1
|
Daoust F, Dallaire F, Tavera H, Ember K, Guiot MC, Petrecca K, Leblond F. Preliminary study demonstrating cancer cells detection at the margins of whole glioblastoma specimens with Raman spectroscopy imaging. Sci Rep 2025; 15:6453. [PMID: 39987144 PMCID: PMC11846850 DOI: 10.1038/s41598-025-87109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/16/2025] [Indexed: 02/24/2025] Open
Abstract
Intraoperative Raman spectroscopy uses near-infrared laser light to gain molecular information without causing damage. It can be used in vivo or ex vivo without exogenous contrast agents. Clinically, the technique was primarily used with machine learning for in situ tumor detection with fiberoptics probes analyzing tissue at sub-millimeter scales one point at the time. Here we report the development of a whole-specimen spectroscopic imaging system designed to detect cancer cells at the margins of surgical specimens. The system has a field of view covering a square area of side one centimeter with a pixel size of a quarter of a millimeter . First, a tumor detection model was developed from data acquired using a point-probe in 24 glioblastoma patients that had a detection sensitivity of 90% and a specificity of 95%. That model was then used to produce cancer prediction maps of nine glioblastoma specimens from five patients with validation based on histopathology analyses. The results preliminarily demonstrate the instrument was able to detect tissue areas associated with cancer cells from the Raman peaks associated with the amino acids phenylalanine and tryptophan as well as the relative concentration of lipids and proteins linked with deformations of the CH2 and CH3 bonds.
Collapse
Affiliation(s)
- François Daoust
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Frédérick Dallaire
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Hugo Tavera
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Katherine Ember
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Marie-Christine Guiot
- Division of Neuropathology, Department of Pathology, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Frederic Leblond
- Polytechnique Montréal, Montreal, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
- Institut du Cancer de Montréal, Montreal, Canada.
| |
Collapse
|
2
|
Rodriguez B, Rivera D, Zhang JY, Brown C, Young T, Williams T, Kallos J, Huq S, Hadjpanayis C. Innovations in intraoperative therapies in neurosurgical oncology: a narrative review. J Neurooncol 2025; 171:549-557. [PMID: 39546148 DOI: 10.1007/s11060-024-04882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE High-grade gliomas (HGG) represent the most aggressive primary brain tumors in adults, characterized by high recurrence rates due to incomplete resection. This review explores the effectiveness of emerging intraoperative therapies that may extend survival by targeting residual tumor cells. The main research question addressed is: What recent intraoperative techniques show promise for complementing surgical resection in HGG treatment? METHODS A comprehensive literature review was conducted, examining recent studies on intraoperative therapeutic modalities that support surgical resection of HGG. Techniques reviewed include laser interstitial thermal therapy (LITT), intraoperative brachytherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), and focused ultrasound (FUS). Each modality was evaluated based on clinical application, evidence of effectiveness, and potential for integration into standard HGG treatment protocols. RESULTS Findings indicate that these therapies offer distinct mechanisms to target residual tumor cells: LITT provides localized thermal ablation; intraoperative brachytherapy delivers sustained radiation; PDT and SDT activate cytotoxic agents in tumor cells; and FUS enables precise energy delivery. Each method has shown varying levels of clinical success, with PDT and LITT currently more widely implemented, while SDT and FUS are promising but under investigation. CONCLUSION Intraoperative therapies hold potential to improve surgical outcomes for HGG by reducing residual tumor burden. While further clinical studies are needed to optimize these techniques, early evidence supports their potential to enhance the effectiveness of surgical resection and improve patient survival in HGG management.
Collapse
Affiliation(s)
- Benjamin Rodriguez
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sinai BioDesign, Department of Neurosurgery, Mount Sinai, New York, NY, USA
| | - Daniel Rivera
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Y Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cole Brown
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tirone Young
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sinai BioDesign, Department of Neurosurgery, Mount Sinai, New York, NY, USA
| | - Tyree Williams
- Sinai BioDesign, Department of Neurosurgery, Mount Sinai, New York, NY, USA
- Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Justiss Kallos
- Department of Neurological Surgery, UPMC, Pittsburgh, PA, USA
| | - Sakibul Huq
- Department of Neurological Surgery, UPMC, Pittsburgh, PA, USA
| | - Constantinos Hadjpanayis
- Department of Neurological Surgery, UPMC, Pittsburgh, PA, USA.
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA.
- Center for Image-Guided Neurosurgery, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Aghajanian S, Naeimi A, Mohammadifard F, Mohammadi I, Rajai Firouzabadi S, Baradaran Bagheri A, Khorasanizadeh M, Elsamadicy AA. Efficacy and safety of anesthetic agents in awake craniotomy using monitored anesthesia care protocol: a systematic review and meta-analysis. Neurosurg Rev 2025; 48:57. [PMID: 39815114 DOI: 10.1007/s10143-025-03176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025]
Abstract
Awake craniotomy (AC) facilitates real-time brain mapping, maximizing tumor resection while preserving critical neurological functions. This study systematically reviews the efficacy of several anesthetic protocols under Monitored Anesthesia Care (MAC) during AC, focusing on clinical outcomes. A systematic review and meta-analysis were conducted using data from observational studies and randomized trials involving AC under MAC. Databases searched included PubMed, Embase, and Web of Science. The analysis employed mixed-effects models to assess both the overall rate of the outcomes and the impact of anesthetic agents on clinical outcomes. The primary outcome was the rate of postoperative neurological deficits. Of 468 studies initially identified, 26 met the inclusion criteria. The overall adverse event rate was 23.7%. The pooled proportion of patients with postoperative neurological deficits and intraoperative seizures was 10.45% and 8.8%, respectively. Remifentanil use was associated with a lower risk of neurological deficits in mixed effects meta-analysis (6.9% vs 16.5%), while intraoperative seizure rate was slightly lower with propofol use (7.1% vs. 11.8%). Midazolam use was also associated with lower agitation (5.5% vs. 10.9%). The rate of secondary adverse outcomes other than hypertension (10.2%) and tense brain (10%) were below 10% and comparable to the previous literature. The findings highlight the variability in anesthetic protocols used in MAC for AC. Despite limited evidence regarding safety concerns and potential confounders, Remifentanil, Propofol, and Midazolam appear to be superior to other agents evaluated in these procedures. However, further research is required to draw definitive conclusions.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Department of Neurosurgery, Alborz University of Medical Sciences, Karaj, Iran.
| | - Arvin Naeimi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Gilan, Iran
| | | | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Aladine A Elsamadicy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Sipos D, Raposa BL, Freihat O, Simon M, Mekis N, Cornacchione P, Kovács Á. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes. Cancers (Basel) 2025; 17:146. [PMID: 39796773 PMCID: PMC11719842 DOI: 10.3390/cancers17010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor in adults, presents a formidable challenge due to its rapid progression, treatment resistance, and poor survival outcomes. Standard care typically involves maximal safe surgical resection, followed by fractionated external beam radiation therapy and concurrent temozolomide chemotherapy. Despite these interventions, median survival remains approximately 12-15 months, with a five-year survival rate below 10%. Prognosis is influenced by factors such as patient age, molecular characteristics, and the extent of resection. Patients with IDH-mutant tumors or methylated MGMT promoters generally have improved survival, while recurrent glioblastoma is associated with a median survival of only six months, as therapies in these cases are often palliative. Innovative treatments, including TTFields, add incremental survival benefits, extending median survival to around 20.9 months for eligible patients. Symptom management-addressing seizures, headaches, and neurological deficits-alongside psychological support for patients and caregivers is essential to enhance quality of life. Emerging targeted therapies and immunotherapies, though still limited in efficacy, show promise as part of an evolving treatment landscape. Continued research and clinical trials remain crucial to developing more effective treatments. This multidisciplinary approach, incorporating diagnostics, personalized therapy, and supportive care, aims to improve outcomes and provides a hopeful foundation for advancing glioblastoma management.
Collapse
Affiliation(s)
- David Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Bence L. Raposa
- Institute of Pedagogy of Health and Nursing Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty Str. 4, 7621 Pécs, Hungary;
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Nejc Mekis
- Medical Imaging and Radiotherapy Department, University of Ljubljana, Zdravstvena Pot 5, 100 Ljubljana, Slovenia;
| | - Patrizia Cornacchione
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Árpád Kovács
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
5
|
Terrell D, Camarano J, Whipple S, Guthikonda B, Beyl R, Newman WC. Financial toxicity in patients with glioblastoma. J Neurooncol 2025; 171:75-83. [PMID: 39412733 DOI: 10.1007/s11060-024-04835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/19/2024] [Indexed: 01/01/2025]
Abstract
PURPOSE There has been mounting interest in understanding the impact of financial toxicity (FT) in various cancer types; however, it remains poorly understood and understudied within neuro-oncology-especially as it relates to neurosurgical components of patient care. METHODS Retrospective, single-center study of patients who underwent craniotomy for resection of glioblastoma from 2020 to 2022. OIBEE™ (Austin, Texas) software was queried to identify the subset of these patients who had a bad debt charged to their account. These patients were deemed to qualify as experiencing FT. Chi Square analysis was conducted between FT and non-FT patient groups. Additionally, survival analyses were performed to determine predictors of progression free and overall survival. RESULTS 74 patients were included in this sample. 33/74 (44%) met criteria for FT. The average bad debt amount was $7,476.76 and the median debt amount was $2,015.96, with the average time to financial toxicity after surgery being approximately 127 days. FT patients were significantly younger at diagnosis than those who were not FT (64.6 years- non-FT vs. 59.0 years- FT, p = 0.0344). FT patients were more likely to have undergone subtotal resections rather than a gross total resection compared to non-FT patients (FT GTR 27.3%, non-FT GTR 52.4%, p = 0.028). Hospital length of stay was significantly longer for FT patients compared to non-FT patients (LOS FT 9.5 days, non-FT 6.5 days, p = 0.0312). CONCLUSION Glioblastoma patients are at high risk of experiencing FT with our series showing no significant impact on overall survival. Larger studies are needed to understand the impact of FT on patient outcomes.
