1
|
Mohammed SM, Bone RN, Aquino JDC, Mirmira RG, Evans-Molina C, Ismail HM. Changes in immunofluorescence staining during islet regeneration in a cystic fibrosis-related diabetes (CFRD) ferret model. Islets 2024; 16:2436696. [PMID: 39641365 PMCID: PMC11633224 DOI: 10.1080/19382014.2024.2436696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Knockout (KO) ferrets with the cystic fibrosis transmembrane conductance regulator (CFTR) exhibit distinct phases of dysglycemia and pancreatic remodeling prior to cystic fibrosis-related diabetes (CFRD) development. Following normoglycemia during the first month of life (Phase l), hyperglycemia occurs during the subsequent 2 months (Phase Il) with decreased islet mass, followed by a period of near normoglycemia (Phase Ill) in which the islets regenerate. We aimed to characterize islet hormone expression patterns across these Phases. METHODS Immunofluorescence staining per islet area was performed to characterize islet hormone expression patterns in age matched CFTR KO and wild type (WT) ferrets, focusing on the first three phases. RESULTS In Phase I, insulin staining intensity was higher in CF (p < 0.01) than WT but decreased in Phase III (p < 0.0001). Glucagon was lower in CF during Phases I and increased in Phase III, while proinsulin decreased (p < 0.0001) Phases II and III. CF sections showed lower proinsulin-to-insulin ratio in Phase I (p < 0.01) and in Phase III (p < 0.05) compared to WT. Conversely, glucagon-to-insulin ratio was lower in CF in Phase I (p < 0.0001) but increased in Phase III (p < 0.0001). Mender's coefficient overlap showed higher overlap of insulin over proinsulin in CF sections in Phase II (p < 0.001) and Phase III (p < 0.0001) compared to WT. Mender's coefficient rate was higher in CF sections during Phase II (p < 0.001). CONCLUSION CF ferret islets revealed significant immunofluorescent staining changes compared to WT during various phases of disease, providing insights into CRFD pathophysiology.
Collapse
Affiliation(s)
- Sawash M. Mohammed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert N. Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacqueline Del Carmen Aquino
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M. Ismail
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Heckmann ND, Palmer R, Mayfield CK, Gucev G, Lieberman JR, Hong K. Glucagon-Like Peptide Receptor-1 Agonists Used for Medically-Supervised Weight Loss in Patients With Hip and Knee Osteoarthritis: Critical Considerations for the Arthroplasty Surgeon. Arthroplast Today 2024; 27:101327. [PMID: 39071832 PMCID: PMC11282421 DOI: 10.1016/j.artd.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 07/30/2024] Open
Abstract
Patients with morbid obesity and concomitant hip or knee osteoarthritis represent a challenging patient demographic to treat as these patients often present earlier in life, have more severe symptoms, and have worse surgical outcomes following total hip and total knee arthroplasty. Previously, bariatric and metabolic surgeries represented one of the few weight loss interventions that morbidly obese patients could undergo prior to total joint arthroplasty. However, data regarding the reduction in complications with preoperative bariatric surgery remain mixed. Glucagon-like peptide receptor-1 (GLP-1) agonists have emerged as an effective treatment option for obesity in patients with and without diabetes mellitus. Furthermore, recent data suggest these medications may serve as potential anti-inflammatory and disease-modifying agents for numerous chronic conditions, including osteoarthritis. This review will discuss the GLP-1 agonists and GLP-1/glucose-dependent insulinotropic polypeptide dual agonists currently available, along with GLP-1/glucose-dependent insulinotropic polypeptide/glucagon triple agonists presently being developed to address the obesity epidemic. Furthermore, this review will address the potential problem of GLP-1-related delayed gastric emptying and its impact on the timing of elective total joint arthroplasty. The review aims to provide arthroplasty surgeons with a primer for implementing this class of medication in their current and future practice, including perioperative instructions and perioperative safety considerations when treating patients taking these medications.
Collapse
Affiliation(s)
- Nathanael D. Heckmann
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ryan Palmer
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cory K. Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Gligor Gucev
- Department of Anesthesiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kurt Hong
- Center for Clinical Nutrition, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Bang J, Lee SA, Koh G, Yoo S. Association of Glucagon to Insulin Ratio and Metabolic Syndrome in Patients with Type 2 Diabetes. J Clin Med 2023; 12:5806. [PMID: 37762748 PMCID: PMC10531641 DOI: 10.3390/jcm12185806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in the role of glucagon in type 2 diabetes mellitus (T2DM). Glucagon and insulin regulate glucose and lipid metabolism. Metabolic syndrome is an important risk factor for cardiovascular disease in patients with T2DM. We investigated the association between glucagon to insulin ratio and metabolic syndrome in patients with T2DM. This is a cross-sectional study involving 317 people with type 2 diabetes. Glucagon and insulin levels were measured in a fasted state and 30 min after ingesting a standard mixed meal. The Criteria of the International Diabetes Federation defined metabolic syndrome. Two hundred nineteen (69%) of the subjects had metabolic syndrome. The fasting glucagon to insulin ratio was significantly lower in patients with metabolic syndrome (14.0 ± 9.7 vs. 17.3 ± 10.3, p < 0.05). The fasting glucagon to insulin ratio was significantly lowered as the number of metabolic syndrome components increased. In hierarchical logistic regression analysis, the fasting glucagon to insulin ratio significantly contributed to metabolic syndrome even after adjusting for other covariates. The fasting glucagon to insulin ratio is inversely associated with metabolic syndrome in patients with type 2 diabetes. This suggests that glucagon-targeted therapeutics may reduce cardiovascular risk by improving metabolic syndrome.
