replacing soybean meal (SBM) and corn grain with field peas in the concentrate of grazing dairy cows on milk production, intake, ruminal fermentation, and blood indicators. Twelve multiparous lactating Holstein-Friesian cows were utilized in a replicated 3 × 3 Latin square design, comprising three periods and three treatments: (1) Pea-0 (Control diet): 6 kg dry matter (DM) of fresh pasture, 7.2 kg DM of grass silage, and 7 kg DM of a concentrate containing 0% pea; (2) Pea-30: Control diet with the concentrate composed of 30% pea; (3) Pea-60: Control diet with the concentrate composed of 60% pea. The effect of treatments on productive and metabolic parameters was evaluated using linear-mixed models. Pasture and total DM intake, milk production, and composition were unaffected by treatments. Despite the concentrates being isonitrogenous and isoenergetic, crude protein (CP) intake was slightly higher in Pea-30 and significantly higher in Pea-60 due to higher pasture CP content in the pasture grazed by these groups, leading to higher milk urea content, though within recommended ranges. Blood parameters showed no significant changes, except for plasma β-hydroxybutyrate, which was lowest in the Pea-60 treatment; however, all values were within ranges not indicative of subclinical ketosis. Ruminal fermentation parameters were similar across treatments. These findings support the use of field peas as a viable alternative to replace SBM and corn grain in concentrates, enabling similar milk production and composition in grazing dairy cows.
Collapse
Affiliation(s)
- Ruben G. Pulido
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 567, Chile; (J.A.A.); (Á.G.M.)
| | - Ignacio E. Beltran
- Instituto de Investigaciones Agropecuarias, INIA Remehue, Osorno P.O. Box 24-O, Chile;
| | - Jorge A. Aleixo
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 567, Chile; (J.A.A.); (Á.G.M.)
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia P.O. Box 567, Chile
| | - Álvaro G. Morales
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 567, Chile; (J.A.A.); (Á.G.M.)
| | | | - Matias Ponce
- School of Veterinary Sciences, Faculty of Veterinary and Livestock Sciences, Universidad de Chile, Santiago P.O. Box 1004, Chile;
| | - Pedro Melendez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA;
| |
Collapse
|
3
|
Wang B, Ormston S, Płatosz N, Parker JK, Qin N, Humphries DJ, Pétursdóttir ÁH, Halmemies-Beauchet-Filleau A, Juniper DT, Stergiadis S. Effect of dietary protein source and Saccharina latissima on nutritional and safety characteristics of milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7355-7366. [PMID: 38661233 DOI: 10.1002/jsfa.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Wheat distillers' grains (WDG) and seaweeds are recommended as alternative protein sources and enteric methane mitigators in dairy cow diets, respectively, but little is known about their impact on milk quality and safety. In the present study, 16 cows in four 4 × 4 Latin squares were fed isonitrogenous diets (50:50 forage:concentrate ratio), with rapeseed meal (RSM)-based or WDG-based concentrate (230 and 205 g kg-1 dry matter) and supplemented with or without Saccharina latissima. RESULTS Replacement of RSM with WDG enhanced milk nutritional profile by decreasing milk atherogenicity (P = 0.002) and thrombogenicity (P = 0.019) indices and the concentrations of the nutritionally undesirable saturated fatty acids - specifically, lauric (P = 0.045), myristic (P = 0.022) and palmitic (P = 0.007) acids. It also increased milk concentrations of the nutritionally beneficial vaccenic (P < 0.001), oleic (P = 0.030), linoleic (P < 0.001), rumenic (P < 0.001) and α-linolenic (P = 0.012) acids, and total monounsaturated (P = 0.044), polyunsaturated (P < 0.001) and n-6 (P < 0.001) fatty acids. Feeding Saccharina latissima at 35.7 g per cow per day did not affect the nutritionally relevant milk fatty acids or pose any risk on milk safety, as bromoform concentrations in milk were negligible and unaffected by the dietary treatments. However, it slightly reduced milk concentrations of pantothenate. CONCLUSION Feeding WDG to dairy cows improved milk fatty acid profiles, by increasing the concentrations of nutritionally beneficial fatty acids and reducing the concentration of nutritionally undesirable saturated fatty acids, while feeding seaweed slightly reduced pantothenate concentrations. However, when considering the current average milk intakes in the population, the milk compositional differences between treatments in this study appear relatively small to have an effect on human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Bing Wang
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, PR China
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - Sabrina Ormston
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - Natalia Płatosz
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
- Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn, Poland
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Nanbing Qin
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - David J Humphries
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | | | | | - Darren T Juniper
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - Sokratis Stergiadis
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| |
Collapse
|
4
|
Rissanen P, Halmemies-Beauchet-Filleau A, Niku M, Soveri T, Vanhatalo A, Kokkonen T. Effects of prepartum concentrate feeding on reticular pH, plasma energy metabolites, acute phase proteins, and milk performance in grass silage-fed dairy cows. J Dairy Sci 2024; 107:2832-2849. [PMID: 37949403 DOI: 10.3168/jds.2023-23885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
We investigated how concentrate feeding during the last 21 d of pregnancy affects reticular pH, inflammatory response, dry matter (DM) intake, and production performance of dairy cows. We hypothesized that adding concentrates to dairy cows' diet before calving reduces the decrease in reticular pH postpartum and thus alleviates inflammatory response. We also hypothesized that prepartum concentrate feeding increases DM intake postpartum and consequently improves milk performance. Two feeding experiments were conducted using a randomized complete block design. In each experiment, 16 multiparous Finnish Ayrshire cows were paired based on parity, expected calving date, body weight, and milk yield of the previous lactation. Within the pairs, cows were randomly allocated on one of the 2 dietary treatments 21 d before expected calving. In experiment 1 (Exp1), diets were ad libitum feeding of grass silage as a sole feed or supplemented with increasing amounts of concentrate offered separately (increased to 4 kg/d by d -7). In experiment 2 (Exp2), diets were ad libitum feeding of a total mixed ration containing either grass silage, barley straw, and rapeseed meal (64%, 28%, and 8% on DM basis, respectively) or grass silage, barley straw, and cereal-based concentrate mixture (49%, 29%, and 30% on DM basis, respectively). Following calving, all the cows were fed similarly and observed until d 56 postpartum. Feed intake and milk yield were recorded daily, and reticular pH was monitored continuously by reticular pH bolus. Blood samples were collected at the beginning of the experiments, 7 d before the expected calving date, 1 d (in Exp1) or 5 d (in Exp2), 10 d, and 21 d postpartum. In Exp1, concentrate feeding increased metabolizable energy intake and tended to increase DM and crude protein intake prepartum. Moreover, prepartum concentrate feeding increased the concentrations of plasma β-hydroxybutyrate and insulin, but differences in nonesterified fatty acids, glucose, or acute phase proteins were not observed. After calving, prepartum diet did not affect DM or nutrient intake, plasma energy metabolites, or milk production in Exp1. Although prepartum concentrate feeding increased reticular pH on the first day of lactation, it elevated plasma concentrations of serum amyloid-A and haptoglobin postpartum in the grass silage-based diet. In Exp2, adding concentrates to the diet based on a mixture of grass silage and straw did not affect prepartum DM intake or plasma concentrations of nonesterified fatty acids, glucose, or insulin. Adding concentrates to prepartum diet increased plasma concentration of β-hydroxybutyrate before calving as in Exp1. After calving, prepartum concentrate feeding increased DM and nutrient intake during the second week of lactation in Exp2, but no effects were observed thereafter. In contrast to our hypothesis, prepartum concentrate feeding decreased reticular pH after calving in Exp2, but no differences in inflammatory markers were observed. Based on this study, close-up concentrate feeding in diets based on grass silage with or without straw does not alleviate the decrease in reticular pH or mitigate inflammatory response postpartum.
Collapse
Affiliation(s)
- P Rissanen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - M Niku
- Department of Veterinary Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - T Soveri
- Department of Production Animal Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - T Kokkonen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
5
|
Rodriguez-Espinosa ME, Guevara-Oquendo VH, He J, Zhang W, Yu P. Research updates and progress on nutritional significance of the amides I and II, alpha-helix and beta-sheet ratios, microbial protein synthesis, and steam pressure toasting condition with globar and synchrotron molecular microspectroscopic techniques with chemometrics. Crit Rev Food Sci Nutr 2023; 65:367-381. [PMID: 37995098 DOI: 10.1080/10408398.2023.2274442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
This article aims to review research updates and progress on the nutritional significance of the amides I and II, the alpha-helix and beta-sheet ratios, the microbial protein synthesis, and the steam pressure toasting condition in food and feed with globar and synchrotron molecular microspectroscopic techniques plus chemometrics (both univariate and multivariate techniques). The review focused on (I) impact of the amides I and II, and the alpha-helix and beta-sheet-structure ratios in food and feeds; (II) Current research progress and update in synchrotron technique and application in feed and food molecular structure studies that are associated with nutrition delivery; (III) Impact of thermal processing- steam pressure toasting condition on feed and food; (IV). Impact of the microbial protein synthesis and methodology on feed and food; and (V). Impact on performance and production of ruminants with Faba beans.