Collapse
Affiliation(s)
- Danielle Terrell
- Department of Neurosurgery, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, USA
| | - Joseph Camarano
- Department of Neurosurgery, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, USA
| | - Stephen Whipple
- Department of Neurosurgery, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, USA
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, USA
| | - Robbie Beyl
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - W Christopher Newman
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Sarubbo S, Vavassori L, Zigiotto L, Corsini F, Annicchiarico L, Rozzanigo U, Avesani P. Changing the Paradigm for Tractography Segmentation in Neurosurgery: Validation of a Streamline-Based Approach. Brain Sci 2024; 14:1232. [PMID: 39766431 PMCID: PMC11727544 DOI: 10.3390/brainsci14121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025] Open
Abstract
In glioma surgery, maximizing the extent of resection while preserving cognitive functions requires an understanding of the unique architecture of the white matter (WM) pathways of the single patient and of their spatial relationship with the tumor. Tractography enables the reconstruction of WM pathways, and bundle segmentation allows the identification of critical connections for functional preservation. This study evaluates the effectiveness of a streamline-based approach for bundle segmentation on a clinical dataset as compared to the traditional ROI-based approach. We performed bundle segmentation of the arcuate fasciculus, of its indirect anterior and posterior segments, and of the inferior fronto-occipital fasciculus in the healthy hemisphere of 25 high-grade glioma patients using both ROI- and streamline-based approaches. ROI-based segmentation involved manually delineating ROIs on MR anatomical images in Trackvis (V0.6.2.1). Streamline-based segmentations were performed in Tractome, which integrates clustering algorithms with the visual inspection and manipulation of streamlines. Shape analysis was conducted on each bundle. A paired t-test was performed on the irregularity measurement to compare segmentations achieved with the two approaches. Qualitative differences were evaluated through visual inspection. Streamline-based segmentation consistently yielded significantly lower irregularity scores (p < 0.001) compared to ROI-based segmentation for all the examined bundles, indicating more compact and accurate bundle reconstructions. Qualitative assessment identified common biases in ROI-based segmentations, such as the inclusion of anatomically implausible streamlines or streamlines with undesired trajectories. Streamline-based bundle segmentation with Tractome provides reliable and more accurate reconstructions compared to the ROI-based approach. By directly manipulating streamlines rather than relying on voxel-based ROI delineations, Tractome allows us to discern and discard implausible or undesired streamlines and to identify the course of WM bundles even when the anatomy is distorted by the lesion. These features make Tractome a robust tool for bundle segmentation in clinical contexts.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, 39122 Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole, 101, Mattarello, 38123 Trento, Italy
- Centre for Medical Sciences (CISMED), University of Trento, 38122 Trento, Italy
- Department of Cellular, Computation and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Laura Vavassori
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, 39122 Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole, 101, Mattarello, 38123 Trento, Italy
| | - Luca Zigiotto
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, 39122 Trento, Italy
- Department of Psychology, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, 39122 Trento, Italy
| | - Francesco Corsini
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, 39122 Trento, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, 39122 Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, 39122 Trento, Italy
| | - Paolo Avesani
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), 39123 Trento, Italy
| |
Collapse
|
7
|
Woo PYM, Law THP, Lee KKY, Chow JSW, Li LF, Lau SSN, Chan TKT, Ho JMK, Lee MWY, Chan DTM, Poon WS. Repeat resection for recurrent glioblastoma in the temozolomide era: a real-world multi-centre study. Br J Neurosurg 2024; 38:1381-1389. [PMID: 36654527 DOI: 10.1080/02688697.2023.2167931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
INTRODUCTION In contrast to standard-of-care treatment of newly diagnosed glioblastoma, there is limited consensus on therapy upon disease progression. The role of resection for recurrent glioblastoma remains unclear. This study aimed to identify factors for overall survival (OS) and post-progression survival (PPS) as well as to validate an existing prediction model. METHODS This was a multi-centre retrospective study that reviewed consecutive adult patients from 2006 to 2019 that received a repeat resection for recurrent glioblastoma. The primary endpoint was PPS defined as from the date of second surgery until death. RESULTS 1032 glioblastoma patients were identified and 190 (18%) underwent resection for recurrence. Patients that had second surgery were more likely to be younger (<70 years) (adjusted OR: 0.3; 95% CI: 0.1-0.6), to have non-eloquent region tumours (aOR: 1.7; 95% CI: 1.1-2.6) and received temozolomide chemoradiotherapy (aOR: 0.2; 95% CI: 0.1-0.4). Resection for recurrent tumour was an independent predictor for OS (aOR: 1.5; 95% CI: 1.3-1.7) (mOS: 16.9 months versus 9.8 months). For patients that previously received temozolomide chemoradiotherapy and subsequent repeat resection (137, 13%), the median PPS was 9.0 months (IQR: 5.0-17.5). Independent PPS predictors for this group were a recurrent tumour volume of >50cc (aOR: 0.6; 95% CI: 0.4-0.9), local recurrence (aOR: 1.7; 95% CI: 1.1-3.3) and 5-ALA fluorescence-guided resection during second surgery (aOR: 1.7; 95% CI: 1.1-2.8). A National Institutes of Health Recurrent Glioblastoma Multiforme Scale score of 0 conferred an mPPS of 10.0 months, a score of 1-2, 9.0 months and a score of 3, 4.0 months (log-rank test, p-value < 0.05). CONCLUSION Surgery for recurrent glioblastoma can be beneficial in selected patients and carries an acceptable morbidity rate. The pattern of recurrence influenced PPS and the NIH Recurrent GBM Scale was a reliable prognostication tool.
Collapse
Affiliation(s)
- Peter Y M Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Tiffany H P Law
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Kelsey K Y Lee
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Joyce S W Chow
- Department of Neurosurgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Lai-Fung Li
- Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Sarah S N Lau
- Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Tony K T Chan
- Department of Neurosurgery, Princess Margaret Hospital, Hong Kong, China
| | - Jason M K Ho
- Department of Neurosurgery, Tuen Mun Hospital, Hong Kong, China
| | - Michael W Y Lee
- Department of Neurosurgery, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Danny T M Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
8
|
Ekert JO, Goyal A, Young JS, Hervey-Jumper SL, Berger MS. Interventional neurorehabilitation for glioma patients: A systematic review. Neurooncol Pract 2024; 11:679-690. [PMID: 39554784 PMCID: PMC11567740 DOI: 10.1093/nop/npae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Harnessing the neuroplastic potential of the human brain is being increasingly recognized as an important neuro-oncological paradigm to facilitate safe resection of brain tumors while preserving neurological function and quality of life. Interventional neurorehabilitation, employing both invasive and noninvasive neuromodulation techniques, represents an important emerging therapeutic strategy to induce or enhance neural plasticity to promote functional recovery in brain tumor patients. This study aimed to conduct a comprehensive review of interventional neurorehabilitation techniques for glioma patients. Methods In accordance with PRISMA guidelines, searches of Medline, Embase, Web of Science, APA PsycINFO, and Cochrane were undertaken from database inception to November 28, 2023. Studies reporting on neuromodulation applied to glioma patients were included. Results Seven studies reporting findings from 118 patients met the inclusion criteria. Three neuromodulation techniques were identified and included transcranial magnetic stimulation (TMS) reported in 5 out of 7 (71.4%) studies; transcranial direct current stimulation (tDCS); and continuous cortical electrical stimulation (cCES) using grid electrodes, reported in one study each. All studies applying noninvasive stimulation to ameliorate postoperative deficits demonstrated an improvement on at least one outcome measure. The 2 studies applying tDCS and cCES to induce plasticity reported evidence of functional reorganization. Conclusions There is emerging evidence of benefits of neuromodulation to improve postoperative outcome in glioma patients. In the current literature, noninvasive stimulation has shown to have a favorable safety profile. Large-scale, double-blind, sham-controlled trials are warranted to further investigate the effectiveness of these interventions for modulating different cognitive networks in patients undergoing glioma surgery.
Collapse
Affiliation(s)
- Justyna O Ekert
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Anshit Goyal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Kram L, Schroeder A, Meyer B, Krieg SM, Ille S. Function-guided differences of arcuate fascicle and inferior fronto-occipital fascicle tractography as diagnostic indicators for surgical risk stratification. Brain Struct Funct 2024; 229:2219-2235. [PMID: 38597941 PMCID: PMC11612008 DOI: 10.1007/s00429-024-02787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Several patients with language-eloquent gliomas face language deterioration postoperatively. Persistent aphasia is frequently associated with damage to subcortical language pathways. Underlying mechanisms still need to be better understood, complicating preoperative risk assessment. This study compared qualitative and quantitative functionally relevant subcortical differences pre- and directly postoperatively in glioma patients with and without aphasia. METHODS Language-relevant cortical sites were defined using navigated transcranial magnetic stimulation (nTMS) language mapping in 74 patients between 07/2016 and 07/2019. Post-hoc nTMS-based diffusion tensor imaging tractography was used to compare a tract's pre- and postoperative visualization, volume and fractional anisotropy (FA), and the preoperative distance between tract and lesion and postoperative overlap with the resection cavity between the following groups: no aphasia (NoA), tumor- or previous resection induced aphasia persistent pre- and postoperatively (TIA_P), and surgery-induced transient or permanent aphasia (SIA_T or SIA_P). RESULTS Patients with NoA, TIA_P, SIA_T, and SIA_P showed distinct fasciculus arcuatus (AF) and inferior-fronto-occipital fasciculus (IFOF) properties. The AF was more frequently reconstructable, and the FA of IFOF was higher in NoA than TIA_P cases (all p ≤ 0.03). Simultaneously, SIA_T cases showed higher IFOF fractional anisotropy than TIA_P cases (p < 0.001) and the most considerable AF volume loss overall. While not statistically significant, the four SIA_P cases showed complete loss of ventral language streams postoperatively, the highest resection-cavity-AF-overlap, and the shortest AF to tumor distance. CONCLUSION Functionally relevant qualitative and quantitative differences in AF and IFOF provide a pre- and postoperative pathophysiological and clinically relevant diagnostic indicator that supports surgical risk stratification.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany.
| |
Collapse
|
10
|
Aaronson DM, Laing B, Singhal I, Boerger TF, Beck RT, Mueller WM, Krucoff MO. Survival implications of postoperative restricted diffusion in high-grade glioma and limitations of intraoperative MRI detection. J Neurooncol 2024; 170:419-428. [PMID: 39316313 DOI: 10.1007/s11060-024-04767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Here we assess whether the volume of cerebral ischemia induced during glioma surgery may negatively impact survival independently of neurological function. We also evaluate the sensitivity of intraoperative MRI (iMRI) in detecting cerebral ischemia during surgery. METHODS We retrospectively reviewed 361 cranial surgeries that used a 3 Tesla iMRI. 165 patients met all inclusion criteria and were included in the final analysis. Diffusion weighted imaging (DWI) obtained during iMRI was compared to postoperative DWI obtained within 7 days of the operation in cases where no further resection occurred after the iMRI. RESULTS 42 of 165 patients (25%) showed at least some evidence of restricted diffusion on postoperative (poMRI). 37 of these 42 (88%) cases lacked evidence of restricted diffusion on iMRI, meaning iMRI had a false-negative rate of 88% and a sensitivity of 12% in assessing the extent of ischemic brain after surgery. In high-grade gliomas, the volume of restricted diffusion on poMRI was predictive of overall survival, independent of new functional deficits acquired during surgery (p = 0.011). CONCLUSION This study presents the largest case series to date analyzing the sensitivity of iMRI in detecting surgical ischemia. In high-grade gliomas, increased volume of ischemia correlated with worsening median overall survival (OS) irrespective of postoperative neurologic deficits. Future work will focus on improving intraoperative detection of ischemia during the hyperacute phase when interventions such as blood pressure modulation or direct application of vasodilator agents may be effective.
Collapse
Affiliation(s)
- Daniel M Aaronson
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Brandon Laing
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Ishan Singhal
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI, 53226, USA
| | - Timothy F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Ryan T Beck
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA.
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, 1515 W. Wisconsin Ave, Milwaukee, WI, 53233, USA.
| |
Collapse
|
11
|
Ishaque AH, Das S. Cutting Through History: The Evolution of Glioblastoma Surgery. Curr Oncol 2024; 31:6568-6576. [PMID: 39590116 PMCID: PMC11592654 DOI: 10.3390/curroncol31110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Despite significant advancements in neuro-oncology, management of glioblastoma remains a formidable challenge. Over the last century, the role and goals of surgery for patients with glioblastoma have evolved dramatically, with surgical intervention maintaining a central role in patient care. To understand the future role of surgery in the management of glioblastoma, we must review and appreciate the historical journey that has led us to this juncture. Here, we provide an overview of this evolution and speak about anticipated changes in the future. "Certainly we cannot hope to solve the glioblastoma problem by throwing up our hands and saying there is nothing we can do. On the contrary, the solution lies in our constantly pressing on, making more and more strenuous efforts to remove these tumors, and not allowing ourselves to be deterred by any obstacles that lie in our path."-Ernest Sachs, 1950.