Collapse
Affiliation(s)
- Jisun Bang
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea
| | - Sang Ah Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
| | - Gwanpyo Koh
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
| | - Soyeon Yoo
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
| |
Collapse
|
4
|
Galsgaard KD, Elmelund E, Johansen CD, Bomholt AB, Kizilkaya HS, Ceutz F, Hunt JE, Kissow H, Winther-Sørensen M, Sørensen CM, Kruse T, Lau JF, Rosenkilde MM, Ørskov C, Christoffersen C, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor antagonism impairs and glucagon receptor agonism enhances triglycerides metabolism in mice. Mol Metab 2022; 66:101639. [PMID: 36400402 PMCID: PMC9706156 DOI: 10.1016/j.molmet.2022.101639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün S. Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark,Corresponding author. Department of Biomedical Sciences and Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, and Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark.
| |
Collapse
|
5
|
Janovick N, Trevisi E, Bertoni G, Dann H, Drackley J. Prepartum plane of energy intake affects serum biomarkers for inflammation and liver function during the periparturient period. J Dairy Sci 2022; 106:168-186. [DOI: 10.3168/jds.2022-22286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
|
6
|
Theinert KB, Snedec T, Pietsch F, Theile S, Leonhardt AS, Spilke J, Pichelmann S, Bannert E, Reichelt K, Dobeleit G, Fuhrmann H, Baumgartner W, Schären-Bannert M, Starke A. Qualitative and Quantitative Changes in Total Lipid Concentration and Lipid Fractions in Liver Tissue of Periparturient German Holstein Dairy Cows of Two Age Groups. Front Vet Sci 2022; 9:814808. [PMID: 35372546 PMCID: PMC8967350 DOI: 10.3389/fvets.2022.814808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fatty liver syndrome (FLS) is a common disease in high-producing dairy cows. Studies in humans suggest that the different hepatic lipid fractions play a role in this context. In dairy cows, little is known about the composition of fat stored in the liver, its periparturient dynamics, and the effect of cows' age. Therefore, our goal was to generate primary data in healthy cows to serve as reference values for future studies. Eight healthy German Holstein cows (2nd lactation, n = 3; ≥3rd lactation, n = 5) were examined 14 d antepartum and 7, 28, and 42 d postpartum. The examinations included clinical assessment, liver biopsy, blood sampling, and recording of milk yield. Total lipids (TL) in liver tissue were measured gravimetrically. The TL were separated into lipid fractions (triacylglycerol, TAG; phospholipids, PL; non-esterified fatty acids, NEFA; and cholesterol esters) using thin-layer chromatography, followed by gas chromatography for fatty acid determination. Concentrations of NEFA, ß-hydroxybutyrate, and cholesterol were analyzed in blood. Concentrations of TL, TAG, NEFA, and cholesterol esters in liver tissue and NEFA in blood increased in the periparturient period. The older cows had higher hepatic TL, TAG, and PL concentrations, higher relative hepatic concentrations of TAG in TL, higher NEFA concentrations in blood, a greater decrease in body condition, and higher milk yields between d 9 and 40 than the younger cows. We proposed that due to higher milk yield, older cows mobilized and deposited more fat in the liver, and the increase in hepatic TAG concentration was longer-lasting than in younger cows. Higher levels of structural lipids (PL) in older cows could be explained by higher demand for storage of TAG and cholesterol esters in lipid droplets or for the export of TAG via very-low-density lipoproteins. Results show that hepatic fat storage is a reversible process and does not necessarily cause clinical disease. Nevertheless, older cows have a more sustained and greater increase in hepatic TAG concentration, which may explain their increased risk of FLS. The results are limited in their extrapolation due to the small sample size and thereby possible selection bias but present a valuable basis for future studies.