Collapse
Affiliation(s)
- Maria E Rodriguez-Espinosa
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Victor H Guevara-Oquendo
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Jiangfeng He
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
| | - Weixian Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Räisänen SE, Kuoppala K, Rissanen P, Halmemies-Beauchet-Filleau A, Kokkonen T, Vanhatalo A. Effects of forage and grain legume-based silages supplemented with faba bean meal or rapeseed expeller on lactational performance, nitrogen utilization, and plasma amino acids in dairy cows. J Dairy Sci 2023; 106:6903-6920. [PMID: 37230877 DOI: 10.3168/jds.2022-22997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The objective of this experiment was to investigate the effect of forage type [red clover (51%)-grass silage, i.e., RCG; vs. faba bean (66%)-grass silage, i.e., FBG] and concentrate type (faba bean, FB; vs. rapeseed expeller, RE) on lactational performance, milk composition and nitrogen (N) utilization in lactating dairy cows. Eight lactating multiparous Nordic Red cows were used in a replicated 4 × 4 Latin Square experiment, with 21-d periods, in a 2 × 2 factorial arrangement of treatments. The experimental treatments were as follows: (1) RCG with RE, (2) RCG with FB, (3) FBG with RE, and (4) FBG with FB. Inclusion rates of RE and FB were isonitrogenous. Crude protein contents of the experimental diets were 16.3, 15.9, 18.1, and 17.9% of dry matter, respectively. All diets included oats and barley and were fed ad libitum as total mixed rations with forage-to-concentrate ratio of 55:45. Dry matter intake and milk yield were recorded daily, and spot samples of urine, feces, and blood were collected at the end of each experimental period. Dry matter intake did not differ across diets, averaging 26.7 kg/d. Milk yield averaged 35.6 kg/d and was 1.1 kg/d greater for RCG versus FBG, and milk urea N concentration was lower for RCG compared with FBG. Milk yield was 2.2 kg/d and milk protein yield 66 g/d lower for FB versus RE. Nitrogen intake, urinary N, and urinary urea N excretions were lower, and milk N excretion tended to be lower for RCG compared with FBG. The proportion of the dietary N excreted as fecal N was larger in cows fed RCG than for those fed FBG, and the opposite was true for urinary N. We detected an interaction for milk N as percentage of N intake: it increased with RE compared with FB for RCG-based diet, but only a marginal increase was observed for FBG-based diet. Plasma concentration of His and Lys were lower for RCG than for FBG, whereas His tended to be greater and Lys lower for FB compared with RE. Further, plasma Met concentration was around 26% lower for FB than for RE. Of milk fatty acids, saturated fatty acids were decreased by RCG and increased by FB compared with FBG and RE, respectively, whereas monounsaturated fatty acids were increased by RCG versus FBG, and were lower for FB than for RE. In particular, 18:1n-9 concentration was lower for FB compared with RE. Polyunsaturated fatty acids, such as 18:2n-6 and 18:3n-3, were greater for RCG than for FBG, and 18:2n-6 was greater and 18:3n-3 was lower for FB versus RE. In addition, cis-9,trans-11 conjugated linoleic acid was lower for FB compared with RE. Faba bean whole-crop silage and faba bean meal have potential to be used as a part of dairy cow rations, but further research is needed to improve their N efficiency. Red clover-grass silage from a mixed sward, without inorganic N fertilizer input, combined with RE, resulted in the greatest N efficiency in the conditions of this experiment.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - K Kuoppala
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - P Rissanen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - T Kokkonen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
7
|
Guinguina A, Hayes M, Gröndahl F, Krizsan SJ. Potential of the Red Macroalga Bonnemaisonia hamifera in Reducing Methane Emissions from Ruminants. Animals (Basel) 2023; 13:2925. [PMID: 37760326 PMCID: PMC10525606 DOI: 10.3390/ani13182925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Researchers have been exploring seaweeds to reduce methane (CH4) emissions from livestock. This study aimed to investigate the potential of a red macroalga, B. hamifera, as an alternative to mitigate CH4 emissions. B. hamifera, harvested from the west coast of Sweden, was used in an in vitro experiment using a fully automated gas production system. The experiment was a randomized complete block design consisting of a 48 h incubation that included a control (grass silage) and B. hamifera inclusions at 2.5%, 5.0%, and 7.5% of grass silage OM mixed with buffered rumen fluid. Predicted in vivo CH4 production and total gas production were estimated by applying a set of models to the gas production data and in vitro fermentation characteristics were evaluated. The results demonstrated that the inclusion of B. hamifera reduced (p = 0.01) predicted in vivo CH4 and total gas productions, and total gas production linearly decreased (p = 0.03) with inclusion of B. hamifera. The molar proportion of propionate increased (p = 0.03) while isovalerate decreased (p = 0.04) with inclusion of B. hamifera. Chemical analyses revealed that B. hamifera had moderate concentrations of polyphenols. The iodine content was low, and there was no detectable bromoform, suggesting quality advantages over Asparagopsis taxiformis. Additionally, B. hamifera exhibited antioxidant activity similar to Resveratrol. The findings of this study indicated that B. hamifera harvested from temperate waters of Sweden possesses capacity to mitigate CH4 in vitro.
Collapse
Affiliation(s)
- Abdulai Guinguina
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (LUKE), 31600 Jokioinen, Finland
| | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland;
| | - Fredrik Gröndahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden;
| | - Sophie Julie Krizsan
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| |
Collapse
|
8
|
Rinne M, Kuoppala K, Ahvenjärvi S, Vanhatalo A. Effects of faba bean, blue lupin and rapeseed meal supplementation on amino acid metabolism of dairy cows fed grass silage-based diets. Animal 2023; 17:100871. [PMID: 37393740 DOI: 10.1016/j.animal.2023.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Information about the amino acid (AA) supply of locally produced protein supplements to dairy cow metabolism is needed to design sustainable diets for milk production. In this dairy cow experiment, grass silage and cereal-based diets supplemented with isonitrogenous amounts of rapeseed meal (RSM), faba beans (FB) and blue lupin seeds (BL) were compared with a control diet (CON) without protein supplementation. The diets were arranged as a 4 × 4 Latin Square using periods of 21 days, and four rumen-cannulated Nordic Red dairy cows were used in the experiment. The intake of all AAs increased in response to protein supplementation and was for many individual AAs higher when RSM rather than the grain legumes FB and BL were fed. The total AA flow at the omasal canal was 3 026, 3 371, 3 373 and 3 045 g/day for cows fed CON, RSM, FB and BL, respectively, but only RSM resulted in higher milk protein output. This may be explained by the higher provision of essential AA for milk protein synthesis when RSM was fed. The cows fed FB showed some positive features such as a tendency for greater omasal flow of branched-chain AA compared with BL. Overall, low plasma methionine and/or glucose concentrations in all treatments suggest that their supply was possibly limiting further production responses under the dietary conditions of the current study. It seems that the benefits of grain legume supplementation are limited when high-quality grass silage and cereal-based diets are used as the basal diet, but higher responses in amino acid supply and subsequent production responses can be expected when RSM is used.
Collapse
Affiliation(s)
- M Rinne
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - K Kuoppala
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; Department of Agricultural Sciences, P.O. Box 28, FI-00014 University of Helsinki, Finland
| | - S Ahvenjärvi
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, P.O. Box 28, FI-00014 University of Helsinki, Finland
| |
Collapse
|
9
|
Uddin MK, Mahmud MR, Hasan S, Peltoniemi O, Oliviero C. Dietary micro-fibrillated cellulose improves growth, reduces diarrhea, modulates gut microbiota, and increases butyrate production in post-weaning piglets. Sci Rep 2023; 13:6194. [PMID: 37062780 PMCID: PMC10106463 DOI: 10.1038/s41598-023-33291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 04/18/2023] Open
Abstract
Dietary fiber (DF) supplementation is one of the strategies to prevent on-farm infections; it has the capability to improve gut health and piglet performance. Among the beneficial DFs, micro-fibrillated cellulose (MFC) is a new-generation plant-derived innovative feed ingredient; MFC, originating from sugar-beet pulp, has a hyper-branched structure with the ability to form shear-thinning hydrogel and has a high water-binding capacity. We aimed to determine the effects of MFC supplementation on piglets' performance before and after weaning. We included 45 sows and their piglets in this trial and monitored the results until the piglets were 7 weeks old. Piglets supplemented with MFC had higher body weight and average daily growth (ADG) than did control piglets, both pre- and post-weaning. In addition, MFC supplementation in post-weaning piglets improved butyrate content, and reduced diarrhea incidence. These phenomena, perhaps due to the MFC supplementation at different stages until age 7 weeks. In addition, after weaning, MFC supplementation stimulated the growth of butyrate-producing bacteria such as Ruminococcus.2, Ruminococcaceae.UCG.014, Intestinibacter, Roseburia, and Oribacterium genera, as well as reduced the pathogenic bacteria, such as Campylobacter, and Escherichia. Evidently, supplementation of MFC in feed to young piglets can improve growth performance and butyric acid content and reduce post-weaning diarrhea.
