1
|
Bessho T, Hayashi T, Shibukawa S, Kourin K, Shouda T. Clinical application of single-shot fast spin-echo sequence for cerebrospinal fluid flow MR imaging. Radiol Phys Technol 2024; 17:782-792. [PMID: 39028437 DOI: 10.1007/s12194-024-00825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
In normal-pressure hydrocephalus, disturbances in cerebrospinal fluid (CSF) circulation occur; therefore, understanding CSF dynamics is crucial. The two-dimensional phase-contrast (2D-PC) method, a common approach for visualizing CSF flow on MRI, often presents challenges owing to prominent vein signals and excessively high contrast, hindering the interpretation of morphological information. Therefore, we devised a new imaging method that utilizes T2-weighted high-signal intensification of the CSF and saturation pulses, without requiring specialized imaging sequences. This sequence utilized a T2-weighted single-shot fast spin-echo combined with multi-phase imaging synchronized with a pulse wave. Optimal imaging conditions (repetition time, presence/absence of fast recovery, and echo time) were determined using self-made contrast and single-plate phantoms to evaluate signal-to-noise ratio, contrast ratio, and spatial resolution. In certain clinical cases of hydrocephalus, confirming CSF flow using 2D-PC was challenging. However, our method enabled the visualization of CSF flow, proving to be useful in understanding the pathophysiology of hydrocephalus.
Collapse
Affiliation(s)
- Takahito Bessho
- Diagnostic Imaging Room, Houju Memorial Hospital, 11-71 Midorigaoka, Nomi, Ishikawa, 923-1226, Japan.
- Central Radiation Department, Kanazawa Medical University Hospital, 1-1 Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
| | - Tatsuya Hayashi
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Shuhei Shibukawa
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Kazuyuki Kourin
- Diagnostic Imaging Room, Houju Memorial Hospital, 11-71 Midorigaoka, Nomi, Ishikawa, 923-1226, Japan
| | - Takashi Shouda
- Diagnostic Imaging Room, Houju Memorial Hospital, 11-71 Midorigaoka, Nomi, Ishikawa, 923-1226, Japan
| |
Collapse
|
2
|
Wright AM, Wu YC, Feng L, Wen Q. Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements. NMR IN BIOMEDICINE 2024; 37:e5162. [PMID: 38715420 PMCID: PMC11303114 DOI: 10.1002/nbm.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 05/22/2024]
Abstract
Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.
Collapse
Affiliation(s)
- Adam M. Wright
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University
School of Medicine, Indianapolis, Indiana, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research
(CAI2R), New York University Grossman School of Medicine, New York, New York,
USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Vikner T, Johnson KM, Cadman RV, Betthauser TJ, Wilson RE, Chin N, Eisenmenger LB, Johnson SC, Rivera-Rivera LA. CSF dynamics throughout the ventricular system using 4D flow MRI: associations to arterial pulsatility, ventricular volumes, and age. Fluids Barriers CNS 2024; 21:68. [PMID: 39215377 PMCID: PMC11363656 DOI: 10.1186/s12987-024-00570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) dynamics are increasingly studied in aging and neurological disorders. Models of CSF-mediated waste clearance suggest that altered CSF dynamics could play a role in the accumulation of toxic waste in the CNS, with implications for Alzheimer's disease and other proteinopathies. Therefore, approaches that enable quantitative and volumetric assessment of CSF flow velocities could be of value. In this study we demonstrate the feasibility of 4D flow MRI for simultaneous assessment of CSF dynamics throughout the ventricular system, and evaluate associations to arterial pulsatility, ventricular volumes, and age. METHODS In a cognitively unimpaired cohort (N = 43; age 41-83 years), cardiac-resolved 4D flow MRI CSF velocities were obtained in the lateral ventricles (LV), foramens of Monro, third and fourth ventricles (V3 and V4), the cerebral aqueduct (CA) and the spinal canal (SC), using a velocity encoding (venc) of 5 cm/s. Cerebral blood flow pulsatility was also assessed with 4D flow (venc = 80 cm/s), and CSF volumes were obtained from T1- and T2-weighted MRI. Multiple linear regression was used to assess effects of age, ventricular volumes, and arterial pulsatility on CSF velocities. RESULTS Cardiac-driven CSF dynamics were observed in all CSF spaces, with region-averaged velocity range and root-mean-square (RMS) velocity encompassing from very low in the LVs (RMS 0.25 ± 0.08; range 0.85 ± 0.28 mm/s) to relatively high in the CA (RMS 6.29 ± 2.87; range 18.6 ± 15.2 mm/s). In the regression models, CSF velocity was significantly related to age in 5/6 regions, to CSF space volume in 2/3 regions, and to arterial pulsatility in 3/6 regions. Group-averaged waveforms indicated distinct CSF flow propagation delays throughout CSF spaces, particularly between the SC and LVs. CONCLUSIONS Our findings show that 4D flow MRI enables assessment of CSF dynamics throughout the ventricular system, and captures independent effects of age, CSF space morphology, and arterial pulsatility on CSF motion.