Collapse
Affiliation(s)
- Kirsten B. Theinert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Teja Snedec
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Fabian Pietsch
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sabrina Theile
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Anne-Sophie Leonhardt
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Joachim Spilke
- Biometrics and Informatics in Agriculture Group, Institute of Agriculture and Nutrition, Martin-Luther-University, Halle, Germany
| | - Stefan Pichelmann
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Erik Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Kristin Reichelt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gabriele Dobeleit
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Herbert Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Walter Baumgartner
- University Clinic for Ruminants, University of Veterinary Medicine, Vienna, Austria
| | - Melanie Schären-Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- *Correspondence: Melanie Schären-Bannert
| | - Alexander Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Chandler T, Westhoff T, Overton T, Lock A, Van Amburgh M, Sipka A, Mann S. Lipopolysaccharide challenge following intravenous amino acid infusion in postpartum dairy cows: I. Production, metabolic, and hormonal responses. J Dairy Sci 2022; 105:4593-4610. [DOI: 10.3168/jds.2021-21226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
|
8
|
Bai X, Jia J, Kang Q, Fu Y, Zhou Y, Zhong Y, Zhang C, Li M. Integrated Metabolomics and Lipidomics Analysis Reveal Remodeling of Lipid Metabolism and Amino Acid Metabolism in Glucagon Receptor-Deficient Zebrafish. Front Cell Dev Biol 2021; 8:605979. [PMID: 33520988 PMCID: PMC7841139 DOI: 10.3389/fcell.2020.605979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The glucagon receptor (GCGR) is activated by glucagon and is essential for glucose, amino acid, and lipid metabolism of animals. GCGR blockade has been demonstrated to induce hypoglycemia, hyperaminoacidemia, hyperglucagonemia, decreased adiposity, hepatosteatosis, and pancreatic α cells hyperplasia in organisms. However, the mechanism of how GCGR regulates these physiological functions is not yet very clear. In our previous study, we revealed that GCGR regulated metabolic network at transcriptional level by RNA-seq using GCGR mutant zebrafish (gcgr -/-). Here, we further performed whole-organism metabolomics and lipidomics profiling on wild-type and gcgr -/- zebrafish to study the changes of metabolites. We found 107 significantly different metabolites from metabolomics analysis and 87 significantly different lipids from lipidomics analysis. Chemical substance classification and pathway analysis integrated with transcriptomics data both revealed that amino acid metabolism and lipid metabolism were remodeled in gcgr-deficient zebrafish. Similar to other studies, our study showed that gcgr -/- zebrafish exhibited decreased ureagenesis and impaired cholesterol metabolism. More interestingly, we found that the glycerophospholipid metabolism was disrupted, the arachidonic acid metabolism was up-regulated, and the tryptophan metabolism pathway was down-regulated in gcgr -/- zebrafish. Based on the omics data, we further validated our findings by revealing that gcgr -/- zebrafish exhibited dampened melatonin diel rhythmicity and increased locomotor activity. These global omics data provide us a better understanding about the role of GCGR in regulating metabolic network and new insight into GCGR physiological functions.
Collapse
Affiliation(s)
- Xuanxuan Bai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yadong Fu
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Cruces-Sande M, Arcones AC, Vila-Bedmar R, Val-Blasco A, Sharabi K, Díaz-Rodríguez D, Puigserver P, Mayor F, Murga C. Autophagy mediates hepatic GRK2 degradation to facilitate glucagon-induced metabolic adaptation to fasting. FASEB J 2019; 34:399-409. [PMID: 31914606 DOI: 10.1096/fj.201901444r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
The liver plays a key role during fasting to maintain energy homeostasis and euglycemia via metabolic processes mainly orchestrated by the insulin/glucagon ratio. We report here that fasting or calorie restriction protocols in C57BL6 mice promote a marked decrease in the hepatic protein levels of G protein-coupled receptor kinase 2 (GRK2), an important negative modulator of both G protein-coupled receptors (GPCRs) and insulin signaling. Such downregulation of GRK2 levels is liver-specific and can be rapidly reversed by refeeding. We find that autophagy, and not the proteasome, represents the main mechanism implicated in fasting-induced GRK2 degradation in the liver in vivo. Reducing GRK2 levels in murine primary hepatocytes facilitates glucagon-induced glucose production and enhances the expression of the key gluconeogenic enzyme Pck1. Conversely, preventing full downregulation of hepatic GRK2 during fasting using adenovirus-driven overexpression of this kinase in the liver leads to glycogen accumulation, decreased glycemia, and hampered glucagon-induced gluconeogenesis, thus preventing a proper and complete adaptation to nutrient deprivation. Overall, our data indicate that physiological fasting-induced downregulation of GRK2 in the liver is key for allowing complete glucagon-mediated responses and efficient metabolic adaptation to fasting in vivo.