Collapse
Affiliation(s)
- Abdullah H. Ishaque
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Neurosurgery, Department of Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
12
|
Dono A, Zhu P, Takayasu T, Arevalo O, Riascos R, Tandon N, Ballester LY, Esquenazi Y. Extent of Resection Thresholds in Molecular Subgroups of Newly Diagnosed Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery 2024; 95:932-940. [PMID: 38687046 DOI: 10.1227/neu.0000000000002964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Maximizing the extent of resection (EOR) improves outcomes in glioblastoma (GBM). However, previous GBM studies have not addressed the EOR impact in molecular subgroups beyond IDH1/IDH2 status. In the current article, we evaluate whether EOR confers a benefit in all GBM subtypes or only in particular molecular subgroups. METHODS A retrospective cohort of newly diagnosed GBM isocitrate dehydrogenase (IDH)-wildtype undergoing resection were prospectively included in a database (n = 138). EOR and residual tumor volume (RTV) were quantified with semiautomated software. Formalin-fixed paraffin-embedded tumor tissues were analyzed by targeted next-generation sequencing. The association between recurrent genomic alterations and EOR/RTV was evaluated using a recursive partitioning analysis to identify thresholds of EOR or RTV that may predict survival. The Kaplan-Meier methods and multivariable Cox proportional hazards regression methods were applied for survival analysis. RESULTS Patients with EOR ≥88% experienced 44% prolonged overall survival (OS) in multivariable analysis (hazard ratio: 0.56, P = .030). Patients with alterations in the TP53 pathway and EOR <89% showed reduced OS compared to TP53 pathway altered patients with EOR>89% (10.5 vs 18.8 months; HR: 2.78, P = .013); however, EOR/RTV was not associated with OS in patients without alterations in the TP53 pathway. Meanwhile, in all patients with EOR <88%, PTEN -altered had significantly worse OS than PTEN -wildtype (9.5 vs 15.4 months; HR: 4.53, P < .001). CONCLUSION Our results suggest that a subset of molecularly defined GBM IDH-wildtype may benefit more from aggressive resections. Re-resections to optimize EOR might be beneficial in a subset of molecularly defined GBMs. Molecular alterations should be taken into consideration for surgical treatment decisions in GBM IDH-wildtype.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | | | - Octavio Arevalo
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | - Roy Riascos
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
| | - Leomar Y Ballester
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston , Texas , USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston , Texas , USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| |
Collapse
|
13
|
Dada A, Umbach G, Majumdar A, Kaur J, Oten S, Berger MS, Brang D, Hervey-Jumper SL. Somatosensory Mapping Using a Novel Sensory Discrimination Task: Technical Note. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01315. [PMID: 39248466 DOI: 10.1227/ons.0000000000001349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although diffuse gliomas in the primary somatosensory cortex (S1) are often considered resectable, gliomas in the primary motor cortex require motor mapping to preserve motor function. Recent evidence indicates that some somatosensory cortex neurons may trigger motor responses, necessitating refined somatosensory mapping techniques. METHODS Using piezoelectric tactile stimulators on patients' faces and hands, we delivered 25 Hz vibrations and prompted patients to discriminate between dermatomes. Testing included areas contralateral to tumor-infiltrated and to non-tumor-infiltrated cortical regions. Sensory thresholds were determined by reducing stimulus intensity based on performance. Intraoperatively, electrocorticography electrode arrays were used to map sensory responses, and postoperative assessments evaluated sensory outcomes. RESULTS The high-grade glioma case involved a 61-year-old man with right-sided weakness and numbness with a left parietal mass on MRI. Preoperative testing showed that the average vibratory detection threshold of the hand contralateral to the suspected tumor site was significantly higher than that of the hand contralateral to healthy cortex (P < .001). Intraoperative mapping confirmed the absence of functional involvement in cortical structures overlying the tumor. Postoperative imaging confirmed gross total resection, and sensory vibratory thresholds were normalized (P = .51). The low-grade glioma case included a 54-year-old man with a left parietal nonenhancing mass on MRI. No baseline sensory impairments were found on preoperative testing. Intraoperative mapping identified motor and sensory cortices, guiding tumor resection while preserving motor function. Postoperative MRI confirmed near-total resection, but new sensory impairments were noted in the hand and face contralateral to the resection site (P < .001). These deficits resolved by postoperative day 11, with no evidence of tumor progression on follow-up imaging. CONCLUSION The sensory discrimination task provides a quantifiable method for assessing sensory changes and functional outcomes related to glioma. This technique enhances our understanding of how glioma infiltration remodels sensory systems and affects clinical outcomes in patients.
Collapse
Affiliation(s)
- Abraham Dada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Gray Umbach
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Areti Majumdar
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jasleen Kaur
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Sena Oten
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Niedermeyer S, Schmutzer-Sondergeld M, Weller J, Katzendobler S, Kirchleitner S, Forbrig R, Harter PN, Baumgarten LV, Schichor C, Stoecklein V, Thon N. Neurosurgical resection of multiple brain metastases: outcomes, complications, and survival rates in a retrospective analysis. J Neurooncol 2024; 169:349-358. [PMID: 38904924 PMCID: PMC11341644 DOI: 10.1007/s11060-024-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE This study investigates the outcomes of microsurgical resection of multiple brain metastasis (BMs). METHODS This retrospective, monocentric analysis included clinical data from all consecutive BM patients, who underwent simultaneous resection of ≥ 2 BMs between January 2018 and May 2023. Postoperative neurological and functional outcomes, along with perioperative complications, as well as survival data were evaluated. RESULTS A total of 47 patients, with a median age of 61 years (IQR 48-69), underwent 73 craniotomies (median 2; range 1-3) for resection of 104 BMs. Among patients, 80.8% presented with symptomatic BMs, causing focal neurological deficits in 53% of cases. Gross total resection was achieved in 87.2% of BMs. Karnofsky Performance Scale (KPS) scores improved in 42.6% of patients, remained unchanged in 46.8%, and worsened in 10.6% after surgery. Perioperative complications were observed in 29.8% of cases, with transient complications occurring in 19.2% and permanent deficits in 10.6%. The 30-days mortality rate was 2.1%. Logistic regression identified eloquent localization (p = 0.036) and infratentorial craniotomy (p = 0.018) as significant predictors of postoperative complications. Concerning overall prognosis, patients with permanent neurological deficits post-surgery (HR 11.34, p = 0.007) or progressive extracranial disease (HR: 4.649; p = 0.006) exhibited inferior survival. CONCLUSION Microsurgical resection of multiple BMs leads to clinical stabilization or functional improvement in most patients. Although transient complications do not affect overall survival, the presence of persistent neurological deficits (> 3 months post-surgery) and progressive extracranial disease negatively impact overall survival. This highlights the importance of careful patient selection for resection of multiple BMs.
Collapse
Affiliation(s)
- Sebastian Niedermeyer
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - M Schmutzer-Sondergeld
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - J Weller
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - S Katzendobler
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - S Kirchleitner
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - R Forbrig
- Department of Neuroradiology, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - P N Harter
- Center for Neuropathology and Prion Research, LMU Hospital, Ludwig-Maximilian- University Munich, Feodor-Lynen Strasse 23, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L V Baumgarten
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - C Schichor
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - V Stoecklein
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - N Thon
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
15
|
Rakovec M, Myneni S, Johnson S, Nair S, Botros D, Chakravarti S, Kazemi F, Mukherjee D. Activity Measure for Post-Acute care (AM-PAC) scores predict Short and Long-Term outcomes following glioblastoma resection. J Clin Neurosci 2024; 127:110746. [PMID: 39079422 DOI: 10.1016/j.jocn.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Glioblastoma patients may develop functional deficits post-operatively that affect activities of daily living and result in worse outcomes. The Activity Measure for Post-Acute Care (AM-PAC) instrument assigns patients basic mobility and daily activity scores, but it is unknown if these scores correlate with post-operative outcomes in glioblastoma patients. METHODS Adult (≥18 years) glioblastoma patients evaluated by physical/occupational therapy after resection at a single instution (June 2008-December 2020) were identified. Patient demographics, post-operative AM-PAC scores, and clinical outcomes were collected. Multivariate regression identified associations between AM-PAC scores and post-operative outcomes. RESULTS 600 patients were included (mean age 59.3 years, 59.2 % male); 151 (25.3 %) and 246 (43.8 %) patients had low mobility (<42.9) and activity (<39.4) scores, respectively. 103 (17.2 %) and 177 (29.5 %) patients experienced extended lengths of stay (LOS) in the ICU (≥2 days) and overall (≥7 days), respectively. 154 (25.7 %) patients had non-home discharges. The 30-day readmission rate was 13.7 %. In multivariate analysis, low mobility scores correlated with increased odds of extended overall (p < 0.0001) and ICU (p = 0.0004) LOS, non-home discharge (p < 0.0001), and 30-day readmission (p = 0.0405). Low activity scores correlated with extended overall LOS (<0.0001) and non-home discharge (p < 0.0001). In log-rank analysis, median survival time was shorter for patients with low mobility (9.5 vs. 14.7 months, p < 0.0001) and activity (10.6 vs. 16.3 months, p < 0.0001) scores than for high-scoring patients. CONCLUSION AM-PAC basic mobility and daily activity scores are associated with outcomes after glioblastoma resection. These easily obtainable scores may be useful for prognosticating and guiding decision making in post-operative glioblastoma patients.
Collapse
Affiliation(s)
- Maureen Rakovec
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Saket Myneni
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sarah Johnson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sumil Nair
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - David Botros
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sachiv Chakravarti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Foad Kazemi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Karschnia P, Gerritsen JKW, Teske N, Cahill DP, Jakola AS, van den Bent M, Weller M, Schnell O, Vik-Mo EO, Thon N, Vincent AJPE, Kim MM, Reifenberger G, Chang SM, Hervey-Jumper SL, Berger MS, Tonn JC. The oncological role of resection in newly diagnosed diffuse adult-type glioma defined by the WHO 2021 classification: a Review by the RANO resect group. Lancet Oncol 2024; 25:e404-e419. [PMID: 39214112 DOI: 10.1016/s1470-2045(24)00130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 09/04/2024]
Abstract
Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jasper K W Gerritsen
- Department of Neurosurgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands; Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Nico Teske
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Asgeir S Jakola
- Department of Neurosurgery, University of Gothenburg, Gothenburg, Sweden; Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Oliver Schnell
- Department of Neurosurgery, Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet, Erlangen-Nuernberg, Germany
| | - Einar O Vik-Mo
- Department of Neurosurgery, Oslo University Hospital and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
17
|
Nakajima R, Kinoshita M, Okita H, Nakada M. Postsurgical motor function and processing speed as predictors of quality of life in patients with chronic-phase glioblastoma. Acta Neurochir (Wien) 2024; 166:357. [PMID: 39215803 PMCID: PMC11365834 DOI: 10.1007/s00701-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Patients with glioblastomas (GBMs) have poor prognosis despite various treatments; therefore, attention should be paid to maintaining the quality of survival. Neurocognitive deficits can affect the quality of life (QOL) in patients with GBM. Most studies concerning QOL and neurocognitive functions have demonstrated a relationship between QOL and self-reported neurocognitive decline, although this method does not accurately reflect damaged functional domains. Therefore, this study aimed to clarify the neurocognitive functions that influence the QOL in patients with GBMs using an objective assessment of neurocognitive functions. METHODS Data from 40 patients newly diagnosed with GBMs were analyzed. All patients completed the assessment of QOL and various neurological and neurocognitive functions including general cognitive function, processing speed, attention, memory, emotion recognition, social cognition, visuospatial cognition, verbal fluency, language, motor function, sensation, and visual field at 6 months postoperatively. QOL was assessed using the 36-Item Short Form Survey (SF-36). In the SF-36, the physical, mental, and role and social component summary (PCS, MCS, and RCS, respectively) scores were calculated. Multiple logistic regression analyses and chi-square tests were used to evaluate the association between SF-36 scores and neurocognitive functions. RESULTS The MCS was maintained, while the PCS and RCS scores were significantly lower in patients with GBMs than in healthy controls (p = 0.0040 and p < 0.0001, respectively). Among several neurocognitive functions, motor function and processing speed were significantly correlated with PCS and RCS scores, respectively (p = 0.0048 and p = 0.030, respectively). Patients who maintained their RCS or PCS scores had a higher probability of preserving motor function or processing speed than those with low RCS or PCS scores (p = 0.0026). CONCLUSIONS Motor function and processing speed may be predictors of QOL in patients with GBMs.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan.