Collapse
Affiliation(s)
- Tomas Vikner
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Diagnostics and Intervention, Umeå University, Umeå, S-90187, Sweden
| | - Kevin M Johnson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Robert V Cadman
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Rachael E Wilson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Laura B Eisenmenger
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Leonardo A Rivera-Rivera
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
| |
Collapse
|
4
|
Terem I, Younes K, Wang N, Condron P, Abderezaei J, Kumar H, Vossler H, Kwon E, Kurt M, Mormino E, Holdsworth S, Setsompop K. 3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI). Bioengineering (Basel) 2024; 11:851. [PMID: 39199808 PMCID: PMC11352018 DOI: 10.3390/bioengineering11080851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Amplified MRI (aMRI) is a promising new technique that can visualize pulsatile brain tissue motion by amplifying sub-voxel motion in cine MRI data, but it lacks the ability to quantify the sub-voxel motion field in physical units. Here, we introduce a novel post-processing algorithm called 3D quantitative amplified MRI (3D q-aMRI). This algorithm enables the visualization and quantification of pulsatile brain motion. 3D q-aMRI was validated and optimized on a 3D digital phantom and was applied in vivo on healthy volunteers for its ability to accurately measure brain parenchyma and CSF voxel displacement. Simulation results show that 3D q-aMRI can accurately quantify sub-voxel motions in the order of 0.01 of a voxel size. The algorithm hyperparameters were optimized and tested on in vivo data. The repeatability and reproducibility of 3D q-aMRI were shown on six healthy volunteers. The voxel displacement field extracted by 3D q-aMRI is highly correlated with the displacement measurements estimated by phase contrast (PC) MRI. In addition, the voxel displacement profile through the cerebral aqueduct resembled the CSF flow profile reported in previous literature. Differences in brain motion was observed in patients with dementia compared with age-matched healthy controls. In summary, 3D q-aMRI is a promising new technique that can both visualize and quantify pulsatile brain motion. Its ability to accurately quantify sub-voxel motion in physical units holds potential for the assessment of pulsatile brain motion as well as the indirect assessment of CSF homeostasis. While further research is warranted, 3D q-aMRI may provide important diagnostic information for neurological disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Itamar Terem
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kyan Younes
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (K.Y.); (H.V.); (E.M.)
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| | - Paul Condron
- Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; (P.C.); (E.K.); (S.H.)
| | - Javid Abderezaei
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.A.); (M.K.)
| | - Haribalan Kumar
- General Electric Healthcare, Tairāwhiti-Gisborne 4010, New Zealand;
| | - Hillary Vossler
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (K.Y.); (H.V.); (E.M.)
| | - Eryn Kwon
- Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; (P.C.); (E.K.); (S.H.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging—Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Mehmet Kurt
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.A.); (M.K.)
| | - Elizabeth Mormino
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (K.Y.); (H.V.); (E.M.)
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; (P.C.); (E.K.); (S.H.)