Collapse
Affiliation(s)
- Marta Cruces-Sande
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Rocío Vila-Bedmar
- Departamento de ciencias básicas de la salud, área de Bioquímica y Biología Molecular, URJC, Madrid, Spain
| | - Almudena Val-Blasco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Díaz-Rodríguez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Cristina Murga
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Olagaray KE, Sivinski SE, Saylor BA, Mamedova LK, Sauls-Hiesterman JA, Yoon I, Bradford BJ. Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. J Dairy Sci 2019; 102:8092-8107. [PMID: 31326175 DOI: 10.3168/jds.2019-16315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
The transition period in dairy cattle is characterized by many stressors, including an abrupt diet change, but yeast product supplementation can alter the rumen environment to increase dairy cattle productivity. Saccharomyces cerevisiae fermentation product (SCFP) was fed from -29 ± 5 to 42 d relative to calving (RTC) to evaluate the effects on feed intake, milk production, and metabolism. Treatments were control (n = 30) or SCFP (n = 34) incorporated into a total mixed ration. Cows were individually fed 3×/d prepartum and 2×/d postpartum. Blood samples were collected once during each of the following time points RTC: d -28 to -24 (wk -4), d -14 to -10 (wk -2), d 3 to 7 (wk 1), d 12 to 16 (wk 2), and d 31 to 35 (wk 5). Liver biopsies were taken once between d -19 and d -12 (wk -3) and at 14 d in milk. Cows were milked 2×/d, and samples were taken 2 d/wk for composition analysis. Dry matter intake did not differ by treatment, but SCFP increased meals per day and decreased time between meals. Body weight (measured at enrollment, d 0, and d 42 RTC) and body condition score (scored weekly) were not affected by treatment. Milk, energy-corrected milk, and fat-corrected milk yields did not differ by treatment. Milk fat concentration was greater for SCFP, with significant differences in wk 4 and 5. Milk lactose concentration tended to be greater for the control and milk urea nitrogen tended to be lesser for the control, but there were no treatment effects on milk protein concentration or somatic cell count. Assuming equal digestibility, energy balance deficit was greater for SCFP than for the control (-6.15 vs. -4.34 ± 0.74 Mcal/d), with significant differences in wk 4 and 5. Plasma concentrations of free fatty acids, β-hydroxybutyrate, glucose, and insulin did not differ with treatment, but cholesterol was greater for SCFP. Liver triglyceride increased and liver cholesterol decreased with time. Liver triglyceride did not differ by treatment, but liver cholesterol tended to be lesser in SCFP. Relative mRNA abundance of cholesterol-related genes (SREBF2, HMGCS1, HMGCR, MTTP, SPOB100, APOA1), FGF21, and CPT1A did not differ by treatment, but PCK1 tended to be greater for SCFP. The ketogenic transcript HMGCS2 was greater for SCFP, which aligns with SCFP increasing incidence of subclinical ketosis; however, BDH did not differ between treatments. In conclusion, SCFP supplementation increased meals per day with less time between meals, increased milk fat concentration, altered cholesterol metabolism, and increased incidence of subclinical ketosis, but early-lactation milk yield and metabolism were generally unaffected.
Collapse
Affiliation(s)
- K E Olagaray
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - S E Sivinski
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - B A Saylor
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J A Sauls-Hiesterman
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - I Yoon
- Diamond V, Cedar Rapids, IA 74570
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| |
Collapse
|
11
|
Galsgaard KD, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Lipid Metabolism. Front Physiol 2019; 10:413. [PMID: 31068828 PMCID: PMC6491692 DOI: 10.3389/fphys.2019.00413] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/26/2019] [Indexed: 01/04/2023] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells upon hypoglycemia and stimulates hepatic glucose production. Type 2 diabetes is associated with dysregulated glucagon secretion, and increased glucagon concentrations contribute to the diabetic hyperglycemia. Antagonists of the glucagon receptor have been considered as glucose-lowering therapy in type 2 diabetes patients, but their clinical applicability has been questioned because of reports of therapy-induced increments in liver fat content and increased plasma concentrations of low-density lipoprotein. Conversely, in animal models, increased glucagon receptor signaling has been linked to improved lipid metabolism. Glucagon acts primarily on the liver and by regulating hepatic lipid metabolism glucagon may reduce hepatic lipid accumulation and decrease hepatic lipid secretion. Regarding whole-body lipid metabolism, it is controversial to what extent glucagon influences lipolysis in adipose tissue, particularly in humans. Glucagon receptor agonists combined with glucagon-like peptide 1 receptor agonists (dual agonists) improve dyslipidemia and reduce hepatic steatosis. Collectively, emerging data support an essential role of glucagon for lipid metabolism.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Glucagon regulates hepatic lipid metabolism via cAMP and Insig-2 signaling: implication for the pathogenesis of hypertriglyceridemia and hepatic steatosis. Sci Rep 2016; 6:32246. [PMID: 27582413 PMCID: PMC5007496 DOI: 10.1038/srep32246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
Insulin induced gene-2 (Insig-2) is an ER-resident protein that inhibits the activation of sterol regulatory element-binding proteins (SREBPs). However, cellular factors that regulate Insig-2 expression have not yet been identified. Here we reported that cyclic AMP-responsive element-binding protein H (CREBH) positively regulates mRNA and protein expression of a liver specific isoform of Insig-2, Insig-2a, which in turn hinders SREBP-1c activation and inhibits hepatic de novo lipogenesis. CREBH binds to the evolutionally conserved CRE-BP binding elements located in the enhancer region of Insig-2a and upregulates its mRNA and protein expression. Metabolic hormone glucagon and nutritional fasting activated CREBH, which upregulated expression of Insig-2a in hepatocytes and inhibited SREBP-1c activation. In contrast, genetic depletion of CREBH decreased Insig-2a expression, leading to the activation of SREBP-1c and its downstream lipogenic target enzymes. Compromising CREBH-Insig-2 signaling by siRNA interference against Insig-2 also disrupted the inhibitory effect of this signaling pathway on hepatic de novo triglyceride synthesis. These actions resulted in the accumulation of lipid droplets in hepatocytes and systemic hyperlipidemia. Our study identified CREBH as the first cellular protein that regulates Insig-2a expression. Glucagon activated the CREBH-Insig-2a signaling pathway to inhibit hepatic de novo lipogenesis and prevent the onset of hepatic steatosis and hypertriglyceridemia.