Collapse
Affiliation(s)
- Md Karim Uddin
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Md Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Shah Hasan
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Pitkänen O, Halmemies-Beauchet-Filleau A, Räisänen SE, Jaakkola S, Kokkonen T, Vanhatalo A. Processed fava bean as a substitute for rapeseed meal with or without rumen-protected methionine supplement in grass silage-based dairy cow diets. J Dairy Sci 2023; 106:3217-3232. [PMID: 37028967 DOI: 10.3168/jds.2022-22897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/17/2022] [Indexed: 04/08/2023]
Abstract
Fava bean offers a sustainable home-grown protein source for dairy cows, but fava bean protein is extensively degraded in the rumen and has low Met concentration. We studied the effects of protein supplementation and source on milk production, rumen fermentation, N use, and mammary AA utilization. The treatments were unsupplemented control diet, and isonitrogenously given rapeseed meal (RSM), processed (dehulled, flaked, and heated) fava bean without (TFB) or with rumen-protected (RP) Met (TFB+). All diets consisted of 50% grass silage and 50% cereal-based concentrate including studied protein supplement. The control diet had 15% of crude protein and protein-supplemented diets 18%. Rumen-protected Met in TFB+ corresponded to 15 g/d of Met absorbed in the small intestine. Experimental design was a replicated 4 × 4 Latin square with 3-wk periods. The experiment was conducted using 12 multiparous mid-lactation Nordic Red cows, of which 4 were rumen cannulated. Protein supplementation increased dry matter intake (DMI), and milk (31.9 vs. 30.7 kg/d) and milk component yields. Substituting RSM with TFB or TFB+ decreased DMI and AA intake but increased starch intake. There were no differences in milk yield or composition between RSM diet and TFB diets. Rumen-protected Met did not affect DMI, or milk or milk component yields but increased milk protein concentration in comparison to TFB. There were no differences in rumen fermentation except for increased ammonium-N concentration with the protein-supplemented diets. Nitrogen-use efficiency for milk production was lower for the supplemented diets versus control diet but tended to be greater for TFB and TFB+ versus RSM. Protein supplementation increased plasma essential AA concentration but there were no differences between TFB diets and RSM. Rumen-protected Met clearly increased plasma Met concentration (30.8 vs. 18.2 µmol/L) but did not affect other AA. Absence of differences between RSM and TFB in milk production together with limited effects of RP Met suggest that TFB is a potential alternative protein source for dairy cattle.
Collapse
Affiliation(s)
- O Pitkänen
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | | | - S E Räisänen
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | - S Jaakkola
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | - T Kokkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland.
| |
Collapse
|
11
|
Kennedy R, Moloney AP, O’Riordan EG, Kelly AK, McGee M. Intake, Growth and Carcass Traits of Steers Offered Grass Silage and Concentrates Based on Contrasting Cereal Grain Types Supplemented with Field Beans, Peas or Maize By-Products. Animals (Basel) 2023; 13:1209. [PMID: 37048465 PMCID: PMC10093695 DOI: 10.3390/ani13071209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The study objective was to determine intake and performance of beef cattle individually offered perennial ryegrass-dominant grass silage ad libitum supplemented with 4 kg dry matter daily of, rolled barley or maize meal-based concentrate rations containing supplements of flaked field beans, flaked peas, maize dried distillers grains (MDD) or maize gluten feed (MGF) for 110 days (Experiment 1), rolled barley or rolled oats with or without supplements of flaked field beans or flaked peas for 146 days (Experiment 2), and to quantify the nitrogen balance of diets similar to those offered in Experiment 2 (Experiment 3). The protein supplements were formulated to have similar crude protein concentrations. Cereal type or protein source did not affect intake, growth, feed efficiency and carcass traits in Experiment 1 or 2. Inclusion of a legume protein supplement with barley or oats had no effect on intake or growth performance (Experiment 2), whereas their exclusion decreased nitrogen intake, plasma urea concentrations and urinary and total nitrogen excretion (Experiment 3). The feeding value of barley was similar to oats and maize meal, and flaked beans and peas were similar to MGF and MDD, as supplements to grass silage. Excluding protein ingredients from a cereal-based concentrate did not affect animal performance and reduced nitrogen excretion.
Collapse
Affiliation(s)
- Rian Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath C15 PW93, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Aidan P. Moloney
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath C15 PW93, Ireland
| | - Edward G. O’Riordan
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath C15 PW93, Ireland
| | - Alan K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Mark McGee
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath C15 PW93, Ireland
| |
Collapse
|
12
|
Newton EE, Lamminen M, Ray P, Mackenzie AM, Reynolds CK, Lee MRF, Halmemies-Beauchet-Filleau A, Vanhatalo A, Stergiadis S. Macromineral and trace element concentrations in milk from Finnish Ayrshire cows fed microalgae (Spirulina platensis) and rapeseed (Brassica napus). J Dairy Sci 2022; 105:8866-8878. [PMID: 36175232 DOI: 10.3168/jds.2022-22050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Given the lack of research regarding the effect of microalgal supplementation in dairy cows on milk mineral concentrations, this study investigated the effect of feeding different protein supplements in dairy cow diets on milk, feces, and blood plasma mineral concentrations, associated milk and blood plasma transfer efficiencies, and apparent digestibility. Lactating Finnish Ayrshire cows (n = 8) were allocated at the start of the trial to 4 diets used in a replicated 4 × 4 Latin square design experiment: (1) control diet (CON), (2) a pelleted rapeseed supplement (RSS; 2,550 g/d), (3) a mixture of rapeseed and Spirulina platensis (RSAL; 1,280 g of RSS + 570 g of S. platensis per day), and (4) S. platensis (ALG; 1,130 g of S. platensis per day). In each of the 4 experimental periods, a 2-wk adaptation to the experimental diets was followed by a 7-d sampling and measurement period. Feed samples were composited per measurement period, milk, and feed samples (4 consecutive days; d 17-20), and blood plasma samples (d 21) were composited for each cow period (n = 32). Data were statistically analyzed using a linear mixed effects model with diet, period within square, square and their interaction as fixed factors, and cow within square as a random factor. Cows fed ALG were not significantly different in their milk or blood plasma mineral concentrations compared with CON, although feeding ALG increased fecal concentrations of macrominerals (Ca and Mg) and trace elements (Co, Cu, Fe, I, Mn, and Zn), and reduced their apparent digestibility, compared with CON. When compared with CON and ALG, milk from cows fed RSAL and RSS had lower milk I concentrations (-69.6 and -102.7 μg/kg of milk, respectively), but total plasma I concentrations were not affected significantly. Feeding S. platensis to dairy cows did not affect mineral concentrations in cows' blood or milk, but care should be taken when rapeseed is fed to avoid reducing milk I concentrations which may in turn reduce consumers' I intake from milk and dairy products.
Collapse
Affiliation(s)
- Eric E Newton
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, PO Box 237, RG6 6EU, Reading, United Kingdom
| | - Marjukka Lamminen
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, FI-00014 Helsinki, Finland.
| | - Partha Ray
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, PO Box 237, RG6 6EU, Reading, United Kingdom; The Nature Conservancy, 4245 North Fairfax Drive, Suite 100, Arlington, VA 22203
| | - Alexander M Mackenzie
- Department of Agriculture and the Environment, Harper Adams University, Edgmond, Shropshire, TF10 8NB, Newport, United Kingdom
| | - Christopher K Reynolds
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, PO Box 237, RG6 6EU, Reading, United Kingdom
| | - Michael R F Lee
- Department of Agriculture and the Environment, Harper Adams University, Edgmond, Shropshire, TF10 8NB, Newport, United Kingdom
| | | | - Aila Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, FI-00014 Helsinki, Finland
| | - Sokratis Stergiadis
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, PO Box 237, RG6 6EU, Reading, United Kingdom.
| |
Collapse
|
13
|
Sandström V, Chrysafi A, Lamminen M, Troell M, Jalava M, Piipponen J, Siebert S, van Hal O, Virkki V, Kummu M. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. NATURE FOOD 2022; 3:729-740. [PMID: 37118146 DOI: 10.1038/s43016-022-00589-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/10/2022] [Indexed: 04/30/2023]
Abstract
Many livestock and aquaculture feeds compete for resources with food production. Increasing the use of food system by-products and residues as feed could reduce this competition. We gathered data on global food system material flows for crop, livestock and aquaculture production, focusing on feed use and the availability of by-products and residues. We then analysed the potential of replacing food-competing feedstuff-here cereals, whole fish, vegetable oils and pulses that account for 15% of total feed use-with food system by-products and residues. Considering the nutritional requirements of food-producing animals, including farmed aquatic species, this replacement could increase the current global food supply by up to 13% (10-16%) in terms of kcal and 15% (12-19%) in terms of protein content. Increasing the use of food system by-products as feed has considerable potential, particularly when combined with other measures, in the much-needed transition towards circular food systems.