| |
Collapse
|
18
|
Yilmaz MT, Kahvecioglu A, Yedekci FY, Yigit E, Ciftci GC, Kertmen N, Zorlu F, Yazici G. Comparison of different target volume delineation strategies based on recurrence patterns in adjuvant radiotherapy for glioblastoma. Neurooncol Pract 2024; 11:275-283. [PMID: 38737611 PMCID: PMC11085836 DOI: 10.1093/nop/npae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) recommendations are commonly used guidelines for adjuvant radiotherapy in glioblastoma. In our institutional protocol, we delineate T2-FLAIR alterations as gross target volume (GTV) with reduced clinical target volume (CTV) margins. We aimed to present our oncologic outcomes and compare the recurrence patterns and planning parameters with EORTC and RTOG delineation strategies. Methods Eighty-one patients who received CRT between 2014 and 2021 were evaluated retrospectively. EORTC and RTOG delineations performed on the simulation computed tomography and recurrence patterns and planning parameters were compared between delineation strategies. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for statistical analyses. Results Median overall survival and progression-free survival were 21 months and 11 months, respectively. At a median 18 month follow-up, of the 48 patients for whom recurrence pattern analysis was performed, recurrence was encompassed by only our institutional protocol's CTV in 13 (27%) of them. For the remaining 35 (73%) patients, recurrence was encompassed by all separate CTVs. In addition to the 100% rate of in-field recurrence, the smallest CTV and lower OAR doses were obtained by our protocol. Conclusions The current study provides promising results for including the T2-FLAIR alterations to the GTV with smaller CTV margins with impressive survival outcomes without any marginal recurrence. The fact that our protocol did not result in larger irradiated brain volume is further encouraging in terms of toxicity.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fazli Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Coban Ciftci
- Radiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Boccuni L, Roca-Ventura A, Buloz-Osorio E, Leno-Colorado D, Martín-Fernández J, Cabello-Toscano M, Perellón-Alfonso R, Pariente Zorrilla JC, Laredo C, Garrido C, Muñoz-Moreno E, Bargalló N, Villalba G, Martínez-Ricarte F, Trompetto C, Marinelli L, Sacchet MD, Bartrés-Faz D, Abellaneda-Pérez K, Pascual-Leone A, Tormos Muñoz JM. Exploring the neural basis of non-invasive prehabilitation in brain tumour patients: An fMRI-based case report of language network plasticity. Front Oncol 2024; 14:1390542. [PMID: 38826790 PMCID: PMC11140081 DOI: 10.3389/fonc.2024.1390542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Primary brain neoplasms are associated with elevated mortality and morbidity rates. Brain tumour surgery aims to achieve maximal tumour resection while minimizing damage to healthy brain tissue. Research on Neuromodulation Induced Cortical Prehabilitation (NICP) has highlighted the potential, before neurosurgery, of establishing new brain connections and transfer functional activity from one area of the brain to another. Nonetheless, the neural mechanisms underlying these processes, particularly in the context of space-occupying lesions, remain unclear. A patient with a left frontotemporoinsular tumour underwent a prehabilitation protocol providing 20 sessions of inhibitory non-invasive neuromodulation (rTMS and multichannel tDCS) over a language network coupled with intensive task training. Prehabilitation resulted in an increment of the distance between the tumour and the language network. Furthermore, enhanced functional connectivity within the language circuit was observed. The present innovative case-study exposed that inhibition of the functional network area surrounding the space-occupying lesion promotes a plastic change in the network's spatial organization, presumably through the establishment of novel functional pathways away from the lesion's site. While these outcomes are promising, prudence dictates the need for larger studies to confirm and generalize these findings.
Collapse
Affiliation(s)
- Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Conegliano, Scientific Institute IRCCS E. Medea, Treviso, Italy
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Edgar Buloz-Osorio
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - David Leno-Colorado
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jesús Martín-Fernández
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier, France
- Department of Neurosurgery, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Carlos Pariente Zorrilla
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Carlos Laredo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Cesar Garrido
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Nuria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gloria Villalba
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain
| | | | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Centre for Memory Health, Hebrew Senior Life, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Josep María Tormos Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
20
|
Wang P, Zhao H, Hao Z, Ma X, Wang S, Zhang H, Wu Q, Gao Y. Structural changes in corticospinal tract profiling via multishell diffusion models and their relation to overall survival in glioblastoma. Eur J Radiol 2024; 175:111477. [PMID: 38669755 DOI: 10.1016/j.ejrad.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/22/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Advanced MR fiber tracking imaging reflects fiber bundle invasion by glioblastoma, particularly of the corticospinal tract (CST), which is more susceptible as the largest downstream fiber tracts. We aimed to investigate whether CST features can predict the overall survival of glioblastoma. METHODS In this prospective secondary analysis, 40 participants (mean age, 58 years; 16 male) pathologically diagnosed with glioblastoma were enrolled. Diffusion spectrum MRI was used for CST reconstruction. Fifty morphological and diffusion indicators (DTI, DKI, NODDI, MAP and Q-space) were used to characterize the CST. Optimal parameters capturing fiber bundle damage were obtained through various grouping methods. Eventually, the correlation with overall survival was determined by the hazard ratios (HRs) from various Cox proportional hazard model combinations. RESULTS Only intracellular volume fraction (ICVF) and non-Gaussianity (NG) values on the affected tumor level were significant in all four groups or stratified comparisons (all P < .05). During the median follow-up 698 days, only the ICVF on the affected tumor level was independently associated with overall survival, even after adjusting for all classic prognostic factors (HR [95 % CI]: 0.611 [0.403, 0.927], P = .021). Moreover, stratification by the ICVF on the affected tumor level successfully predicted risk (P < .01) and improved the C-index of the multivariate model (from 0.695 to 0.736). CONCLUSIONS This study demonstrates a relationship between NODDI-derived CST features, ICVF on the affected tumor level, and overall survival in glioblastoma. Independent of classical prognostic factors for glioblastoma, a lower ICVF on the affected tumor level might predict a lower overall survival.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - He Zhao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhiyue Hao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xueying Ma
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, Shanghai, China
| | - Huapeng Zhang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, Shanghai, China
| | - Qiong Wu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Yang Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
21
|
Koay JM, Michaelides L, Moniz-Garcia DP, Quinones-Hinojosa A, Chaichana K, Almeida JP, Gruenbaum BF, Sherman WJ, Sabsevitz DS. Repeated surgical resections for management of high-grade glioma and its impact on quality of life. J Neurooncol 2024; 167:267-273. [PMID: 38349476 DOI: 10.1007/s11060-024-04600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 04/18/2024]
Abstract
PURPOSE High-grade gliomas (HGG) are aggressive cancers, and their recurrence is inevitable, despite advances in treatment options. While repeated tumor resection has been shown to increase survival rate, its impact on quality of life is not clearly defined. To address this gap, we compared quality of life (QoL) changes in HGG patients who underwent first-time (FTR) versus repeat surgical resections (RSR) for management of recurrence. METHODS Forty-four adults with HGG who underwent tumor resection were included in this study and classified into either the FTR group (n = 23) or the RSR group (n = 21). All patients completed comprehensive neuropsychological evaluations that included the Functional Assessment of Cancer Therapy-General (FACT-G) and Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) scales, pre-operatively and at two weeks post-operatively. RESULTS There was no difference between the FTR and RSR groups in any of the QoL indices (all p > .05), except for improved emotional well-being and worsened social well-being, suggesting minimal detrimental effects of repeat surgeries on QoL in comparison to first time surgery. CONCLUSIONS These results suggest that repeated resection is a viable strategy in certain cases for management of HGG recurrence, with similar impact on QoL as observed in patients undergoing first time surgery. These encouraging outcomes provide useful insight to guide treatment strategies and patient and clinician decision making to optimize surgical and functional outcomes.
Collapse
Affiliation(s)
- Jun Min Koay
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA.
| | | | | | | | - Kaisorn Chaichana
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | | | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Wendy J Sherman
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - David S Sabsevitz
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
22
|
Laing BR, Prah MA, Best BJ, Krucoff MO, Mueller WM, Schmainda KM. Application of Delta T1 maps for quantitative and objective assessment of extent of resection and survival prediction in glioblastoma. NEUROSURGERY PRACTICE 2024; 5:e00077. [PMID: 38919518 PMCID: PMC11198967 DOI: 10.1227/neuprac.0000000000000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 02/05/2025]
Abstract
Background and Objectives Gross-total resection (GTR) and low residual tumor volume (RTV) have been associated with increased survival in glioblastoma. Largely due to the subjectivity involved, the determination of GTR and RTV remains difficult in the postoperative setting. In response, the objective of this study is to evaluate the clinical efficacy of an easy-to-use MRI metric, called delta T1 (dT1), to quantify extent of resection (EOR) and RTV, in comparison to radiologist impression, to predict overall survival (OS) in glioblastoma patients. Methods 59 patients who underwent resection of glioblastoma were retrospectively identified. Delta T1 (dT1) images, automatically created from the difference between calibrated post- and pre-contrast T1-weighted images, were used to quantify EOR and RTV. Kaplan-Meier survival estimates were determined for EOR categories, an RTV cutoff of 5cm3 and radiologist interpretation of EOR. Multivariate Cox proportional hazard regression analysis was used to evaluate RTV and EOR along with effects related to sex, KPS, MGMT, and age on OS. Results Kaplan-Meier analysis revealed a statistically significant difference in median OS for a dT1-determined RTV cutoff of 5 cm3 (P=.0024, HR=2.18 (1.232-3.856)), but not for radiological impression (P=0.666) or dT1-determined EOR (P=0.0803), which was limited to a comparison between partial and subtotal resections. Furthermore, when covariates were accounted for in multivariate Cox regression, significant differences in OS were retained for dT1-determined RTV. Additionally, a significantly strong yet short-term effect of MGMT methylation status on OS was revealed for each RTV and EOR model. Conclusion The utility of dT1 maps to quantify EOR and RTV in glioblastoma and predict survival, suggests an emerging role for dT1s with relevance for intraoperative MRI, neuro-navigation and postoperative disease surveillance.
Collapse
Affiliation(s)
- Brandon R. Laing
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin J. Best
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wade M. Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
23
|
Koga SF, Hodges WB, Adamyan H, Hayes T, Fecci PE, Tsvankin V, Pradilla G, Hoang KB, Lee IY, Sankey EW, Codd PJ, Huie D, Zacharia BE, Verma R, Baboyan VG. Preoperative validation of edema-corrected tractography in neurosurgical practice: translating surgeon insights into novel software implementation. Front Neurol 2024; 14:1322815. [PMID: 38259649 PMCID: PMC10801029 DOI: 10.3389/fneur.2023.1322815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Peritumoral edema alters diffusion anisotropy, resulting in false negatives in tractography reconstructions negatively impacting surgical decision-making. With supratotal resections tied to survival benefit in glioma patients, advanced diffusion modeling is critical to visualize fibers within the peritumoral zone to prevent eloquent fiber transection thereafter. A preoperative assessment paradigm is therefore warranted to systematically evaluate multi-subject tractograms along clinically meaningful parameters. We propose a novel noninvasive surgically-focused survey to evaluate the benefits of a tractography algorithm for preoperative planning, subsequently applied to Synaptive Medical's free-water correction algorithm developed for clinically feasible single-shell DTI data. Methods Ten neurosurgeons participated in the study and were presented with patient datasets containing histological lesions of varying degrees of edema. They were asked to compare standard (uncorrected) tractography reconstructions overlaid onto anatomical images with enhanced (corrected) reconstructions. The raters assessed the datasets in terms of overall data quality, tract alteration patterns, and the impact of the correction on lesion definition, brain-tumor interface, and optimal surgical pathway. Inter-rater reliability coefficients were calculated, and statistical comparisons were made. Results Standard tractography was perceived as problematic in areas proximal to the lesion, presenting with significant tract reduction that challenged assessment of the brain-tumor interface and of tract infiltration. With correction applied, significant reduction in false negatives were reported along with additional insight into tract infiltration. Significant positive correlations were shown between favorable responses to the correction algorithm and the lesion-to-edema ratio, such that the correction offered further clarification in increasingly edematous and malignant lesions. Lastly, the correction was perceived to introduce false tracts in CSF spaces and - to a lesser degree - the grey-white matter interface, highlighting the need for noise mitigation. As a result, the algorithm was modified by free-water-parameterizing the tractography dataset and introducing a novel adaptive thresholding tool for customizable correction guided by the surgeon's discretion. Conclusion Here we translate surgeon insights into a clinically deployable software implementation capable of recovering peritumoral tracts in edematous zones while mitigating artifacts through the introduction of a novel and adaptive case-specific correction tool. Together, these advances maximize tractography's clinical potential to personalize surgical decisions when faced with complex pathologies.