Collapse
|
13
|
Kawashima C, Ito N, Nagashima S, Matsui M, Sawada K, Schweigert FJ, Miyamoto A, Kida K. Influence of hepatic load from far-off dry period to early postpartum period on the first postpartum ovulation and accompanying subsequent fertility in dairy cows. J Reprod Dev 2016; 62:289-95. [PMID: 26935323 PMCID: PMC4919293 DOI: 10.1262/jrd.2015-141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate nutritional and metabolic parameters during the dry and
early postpartum periods of ovulatory and anovulatory cows, as well as their postpartum reproductive
performance. Blood samples from 20 multiparous Holstein cows were collected once a week from the far-off dry
period to 3 weeks postpartum. Early postpartum (0–3 weeks) ovulation was confirmed using plasma progesterone
concentration profiles, and cows were considered ovulatory if they had resumed luteal activity by this point
(n = 9), whereas cows that had not were considered anovulatory (n = 11). Data from the ovulatory and
anovulatory cows were analyzed separately for the far-off dry period (7–4 weeks prepartum), the close-up dry
period (3–1 weeks prepartum), and the early postpartum period (0–3 weeks). Serum gamma-glutamyl transpeptidase
activity (far-off, P = 0.065; close-up, P = 0.051; and early postpartum, P = 0.030) and aspartate
aminotransferase (close-up, P = 0.050 and early postpartum, P = 0.087) activities were higher in anovulatory
than in ovulatory cows. The days open period was longer (P = 0.019) in anovulatory than in ovulatory cows, and
the number of artificial inseminations per conception (P = 0.025) was greater. In conclusion, we found that
continuously high gamma-glutamyl transpeptidase activities in serum, which may be induced by liver disorders,
prevent subsequent ovulation and affect subsequent fertility, even if cows obtain sufficient ovulation-related
energy and β-carotene.
Collapse
Affiliation(s)
- Chiho Kawashima
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mann S, Yepes F, Duplessis M, Wakshlag J, Overton T, Cummings B, Nydam D. Dry period plane of energy: Effects on glucose tolerance in transition dairy cows. J Dairy Sci 2016; 99:701-17. [DOI: 10.3168/jds.2015-9908] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 01/13/2023]
|
15
|
Abstract
Glucagon action is transduced by a G protein-coupled receptor located in liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart, pancreatic β-cells, and placenta. Genetically modified animal models have provided important clues about the role of glucagon and its receptor (Gcgr) beyond glucose control. The PubMed database was searched for articles published between 1995 and 2014 using the key terms glucagon, glucagon receptor, signaling, and animal models. Lack of Gcgr signaling has been associated with: i) hypoglycemic pregnancies, altered placentation, poor fetal growth, and increased fetal-neonatal death; ii) pancreatic glucagon cell hyperplasia and hyperglucagonemia; iii) altered body composition, energy state, and protection from diet-induced obesity; iv) impaired hepatocyte survival; v) altered glucose, lipid, and hormonal milieu; vi) altered metabolic response to prolonged fasting and exercise; vii) reduced gastric emptying and increased intestinal length; viii) altered retinal function; and ix) prevention of the development of diabetes in insulin-deficient mice. Similar phenotypic findings were observed in the hepatocyte-specific deletion of Gcgr. Glucagon action has been involved in the modulation of sweet taste responsiveness, inotropic and chronotropic effects in the heart, satiety, glomerular filtration rate, secretion of insulin, cortisol, ghrelin, GH, glucagon, and somatostatin, and hypothalamic signaling to suppress hepatic glucose production. Glucagon (α) cells under certain conditions can transdifferentiate into insulin (β) cells. These findings suggest that glucagon signaling plays an important role in multiple organs. Thus, treatment options designed to block Gcgr activation in diabetics may have implications beyond glucose homeostasis.