- Department of Anatomy and Medical Imaging—Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
5
|
Boyd ED, Kaur J, Ding G, Chopp M, Jiang Q. Clinical magnetic resonance imaging evaluation of glymphatic function. NMR IN BIOMEDICINE 2024; 37:e5132. [PMID: 38465514 DOI: 10.1002/nbm.5132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
The glymphatic system is a system of specialized perivascular spaces in the brain that facilitates removal of toxic waste solutes from the brain. Evaluation of glymphatic system function by means of magnetic resonance imaging (MRI) has thus far been largely focused on rodents because of the limitations of intrathecal delivery of gadolinium-based contrast agents to humans. This review discusses MRI methods that can be employed clinically for glymphatic-related measurements intended for early diagnosis, prevention, and the treatment of various neurological conditions. Although glymphatic system-based MRI research is in its early stages, recent studies have identified promising noninvasive MRI markers associated with glymphatic system alterations in neurological diseases. However, further optimization in data acquisition, validation, and modeling are needed to investigate the glymphatic system within the clinical setting.
Collapse
Affiliation(s)
- Edward D Boyd
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
6
|
Jaafar N, Alsop DC. Arterial Spin Labeling: Key Concepts and Progress Towards Use as a Clinical Tool. Magn Reson Med Sci 2024; 23:352-366. [PMID: 38880616 PMCID: PMC11234948 DOI: 10.2463/mrms.rev.2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Arterial spin labeling (ASL), a non-invasive MRI technique, has emerged as a valuable tool for researchers that can measure blood flow and related parameters. This review aims to provide a qualitative overview of the technical principles and recent developments in ASL and to highlight its potential clinical applications. A growing literature demonstrates impressive ASL sensitivity to a range of neuropathologies and treatment responses. Despite its potential, challenges persist in the translation of ASL to widespread clinical use, including the lack of standardization and the limited availability of comprehensive training. As experience with ASL continues to grow, the final stage of translation will require moving beyond single site observational studies to multi-site experience and measurement of the added contribution of ASL to patient care and outcomes.
Collapse
Affiliation(s)
- Narjes Jaafar
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Rivera-Rivera LA, Vikner T, Eisenmenger L, Johnson SC, Johnson KM. Four-dimensional flow MRI for quantitative assessment of cerebrospinal fluid dynamics: Status and opportunities. NMR IN BIOMEDICINE 2024; 37:e5082. [PMID: 38124351 PMCID: PMC11162953 DOI: 10.1002/nbm.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Neurological disorders can manifest with altered neurofluid dynamics in different compartments of the central nervous system. These include alterations in cerebral blood flow, cerebrospinal fluid (CSF) flow, and tissue biomechanics. Noninvasive quantitative assessment of neurofluid flow and tissue motion is feasible with phase contrast magnetic resonance imaging (PC MRI). While two-dimensional (2D) PC MRI is routinely utilized in research and clinical settings to assess flow dynamics through a single imaging slice, comprehensive neurofluid dynamic assessment can be limited or impractical. Recently, four-dimensional (4D) flow MRI (or time-resolved three-dimensional PC with three-directional velocity encoding) has emerged as a powerful extension of 2D PC, allowing for large volumetric coverage of fluid velocities at high spatiotemporal resolution within clinically reasonable scan times. Yet, most 4D flow studies have focused on blood flow imaging. Characterizing CSF flow dynamics with 4D flow (i.e., 4D CSF flow) is of high interest to understand normal brain and spine physiology, but also to study neurological disorders such as dysfunctional brain metabolite waste clearance, where CSF dynamics appear to play an important role. However, 4D CSF flow imaging is challenged by the long T1 time of CSF and slower velocities compared with blood flow, which can result in longer scan times from low flip angles and extended motion-sensitive gradients, hindering clinical adoption. In this work, we review the state of 4D CSF flow MRI including challenges, novel solutions from current research and ongoing needs, examples of clinical and research applications, and discuss an outlook on the future of 4D CSF flow.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tomas Vikner
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiation Sciences, Radiation Physics and Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
8
|