Collapse
Affiliation(s)
- Vilma Sandström
- Water & Development Research Group, Aalto University, Espoo, Finland.
| | - Anna Chrysafi
- Water & Development Research Group, Aalto University, Espoo, Finland
| | - Marjukka Lamminen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Max Troell
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, Stockholm, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Mika Jalava
- Water & Development Research Group, Aalto University, Espoo, Finland
| | | | - Stefan Siebert
- Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Ollie van Hal
- Louis Bolk Institute, Bunnik, the Netherlands
- Animal Production Systems group, Wageningen University, Wageningen, the Netherlands
| | - Vili Virkki
- Water & Development Research Group, Aalto University, Espoo, Finland
| | - Matti Kummu
- Water & Development Research Group, Aalto University, Espoo, Finland.
| |
Collapse
|
14
|
Wang W, Larsen M, Weisbjerg M, Johansen M, Hellwing A, Lund P. Effects of particle size and toasting of fava beans and forage source on nutrient digestibility, ruminal fermentation, and metabolizable protein supply in dairy cows. J Dairy Sci 2022; 105:8806-8823. [DOI: 10.3168/jds.2021-21653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
|
15
|
Weiby KV, Krizsan SJ, Eknæs M, Schwarm A, Whist AC, Schei I, Steinshamn H, Lund P, Beauchemin KA, Dønnem I. Animal Feed Science and TechnologyAssociations among nutrient concentration, silage fermentation products, in vivo organic matter digestibility, rumen fermentation and in vitro methane yield in 78 grass silages. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
TEHSEEN A, AHMAD N, NISA MU, SAEED F. Optimization of bioactive peptides production in multigrain flakes and their antioxidative and inflammatory activity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Nazir AHMAD
- Government College University Faisalabad, Pakistan
| | - Mahr Un NISA
- Government College University Faisalabad, Pakistan
| | - Farhan SAEED
- Government College University Faisalabad, Pakistan
| |
Collapse
|
17
|
Influence of the Type of Silage in the Dairy Cow Ration, with or without Grazing, on the Fatty Acid and Antioxidant Profiles of Milk. DAIRY 2021. [DOI: 10.3390/dairy2040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dairy systems based on grass and forages are widely spread throughout the European Atlantic Arc and they have an influence on milk quality. Likewise, legumes are a key element in the farms to improve cows’ diet and farm feed self-sufficiency. The aim of this study was to evaluate the effect of the legumes in the diet and the feeding system (pasture-based vs. confined) on milk production and composition. An assay was performed with 18 Friesian cows randomized into two management groups (grazing or confined). Three total mixed rations based on Italian ryegrass, faba bean or field pea silages were offered ad libitum for nine continuously housed cows or during two hours after each milking for another nine grazing cows. Regardless of type of silage, grazing cows had higher dry matter intake and milk production than confined cows. Likewise, grazing cows produced milk with a lower concentration of protein and urea than confined cows. The dairy cows fed total mixed rations based on both legume silages had a milk fat with a higher proportion of unsaturated fatty acids, especially with the inclusion of faba bean silage in the diet. The results demonstrate that the profile of fatty acids and antioxidants is related to the feeding system in dairy cows. Grazing directly influenced the composition of milk, decreasing the proportion of saturated fatty acids and increasing the content of unsaturated fatty acids, as CLA, and the antioxidants, as lutein and β-cryptoxanthin.
Collapse
|
18
|
Williams MS, AlZahal O, Mandell IB, McBride BW, Wood KM. The impacts of a fibrolytic enzyme additive on digestibility and performance in the grower and early finisher period, and supplemental Saccharomyces cerevisiae on performance and rumen health in the late finisher period for feedlot cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two experiments were conducted to determine the effects of a fibrolytic enzyme pretreatment on growth performance, apparent total tract digestibility, and ruminal pH throughout the grower and early finisher period (exp. 1), and to examine the impact of Saccharomyces cerevisiae supplementation on intake, performance, and indicators of gut health in the late finisher period (exp. 2). A total of 54 steers were randomly assigned to a subgroup determining experimental treatment groups. In exp. 1, steers were randomized to control (CON1; no enzyme) or enzyme [ENZ; 0.75 mL·kg−1 dry matter (DM) of feed] dietary treatments. Digestibility was improved (P ≤ 0.05) in ENZ steers for DM, crude protein, net energy for gain, and sugars but did not affect (P ≥ 0.12) dry matter intake (DMI), average daily gain (ADG), or reticulo-ruminal pH. In exp. 2, the treatments were control (CON2; no yeast) or yeast (YST; 3.0 g·animal−1 daily) supplemented diets. Rumen papillae were collected for mRNA expression of gut barrier function (OCLN, CLDN, ZO1, and ZO2) and immune response (TLR2, TLR4, and FCAR) genes and histological measurements. Yeast supplementation decreased (P < 0.001) DMI by 31%, reduced variation in DMI, and improved feed conversion ratios but did not impact rumen health mRNA expression or histology measures (P ≥ 0.07). Overall, enzyme supplementation improved the digestibility of some nutrients in the grower period, and yeast supplementation improved feed efficiency, without impacting growth performance or gut health.
Collapse
Affiliation(s)
- Melissa S. Williams
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Ira B. Mandell
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian W. McBride
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katharine M. Wood
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
19
|
Meng Z, Liu Q, Zhang Y, Chen J, Sun Z, Ren C, Zhang Z, Cheng X, Huang Y. Nutritive value of faba bean ( Vicia faba L.) as a feedstuff resource in livestock nutrition: A review. Food Sci Nutr 2021; 9:5244-5262. [PMID: 34532032 PMCID: PMC8441412 DOI: 10.1002/fsn3.2342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
The review evaluates faba bean (Vicia faba L.; FB) seeds relative to their nutritional composition, their content of antinutritional factors, and their impact on animal performance. The literature indicates that FB plant is a cool-season, annual grain legume that grows the best in cool and humid conditions. Its seeds are rich in protein, energy, and mineral compounds and have particularly high unsaturated fatty acid levels. However, FB seeds also contain various proportions of antinutritional factors (ANFs) that can interfere with nutrient utilization in nonruminants. The various processing methods are efficient in either reducing or inactivating the ANFs of FB seeds, with extrusion treatment offering the most effective method of improving apparent nutrient and energy digestibility of nonruminants. In vivo studies on ruminants, pigs, poultry, and fishes reveal that FB seeds have the potential to be used as a substitute for soybean meal and/or cereal seeds in livestock diets in order to support milk, meat, and/or egg production.
Collapse
Affiliation(s)
- Zhu Meng
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Qingqing Liu
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Yan Zhang
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Jiahong Chen
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan CountyChuzhouChina
| | - Zhipeng Sun
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Chunhuan Ren
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan CountyChuzhouChina
| | - Zijun Zhang
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan CountyChuzhouChina
| | - Xiao Cheng
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan CountyChuzhouChina
| | - Yafeng Huang
- Department of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan CountyChuzhouChina
| |
Collapse
|
20
|
Kuoppala K, Jaakkola S, Garry B, Ahvenjärvi S, Rinne M. Effects of faba bean, blue lupin and rapeseed meal supplementation on nitrogen digestion and utilization of dairy cows fed grass silage-based diets. Animal 2021; 15:100300. [PMID: 34174593 DOI: 10.1016/j.animal.2021.100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
There is increasing interest in using locally produced protein supplements in dairy cow feeding. The objective of this experiment was to compare rapeseed meal (RSM), faba beans (FBs) and blue lupin seeds (BL) at isonitrogenous amounts as supplements of grass silage and cereal based diets. A control diet (CON) without protein supplement was included in the experiment. Four lactating Nordic Red cows were used in a 4 × 4 Latin Square design with four 21 d periods. The milk production increased with protein supplementation but when expressed as energy corrected milk, the response disappeared due to substantially higher milk fat concentration with CON compared to protein supplemented diets. Milk protein output increased by 8.5, 4.4 and 2.7% when RSM, FB and BL were compared to CON. The main changes in rumen fermentation were the higher propionate and lower butyrate proportion of total rumen volatile fatty acids when the protein supplemented diets were compared to CON. Protein supplementation also clearly increased the ruminal ammonia N concentration. Protein supplementation improved diet organic matter and NDF digestibility but efficiency of microbial protein synthesis per kg organic matter truly digested was not affected. Flow of microbial N was greater when FB compared to BL was fed. All protein supplements decreased the efficiency of nitrogen use in milk production. The marginal efficiency (amount of additional feed protein captured in milk protein) was 0.110, 0.062 and 0.045 for RSM, FB and BL, respectively. The current study supports the evidence that RSM is a good protein supplement for dairy cows, and this effect was at least partly mediated by the lower rumen degradability of RSM protein compared to FB and BL. The relatively small production responses to protein supplementation with simultaneous decrease in nitrogen use efficiency in milk production suggest that economic and environmental consequences of protein feeding need to be carefully considered.