Collapse
Affiliation(s)
- Sebastian F Koga
- Franciscan Missionaries of Our Lady Health System, Baton Rouge, LA, United States
| | | | | | - Tim Hayes
- Synaptive Medical Inc., Toronto, ON, Canada
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Vadim Tsvankin
- Colorado Brain and Spine Institute, Englewood, CO, United States
| | - Gustavo Pradilla
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Eric W Sankey
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Patrick J Codd
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - David Huie
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Cohen Veterans Bioscience, New York, NY, United States
| | | |
Collapse
|
24
|
Banu MA, McKhann GM. Maximizing Extent of Resection for Noneloquent Glioblastoma: Fluorescent Dye or Intraoperative Magnetic Resonance Imaging? J Clin Oncol 2023; 41:5493-5496. [PMID: 37722089 DOI: 10.1200/jco.23.00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/20/2023] Open
Affiliation(s)
- Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY
| |
Collapse
|
25
|
Voets NL, Bartsch AJ, Plaha P. Functional MRI applications for intra-axial brain tumours: uses and nuances in surgical practise. Br J Neurosurg 2023; 37:1544-1559. [PMID: 36148501 DOI: 10.1080/02688697.2022.2123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Functional MRI (fMRI) has well-established uses to inform risks and plan maximally safe approaches in neurosurgery. In the field of brain tumour surgery, however, fMRI is currently in a state of clinical equipoise due to debate around both its sensitivity and specificity. MATERIALS AND METHODS In this review, we summarise the role and our experience of fMRI in neurosurgery for gliomas and metastases. We discuss nuances in the conduct and interpretation of fMRI that, based on our practise, most directly impact fMRI's usefulness in the neurosurgical setting. RESULTS Illustrated examples in which fMRI in our hands directly influences the neurosurgical treatment of brain tumours include evaluating the probability and nature of functional risks, especially for language functions. These presurgical risk assessments, in turn, help to predict the resectability of tumours, select or deselect patients for awake surgery, indicate the need for neurophysiological monitoring and guide the optimal use of intra-operative stimulation mapping. A further emerging application of fMRI is in measuring functional adaptation of functional networks after (partial) surgery, of potential use in the timing of further surgery. CONCLUSIONS In appropriately selected patients with a clearly defined surgical question, fMRI offers a valuable complementary tool in the pre-surgical evaluation of brain tumours. However, there is a great need for standards in the administration and analysis of fMRI as much as in the techniques that it is commonly evaluated against. Surprisingly little data exists that evaluates the accuracy of fMRI not just against complementary methods, but in terms of its ultimate clinical aim of minimising post-surgical morbidity.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- GenesisCare Ltd, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Neurosurgery, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Al-Adli NN, Young JS, Scotford K, Sibih YE, Payne J, Berger MS. Advances in Intraoperative Glioma Tissue Sampling and Infiltration Assessment. Brain Sci 2023; 13:1637. [PMID: 38137085 PMCID: PMC10741454 DOI: 10.3390/brainsci13121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Gliomas are infiltrative brain tumors that often involve functional tissue. While maximal safe resection is critical for maximizing survival, this is challenged by the difficult intraoperative discrimination between tumor-infiltrated and normal structures. Surgical expertise is essential for identifying safe margins, and while the intraoperative pathological review of frozen tissue is possible, this is a time-consuming task. Advances in intraoperative stimulation mapping have aided surgeons in identifying functional structures and, as such, has become the gold standard for this purpose. However, intraoperative margin assessment lacks a similar consensus. Nonetheless, recent advances in intraoperative imaging techniques and tissue examination methods have demonstrated promise for the accurate and efficient assessment of tumor infiltration and margin delineation within the operating room, respectively. In this review, we describe these innovative technologies that neurosurgeons should be aware of.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Katie Scotford
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Youssef E. Sibih
- School of Medicine, University of California San Francisco, San Francisco, CA 94131, USA;
| | - Jessica Payne
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Mitchel S. Berger
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| |
Collapse
|
27
|
Nakajima R, Kinoshita M, Okita H, Nakada M. Glioblastomas at the white matter of temporo-parietal junction cause a poor postoperative independence level. J Neurooncol 2023; 165:191-199. [PMID: 37847481 DOI: 10.1007/s11060-023-04479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Right cerebral hemispheric glioblastomas (GBMs) often decrease the Karnofsky performance status (KPS) score postoperatively, despite the patient having sufficient patient function while performing daily living. This study aimed to evaluate the factors that could cause poor KPS scores during the postoperative chronic phase in patients with right cerebral hemispheric GBMs. METHODS Data of 47 patients with newly diagnosed right cerebral hemispheric GBMs were analyzed. All patients were assessed preoperatively and 3 months postoperatively to determine KPS and brain function. To determine tumor location related to the postoperative KPS scores, we used voxel-based lesion symptom mapping (VLSM). The patients were divided into two groups (involvement and non-involvement groups) based on whether their lesion involved a significant region identified by VLSM. We then compared functional factors and prognosis between the groups using the chi-squared and log-rank tests, respectively. RESULTS The KPS score significantly decreased after surgery compared to that preoperatively measured (p = 0.023). VLSM revealed that tumors in the white matter of temporo-parietal junction (WM-TPJ) caused a significant decline in the KPS score at three months postoperatively. The patients in the involvement group had a higher probability of impaired attention, visuospatial cognition, emotion recognition, and visual field than did those in the non-involvement group. In addition, tumor in the WM-TPJ were associated with shorter progression-free survival and overall survival (p = 0.039 and 0.023, respectively). CONCLUSIONS GBMs involving the right WM-TPJ are more likely to result in poor postoperative KPS scores and prognoses. Impairments of several kinds of brain functions caused by tumor invasion to the WM-TPJ may be associated with lower KPS scores.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
28
|
Shah HA, Begley SL, Unadkat P, Kelly Hugo K, Schulder M. Direct-cortical visual evoked potential monitoring during brain tumor resection. J Clin Neurosci 2023; 115:1-7. [PMID: 37454439 DOI: 10.1016/j.jocn.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Visual evoked potential (VEP) recording is traditionally regarded as an unreliable evoked potential monitoring technique, precluding widespread use in intracranial neurosurgery. However, VEPs can serve as a useful intraoperative adjunct for real-time detection of mechanical damage to optic apparatuses. The low obtainability and prognostic utility of VEPs are associated with transcranial recording, which typically provides non-focal information and poor signal-to-noise ratio. Direct cortical VEP (DC-VEP) recordings may offer a solution. METHODS We evaluated the obtainability of DC-VEPs as well as their prognostic utility in predicting postoperative visual function deterioration in a series of brain tumor patients undergoing craniotomies for tumor resection. Patient records were retrospectively reviewed for all consecutive patients undergoing brain tumor resections with DC-VEP monitoring. Pre- and postoperative visual fields were characterized from patient charts and associated with the presence of intraoperative monitoring alerts to determine the sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of DC-VEPs in detecting postoperative visual field deficits. RESULTS Twenty-two patients (9 male, 13 female) were included, with a median age of 60 years. DC-VEPs were reliably detected in 19 of 23 included surgeries (82.6%). The reported sensitivity, specificity, PPV, and NPV in detecting postoperative visual field deficits was 60%, 92.9%, 75%, and 86.7%, respectively. There was a statistically significant association between monitoring alerts and the presence of visual field deterioration by Fischer's exact test (p = 0.0374). CONCLUSIONS DC-VEPs can be reliably obtained and are useful for detecting mechanical injury to optic areas and tracts during tumor resection.
Collapse
Affiliation(s)
- Harshal A Shah
- Department of Neurological Surgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell, Manhasset, NY, United States.
| | - Sabrina L Begley
- Department of Neurological Surgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell, Manhasset, NY, United States
| | - Prashin Unadkat
- Department of Neurological Surgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell, Manhasset, NY, United States; Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes of Medical Research, Manhasset, NY, United States
| | | | - Michael Schulder
- Department of Neurological Surgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell, Manhasset, NY, United States
| |
Collapse
|
29
|
Soumpasis C, Díaz-Baamonde A, Ghimire P, Baig Mirza A, Borri M, Jarosz J, Gullan R, Ashkan K, Bhangoo R, Vergani F, Lavrador JP, Mirallave Pescador A. Intraoperative Neuromonitoring of the Visual Pathway in Asleep Neuro-Oncology Surgery. Cancers (Basel) 2023; 15:3943. [PMID: 37568762 PMCID: PMC10416823 DOI: 10.3390/cancers15153943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Brain tumour surgery in visual eloquent areas poses significant challenges to neurosurgeons and has reported inconsistent results. This is a single-centre prospective cohort study of patients admitted for asleep surgery of intra-axial lesions in visual eloquent areas. Demographic and clinical information, data from tractography and visual evoked potentials (VEPs) monitoring were recorded and correlated with visual outcomes. Thirty-nine patients were included (20 females, 19 males; mean age 52.51 ± 14.08 years). Diffuse intrinsic glioma was noted in 61.54% of patients. There was even distribution between the temporal, occipital and parietal lobes, while 55.26% were right hemispheric lesions. Postoperatively, 74.4% remained stable in terms of visual function, 23.1% deteriorated and 2.6% improved. The tumour infiltration of the optic radiation on tractography was significantly related to the visual field deficit after surgery (p = 0.016). Higher N75 (p = 0.036) and P100 (p = 0.023) amplitudes at closure on direct cortical VEP recordings were associated with no new postoperative visual deficit. A threshold of 40% deterioration of the N75 (p = 0.035) and P100 (p = 0.020) amplitudes correlated with a risk of visual field deterioration. To conclude, direct cortical VEP recordings demonstrated a strong correlation with visual outcomes, contrary to transcranial recordings. Invasion of the optic radiation is related to worse visual field outcomes.
Collapse
Affiliation(s)
- Christos Soumpasis
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Alba Díaz-Baamonde
- Department of Neurophysiology, King’s College Hospital Foundation Trust, London SE5 9RS, UK
| | - Prajwal Ghimire
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Asfand Baig Mirza
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Marco Borri
- Department of Neuroradiology, King’s College Hospital Foundation Trust, London SE5 9RS, UK (J.J.)
| | - Josef Jarosz
- Department of Neuroradiology, King’s College Hospital Foundation Trust, London SE5 9RS, UK (J.J.)
| | - Richard Gullan
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Keyoumars Ashkan
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Ranjeev Bhangoo
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Francesco Vergani
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Jose Pedro Lavrador
- Neurosurgical Department, King’s College Hospital Foundation Trust, London SE5 9RS, UK (K.A.)
| | - Ana Mirallave Pescador
- Department of Neurophysiology, King’s College Hospital Foundation Trust, London SE5 9RS, UK
| |
Collapse
|
30
|
Peters DR, Halimi F, Ozduman K, Levivier M, Conti A, Reyns N, Tuleasca C. Resection of the contrast-enhancing tumor in diffuse gliomas bordering eloquent areas using electrophysiology and 5-ALA fluorescence: evaluation of resection rates and neurological outcome-a systematic review and meta-analysis. Neurosurg Rev 2023; 46:185. [PMID: 37498398 PMCID: PMC10374773 DOI: 10.1007/s10143-023-02064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Independently, both 5-aminolevulinic acid (5-ALA) and intraoperative neuromonitoring (IONM) have been shown to improve outcomes with high-grade gliomas (HGG). The interplay and overlap of both techniques are scarcely reported in the literature. We performed a systematic review and meta-analysis focusing on the concomitant use of 5-ALA and intraoperative mapping for HGG located within eloquent cortex. Using PRISMA guidelines, we reviewed articles published between May 2006 and December 2022 for patients with HGG in eloquent cortex who underwent microsurgical resection using intraoperative mapping and 5-ALA fluorescence guidance. Extent of resection was the primary outcome. The secondary outcome was new neurological deficit at day 1 after surgery and persistent at day 90 after surgery. Overall rate of complete resection of the enhancing tumor (CRET) was 73.3% (range: 61.9-84.8%, p < .001). Complete 5-ALA resection was performed in 62.4% (range: 28.1-96.7%, p < .001). Surgery was stopped due to mapping findings in 20.5% (range: 15.6-25.4%, p < .001). Neurological decline at day 1 after surgery was 29.2% (range: 9.8-48.5%, p = 0.003). Persistent neurological decline at day 90 after surgery was 4.6% (range: 0.4-8.7%, p = 0.03). Maximal safe resection guided by IONM and 5-ALA for high-grade gliomas in eloquent areas is achievable in a high percentage of cases (73.3% CRET and 62.4% complete 5-ALA resection). Persistent neurological decline at postoperative day 90 is as low as 4.6%. A balance between 5-ALA and IONM should be maintained for a better quality of life while maximizing oncological control.
Collapse
Affiliation(s)
- David R Peters
- Department of Neurosurgery, Atrium Health, Charlotte, NC, USA.