Collapse
Affiliation(s)
- Maureen J Charron
- Departments of BiochemistryObstetrics and Gynecology and Women's HealthMedicineAlbert Einstein College of Medicine, 1300 Morris Park Avenue, F312, Bronx, New York 10461, USADepartment of PediatricsHofstra School of Medicine, Cohen Children's Medical Center, 1991 Marcus Avenue, Lake Success, New York 11402, USA Departments of BiochemistryObstetrics and Gynecology and Women's HealthMedicineAlbert Einstein College of Medicine, 1300 Morris Park Avenue, F312, Bronx, New York 10461, USADepartment of PediatricsHofstra School of Medicine, Cohen Children's Medical Center, 1991 Marcus Avenue, Lake Success, New York 11402, USA Departments of BiochemistryObstetrics and Gynecology and Women's HealthMedicineAlbert Einstein College of Medicine, 1300 Morris Park Avenue, F312, Bronx, New York 10461, USADepartment of PediatricsHofstra School of Medicine, Cohen Children's Medical Center, 1991 Marcus Avenue, Lake Success, New York 11402, USA
| | - Patricia M Vuguin
- Departments of BiochemistryObstetrics and Gynecology and Women's HealthMedicineAlbert Einstein College of Medicine, 1300 Morris Park Avenue, F312, Bronx, New York 10461, USADepartment of PediatricsHofstra School of Medicine, Cohen Children's Medical Center, 1991 Marcus Avenue, Lake Success, New York 11402, USA
| |
Collapse
|
16
|
Tharwat M, Endoh D, Oikawa S. Hepatocyte apoptosis in dairy cows with fatty infiltration of the liver. Res Vet Sci 2012; 93:1281-6. [DOI: 10.1016/j.rvsc.2012.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/25/2012] [Indexed: 11/15/2022]
|
17
|
Xiao C, Pavlic M, Szeto L, Patterson BW, Lewis GF. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes 2011; 60:383-90. [PMID: 20980459 PMCID: PMC3028336 DOI: 10.2337/db10-0763] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The metabolism of hepatic- and intestinally derived lipoproteins is regulated in a complex fashion by nutrients, hormones, and neurologic and other factors. Recent studies in animal models suggest an important role for glucagon acting via the glucagon receptor in regulating hepatic triglyceride (TG) secretion. Here we examined the direct effects of glucagon on regulation of hepatic and intestinal lipoprotein metabolism in humans. RESEARCH DESIGN AND METHODS Eight healthy men underwent two studies each, in random order, 4-6 weeks apart in which de novo lipogenesis, kinetics of larger VLDL1 TG, and kinetics of VLDL1 and smaller VLDL2 apolipoprotein (apo)B100 and B48 were studied using established stable isotope enrichment methods. Subjects were studied in the constant fed state under conditions of a pancreatic clamp (with infusion of somatostatin, insulin, and growth hormone) at either basal glucagon (BG study, 64.5 ± 2.1 pg/mL) or hyperglucagonemia (high glucagon [HG] study, 183.2 ± 5.1 pg/mL). RESULTS There were no significant differences in plasma concentration of VLDL1 or VLDL2 TG, apoB100 or apoB48 between BG and HG studies. There was, however, lower (P < 0.05) VLDL1 apoB100 fractional catabolic rate (-39%) and production rate (-30%) in HG versus BG, but no difference in de novo lipogenesis or TG turnover, and glucagon had no effect on intestinal (B48-containing) lipoprotein metabolism. CONCLUSIONS Glucagon acutely regulates hepatic but not intestinal lipoprotein particle metabolism in humans both by decreasing hepatic lipoprotein particle production as well as by inhibiting particle clearance, with no net effect on particle concentration.
Collapse
Affiliation(s)
- Changting Xiao
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Mirjana Pavlic
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Linda Szeto
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Gary F. Lewis
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Gary F. Lewis,
| |
Collapse
|
18
|
Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschöp MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol 2010; 6:689-97. [PMID: 20957001 PMCID: PMC3563428 DOI: 10.1038/nrendo.2010.187] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The initial identification of glucagon as a counter-regulatory hormone to insulin revealed this hormone to be of largely singular physiological and pharmacological purpose. Glucagon agonism, however, has also been shown to exert effects on lipid metabolism, energy balance, body adipose tissue mass and food intake. The ability of glucagon to stimulate energy expenditure, along with its hypolipidemic and satiating effects, in particular, make this hormone an attractive pharmaceutical agent for the treatment of dyslipidemia and obesity. Studies that describe novel preclinical applications of glucagon, alone and in concert with glucagon-like peptide 1 agonism, have revealed potential benefits of glucagon agonism in the treatment of the metabolic syndrome. Collectively, these observations challenge us to thoroughly investigate the physiology and therapeutic potential of insulin's long-known opponent.