Gallina P, Porfirio B, Caini S, Lolli F, Scollato A. Aqueductal CSF stroke volume is associated with the burden of perivascular space enlargement in chronic adult hydrocephalus. Sci Rep 2024; 14:12966. [PMID: 38839864 PMCID: PMC11153584 DOI: 10.1038/s41598-024-63926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
The inflow of CSF into perivascular spaces (PVS) in the brain is crucial for clearing waste molecules. Inefficiency in PVS flow leads to neurodegeneration. Failure of PVS flushing is associated with CSF flow impairment in the intracranial hydrodynamic condition of CSF hypo-pulsatility. However, enlarged PVS (ePVS), a finding indicative of PVS flow dysfunction, is also present in patients with derangement of CSF dynamics characterized by CSF hyper-pulsatility, which increases CSF flow. Intriguingly, two opposite intracranial hydrodynamic conditions would lead to the same result of impairing the PVS flushing. To investigate this issue, we assessed the subsistence of a dysfunctional interplay between CSF and PVS flows and, if the case, the mechanisms preventing a hyper-pulsatile brain from providing an effective PVS flushing. We analyzed the association between phase contrast MRI aqueductal CSF stroke volume (aqSV), a proxy of CSF pulsatility, and the burden of ePVS in chronic adult hydrocephalus, a disease involving a broad spectrum of intracranial hydrodynamics disturbances. In the 147 (85 males, 62 females) patients, the age at diagnosis ranged between 28 and 88 years (median 73 years). Ninety-seven patients had tri-ventriculomegaly and 50 tetra-ventriculomegaly. According to the extent of ePVS, 113 patients had a high ePVS burden, while 34 had a low ePVS burden. aqSV, which ranged between 0 and 562 μL (median 86 μL), was increased with respect to healthy subjects. Patients presenting with less ePVS burden had higher aqSV (p < 0.002, corrected for the multiple comparisons) than those with higher ePVS burden. The present study confirmed the association between CSF dynamics and PVS flow disturbances and demonstrated this association in intracranial hyper-pulsatility. Further studies should investigate the association between PVS flow failure and CSF hypo- and hyper-pulsatility as responsible/co-responsible for glymphatic failure in other neurodegenerative diseases, particularly in diseases in which CSF disturbances can be corrected, as in chronic adult hydrocephalus.
Collapse
Affiliation(s)
- Pasquale Gallina
- Neurosurgery Unit, CTO Hospital, Careggi University Hospital, Largo P Palagi 1, 50139, Florence, Italy.
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| | - Berardino Porfirio
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention, and Clinical Network, Florence, Italy
| | - Francesco Lolli
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Neurophysiology Unit, Careggi University Hospital, Florence, Italy
| | - Antonio Scollato
- Neurosurgery Unit, "Cardinale Panico" Hospital, Tricase, Lecce, Italy
| |
Collapse
|
9
|
Sahoo P, Kollmeier JM, Wenkel N, Badura S, Gärtner J, Frahm J, Dreha-Kulaczewski S. CSF and venous blood flow from childhood to adulthood studied by real-time phase-contrast MRI. Childs Nerv Syst 2024; 40:1377-1388. [PMID: 38206441 PMCID: PMC11026278 DOI: 10.1007/s00381-024-06275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE In vivo measurements of CSF and venous flow using real-time phase-contrast (RT-PC) MRI facilitate new insights into the dynamics and physiology of both fluid systems. In clinical practice, however, use of RT-PC MRI is still limited. Because many forms of hydrocephalus manifest in infancy and childhood, it is a prerequisite to investigate normal flow parameters during this period to assess pathologies of CSF circulation. This study aims to establish reference values of CSF and venous flow in healthy subjects using RT-PC MRI and to determine their age dependency. METHODS RT-PC MRI was performed in 44 healthy volunteers (20 females, age 5-40 years). CSF flow was quantified at the aqueduct (Aqd), cervical (C3) and lumbar (L3) spinal levels. Venous flow measurements comprised epidural veins, internal jugular veins and inferior vena cava. Parameters analyzed were peak velocity, net flow, pulsatility, and area of region of interest (ROI). STATISTICAL TESTS linear regression, student's t-test and analysis of variance (ANOVA). RESULTS In adults volunteers, no significant changes in flow parameters were observed. In contrast, pediatric subjects exhibited a significant age-dependent decrease of CSF net flow and pulsatility in Aqd, C3 and L3. Several venous flow parameters decreased significantly over age at C3 and changed more variably at L3. CONCLUSION Flow parameters varies depending on anatomical location and age. We established changes of brain and spinal fluid dynamics over an age range from 5-40 years. The application of RT-PC MRI in clinical care may improve our understanding of CSF flow pathology in individual patients.