Collapse
Affiliation(s)
- K Kuoppala
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - S Jaakkola
- Department of Agricultural Sciences, P.O. Box 28, FI-00014 University of Helsinki, Finland
| | - B Garry
- Teagasc, Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - S Ahvenjärvi
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - M Rinne
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| |
Collapse
|
21
|
Effect of exogenous dietary phytase and concentrate mixtures based on faba beans, rapeseed meal or soybean meal as main protein source on phytate and total phosphorus excretion in dairy cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Keller M, Reidy B, Scheurer A, Eggerschwiler L, Morel I, Giller K. Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality. Animals (Basel) 2021; 11:1588. [PMID: 34071418 PMCID: PMC8227232 DOI: 10.3390/ani11061588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of the study was to investigate the complete substitution of imported soybean meal in beef cattle diets and the consequences on performance, meat, and adipose tissue quality. Thirty growing crossbred Limousin bulls, with an initial bodyweight of 164 ± 13 kg and 4.3 ± 0.3 months of age, were fed a grass/maize-silage based diet with little additional concentrate (0.5:0.3:0.2). Concentrates contained either soybean meal (positive control), faba beans, pumpkin seed cake, or spirulina (Arthrospira platensis), resulting in about 226 g crude protein (CP)/kg concentrate dry matter (DM) and 158 g CP/kg total diet DM. A grain-based concentrate providing just 135 g CP/kg concentrate DM and 139 g CP/total diet DM served as a negative control. Bulls of all groups had comparable average daily gains (1.43 ± 0.1 kg) and feed intakes (6.92 ± 0.37 kg). Carcass and meat quality did not differ among groups. The fatty acid profile of meat lipids was hardly affected. These results indicate that soybean meal can be replaced by any of the tested protein sources without impairing performance or meat quality. Importantly, bulls fed the negative control achieved a fattening and slaughter performance comparable to that of the protein-supplemented groups without affecting meat and adipose tissue quality. Thus, the present findings suggest that feeding crossbred bulls a grass/maize-silage based diet does not require additional protein supplementation.
Collapse
Affiliation(s)
- Magdalena Keller
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Beat Reidy
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, 3052 Zollikofen, Switzerland
| | - Andreas Scheurer
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, 3052 Zollikofen, Switzerland
| | | | - Isabelle Morel
- Agroscope, Route de la Tioleyre 4, 1725 Posieux, Switzerland
| | - Katrin Giller
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
23
|
Enteric and Fecal Methane Emissions from Dairy Cows Fed Grass or Corn Silage Diets Supplemented with Rapeseed Oil. Animals (Basel) 2021; 11:ani11051322. [PMID: 34063117 PMCID: PMC8148109 DOI: 10.3390/ani11051322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In this study, we evaluated methane emissions from dairy cows fed grass or corn silage diets supplemented with rapeseed oil. Enteric methane emissions decreased on adding rapeseed oil to the diet, but methane emissions from feces of dairy cows fed diets supplemented with rapeseed oil did not differ. Thus, no trade-offs were observed between enteric and fecal methane emissions due to forage type or addition of rapeseed oil to diets fed to Swedish dairy cows. Abstract This study evaluated potential trade-offs between enteric methane (CH4) emissions and CH4 emissions from feces of dairy cows fed grass silage or partial replacement of grass silage with corn silage, both with and without supplementation of rapeseed oil. Measured data for eight dairy cows (two blocks) included in a production trial were analyzed. Dietary treatments were grass silage (GS), GS supplemented with rapeseed oil (GS-RSO), GS plus corn silage (GSCS), and GSCS supplemented with rapeseed oil (GSCS-RSO). Feces samples were collected after each period and incubated for nine weeks to estimate fecal CH4 emissions. Including RSO (0.5 kg/d) in the diet decreased dry matter intake (DMI) by 1.75 kg/d. Enteric CH4 emissions were reduced by inclusion of RSO in the diet (on average 473 vs. 607 L/d). In 9-week incubations, there was a trend for lower CH4 emissions from feces of cows fed diets supplemented with RSO (on average 3.45 L/kg DM) than cows with diets not supplemented with RSO (3.84 L/kg DM). Total CH4 emissions (enteric + feces, L/d) were significantly lower for the cows fed diets supplemented with RSO. Total fecal CH4 emissions were similar between treatments, indicating no trade-offs between enteric and fecal CH4 emissions.
Collapse
|
24
|
Hansen NP, Johansen M, Wiking L, Larsen M, Lund P, Larsen T, Weisbjerg MR. Fava beans can substitute soybean meal and rapeseed meal as protein source in diets for lactating dairy cows. J Dairy Sci 2021; 104:5508-5521. [PMID: 33685672 DOI: 10.3168/jds.2020-19577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
The effect of replacing mixtures of wheat and soybean meal and wheat and rapeseed meal by toasted fava beans, and the effect of toasting fava beans on feed intake, milk yield, and composition of milk and feces were investigated using 40 Holstein cows in each of two 4 × 4 Latin square design trials conducted simultaneously. In trial 1, the 4 treatment concentrates were untreated fava beans, toasted fava beans, 42% soybean meal + 58% rolled wheat, and a 21, 29, and 50% mix of soybean meal, rolled wheat, and toasted fava beans, respectively [on dry matter (DM) basis]. In trial 2, the 4 experimental treatments were untreated fava beans, toasted fava beans, 64% rapeseed meal + 36% rolled wheat, and a 32, 18, and 50% mix of rapeseed meal, rolled wheat, and toasted fava beans, respectively (on DM basis). In each trial, 16 primiparous and 24 multiparous cows were fed the treatment concentrates as part of a partial mixed ration, of which the forage consisted of 50% corn silage and 50% grass-clover silage. Substitution of soybean meal and wheat or rapeseed meal and wheat with toasted fava beans did not affect total DM intake, and no linear effects were observed on milk yield or energy-corrected milk (ECM) yield. However, in trial 2, a quadratic effect was observed on milk yield when substituting rapeseed meal and wheat with toasted fava beans. In both trials, substitution of soybean meal and wheat or rapeseed meal and wheat with toasted fava beans increased milk lactose concentration and decreased milk protein yield and concentration of protein in milk. In both trials, fecal concentration of starch increased linearly when substituting soybean meal and wheat or rapeseed meal and wheat with toasted fava beans. In trial 2, fecal concentration of P decreased when substituting rapeseed meal and wheat with toasted fava beans. In situ investigations showed increased rumen undegradable protein concentration and thereby increased estimated metabolizable protein supply when toasting fava beans. However, in both trials, milk protein yield and concentration decreased when cows were fed toasted compared with untreated fava beans. Furthermore, when cows were fed toasted compared with untreated fava beans in trial 1, milk yield, ECM yield, and nitrogen efficiency decreased. We conclude that toasted fava beans could substitute soybean meal and wheat or rapeseed meal and wheat with regard to ECM yield. However, milk protein yield decreased when substituting soybean meal and wheat or rapeseed meal and wheat with toasted fava beans. Compared with untreated fava beans, toasting had no positive effect on milk production and nitrogen efficiency.
Collapse
Affiliation(s)
- N P Hansen
- Department of Animal Science, AU Foulum, Aarhus University, 8830 Tjele, Denmark.
| | - M Johansen
- Department of Animal Science, AU Foulum, Aarhus University, 8830 Tjele, Denmark
| | - L Wiking
- Department of Food Science, Aarhus University, 8200 Aarhus N, Denmark
| | - M Larsen
- Department of Animal Science, AU Foulum, Aarhus University, 8830 Tjele, Denmark
| | - P Lund
- Department of Animal Science, AU Foulum, Aarhus University, 8830 Tjele, Denmark
| | - T Larsen
- Department of Animal Science, AU Foulum, Aarhus University, 8830 Tjele, Denmark
| | - M R Weisbjerg
- Department of Animal Science, AU Foulum, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
25
|
Ramin M, Fant P, Huhtanen P. The effects of gradual replacement of barley with oats on enteric methane emissions, rumen fermentation, milk production, and energy utilization in dairy cows. J Dairy Sci 2021; 104:5617-5630. [PMID: 33685675 DOI: 10.3168/jds.2020-19644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
This study evaluated the effects of gradual replacement of barley with oats on enteric CH4 emissions, rumen fermentation, diet digestibility, milk production, and energy utilization in dairy cows fed a grass silage-based diet. Sixteen lactating Nordic Red dairy cows received a total mixed ration [58:42 forage:concentrate on dry matter (DM) basis]. Grass silage (Phleum pratense) was the sole forage with canola meal (10% of diet DM) as a protein supplement. The effects of gradual replacement of barley with oats on DM basis were evaluated using a replicated 4 × 4 Latin square design with 21 d periods. The grain supplements (30% of diet DM) consisted of 100% barley, 67% barley and 33% oats, 33% barley and 67% oats, and 100% oats. In addition to intake, milk production, and digestibility measurements, CH4 emissions were measured by the GreenFeed system (C-Lock Inc.). The energy metabolism was estimated from the gas exchange measurements recorded by the GreenFeed unit. The last 10 d of each period were used for recordings of gas exchanges, feed intake and milk production. Dry matter intake, body weight, milk yield, and energy-corrected milk yield were not affected by gradual replacement of barley with oats in the diet. Increased inclusion of oats linearly decreased CH4 emissions from 467 to 445 g/d, and CH4 intensity from 14.7 to 14.0 g/kg energy-corrected milk. In addition, the ratio of CH4 to CO2 decreased with increasing inclusion of oats in the diet. Digestibility of organic matter, neutral detergent fiber, and potentially digestible neutral detergent fiber decreased linearly with increasing inclusion of oats. Increased inclusion of oats linearly increased fecal energy from 121 to 133 MJ/d, whereas urinary energy and heat production were not affected by dietary treatment. This resulted in a linear decrease in metabolizable energy intake. However, increased levels of oat in the diet did not significantly affect energy balance or efficiency of metabolizable energy utilization for lactation. This study concludes that barley could be replaced with oats in the diet of dairy cows fed a grass silage-based diet to mitigate CH4 emissions without having any adverse effects on productivity or energy balance. However, the effect of replacing barley with oats on CH4 emissions is dependent on the differences between barley and oats in the concentrations of indigestible neutral detergent fiber and fat.