Collapse
Affiliation(s)
- Kirk M Habegger
- Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Office E-217, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | | | | | | | | | |
Collapse
|
19
|
Osman MA, Allen PS, Bobe G, Coetzee JF, Abuzaid A, Koehler K, Beitz DC. Chronic metabolic responses of postpartal dairy cows to subcutaneous glucagon injections, oral glycerol, or both. J Dairy Sci 2010; 93:3505-12. [PMID: 20655418 DOI: 10.3168/jds.2009-2712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 03/30/2010] [Indexed: 11/19/2022]
Abstract
We examined the long-term effects of daily subcutaneous injections of 15 mg of glucagon during the first 14 d postpartum with or without coadministration of 400 mL of pure glycerol orally on blood metabolites and hormones and liver composition of Holstein dairy cows during early lactation. Fourteen multiparous cows with body condition score of >or=3.5 points (1-5 point scale) were assigned randomly to one of 4 treatment groups-saline, glucagon, glycerol, or glucagon plus glycerol. Fatty liver syndrome was induced by feeding cows a dry-cow ration supplemented with 6 kg of cracked corn daily during the last 6 wk of the dry period. Compared with saline treatment (n=3), coadministration of glucagon and glycerol (n=4) increased plasma glucose and insulin and decreased plasma nonesterified fatty acid concentrations in both treatment weeks, whereas glucagon alone (n=3) produced similar changes plus a decrease in plasma beta-hydroxybutyrate in the second week only. No significant changes were observed for the glycerol alone treatment (n=4). We conclude that a single daily dose of glycerol for the first 14 d postpartum may potentiate the action of glucagon in the first treatment days to alleviate some symptoms of fatty liver syndrome, such as the increase in plasma nonesterified fatty acids and the decrease in plasma glucose and insulin, in Holstein dairy cows after parturition.
Collapse
Affiliation(s)
- M A Osman
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ali S, Drucker DJ. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 2009; 296:E415-21. [PMID: 19116373 DOI: 10.1152/ajpendo.90887.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon is secreted from the alpha-cells of the pancreatic islets and regulates glucose homeostasis through modulation of hepatic glucose production. As elevated glucagon levels contribute to the pathophysiology of hyperglycemia in subjects with type 2 diabetes, reduction of glucagon receptor gene (Gcgr) activity represents a potential target for the treatment of T2DM. Herein, we review current concepts of glucagon action in hepatic and extrahepatic tissues and evaluate the therapeutic potential, mechanisms of action, and safety of reducing Gcgr signaling for the treatment of T2DM.
Collapse
Affiliation(s)
- Safina Ali
- Mt. Sinai Hospital, Toronto, ON, Canada M5T 3L9
| | | |
Collapse
|
21
|
Osman MA, Allen PS, Mehyar NA, Bobe G, Coetzee JF, Koehler KJ, Beitz DC. Acute metabolic responses of postpartal dairy cows to subcutaneous glucagon injections, oral glycerol, or both. J Dairy Sci 2008; 91:3311-22. [PMID: 18765590 DOI: 10.3168/jds.2008-0997] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined the effects of multiple subcutaneous glucagon injections with or without co-administration of oral glycerol on energy status-related blood metabolites and hormones of Holstein dairy cows in the first 2 wk postpartum. Twenty multiparous cows were fed a dry cow ration supplemented with 6 kg of cracked corn during the dry period to increase the likelihood of developing postpartal fatty liver syndrome. Cows with a body condition score of >or=3.5 points (1- to 5-point scale) were assigned randomly to 1 of 4 treatment groups: saline, glucagon, glycerol, or glucagon plus glycerol. Following treatment, serial blood samples were collected over an 8-h period to determine the effects of glucagon and glycerol on blood metabolites and hormones. Treatment effects were determined by comparing the concentrations of metabolites and hormones during the first 4-h period and the entire 8-h period after treatment administration (time 0) with the concentration of the same compounds at time 0 on d 1, 7, and 13 postpartum. Administration of glucagon alone increased concentrations of plasma glucagon and insulin on d 1, 7, and 13 and increased plasma glucose and decreased plasma nonesterified fatty acids (NEFA) on d 7 and 13 postpartum relative to the saline group. Administration of glycerol alone increased plasma glucose on d 7 and plasma triacylglycerols on d 1 postpartum. Glycerol administration also decreased plasma glucagon and NEFA on d 1, 7, and 13 and plasma beta-hydroxybutyrate (BHBA) on d 1 postpartum relative to the saline group. Administration of glucagon plus glycerol increased and sustained concentrations of plasma glucagon, glucose, and insulin on d 1, 7, and 13 and decreased plasma NEFA on d 1, 7, and 13 and BHBA on d 1 and 7. Early postpartal treatment of dairy cows with glucagon plus glycerol increased plasma glucose and insulin, decreased plasma NEFA and BHBA, and increased secretion of liver NEFA as plasma triacylglycerols. This suggests that glucagon and glycerol, when co-administered, act to decrease the likelihood of metabolism-related syndrome development in dairy cows.