Collapse
Affiliation(s)
- Prativa Sahoo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany.
| | - Jost M Kollmeier
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nora Wenkel
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany
| | - Simon Badura
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany
| | - Jens Frahm
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany.
| |
Collapse
|
10
|
Rich J, Hubler S, Vidondo B, Raillard M, Schweizer D. Influence of body weight, age, and sex on cerebrospinal fluid peak flow velocity in dogs without neurological disorders. J Vet Intern Med 2024; 38:1608-1617. [PMID: 38664973 PMCID: PMC11099718 DOI: 10.1111/jvim.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Changes in the brain can affect the flow velocity of cerebrospinal fluid (CSF). In humans, the flow velocity of CSF is not only altered by disease but also by age and sex. Such influences are not known in dogs. HYPOTHESIS Peak flow velocity of CSF in dogs is associated with body weight, age, and sex. ANIMALS Peak flow velocity of CSF was measured in 32 client-owned dogs of different breeds, age, and sex. METHODS Peak flow velocity of CSF was determined by phase-contrast magnetic resonance imaging (PC-MRI) at the mesencephalic aqueduct, foramen magnum (FM), and second cervical vertebral body (C2). Dogs were grouped according to body weight, age, and sex. Flow velocity of CSF was compared between groups using linear regression models. RESULTS Dogs with body weight >20 kg had higher CSF peak velocity compared with dogs <10 kg within the ventral and dorsal subarachnoid space (SAS) at the FM (P = .02 and P = .01, respectively), as well as in the ventral and dorsal SAS at C2 (P = .005 and P = .005, respectively). Dogs ≤2 years of age had significantly higher CSF peak flow velocity at the ventral SAS of the FM (P = .05). Females had significantly lower CSF peak flow velocity within the ventral SAS of FM (P = .04). CONCLUSION Body weight, age, and sex influence CSF peak flow velocity in dogs. These factors need to be considered in dogs when CSF flow is quantitatively assessed.
Collapse
Affiliation(s)
- Johannes Rich
- Division of Clinical Radiology, Departement of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Sarah Hubler
- Division of Clinical Radiology, Departement of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Beatriz Vidondo
- Veterinary Public Health InstituteUniversity of BernLiebefeldSwitzerland
| | - Mathieu Raillard
- Division of Anesthesiology and Pain Management, Departement of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Daniela Schweizer
- Division of Clinical Radiology, Departement of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
11
|
Manjila S, Alsalama AA, Medani K, Patel S, Prabhune A, Ramachandran SN, Mani S. Is foramen magnum decompression for acquired Chiari I malformation like putting a finger in the dyke? - A simplistic overview of artificial intelligence in assessing critical upstream and downstream etiologies. JOURNAL OF CRANIOVERTEBRAL JUNCTION AND SPINE 2024; 15:153-165. [PMID: 38957754 PMCID: PMC11216646 DOI: 10.4103/jcvjs.jcvjs_160_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/09/2024] [Indexed: 07/04/2024] Open
Abstract
Background Missed diagnosis of evolving or coexisting idiopathic (IIH) and spontaneous intracranial hypotension (SIH) is often the reason for persistent or worsening symptoms after foramen magnum decompression for Chiari malformation (CM) I. We explore the role of artificial intelligence (AI)/convolutional neural networks (CNN) in Chiari I malformation in a combinatorial role for the first time in literature, exploring both upstream and downstream magnetic resonance findings as initial screening profilers in CM-1. We have also put together a review of all existing subtypes of CM and discuss the role of upright (gravity-aided) magnetic resonance imaging (MRI) in evaluating equivocal tonsillar descent on a lying-down MRI. We have formulated a workflow algorithm MaChiP 1.0 (Manjila Chiari Protocol 1.0) using upstream and downstream profilers, that cause de novo or worsening Chiari I malformation, which we plan to implement using AI. Materials and Methods The PRISMA guidelines were used for "CM and machine learning and CNN" on PubMed database articles, and four articles specific to the topic were encountered. The radiologic criteria for IIH and SIH were applied from neurosurgical literature, and they were applied between primary and secondary (acquired) Chiari I malformations. An