Collapse
Affiliation(s)
- M Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| | - P Fant
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| | - P Huhtanen
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
26
|
Koppelmäki K, Lamminen M, Helenius J, Schulte RPO. Smart integration of food and bioenergy production delivers on multiple ecosystem services. Food Energy Secur 2021. [DOI: 10.1002/fes3.279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Kari Koppelmäki
- The Farming Systems Ecology Wageningen University & Research Wageningen The Netherlands
- Department of Agricultural Sciences University of Helsinki Helsinki Finland
- Ruralia Institute University of Helsinki Mikkeli Finland
| | - Marjukka Lamminen
- Department of Agricultural Sciences University of Helsinki Helsinki Finland
- HELSUS Helsinki Institute of Sustainability ScienceUniversity of Helsinki Helsinki Finland
| | - Juha Helenius
- Department of Agricultural Sciences University of Helsinki Helsinki Finland
- Ruralia Institute University of Helsinki Mikkeli Finland
- HELSUS Helsinki Institute of Sustainability ScienceUniversity of Helsinki Helsinki Finland
| | - Rogier P. O. Schulte
- The Farming Systems Ecology Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
27
|
Cavallini D, Mammi LME, Biagi G, Fusaro I, Giammarco M, Formigoni A, Palmonari A. Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH and fibre digestibility. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1884005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Damiano Cavallini
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italia
| | | | - Giacomo Biagi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italia
| | - Isa Fusaro
- Facoltà di Medicina Veterinaria, Università di Teramo, Teramo, Italia
| | - Melania Giammarco
- Facoltà di Medicina Veterinaria, Università di Teramo, Teramo, Italia
| | - Andrea Formigoni
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italia
| | - Alberto Palmonari
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italia
| |
Collapse
|
28
|
Raw or technologically treated proteaginous seeds as alternatives to soybean meal for dairy cows: Comparative evaluation by meta-analysis of in situ and in vivo digestive parameters, nitrogen partition and dairy performance. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Rinne M, Leppä MM, Kuoppala K, Koivunen E, Kahala M, Jalava T, Salminen JP, Manni K. Fermentation quality of ensiled crimped faba beans using different additives with special attention to changes in bioactive compounds. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Ylinen V, Pylkkö P, Peura J, Valaja J. Ileal and total tract digestibility and nitrogen utilisation in blue fox ( Vulpes lagopus) fed low-protein diets supplemented with DL-methionine and L-histidine. Arch Anim Nutr 2020; 74:237-255. [PMID: 32159388 DOI: 10.1080/1745039x.2020.1716655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To formulate low-protein diets for blue foxes with sufficient amounts of amino acids (AA), AA digestibility and AA requirements of the animals are crucial information. Therefore, a digestibility and nitrogen (N) balance trial was conducted with 20 blue foxes to determine the macronutrient and AA digestibility and N utilisation in low-protein diets supplemented with DL-methionine (Met) and L-histidine (His). In addition, plasma urea and plasma AA were measured. The diets were designated as P24 (control), P20, P20M, P16M and P16MH and contained energy from digestible crude protein (DCP) at 24%, 20% or 16% of total dietary metabolisable energy (ME). The 20% protein level was fed with or without Met and the 16% protein level was fed with Met and with or without His. The apparent total-tract digestibility (ATTD) of crude protein linearly decreased with decreasing dietary protein level. The ATTD of dry matter, organic matter and crude carbohydrates increased when wheat starch was added as a replacement for protein. The apparent ileal digestibility (AID) and ATTD methods were compared to determine the AA digestibility. The decreasing dietary protein supply decreased the ATTD of most of the AA: threonine, tryptophan (Trp), valine, alanine (Ala), aspartic acid (Asp), glutamic acid, glycine (Gly), proline (Pro), serine (Ser) and total AA. The AID of the AA was constant between diets. Diverging AA showed higher or lower digestibility when determined in the AID or ATTD methods. Isoleucine, lysine, Met, Ala and tyrosine showed higher levels of AID. Arginine, His, cysteine (Cys), Trp, Asp, Gly, Pro and Ser showed higher levels of ATTD, which may reflect the net loss of these AA in the large intestine. Met and His supplementation improved the ATTD and AID of the AA in question, respectively, but did not affect the other variables examined. N retention did not differ between diets and renal N excretion decreased with decreasing protein level; thus N utilisation improved. It was concluded that the protein supply and AA composition in low-protein diets with supplemented Met were adequate for adult blue foxes, since the lower protein supply improved N utilisation and did not affect N retention. However, His supplementation failed to reach the designed level and therefore showed no clear results.
Collapse
Affiliation(s)
- Vappu Ylinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | - Jussi Peura
- Finnish Fur Breeders' Association, Vantaa, Finland
| | - Jarmo Valaja
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Huhtanen P, Huuskonen A. Modelling effects of carcass weight, dietary concentrate and protein levels on the CH4 emission, N and P excretion of dairy bulls. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Chagas JC, Ramin M, Krizsan SJ. In Vitro Evaluation of Different Dietary Methane Mitigation Strategies. Animals (Basel) 2019; 9:E1120. [PMID: 31835803 PMCID: PMC6940870 DOI: 10.3390/ani9121120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022] Open
Abstract
We assessed and ranked different dietary strategies for mitigating methane (CH4) emissions and other fermentation parameters, using an automated gas system in two in vitro experiments. In experiment 1, a wide range of dietary CH4 mitigation strategies was tested. In experiment 2, the two most promising CH4 inhibitory compounds from experiment 1 were tested in a dose-response study. In experiment 1, the chemical compounds 2-nitroethanol, nitrate, propynoic acid, p-coumaric acid, bromoform, and Asparagopsis taxiformis (AT) decreased predicted in vivo CH4 production (1.30, 21.3, 13.9, 24.2, 2.00, and 0.20 mL/g DM, respectively) compared with the control diet (38.7 mL/g DM). The 2-nitroethanol and AT treatments had lower molar proportions of acetate and higher molar proportions of propionate and butyrate compared with the control diet. In experiment 2, predicted in vivo CH4 production decreased curvilinearly, molar proportions of acetate decreased, and propionate and butyrate proportions increased curvilinearly with increased levels of AT and 2-nitroethanol. Thus 2-nitroethanol and AT were the most efficient strategies to reduce CH4 emissions in vitro, and AT inclusion additionally showed a strong dose-dependent CH4 mitigating effect, with the least impact on rumen fermentation parameters.
Collapse
Affiliation(s)
| | | | - Sophie J. Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd, 90183 Umeå, Sweden; (J.C.C.); (M.R.)
| |
Collapse
|
33
|
Özkan Gülzari Ş, Lind V, Aasen IM, Steinshamn H. Effect of supplementing sheep diets with macroalgae species on in vivo nutrient digestibility, rumen fermentation and blood amino acid profile. Animal 2019; 13:2792-2801. [PMID: 31293228 PMCID: PMC6861173 DOI: 10.1017/s1751731119001502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/26/2019] [Accepted: 05/16/2019] [Indexed: 11/09/2022] Open
Abstract
In this study, a brown macroalgae species, Saccharina latissima, processed to increase its protein concentration, and a red macroalgae species, Porphyra spp., were used to evaluate their in vivo digestibility, rumen fermentation and blood amino acid concentrations. Four castrated rams were used, whose diets were supplemented with a protein-rich fraction of S. latissima, a commercial Porphyra spp. and soybean meal (SBM). Our results show that the protein digestibility of a diet with S. latissima extract was lower (0.55) than those with Porphyra spp. (0.64) and SBM (0.66). In spite of the higher nitrogen (N) intake of diets containing Porphyra spp. and SBM (20.9 and 19.8 g N/day, respectively) than that with S. latissima (18.6 g N/day), the ratio of N excreted in faeces to total N intake was significantly higher in the diet with S. latissima than those with Porphyra spp. and SBM. This reflects that the utilization of protein in S. latissima was impaired, possibly due to reduced microbial activity. The latter statement is corroborated by lower volatile fatty acid composition (25.6, 54.8 and 100 mmol/l for S. latissima, Porphyra spp. and SBM, respectively) and a non-significant tendency for lower ammonia concentration observed in diets with S. latissima and Porphyra spp. compared to SBM. It is important to note that the S. latissima used in this trial was rinsed during processing to remove salt. This process potentially also removes other water-soluble compounds, such as free amino acids, and may have increased the relative fraction of protein resistant to rumen degradation and intestinal absorption. Furthermore, the phlorotannins present in macroalgae may have formed complexes with protein and fibre, further limiting their degradability in rumen and absorption in small intestines. We recommend that further studies explore the extent to which processing of macroalgae affects its nutritive properties and rumen degradability, in addition to studies to measure the intestinal absorption of these macroalgae species.