Collapse
Affiliation(s)
- M A Osman
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Longuet C, Sinclair EM, Maida A, Baggio LL, Maziarz M, Charron MJ, Drucker DJ. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 2008; 8:359-71. [PMID: 19046568 PMCID: PMC2593715 DOI: 10.1016/j.cmet.2008.09.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 06/03/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
Glucagon receptor (Gcgr) signaling maintains hepatic glucose production during the fasting state; however, the importance of the Gcgr for lipid metabolism is unclear. We show here that fasted Gcgr-/- mice exhibit a significant increase in hepatic triglyceride secretion and fasting increases fatty acid oxidation (FAO) in wild-type (WT) but not in Gcgr-/- mice. Moreover fasting upregulated the expression of FAO-related hepatic mRNA transcripts in Gcgr+/+ but not in Gcgr-/- mice. Exogenous glucagon administration reduced plasma triglycerides in WT mice, inhibited TG synthesis and secretion, and stimulated FA beta oxidation in Gcgr+/+ hepatocytes. The actions of glucagon on TG synthesis and FAO were abolished in PPARalpha-/- hepatocytes. These findings demonstrate that the Gcgr receptor is required for control of lipid metabolism during the adaptive metabolic response to fasting.
Collapse
Affiliation(s)
- Christine Longuet
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Nafikov RA, Ametaj BN, Bobe G, Koehler KJ, Young JW, Beitz DC. Prevention of fatty liver in transition dairy cows by subcutaneous injections of glucagon. J Dairy Sci 2006; 89:1533-45. [PMID: 16606724 DOI: 10.3168/jds.s0022-0302(06)72221-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The main objective of this study was to test the extent to which injecting glucagon subcutaneously for 14 d beginning at d 2 postpartum would prevent fatty liver development in transition dairy cows. Twenty-four multiparous Holstein cows were fed 6 kg of cracked corn in addition to their standard diet during the last 30 d of a dry period to induce postpartum development of fatty liver. Glucagon at either 7.5 or 15 mg/d or saline (control) was injected subcutaneously 3 times daily for 14 d beginning at d 2 postpartum. Glucagon at 15 mg/ d prevented liver triacylglycerol accumulation in postpartum dairy cows. Glucagon at 7.5 mg/d showed potential for fatty liver prevention. Glucagon increased concentration of plasma glucose and insulin and decreased plasma nonesterified fatty acid concentrations. No effects of glucagon were detected on plasma beta-hydroxybutyrate concentrations. Glucagon affected neither feed intake nor milk production. Moreover, milk composition was not altered by glucagon. Milk urea N concentrations decreased, and plasma urea N concentrations tended to decrease during glucagon administration, indicating that glucagon may improve protein use. Liver glycogen concentrations were not affected by glucagon. No significant differences in body condition scores were detected among treatments throughout the study. These results indicate that subcutaneous glucagon injections can prevent fatty liver in transition dairy cows without causing major production and metabolite disturbances.
Collapse
Affiliation(s)
- R A Nafikov
- Department of Animal Science, Iowa State University, Ames 50011-3150, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bernabucci U, Ronchi B, Basiricò L, Pirazzi D, Rueca F, Lacetera N, Nardone A. Abundance of mRNA of Apolipoprotein B100, Apolipoprotein E, and Microsomal Triglyceride Transfer Protein in Liver from Periparturient Dairy Cows. J Dairy Sci 2004; 87:2881-8. [PMID: 15375048 DOI: 10.3168/jds.s0022-0302(04)73418-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Limited secretion of very low density lipoproteins (VLDL) in dairy cows is strongly related to fatty liver and other metabolic disorders in the early postpartum. Currently, there is limited information on which roles apolipoprotein B(100) (ApoB(100)), apolipoprotein E (ApoE), and microsomal triglyceride transfer protein (MTP) play in that VLDL limitation. To our knowledge, no studies have simultaneously measured ApoB(100), ApoE, and MTP mRNA in periparturient dairy cows. Therefore, a trial was conducted to assess liver gene expression of these proteins in transition dairy cows and to evaluate the relationships between their expression and metabolic status. Eight multiparous Holstein cows were monitored during the transition period. To evaluate metabolic and nutritional status, body condition score was registered, and plasma indexes of energy metabolism and VLDL were determined from 35 d before to 35 d after calving. Liver biopsies were performed on d -35, 3, and 35 relative to day of calving, and gene expression of ApoB(100), ApoE, and MTP were determined on liver tissue. Body condition, plasma glucose and VLDL decreased, and plasma NEFA and BHBA increased after calving. Compared with values of d -35, on d 3 after calving the ApoB(100) mRNA synthesis was lower, whereas MTP and ApoE mRNA abundance were higher. Negative correlation (r = -0.57) between plasma NEFA concentration and ApoB(100) mRNA abundance, and positive correlation between ApoB(100) mRNA abundance and plasma cholesterol (r = 0.65) and plasma albumins (r = 0.52) were detected at 3 d postpartum. Data on changes of gene expression of the 3 main proteins involved in the regulation of synthesis and secretion of VLDL in the liver suggest that decreased mRNA for ApoB(100) may be consistent with decreased synthesis and/or secretion of VLDL from liver during the periparturient period.
Collapse
Affiliation(s)
- U Bernabucci
- Dipartimento di Produzioni Animali, Università della Tuscia-Viterbo, Italy.
| | | | | | | | | | | | | |
Collapse
|