upstream etiology such as IIH or SIH and an isolated downstream etiology in the spine were characterized using the existing body of literature. We propose the utility of using four selected criteria for IIH and SIH each, over MRI T2 images of the brain and spine, predominantly sagittal sequences in upstream etiology in the brain and multiplanar MRI in spinal lesions. Results Using MaChiP 1.0 (patent/ copyright pending) concepts, we have proposed the upstream and downstream profilers implicated in progressive Chiari I malformation. The upstream profilers included findings of brain sagging, slope of the third ventricular floor, pontomesencephalic angle, mamillopontine distance, lateral ventricular angle, internal cerebral vein-vein of Galen angle, and displacement of iter, clivus length, tonsillar descent, etc., suggestive of SIH. The IIH features noted in upstream pathologies were posterior flattening of globe of the eye, partial empty sella, optic nerve sheath distortion, and optic nerve tortuosity in MRI. The downstream etiologies involved spinal cerebrospinal fluid (CSF) leak from dural tear, meningeal diverticula, CSF-venous fistulae, etc. Conclusion AI would help offer predictive analysis along the spectrum of upstream and downstream etiologies, ensuring safety and efficacy in treating secondary (acquired) Chiari I malformation, especially with coexisting IIH and SIH. The MaChiP 1.0 algorithm can help document worsening of a previously diagnosed CM-1 and find the exact etiology of a secondary CM-I. However, the role of posterior fossa morphometry and cine-flow MRI data for intracranial CSF flow dynamics, along with advanced spinal CSF studies using dynamic myelo-CT scanning in the formation of secondary CM-I is still being evaluated.
Collapse
Affiliation(s)
- Sunil Manjila
- Department of Neurosurgery, Insight Institute of Neurosurgery and Neuroscience, Flint, MI, USA
| | | | - Khalid Medani
- Department of Occupational Medicine, Kaiser Permanente, Los Angeles, CA
| | - Shlok Patel
- Department of Orthopedic Surgery, BJ Medical College, Ahmedabad, Gujarat, India
| | - Anagha Prabhune
- Department of Neurosurgery, Sahyadri Medical Center, Pune, Maharashtra, India
| | | | - Sudhan Mani
- Department of Neurosurgery, Insight Institute of Neurosurgery and Neuroscience, Flint, MI, USA
| |
Collapse
|
12
|
Ha JH, Borzage MT, Vanstrum EB, Doyle EK, Upreti M, Tamrazi B, Nelson M, Blüml S, Johal MS, McComb JG, Chu J, Durham S, Krieger MD, Moats RA, Chiarelli PA. Quantitative noninvasive measurement of cerebrospinal fluid flow in shunted hydrocephalus. J Neurosurg 2024; 140:1117-1128. [PMID: 38564811 PMCID: PMC11409908 DOI: 10.3171/2023.7.jns231326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Standard MRI protocols lack a quantitative sequence that can be used to evaluate shunt-treated patients with a history of hydrocephalus. The objective of this study was to investigate the use of phase-contrast MRI (PC-MRI), a quantitative MR sequence, to measure CSF flow through the shunt and demonstrate PC-MRI as a useful adjunct in the clinical monitoring of shunt-treated patients. METHODS The rapid (96 seconds) PC-MRI sequence was calibrated using a flow phantom with known flow rates ranging from 0 to 24 mL/hr. Following phantom calibration, 21 patients were scanned with the PC-MRI sequence. Multiple, successive proximal and distal measurements were gathered in 5 patients to test for measurement error in different portions of the shunt system and to determine intrapatient CSF flow variability. The study also includes the first in vivo validations of PC-MRI for CSF shunt flow by comparing phase-contrast-measured flow rate with CSF accumulation in a collection burette obtained in patients with externalized distal shunts. RESULTS The PC-MRI sequence successfully measured CSF flow rates ranging from 6 to 54 mL/hr in 21 consecutive pediatric patients. Comparison of PC-MRI flow measurement and CSF volume collected in a bedside burette showed good agreement in a patient with an externalized distal shunt. Notably, the distal portion of the shunt demonstrated lower measurement error when compared with PC-MRI measurements acquired in the proximal catheter. CONCLUSIONS The PC-MRI sequence provided accurate and reliable clinical measurements of CSF flow in shunt-treated patients. This work provides the necessary framework to include PC-MRI as an immediate addition to the clinical setting in the noninvasive evaluation of shunt function and in future clinical investigations of CSF physiology.