Collapse
Affiliation(s)
- Ş Özkan Gülzari
- Division of Food Production and Society, Department of Grassland and Livestock, Norwegian Institute of Bioeconomy Research, PO Box 115, 1431 Ås, Norway
| | - V Lind
- Division of Food Production and Society, Department of Grassland and Livestock, Norwegian Institute of Bioeconomy Research, PO Box 115, 1431 Ås, Norway
| | - I M Aasen
- SINTEF Industry, 7465 Trondheim, Norway
| | - H Steinshamn
- Division of Food Production and Society, Department of Grassland and Livestock, Norwegian Institute of Bioeconomy Research, PO Box 115, 1431 Ås, Norway
| |
Collapse
|
34
|
Johnston DJ, Theodoridou K, Gordon AW, Yan T, McRoberts WC, Ferris CP. Field bean inclusion in the diet of early-lactation dairy cows: Effects on performance and nutrient utilization. J Dairy Sci 2019; 102:10887-10902. [PMID: 31548054 DOI: 10.3168/jds.2019-16513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022]
Abstract
The European livestock sector has a significant deficit of high-quality protein feed ingredients. Consequently there is interest in using locally grown protein grain crops to partially or completely replace imported protein feeds in dairy cow rations. Field bean (FB; Vicia faba) has been identified as a locally grown crop with significant potential. The current study was designed to examine the effects of FB on cow performance and nutrient utilization in the diet of early-lactation dairy cows, including high levels of FB (up to 8.4 kg/cow per day). The experiment used 72 dairy cows in a 3-treatment continuous design (from calving until wk 20 of lactation). All cows were given ad libitum access to a mixed ration comprising grass silage and concentrates [45:55 on a dry matter (DM) basis]. Concentrates offered contained either 0, 349, or 698 g of FB/kg of concentrate (treatments FB0, FB-Low, and FB-High, respectively), with FB completely replacing soybean meal, rapeseed meal, maize gluten, and wheat in the concentrate for the FB-High treatment. Following completion of the 20-wk experiment, ration digestibility, nutrient utilization, and methane (CH4) production were measured using 4 cows from each treatment. Neither silage DM intake, total DM intake, nor milk yield were affected by treatment. Cows on FB0 had a higher milk fat content than those on FB-High, and cows on FB0 and FB-Low had higher milk protein contents than did those on FB-High. Field bean inclusion increased the degree of saturation of milk fat produced. Milk fat yield, milk protein yield, and milk fat plus protein yield were higher with FB0 than with either FB-Low or FB-High. Treatment had no effect on the digestibility of DM, organic matter, nitrogen (N), gross energy, or neutral detergent fiber, whereas digestibility of acid detergent fiber was higher with FB0 than with FB-High. Neither the efficiency of gross energy or N utilization, nor any of the CH4 production parameters examined, were affected by treatment. Similarly, none of the fertility or health parameters examined were affected by treatment. The reduction in milk fat observed may have been due to the higher starch content of the FB-High diet, and the reduction in milk protein may have been due to a deficit of methionine in the diet. It is likely that these issues could be overcome by changes in ration formulation, thus allowing FB to be included at the higher range without loss in performance.
Collapse
Affiliation(s)
- D J Johnston
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down, BT26 6DR, United Kingdom; Queens University Belfast, Co. Antrim, BT7 1NN, United Kingdom.
| | - K Theodoridou
- Queens University Belfast, Co. Antrim, BT7 1NN, United Kingdom
| | - A W Gordon
- Agri-Food and Biosciences Institute, Belfast, Co. Antrim, BT9 5PX, United Kingdom
| | - T Yan
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down, BT26 6DR, United Kingdom
| | - W C McRoberts
- Agri-Food and Biosciences Institute, Belfast, Co. Antrim, BT9 5PX, United Kingdom
| | - C P Ferris
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down, BT26 6DR, United Kingdom
| |
Collapse
|
35
|
Fant P, Ramin M, Jaakkola S, Grimberg Å, Carlsson AS, Huhtanen P. Effects of different barley and oat varieties on methane production, digestibility, and fermentation pattern in vitro. J Dairy Sci 2019; 103:1404-1415. [PMID: 31785868 DOI: 10.3168/jds.2019-16995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022]
Abstract
The objective of this in vitro study was to determine the effects of different barley and oat varieties on CH4 production, digestibility, and rumen fermentation patterns in dairy cows. Our hypothesis was that oat-based diets would decrease CH4 production compared with barley-based diets, and that CH4 production would differ between varieties within grain species. To evaluate this hypothesis, we conducted an in vitro experiment using a fully automated gas production technique, in which the total gas volume was automatically recorded by the system. The experiment consisted of triplicate 48-h incubations with 16 treatments, including 8 different varieties of each grain. The grain varieties were investigated as a mix with an early-cut grass silage (1:1 ratio of grain to silage on a dry matter basis) and mixed with buffered rumen fluid. We estimated predicted in vivo total gas production and CH4 production by applying a set of models to the gas production data obtained by the in vitro system. We also evaluated in vitro digestibility and fermentation characteristics. The variety of grain species did not affect total gas production, CH4 production, or fermentation patterns in vitro. However, in vitro-determined digestibility and pH were affected by variety of grain species. Grain species affected total gas and CH4 production: compared with barley-based diets, oat-based diets decreased total gas production and CH4 production by 8.2 and 8.9%, respectively, relative to dry matter intake. Grain species did not affect CH4 production relative to in vitro true dry matter digestibility. Oat-based diets decreased digestibility and total volatile fatty acid production, and maintained a higher pH at 48 h of incubation compared with barley-based diets. Grain species did not affect fermentation patterns, except for decreased molar proportions of valerate with oat-based diets. These results suggest that replacing barley with oats in dairy cow diets could decrease enteric CH4 production.
Collapse
Affiliation(s)
- P Fant
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - M Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - S Jaakkola
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, FI-00014 Helsinki, Finland
| | - Å Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, SE-230 53 Alnarp, Sweden
| | - A S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, SE-230 53 Alnarp, Sweden
| | - P Huhtanen
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| |
Collapse
|
36
|
Mendowski S, Chapoutot P, Chesneau G, Ferlay A, Enjalbert F, Cantalapiedra-Hijar G, Germain A, Nozière P. Effects of replacing soybean meal with raw or extruded blends containing faba bean or lupin seeds on nitrogen metabolism and performance of dairy cows. J Dairy Sci 2019; 102:5130-5147. [PMID: 30981491 DOI: 10.3168/jds.2018-15416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022]
Abstract
The objective was to test the effects of replacing soybean meal in dairy cow diets with either raw or extruded faba bean:linseed or lupin:linseed blends on intake, milk yield and composition, N partitioning, and ruminal and plasma parameters. Our main hypotheses were that N from extruded blends was less degradable in the rumen than N from raw seeds, and that a higher extrusion temperature favored ruminal protection of proteins and milk protein yield, and lowered urinary N excretion. Eight Holstein cows fitted with ruminal cannulas were used in two 4 × 4 Latin square design experiments conducted in parallel. In both experiments, cows were fed diets with a crude protein content of 14.6%, containing 60% of forage (dry matter basis). Treatments differed by the composition of the concentrates: control in both experiments was based on soybean meal, and experimental treatments were based on proteaginous:linseed (90:10%) blends consisting of faba bean blends (first experiment) or lupin blends (second experiment) presented either raw, extruded at 140°C, or extruded at 160°C. Intake, milk yield and composition, ruminal pH, volatile fatty acids and ammonia kinetics, digestibility, N partitioning, Maillard compounds in feed and feces, plasma AA, and 15N natural enrichment were measured. Data were analyzed using ANOVA according to the MIXED procedure of SAS (version 9.4, SAS Institute Inc., Cary, NC). Ammonia content in ruminal fluid did not significantly change when soybean meal was replaced by either raw or extruded faba bean, but tended to be higher with lupin. Milk yield was increased by 2.6 kg with faba bean blend extruded at 140°C compared with faba bean blend extruded at 160°C. Milk fat and milk protein concentrations were decreased by 3.1 and 2.3 g/kg, respectively, with lupin blends compared with soybean meal. Nitrogen partitioning between milk, feces, and urine did not change. Nitrogen apparent digestibility decreased by 3 g/100 g of N between faba bean blend extruded at low and at high temperatures. The content of Maillard compounds in feces was higher with blends extruded at 160°C than with raw or extruded at 140°C blends within both experiments. Total plasma AA tended to be higher with extruded blends than with raw in the faba bean experiment. Both extrusion temperatures appeared to protect dietary proteins from ruminal degradability, but proteins seemed to be overprotected at 160°C.