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Floriana Halimi
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Koray Ozduman
- Department of Neurosurgery, School of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Marc Levivier
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Dipartimento Di Scienze Biomediche E Neuromotorie (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nicolas Reyns
- Neurosurgery and Neurooncology Service, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Constantin Tuleasca
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Lausanne, Switzerland
| |
Collapse
|
31
|
Conway BJ, Taquet L, Boerger TF, Young SC, Krucoff KB, Schmit BD, Krucoff MO. Quantifying Hand Strength and Isometric Pinch Individuation Using a Flexible Pressure Sensor Grid. SENSORS (BASEL, SWITZERLAND) 2023; 23:5924. [PMID: 37447773 DOI: 10.3390/s23135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Modulating force between the thumb and another digit, or isometric pinch individuation, is critical for daily tasks and can be impaired due to central or peripheral nervous system injury. Because surgical and rehabilitative efforts often focus on regaining this dexterous ability, we need to be able to consistently quantify pinch individuation across time and facilities. Currently, a standardized metric for such an assessment does not exist. Therefore, we tested whether we could use a commercially available flexible pressure sensor grid (Tekscan F-Socket [Tekscan Inc., Norwood, MA, USA]) to repeatedly measure isometric pinch individuation and maximum voluntary contraction (MVC) in twenty right-handed healthy volunteers at two visits. We developed a novel equation informed by the prior literature to calculate isometric individuation scores that quantified percentage of force on the grid generated by the indicated digit. MVC intra-class correlation coefficients (ICCs) for the left and right hands were 0.86 (p < 0.0001) and 0.88 (p < 0.0001), respectively, suggesting MVC measurements were consistent over time. However, individuation score ICCs, were poorer (left index ICC 0.41, p = 0.28; right index ICC -0.02, p = 0.51), indicating that this protocol did not provide a sufficiently repeatable individuation assessment. These data support the need to develop novel platforms specifically for repeatable and objective isometric hand dexterity assessments.
Collapse
Affiliation(s)
| | - Léon Taquet
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Timothy F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah C Young
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kate B Krucoff
- Department of Plastic & Reconstructive Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
32
|
Ivren M, Grittner U, Khakhar R, Belotti F, Schneider H, Pöser P, D'Agata F, Spena G, Vajkoczy P, Picht T, Rosenstock T. Comparison of anatomical-based vs. nTMS-based risk stratification model for predicting postoperative motor outcome and extent of resection in brain tumor surgery. Neuroimage Clin 2023; 38:103436. [PMID: 37236052 PMCID: PMC10232884 DOI: 10.1016/j.nicl.2023.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/07/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Two statistical models have been established to evaluate characteristics associated with postoperative motor outcome in patients with glioma associated to the motor cortex (M1) or the corticospinal tract (CST). One model is based on a clinicoradiological prognostic sum score (PrS) while the other one relies on navigated transcranial magnetic stimulation (nTMS) and diffusion-tensor-imaging (DTI) tractography. The objective was to compare the models regarding their prognostic value for postoperative motor outcome and extent of resection (EOR) with the aim of developing a combined, improved model. METHODS We retrospectively analyzed a consecutive prospective cohort of patients who underwent resection for motor associated glioma between 2008 and 2020, and received a preoperative nTMS motor mapping with nTMS-based diffusion tensor imaging tractography. The primary outcomes were the EOR and the motor outcome (on the day of discharge and 3 months postoperatively according to the British Medical Research Council (BMRC) grading). For the nTMS model, the infiltration of M1, tumor-tract distance (TTD), resting motor threshold (RMT) and fractional anisotropy (FA) were assesed. For the PrS score (ranging from 1 to 8, lower scores indicating a higher risk), we assessed tumor margins, volume, presence of cysts, contrast agent enhancement, MRI index (grading white matter infiltration), preoperative seizures or sensorimotor deficits. RESULTS Two hundred and three patients with a median age of 50 years (range: 20-81 years) were analyzed of whom 145 patients (71.4%) received a GTR. The rate of transient new motor deficits was 24.1% and of permanent new motor deficits 18.8%. The nTMS model demonstrated a good discrimination ability for the short-term motor outcome at day 7 of discharge (AUC = 0.79, 95 %CI: 0.72-0.86) and the long-term motor outcome after 3 months (AUC = 0.79, 95 %CI: 0.71-0.87). The PrS score was not capable to predict the postoperative motor outcome in this cohort but was moderately associated with the EOR (AUC = 0.64; CI 0.55-0.72). An improved, combined model was calculated to predict the EOR more accurately (AUC = 0.74, 95 %CI: 0.65-0.83). CONCLUSION The nTMS model was superior to the clinicoradiological PrS model for potentially predicting the motor outcome. A combined, improved model was calculated to estimate the EOR. Thus, patient counseling and surgical planning in patients with motor-associated tumors should be performed using functional nTMS data combined with tractography.
Collapse
Affiliation(s)
- Meltem Ivren
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Rutvik Khakhar
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Francesco Belotti
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Neurosurgery Unit, Spedali Civili di Brescia Hospital, 25123 Brescia, Italy
| | - Heike Schneider
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Paul Pöser
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Federico D'Agata
- Department of Neuroscience, University of Turin, Via Verdi 8, 10124 Turin, Italy
| | - Giannantonio Spena
- Neurosurgery Unit, Spedali Civili di Brescia Hospital, 25123 Brescia, Italy
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Unter den Linden 6, 10099 Berlin, Germany
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
33
|
Felger L, Rodríguez-Núñez O, Gros R, Maragkou T, McKinley R, Moriconi S, Murek M, Zubak I, Novikova T, Pierangelo A, Schucht P. Robustness of the wide-field imaging Mueller polarimetry for brain tissue differentiation and white matter fiber tract identification in a surgery-like environment: an ex vivo study. BIOMEDICAL OPTICS EXPRESS 2023; 14:2400-2415. [PMID: 37206128 PMCID: PMC10191649 DOI: 10.1364/boe.486438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/21/2023]
Abstract
During neurooncological surgery, the visual differentiation of healthy and diseased tissue is often challenging. Wide-field imaging Muller polarimetry (IMP) is a promising technique for tissue discrimination and in-plane brain fiber tracking in an interventional setup. However, the intraoperative implementation of IMP requires realizing imaging in the presence of remanent blood, and complex surface topography resulting from the use of an ultrasonic cavitation device. We report on the impact of both factors on the quality of polarimetric images of the surgical resection cavities reproduced in fresh animal cadaveric brains. The robustness of IMP is observed under adverse experimental conditions, suggesting a feasible translation of IMP for in vivo neurosurgical applications.
Collapse
Affiliation(s)
- Leonard Felger
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Omar Rodríguez-Núñez
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Romain Gros
- Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Theoni Maragkou
- Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Richard McKinley
- SCAN, University Institute of Diagnostic and Interventional Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Stefano Moriconi
- SCAN, University Institute of Diagnostic and Interventional Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Irena Zubak
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tatiana Novikova
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | | | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
34
|
Laigle-Donadey F, Metellus P, Guyotat J, Menei P, Proust F, Dufour H, Chinot O, Honnorat J, Faillot T, Paquis P, Peruzzi P, Emery E, Guillamo JS, Carpentier A, Wager M, Lebbah S, Hajage D, Delattre JY, Cornu P. Surgery for glioblastomas in the elderly: an Association des Neuro-oncologues d'Expression Française (ANOCEF) trial. J Neurosurg 2023; 138:1199-1205. [PMID: 36242578 DOI: 10.3171/2022.8.jns221068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The role of surgery in the treatment of malignant gliomas in the elderly is not settled. The authors conducted a randomized trial that compared tumor resection with biopsy only-both followed by standard therapy-in such patients. METHODS Patients ≥ 70 years of age with a Karnofsky Performance Scale (KPS) score ≥ 50 and presenting with a radiological suspicion of operable glioblastoma (GBM) were randomly assigned between tumor resection and biopsy groups. Subsequently, they underwent standard radiotherapy during the first years of the trial (2008-2017), with the addition of adjunct therapy with temozolomide when this regimen became standard (2017-2019). The primary endpoint was survival, and secondary endpoints were progression-free survival (PFS), cognitive status (Mini-Mental State Examination), autonomy (KPS), quality of life (European Organisation for Research and Treatment of Cancer [EORTC] QLQ-C30 and QLQ-BN20), and perioperative morbidity and mortality. RESULTS Between 2008 and 2019, 107 patients from 9 centers were enrolled in the study; 101 were evaluable for analysis because a GBM was histologically confirmed (50 in the surgery arm and 51 in the biopsy arm). There was no statistically significant difference in median survival between the surgery (9.37 months) and the biopsy (8.96 months, p = 0.36) arms (adjusted HR 0.79, 95% CI 0.52-1.21, p = 0.28). However, the surgery group had an increased PFS (5.06 vs 4.02 months; p = 0.034) (adjusted HR 0.50, 95% CI 0.32-0.78, p = 0.002). Less deterioration of quality of life and KPS score evolution than in the biopsy group was observed. Surgery was not associated with increased mortality or morbidity. CONCLUSIONS This study suggests that debulking surgery is safe, and-compared to biopsy-is associated with a less severe deterioration of quality of life and autonomy, as well as a significant although modest improvement of PFS in elderly patients suffering from newly diagnosed malignant glioma. Although resection does not provide a significant survival benefit in the elderly, the authors believe that the risk/benefit analysis favors an attempt at optimal tumor resection in this population, provided there is careful preoperative geriatric evaluation. Clinical trial registration no.: NCT02892708 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Florence Laigle-Donadey
- 1Department of Neurology 2, Pitié-Salpêtrière University Hospital, APHP, Sorbonne University, Paris
| | | | | | - Philippe Menei
- 4Department of Neurosurgery, University Hospital of Angers
| | - François Proust
- 5Department of Neurosurgery, Charles Nicolle Hospital, Rouen
| | | | | | - Jérôme Honnorat
- 8Neurooncology, University Hospital of Lyon HCL, Lyon
- 9NeuroMyogène Institute, Synaptopathies and Autoanticorps Team, University Claude Bernard of Lyon
| | | | | | | | | | | | - Alexandre Carpentier
- 15Department of Neurosurgery, Pitié-Salpêtrière University Hospital, APHP, Sorbonne University, Paris
| | - Michel Wager
- 16Department of Neurosurgery, University Hospital of Poitiers
| | - Said Lebbah
- 17Clinical Research Unit, Pitié-Salpêtrière University Hospital, APHP, Paris
| | - David Hajage
- 18Sorbonne University, INSERM, Pierre Louis Institute of Epidemiology and Public Health, APHP Pitié-Salpêtrière University Hospital, Paris; and
- 19Department of Public Health, Pharmaco-epidemiological Center, Paris, France
| | - Jean-Yves Delattre
- 1Department of Neurology 2, Pitié-Salpêtrière University Hospital, APHP, Sorbonne University, Paris
| | - Philippe Cornu
- 15Department of Neurosurgery, Pitié-Salpêtrière University Hospital, APHP, Sorbonne University, Paris
| |
Collapse
|
35
|
Kreatsoulas D, Damante M, Gruber M, Duru O, Elder JB. Supratotal Surgical Resection for Low-Grade Glioma: A Systematic Review. Cancers (Basel) 2023; 15:cancers15092493. [PMID: 37173957 PMCID: PMC10177219 DOI: 10.3390/cancers15092493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Low-grade gliomas (LGGs) are optimally treated with up-front maximal safe surgical resection, typically defined as maximizing the extent of tumor resection while minimizing neurologic risks of surgery. Supratotal resection of LGG may improve outcomes beyond gross total resection by removing tumor cells invading beyond the tumor border as defined on MRI. However, the evidence regarding supratotal resection of LGG, in terms of impact on clinical outcomes, such as overall survival and neurologic morbidities, remains unclear. Authors independently searched the PubMed, Medline, Ovid, CENTRAL (Cochrane Central Register of Controlled Trials), and Google Scholar databases for studies evaluating overall survival, time to progression, seizure outcomes, and postoperative neurologic and medical complications of supratotal resection/FLAIRectomy of WHO-defined LGGs. Papers in languages other than English, lacking full-text availability, evaluating supratotal resection of WHO-defined high-grade gliomas only, and nonhuman studies were excluded. After literature search, reference screening, and initial exclusions, 65 studies were screened for relevancy, of which 23 were evaluated via full-text review, and 10 were ultimately included in the final evidence review. Studies were evaluated for quality using the MINORS criteria. After data extraction, a total of 1301 LGG patients were included in the analysis, with 377 (29.0%) undergoing supratotal resection. The main measured outcomes were extent of resection, pre- and postoperative neurological deficits, seizure control, adjuvant treatment, neuropsychological outcomes, ability to return to work, progression-free survival, and overall survival. Overall, low- to moderate-quality evidence was supportive of aggressive, functional boundary-based resection of LGGs due to improvements in progression-free survival and seizure control. The published literature provides a moderate amount of low-quality evidence supporting supratotal surgical resection along functional boundaries for low-grade glioma. Among patients included in this analysis, the occurrence of postoperative neurological deficits was low, and nearly all patients recovered within 3 to 6 months after surgery. Notably, the surgical centers represented in this analysis have significant experience in glioma surgery in general, and supratotal resection specifically. In this setting, supratotal surgical resection along functional boundaries appears to be appropriate for both symptomatic and asymptomatic low-grade glioma patients. Larger clinical studies are needed to better define the role of supratotal resection in LGG.