Collapse
Affiliation(s)
- Joseph H Ha
- 1Division of Neurosurgery, Children's Hospital Los Angeles
| | - Matthew T Borzage
- 2Department of Pediatrics, Division of Neonatology, Fetal and Neonatal Institute, Children's Hospital Los Angeles
| | - Erik B Vanstrum
- 3Department of Head and Neck Surgery, David Geffen School of Medicine at the University of California, Los Angeles
| | - Eamon K Doyle
- 4Department of Radiology, Children's Hospital Los Angeles
| | | | - Benita Tamrazi
- 4Department of Radiology, Children's Hospital Los Angeles
| | - Marvin Nelson
- 4Department of Radiology, Children's Hospital Los Angeles
| | - Stefan Blüml
- 4Department of Radiology, Children's Hospital Los Angeles
| | | | - J Gordon McComb
- 1Division of Neurosurgery, Children's Hospital Los Angeles
- 7Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Jason Chu
- 1Division of Neurosurgery, Children's Hospital Los Angeles
- 7Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Susan Durham
- 1Division of Neurosurgery, Children's Hospital Los Angeles
- 7Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Mark D Krieger
- 1Division of Neurosurgery, Children's Hospital Los Angeles
- 7Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Rex A Moats
- 6The Saban Research Institute, Children's Hospital Los Angeles; and
| | - Peter A Chiarelli
- 1Division of Neurosurgery, Children's Hospital Los Angeles
- 7Keck School of Medicine of University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Saini J, Awasthi S. CSF Flow Dynamics-Is There a Need for Normative Imaging Data? Indian J Radiol Imaging 2024; 34:199. [PMID: 38549909 PMCID: PMC10972647 DOI: 10.1055/s-0044-1781468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Affiliation(s)
- Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute for Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Shikha Awasthi
- Department of Neuroimaging and Interventional Radiology, National Institute for Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Zhu B, Hendricks J, Morton JE, Rasmussen JC, Janssen C, Shah MN, Sevick-Muraca EM. Near-Infrared Fluorescence Tomography and Imaging of Ventricular Cerebrospinal Fluid Flow and Extracranial Outflow in Non-Human Primates. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3555-3565. [PMID: 37440390 PMCID: PMC10764096 DOI: 10.1109/tmi.2023.3295247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The role of the lymphatics in the clearance of cerebrospinal fluid (CSF) from the brain has been implicated in multiple neurodegenerative conditions. In premature infants, intraventricular hemorrhage causes increased CSF production and, if clearance is impeded, hydrocephalus and severe developmental disabilities can result. In this work, we developed and deployed near-infrared fluorescence (NIRF) tomography and imaging to assess CSF ventricular dynamics and extracranial outflow in similarly sized, intact non-human primates (NHP) following microdose of indocyanine green (ICG) administered to the right lateral ventricle. Fluorescence optical tomography measurements were made by delivering ~10 mW of 785 nm light to the scalp by sequential illumination of 8 fiber optics and imaging the 830 nm emission light collected from 22 fibers using a gallium arsenide intensified, charge coupled device. Acquisition times were 16 seconds. Image reconstruction used the diffusion approximation and hard-priors obtained from MRI to enable dynamic mapping of ICG-laden CSF ventricular dynamics and drainage into the subarachnoid space (SAS) of NHPs. Subsequent, planar NIRF imaging of the scalp confirmed extracranial efflux into SAS and abdominal imaging showed ICG clearance through the hepatobiliary system. Necropsy confirmed imaging results and showed that deep cervical lymph nodes were the routes of extracranial CSF egress. The results confirm the ability to use trace doses of ICG to monitor ventricular CSF dynamics and extracranial outflow in NHP. The techniques may also be feasible for similarly-sized infants and children who may suffer impairment of CSF outflow due to intraventricular hemorrhage.