Collapse
Affiliation(s)
- S Mendowski
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Valorex, La Messayais, F-35210 Combourtillé, France
| | - P Chapoutot
- UMR MoSAR, INRA, AgroParisTech, Université Paris-Saclay, F-75005 Paris, France
| | - G Chesneau
- Valorex, La Messayais, F-35210 Combourtillé, France
| | - A Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - F Enjalbert
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31320 Castanet Tolosan, France
| | - G Cantalapiedra-Hijar
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - A Germain
- Valorex, La Messayais, F-35210 Combourtillé, France
| | - P Nozière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
37
|
Lamminen M, Halmemies-Beauchet-Filleau A, Kokkonen T, Vanhatalo A, Jaakkola S. The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. J Dairy Sci 2019; 102:7102-7117. [PMID: 31155260 DOI: 10.3168/jds.2018-16213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/26/2019] [Indexed: 01/28/2023]
Abstract
Alternative protein sources such as microalgae and faba beans may have environmental benefits over rapeseed. We studied the effects of rapeseed meal (RSM) or faba beans (FB) as a sole protein feed or as protein feeds partially substituted with Spirulina platensis (spirulina) microalgae on milk production, N utilization, and AA metabolism of dairy cows. Eight multiparous Finnish Ayrshire cows (113 ± 36.3 d in milk; mean ± SD) were used in a balanced, replicated 4 × 4 Latin square with 2 × 2 factorial arrangement of treatments and 21-d periods. Four cows in one Latin square were rumen cannulated. Treatments were 2 isonitrogenously fed protein sources, RSM or rolled FB, or one of these sources with half of its crude protein substituted by spirulina (RSM-SPI and FB-SPI). Cows had ad libitum access to total mixed rations consisting of grass silage, barley, sugar beet pulp, minerals, and experimental protein feed. The substitution of RSM with FB did not affect dry matter intake (DMI) but decreased neutral detergent fiber intake and increased the digestibility of other nutrients. Spirulina in the diet decreased DMI and His intake. Spirulina had no effect on Met intake in cows on RSM diets but increased it in those on FB diets. Energy-corrected milk (ECM) and protein yields were decreased when RSM was substituted by FB. Milk and lactose yields were decreased in cows on the RSM-SPI diet compared with the RSM diet but increased in those on FB-SPI compared with FB. The opposite was true for milk fat and protein concentrations; thus, spirulina in the diet did not affect ECM. Feed conversion efficiency (ECM:DMI) increased in cows on FB diets with spirulina, whereas little effect was observed for those on RSM diets. The substitution of RSM by FB decreased arterial concentration of Met and essential AA. Spirulina in the diet increased milk urea N and ruminal NH4-N and decreased the efficiency of N utilization in cows on RSM diets, whereas those on FB diets showed opposite results. Met likely limited milk production in cows on the FB diet as evidenced by the decrease in arterial Met concentration and milk protein yield when RSM was substituted by FB. The results suggest the potential to improve milk production response to faba beans with supplementation of Met-rich feeds such as spirulina. This study also confirmed spirulina had poorer palatability than RSM and FB despite total mixed ration feeding and lower milk production when spirulina partially replaced RSM.
Collapse
Affiliation(s)
- M Lamminen
- Department of Agricultural Sciences, PO Box 28, FI-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, FI-00014, University of Helsinki, Finland
| | | | - T Kokkonen
- Department of Agricultural Sciences, PO Box 28, FI-00014, University of Helsinki, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, PO Box 28, FI-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, FI-00014, University of Helsinki, Finland
| | - S Jaakkola
- Department of Agricultural Sciences, PO Box 28, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
38
|
Martineau R, Ouellet DR, Lapierre H. Does blending canola meal with other protein sources improve production responses in lactating dairy cows? A multilevel mixed-effects meta-analysis. J Dairy Sci 2019; 102:5066-5078. [PMID: 30904303 DOI: 10.3168/jds.2018-15925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/31/2019] [Indexed: 01/18/2023]
Abstract
The objective of this meta-analysis was to evaluate the effect of blending canola meal (CM) with other protein sources on production responses in lactating dairy cows. To evaluate this effect, a data set was assembled containing 22 studies reporting at least 3 isonitrogenous dietary treatments (total of 74 treatment means). Each study needed to report 1 diet with CM <0.3 kg/d, 1 or more diets consisting of CM blended with another protein source, and 1 diet with CM as the main protein source in the protein supplement (>85%). The crude protein (CP) concentration of CM averaged 37.4 ± 3.09% (dry matter basis), and the predictor of interest was the intake of CP from CM, which averaged 0.46 ± 0.413 kg/d among studies. The maximal CP from CM ranged from 0.47 to 1.55 kg/d among studies. The quadratic relationship between CP from CM and responses in milk true protein concentration was significant, the maximum response (3.19%) being reached at 0.79 kg of CP from CM; the quadratic relationships were not significant for the other dependent variables. Responses in dry matter intake; yields of milk, energy-corrected milk, and milk true protein; and apparent N efficiency were related positively to CP from CM and negatively for responses in milk fat and milk urea N concentrations. Remembering that diets were isonitrogenous within studies, this indicates no nutritional benefit of blending CM with another protein source. Taken together, the results indicate that the whole-body N utilization efficiency by the dairy cow improved and that more dietary protein was used to synthesize milk protein when CM was used as the sole protein source in the protein supplement up to 1.55 kg/d.
Collapse
Affiliation(s)
- R Martineau
- Département des Sciences Animales, Université Laval, Québec, QC, Canada, G1V 0A6.
| | - D R Ouellet
- Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| | - H Lapierre
- Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| |
Collapse
|
39
|
Martineau R, Ouellet D, Patton R, White R, Lapierre H. Plasma essential amino acid concentrations in response to casein infusion or ration change in dairy cows: A multilevel, mixed-effects meta-analysis. J Dairy Sci 2019; 102:1312-1329. [DOI: 10.3168/jds.2018-15218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
|
40
|
Johnston D, Theodoridou K, Ferris C. The impact of field bean inclusion level in dairy cow diets on cow performance and nutrient utilisation. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Lamminen M, Halmemies-Beauchet-Filleau A, Kokkonen T, Jaakkola S, Vanhatalo A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.11.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Salin S, Vanhatalo A, Jaakkola S, Elo K, Taponen J, Boston R, Kokkonen T. Effects of dry period energy intake on insulin resistance, metabolic adaptation, and production responses in transition dairy cows on grass silage–based diets. J Dairy Sci 2018; 101:11364-11383. [DOI: 10.3168/jds.2018-14728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
|
43
|
Review: Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal 2018; 12:s295-s309. [PMID: 30318027 DOI: 10.1017/s1751731118002252] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Ruminant-based food production faces currently multiple challenges such as environmental emissions, climate change and accelerating food-feed-fuel competition for arable land. Therefore, more sustainable feed production is needed together with the exploitation of novel resources. In addition to numerous food industry (milling, sugar, starch, alcohol or plant oil) side streams already in use, new ones such as vegetable and fruit residues are explored, but their conservation is challenging and production often seasonal. In the temperate zones, lipid-rich camelina (Camelina sativa) expeller as an example of oilseed by-products has potential to enrich ruminant milk and meat fat with bioactive trans-11 18:1 and cis-9,trans-11 18:2 fatty acids and mitigate methane emissions. Regardless of the lower methionine content of alternative grain legume protein relative to soya bean meal (Glycine max), the lactation performance or the growth of ruminants fed faba beans (Vicia faba), peas (Pisum sativum) and lupins (Lupinus sp.) are comparable. Wood is the most abundant carbohydrate worldwide, but agroforestry approaches in ruminant nutrition are not common in the temperate areas. Untreated wood is poorly utilised by ruminants because of linkages between cellulose and lignin, but the utilisability can be improved by various processing methods. In the tropics, the leaves of fodder trees and shrubs (e.g. cassava (Manihot esculenta), Leucaena sp., Flemingia sp.) are good protein supplements for ruminants. A food-feed production system integrates the leaves and the by-products of on-farm food production to grass production in ruminant feeding. It can improve animal performance sustainably at smallholder farms. For larger-scale animal production, detoxified jatropha (Jatropha sp.) meal is a noteworthy alternative protein source. Globally, the advantages of single-cell protein (bacteria, yeast, fungi, microalgae) and aquatic biomass (seaweed, duckweed) over land crops are the independence of production from arable land and weather. The chemical composition of these feeds varies widely depending on the species and growth conditions. Microalgae have shown good potential both as lipid (e.g. Schizochytrium sp.) and protein supplements (e.g. Spirulina platensis) for ruminants. To conclude, various novel or underexploited feeds have potential to replace or supplement the traditional crops in ruminant rations. In the short-term, N-fixing grain legumes, oilseeds such as camelina and increased use of food and/or fuel industry by-products have the greatest potential to replace or supplement the traditional crops especially in the temperate zones. In the long-term, microalgae and duckweed of high-yield potential as well as wood industry by-products may become economically competitive feed options worldwide.
Collapse
|
44
|
Cherif C, Hassanat F, Claveau S, Girard J, Gervais R, Benchaar C. Faba bean (Vicia faba) inclusion in dairy cow diets: Effect on nutrient digestion, rumen fermentation, nitrogen utilization, methane production, and milk performance. J Dairy Sci 2018; 101:8916-8928. [DOI: 10.3168/jds.2018-14890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022]
|
45
|
Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|