Collapse
Affiliation(s)
- Daniel Kreatsoulas
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mark Damante
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Maxwell Gruber
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Olivia Duru
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - James Bradley Elder
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Conway BJ, Taquet L, Boerger TF, Young SC, Krucoff KB, Schmit BD, Krucoff MO. Quantitative assessments of finger individuation with an instrumented glove. J Neuroeng Rehabil 2023; 20:48. [PMID: 37081513 PMCID: PMC10120262 DOI: 10.1186/s12984-023-01173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND In clinical and research settings, hand dexterity is often assessed as finger individuation, or the ability to move one finger at a time. Despite its clinical importance, there is currently no standardized, sufficiently sensitive, or fully objective platform for these evaluations. METHODS Here we developed two novel individuation scores and tested them against a previously developed score using a commercially available instrumented glove and data collected from 20 healthy adults. Participants performed individuation for each finger of each hand as well as whole hand open-close at two study visits separated by several weeks. Using the three individuation scores, intra-class correlation coefficients (ICC) and minimal detectable changes (MDC) were calculated. Individuation scores were further correlated with subjective assessments to assess validity. RESULTS We found that each score emphasized different aspects of individuation performance while generating scores on the same scale (0 [poor] to 1 [ideal]). These scores were repeatable, but the quality of the metrics varied by both equation and finger of interest. For example, index finger intra-class correlation coefficients (ICC's) were 0.90 (< 0.0001), 0.77 (< 0.001), and 0.83 (p < 0.0001), while pinky finger ICC's were 0.96 (p < 0.0001), 0.88 (p < 0.0001), and 0.81 (p < 0.001) for each score. Similarly, MDCs also varied by both finger and equation. In particular, thumb MDCs were 0.068, 0.14, and 0.045, while index MDCs were 0.041, 0.066, and 0.078. Furthermore, objective measurements correlated with subjective assessments of finger individuation quality for all three equations (ρ = - 0.45, p < 0.0001; ρ = - 0.53, p < 0.0001; ρ = - 0.40, p < 0.0001). CONCLUSIONS Here we provide a set of normative values for three separate finger individuation scores in healthy adults with a commercially available instrumented glove. Each score emphasizes a different aspect of finger individuation performance and may be more uniquely applicable to certain clinical scenarios. We hope for this platform to be used within and across centers wishing to share objective data in the physiological study of hand dexterity. In sum, this work represents the first healthy participant data set for this platform and may inform future translational applications into motor physiology and rehabilitation labs, orthopedic hand and neurosurgery clinics, and even operating rooms.
Collapse
Affiliation(s)
- Brian J Conway
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Léon Taquet
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy F Boerger
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sarah C Young
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kate B Krucoff
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Max O Krucoff
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
37
|
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers (Basel) 2023; 15:cancers15072173. [PMID: 37046834 PMCID: PMC10093517 DOI: 10.3390/cancers15072173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gliomas are infiltrative primary brain tumors that often invade functional cortical and subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative neurological deficits. It is well known that maximal safe resection significantly improves survival, while postoperative deficits minimize the benefits associated with aggressive resections and diminish patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical regions and minimizing morbidity during these challenging resections. Current mapping methods rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation effects can be monitored through patient responses during awake mapping procedures and/or with motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ these mapping methods during awake or asleep craniotomies, both of which have their own benefits and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in identifying subcortical structures and minimized the seizure risk associated with cortical stimulation. In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| | - Youssef E. Sibih
- School of Medicine, University of California, San Francisco, CA 94131, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| |
Collapse
|
38
|
Wach J, Vychopen M, Kühnapfel A, Seidel C, Güresir E. A Systematic Review and Meta-Analysis of Supramarginal Resection versus Gross Total Resection in Glioblastoma: Can We Enhance Progression-Free Survival Time and Preserve Postoperative Safety? Cancers (Basel) 2023; 15:cancers15061772. [PMID: 36980659 PMCID: PMC10046815 DOI: 10.3390/cancers15061772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
To date, gross total resection (GTR) of the contrast-enhancing area of glioblastoma (GB) is the benchmark treatment regarding surgical therapy. However, GB infiltrates beyond those margins, and most tumors recur in close proximity to the initial resection margin. It is unclear whether a supramarginal resection (SMR) enhances progression-free survival (PFS) time without increasing the incidence of postoperative surgical complications. The aim of the present meta-analysis was to investigate SMR with regard to PFS and postoperative surgical complications. We searched for eligible studies comparing SMR techniques with conventional GTR in PubMed, Cochrane Library, Web of Science, and Medline databases. From 3158 initially identified records, 11 articles met the criteria and were included in our meta-analysis. Our results illustrate significantly prolonged PFS time in SMR compared with GTR (HR: 11.16; 95% CI: 3.07–40.52, p = 0.0002). The median PFS of the SMR arm was 8.44 months (95% CI: 5.18–11.70, p < 0.00001) longer than the GTR arm. The rate of postoperative surgical complications (meningitis, intracranial hemorrhage, and CSF leaks) did not differ between the SMR group and the GTR group. SMR resulted in longer median progression-free survival without a negative postoperative surgical risk profile. Multicentric prospective randomized trials with a standardized definition of SMR and analysis of neurologic functioning and health-related quality of life are justified and needed to improve the level of evidence.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Andreas Kühnapfel
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, 04107 Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
39
|
Giussani C, Carrabba G, Rui CB, Chiarello G, Stefanoni G, Julita C, De Vito A, Cinalli MA, Basso G, Remida P, Citerio G, Di Cristofori A. Perilesional resection technique of glioblastoma: intraoperative ultrasound and histological findings of the resection borders in a single center experience. J Neurooncol 2023; 161:625-632. [PMID: 36690859 PMCID: PMC9992251 DOI: 10.1007/s11060-022-04232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The surgical goal in glioblastoma treatment is the maximal safe resection of the tumor. Currently the lack of consensus on surgical technique opens different approaches. This study describes the "perilesional technique" and its outcomes in terms of the extent of resection, progression free survival and overall survival. METHODS Patients included (n = 40) received a diagnosis of glioblastoma and underwent surgery using the perilesional dissection technique at "San Gerardo Hospital"between 2018 and 2021. The tumor core was progressively isolated using a circumferential movement, healthy brain margins were protected with Cottonoid patties in a "shingles on the roof" fashion, then the tumorwas removed en bloc. Intraoperative ultrasound (iOUS) was used and at least 1 bioptic sample of "healthy" margin of the resection was collected and analyzed. The extent of resection was quantified. Extent of surgical resection (EOR) and progression free survival (PFS)were safety endpoints of the procedure. RESULTS Thirty-four patients (85%) received a gross total resection(GTR) while 3 (7.5%) patients received a sub-total resection (STR), and 3 (7.5%) a partial resection (PR). The mean post-operative residual volume was 1.44 cm3 (range 0-15.9 cm3).During surgery, a total of 76 margins were collected: 51 (67.1%) were tumor free, 25 (32.9%) were infiltrated. The median PFS was 13.4 months, 15.3 in the GTR group and 9.6 months in the STR-PR group. CONCLUSIONS Perilesional resection is an efficient technique which aims to bring the surgeon to a safe environment, carefully reaching the "healthy" brain before removing the tumoren bloc. This technique can achieve excellent tumor margins, extent of resection, and preservation of apatient's functions.
Collapse
Affiliation(s)
- Carlo Giussani
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy. .,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy.
| | - Giorgio Carrabba
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Chiara Benedetta Rui
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Gaia Chiarello
- Neuropathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, MB, 20900, Monza, Italy
| | - Giovanni Stefanoni
- Neurology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Chiara Julita
- Radiotherapy, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Andrea De Vito
- Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Maria Allegra Cinalli
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Gianpaolo Basso
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Paolo Remida
- Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Giuseppe Citerio
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Di Cristofori
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| |
Collapse
|
40
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
41
|
Belyaev AY, Kobyakov GL, Shmakov PN, Efremov KV, Pronin IN, Usachev DY. [Prognosis of overall and disease-free survival in patients with grade 3 astrocytomas (anaplastic astrocytoma, WHO 2016)]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:46-57. [PMID: 37650276 DOI: 10.17116/neiro20238704146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Anaplastic astrocytoma (AA) is a rare intracerebral tumor. Therefore, the number of studies devoted to risk factors of overall and disease-free survival is small. This single-center clinical study is devoted to various factors influencing prognosis of treatment in this group of patients. MATERIAL AND METHODS A retrospective study included 389 patients diagnosed with grade 3 astrocytoma. We analyzed dependence of overall and disease-free survival from the following factors: gender, age of onset of disease, tumor extent, surgery, neurological disorders before and after surgery (NANO grading system), Ki67 index, postoperative radio- and chemotherapy (number courses, treatment regimens). RESULTS Significant risk factors for overall and disease-free survival were spread and volume of tumor, postoperative neurological aggravation, Ki67 index, IDH mutation, radio- and chemotherapy. Age, frontal lobe tumor and disease manifestation variant were significant only for overall, but not for disease-free survival. CONCLUSION This study was based on material of one of the largest clinical series of patients with AA operated on in one center in «molecular» era. Our results are consistent with previous data. Analysis of tumor biology and risk factors for IDH-negative AA without molecular signs of glioblastoma may be perspective.
Collapse
Affiliation(s)
| | | | - P N Shmakov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - K V Efremov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
42
|
Vargas López AJ, Fernández Carballal C, Valera Melé M, Rodríguez-Boto G. Survival analysis in high-grade glioma: The role of salvage surgery. Neurologia 2023; 38:21-28. [PMID: 36464224 DOI: 10.1016/j.nrleng.2020.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES This study addresses the survival of consecutive patients with high-grade gliomas (HGG) treated at the same institution over a period of 10 years. We analyse the importance of associated factors and the role of salvage surgery at the time of progression. METHODS We retrospectively analysed a series of patients with World Health Organization (WHO) grade III/IV gliomas treated between 2008 and 2017 at Hospital Gregorio Marañón (Madrid, Spain). Clinical, radiological, and anatomical pathology data were obtained from patient clinical histories. RESULTS Follow-up was completed in 233 patients with HGG. Mean age was 62.2 years. The median survival time was 15.4 months. Of 133 patients (59.6%) who had undergone surgery at the time of diagnosis, 43 (32.3%) underwent salvage surgery at the time of progression. This subgroup presented longer overall survival and survival after progression. Higher Karnofsky Performance Status score at diagnosis, a greater extent of surgical resection, and initial diagnosis of WHO grade III glioma were also associated with longer survival. CONCLUSIONS About one-third of patients with HGG may be eligible for salvage surgery at the time of progression. Salvage surgery in this subgroup of patients was significantly associated with longer survival.
Collapse
Affiliation(s)
- A J Vargas López
- Servicio de Neurocirugía, Hospital Universitario Torrecárdenas, Almería, Spain; Programa de Doctorado en Medicina y Cirugía, Universidad Autónoma de Madrid, Madrid, Spain.
| | - C Fernández Carballal
- Servicio de Neurocirugía, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Valera Melé
- Servicio de Neurocirugía, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - G Rodríguez-Boto
- Programa de Doctorado en Medicina y Cirugía, Universidad Autónoma de Madrid, Madrid, Spain; Servicio de Neurocirugía, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
43
|
Gupta S, Nawabi NL, Emani S, Medeiros L, Bernstock JD, Duvall J, Ng P, Smith TR, Wen PY, Reardon DA, Arnaout O. An expanded role for surgery in grade 3 1p/19q co-deleted oligodendroglioma. Neurooncol Adv 2023; 5:vdad046. [PMID: 37215951 PMCID: PMC10195195 DOI: 10.1093/noajnl/vdad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Grade 3 1p/19q co-deleted oligodendroglioma is an uncommon primary CNS tumor with a high rate of progression and recurrence. This study examines the benefit of surgery after progression and identifies predictors of survival. Methods This is a single-institution retrospective cohort study of consecutive adult patients with anaplastic or grade 3 1p/19q co-deleted oligodendroglioma diagnosed between 2001 and 2020. Results Eighty patients with 1p/19q co-deleted grade 3 oligodendroglioma were included. The median age was 47 years (interquartile range 38-56) and 38.8% were women. All patients underwent surgery, including gross total resection (GTR) for 26.3% of patients, subtotal resection (STR) for 70.0% of patients, and biopsy for 3.8% of patients. Forty-three cases (53.8%) progressed at a median of 5.6 years, and the median overall survival (OS) was 14.1 years. Among 43 cases of progression or recurrence, 21 (48.8%) underwent another resection. Patients who underwent a second operation had improved OS (P = .041) and survival after progression/recurrence (P = .012), but similar time to subsequent progression as patients who did not have repeat surgery (P = .50). Predictors of mortality at initial diagnosis included a preoperative Karnofsky Performance Status (KPS) under 80 (hazard ratio [HR] 5.4; 95% CI 1.5-19.2), an STR or biopsy rather than GTR (HR 4.1; 95% CI 1.2-14.2), and a persistent postoperative neurologic deficit (HR 4.0; 95% CI 1.2-14.1). Conclusions Repeat surgery is associated with increased survival, but not time to subsequent progression for progressing or recurrent 1p/19q co-deleted grade 3 oligodendrogliomas recur. Mortality is associated with a preoperative KPS under 80, lack of GTR, and persistent postoperative neurologic deficits after the initial surgery.
Collapse
Affiliation(s)
- Saksham Gupta
- Corresponding Author: Saksham Gupta, MD, Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, BTM 4, Boston, MA 02115, USA ()
| | | | - Siva Emani
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lila Medeiros
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Duvall
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Ng
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, Brigham and Women’s Hospital, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Center, Brigham and Women’s Hospital, Boston, MA, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Nichols NM, Hadjipanayis CG. Editorial. Supramaximal resection of eloquent glioblastoma: a continued paradigm shift in neurosurgical oncology. J Neurosurg 2023; 138:58-60. [PMID: 35623364 DOI: 10.3171/2022.3.jns22564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Noah M Nichols
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
45
|
Kim AA, Dono A, Khalafallah AM, Nettel-Rueda B, Samandouras G, Hadjipanayis CG, Mukherjee D, Esquenazi Y. Early repeat resection for residual glioblastoma: decision-making among an international cohort of neurosurgeons. J Neurosurg 2022; 137:1618-1627. [PMID: 35364590 PMCID: PMC10972535 DOI: 10.3171/2022.1.jns211970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The importance of extent of resection (EOR) in glioblastoma (GBM) has been thoroughly demonstrated. However, few studies have explored the practices and benefits of early repeat resection (ERR) when residual tumor deemed resectable is unintentionally left after an initial resection, and the survival benefit of ERR is still unknown. Herein, the authors aimed to internationally survey current practices regarding ERR and to analyze differences based on geographic location and practice setting. METHODS The authors distributed a survey to the American Association of Neurological Surgeons and Congress of Neurological Surgeons Tumor Section, Society of British Neurological Surgeons, European Association of Neurosurgical Society, and Latin American Federation of Neurosurgical Societies. Neurosurgeons responded to questions about their training, practice setting, and current ERR practices. They also reported the EOR threshold below which they would pursue ERR and their likelihood of performing ERR using a Likert scale of 1-5 (5 being the most likely) in two sets of 5 cases, the first set for a patient's initial hospitalization and the second for a referred patient who had undergone resection elsewhere. The resection likelihood index for each respondent was calculated as the mean Likert score across all cases. RESULTS Overall, 180 neurosurgeons from 25 countries responded to the survey. Neurosurgeons performed ERRs very rarely in their practices (< 1% of all GBM cases), with an EOR threshold of 80.2% (75%-95%). When presented with 10 cases, the case context (initial hospitalization vs referred patient) did not significantly change the surgeon ERR likelihood, although ERR likelihood did vary significantly on the basis of tumor location (p < 0.0001). Latin American neurosurgeons were more likely to pursue ERR in the provided cases. Neurosurgeons were more likely to pursue ERR when the tumor was MGMT methylated versus unmethylated, with a resection likelihood index of 3.78 and 3.21, respectively (p = 0.004); however, there was no significant difference between IDH mutant and IDH wild-type tumors. CONCLUSIONS Results of this survey reveal current practices regarding ERR, but they also demonstrate the variability in how neurosurgeons approach ERR. Standardized guidelines based on future studies incorporating tumor molecular characteristics are needed to guide neurosurgeons in their decision-making on this complicated issue.
Collapse
Affiliation(s)
- Anya A. Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas
| | - Adham M. Khalafallah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Barbara Nettel-Rueda
- Department of Neurosurgery, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute, México City, México
| | - George Samandouras
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Constantinos G. Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas
- Memorial Hermann Hospital-Texas Medical Center, Houston, Texas
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Texas
| |
Collapse
|
46
|
What surgical approach for left-sided eloquent glioblastoma: biopsy, resection under general anesthesia or awake craniotomy? J Neurooncol 2022; 160:445-454. [DOI: 10.1007/s11060-022-04163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
47
|
Muir M, Gadot R, Prinsloo S, Michener H, Traylor J, Athukuri P, Tummala S, Kumar VA, Prabhu SS. Comparative study of preoperative functional imaging combined with tractography for prediction of iatrogenic motor deficits. J Neurosurg 2022:1-8. [DOI: 10.3171/2022.10.jns221684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE
Robust preoperative imaging can improve the extent of resection in patients with brain tumors while minimizing postoperative neurological morbidity. Both structural and functional imaging techniques can provide helpful preoperative information. A recent study found that transcranial magnetic stimulation (TMS) tractography has significant predictive value for permanent deficits. The present study directly compares the predictive value of TMS tractography and task-based functional MRI (fMRI) tractography in the same cohort of glioma patients.
METHODS
Clinical outcome data were collected from charts of patients with motor eloquent glioma and preoperative fMRI and TMS studies. The primary outcome was a new or worsened motor deficit present at the 3-month postoperative follow-up, which was termed a "permanent deficit." Postoperative MR images were overlaid onto preoperative plans to determine which imaging features were resected. Multiple fractional anisotropic thresholds (FATs) were screened for both TMS and fMRI tractography. The predictive value of the various thresholds was modeled using receiver operating characteristic curve analysis.
RESULTS
Forty patients were included in this study. Six patients (15%) sustained permanent postoperative motor deficits. A significantly greater predictive value was found for TMS tractography than for fMRI tractography regardless of the FAT. Despite 35% of patients showing clinically relevant neuroplasticity captured by TMS, only 2.5% of patients showed a blood oxygen level–dependent signal displaced from the precentral gyrus. Comparing the best-performing FAT for both modalities, TMS seeded tractography showed superior predictive value across all metrics: sensitivity, specificity, positive predictive value, and negative predictive value.
CONCLUSIONS
The results from this study indicate that the prediction of permanent deficits with TMS tractography is superior to that with fMRI tractography, possibly because TMS tractography captures clinically relevant neuroplasticity. However, future large-scale prospective studies are needed to fully illuminate the proper role of each modality in comprehensive presurgical workups for patients with motor-eloquent tumors.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Sudhakar Tummala
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston; and
| | | | | |
Collapse
|
48
|
Suarez-Meade P, Marenco-Hillembrand L, Sabsevitz D, Okromelidze L, Blake Perdikis B, Sherman WJ, Quinones-Hinojosa A, Middlebrooks EH, Chaichana KL. Surgical Resection of Gliomas in the Dominant Inferior Frontal Gyrus: Consecutive Case Series and Anatomy Review of Broca’s Area. Clin Neurol Neurosurg 2022; 223:107512. [DOI: 10.1016/j.clineuro.2022.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
|
49
|
Li G, Rodrigues A, Kim L, Garcia C, Jain S, Zhang M, Hayden-Gephart M. 5-Aminolevulinic Acid Imaging of Malignant Glioma. Surg Oncol Clin N Am 2022; 31:581-593. [DOI: 10.1016/j.soc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Karschnia P, Young JS, Dono A, Häni L, Sciortino T, Bruno F, Juenger ST, Teske N, Morshed RA, Haddad AF, Zhang Y, Stoecklein S, Weller M, Vogelbaum MA, Beck J, Tandon N, Hervey-Jumper S, Molinaro AM, Rudà R, Bello L, Schnell O, Esquenazi Y, Ruge MI, Grau SJ, Berger MS, Chang SM, van den Bent M, Tonn JC. Prognostic validation of a new classification system for extent of resection in glioblastoma: a report of the RANO resect group. Neuro Oncol 2022; 25:940-954. [PMID: 35961053 PMCID: PMC10158281 DOI: 10.1093/neuonc/noac193] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Terminology to describe extent of resection in glioblastoma is inconsistent across clinical trials. A surgical classification system was previously proposed based upon residual contrast-enhancing (CE) tumor. We aimed to (I) explore the prognostic utility of the classification system and (II) define how much removed non-CE tumor translates into a survival benefit. METHODS The international RANO resect group retrospectively searched previously compiled databases from seven neuro-oncological centers in the USA and Europe for patients with newly diagnosed glioblastoma per WHO 2021 classification. Clinical and volumetric information from pre- and post-operative MRI were collected. RESULTS We collected 1008 patients with newly diagnosed IDHwt glioblastoma. 744 IDHwt glioblastomas were treated with radiochemotherapy per EORTC 26981/22981 (TMZ/RT→TMZ) following surgery. Among these homogenously treated patients, lower absolute residual tumor volumes (in cm 3) were favorably associated with outcome: patients with 'maximal CE resection' (class 2) had superior outcome compared to patients with 'submaximal CE resection' (class 3) or 'biopsy' (class 4). Extensive resection of non-CE tumor (≤5 cm 3 residual non-CE tumor) was associated with better survival among patients with complete CE resection, thus defining class 1 ('supramaximal CE resection'). The prognostic value of the resection classes was retained on multivariate analysis when adjusting for molecular and clinical markers. CONCLUSIONS The proposed "RANO categories for extent of resection in glioblastoma" are highly prognostic and may serve for stratification within clinical trials. Removal of non-CE tumor beyond the CE tumor borders may translate into additional survival benefit, providing a rationale to explicitly denominate such 'supramaximal CE resection'.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jacob S Young
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Antonio Dono
- Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, United States of America
| | - Levin Häni
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Tommaso Sciortino
- Division for Neuro-Oncology, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Italy
| | | | - Nico Teske
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Ramin A Morshed
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Alexander F Haddad
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Yalan Zhang
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael A Vogelbaum
- Department of NeuroOncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Juergen Beck
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Nitin Tandon
- Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, United States of America
| | - Shawn Hervey-Jumper
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Italy.,Division of Neurology, Castelfranco Veneto and Treviso Hospital, Italy
| | - Lorenzo Bello
- Division for Neuro-Oncology, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Oliver Schnell
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Yoshua Esquenazi
- Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, United States of America
| | - Maximilian I Ruge
- Department Stereotactic and Functional Neurosurgery, Centre for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Stefan J Grau
- Department of Neurosurgery, University of Cologne, Cologne, Germany.,Klinikum Fulda, Academic Hospital of Marburg University, Fulda, Germany
| | - Mitchel S Berger
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurosurgery & Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Germany
| |
Collapse
|