Collapse
Affiliation(s)
- Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, and Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan Hendricks
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Janelle E. Morton
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - John C. Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - Christopher Janssen
- Center for Laboratory Animal Medicine and Care, The University of Texas Health Science Center, Houston, Texas 77030
| | - Manish N. Shah
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Eva Marie Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, and Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
15
|
Kawahara T, Arita K, Fujio S, Higa N, Hata H, Moinuddin FM, Hanaya R. Patients of idiopathic normal-pressure hydrocephalus have small dural sac in cervical and upper thoracic levels: A supposed causal association. Surg Neurol Int 2023; 14:391. [PMID: 38053711 PMCID: PMC10695472 DOI: 10.25259/sni_474_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder presenting a triad including dementia and ventricular enlargement. The mechanism causing excessive cerebrospinal fluid (CSF) accumulation in the ventricles in iNPH is poorly understood. We hypothesized that the age-related degradation of the spinal shock-absorbing system composed of a spinal dural sac (SDS) and surrounding soft tissue, preventing ventricular enlargement caused by wide CSF pulsation driven by heartbeats, may be involved in the ventricular enlargement observed in iNPH. Methods Sixty-four patients with iNPH in their seventies who underwent a lumboperitoneal shunt and a control group of 79 people in the same age group who underwent brain check-ups were included in the study. We compared the sizes of the cervical and upper parts of the thoracic SDS using magnetic resonance imaging between the two groups. Results The anterior-posterior distances of the dural sac at C5 were shorter in patients with iNPH of both sexes than those in the control group (P = 0.0008 in men and P = 0.0047 in women). The number of disc levels with disappeared CSF space surrounding the cervical cord was more in iNPH (P = 0.0176 and P = 0.0003). The midsagittal area of the upper part of the spinal sac, C2-Th4, was smaller in iNPH (P = 0.0057 and P = 0.0290). Conclusion Narrowing of the cervical dural sac and midsagittal area in the upper part of the SDS in patients with iNPH may reflect the degradation of the shock-absorbing mechanism for CSF pressure pulsations, which may cause iNPH or at least aggravate iNPH by other unknown causes.
Collapse
Affiliation(s)
- Takashi Kawahara
- Department of Neurosurgery, Atsuchi Neurosurgical Hospital, Kagoshima, Japan
| | - Kazunori Arita
- Department of Neurosurgery, Kagoshima University, Kagoshima, Japan
| | - Shingo Fujio
- Department of Neurosurgery, Kagoshima University, Kagoshima, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University, Kagoshima, Japan
| | - Hiroki Hata
- Department of Science, Kagoshima University, Kagoshima, Japan
| | - FM Moinuddin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, United States
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
16
|
Hett K, Eisma JJ, Hernandez AB, McKnight CD, Song A, Elenberger J, Considine C, Donahue MJ, Claassen DO. Cerebrospinal Fluid Flow in Patients with Huntington's Disease. Ann Neurol 2023; 94:885-894. [PMID: 37493342 PMCID: PMC10615133 DOI: 10.1002/ana.26749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVE Investigations of cerebrospinal fluid (CSF) flow aberrations in Huntington's disease (HD) are of growing interest, as impaired CSF flow may contribute to mutant Huntington retention and observed heterogeneous responsiveness to intrathecally administered therapies. METHOD We assessed net cerebral aqueduct CSF flow and velocity in 29 HD participants (17 premanifest and 12 manifest) and 51 age- and sex matched non-HD control participants using 3-Tesla magnetic resonance imaging methods. Regression models were applied to test hypotheses regarding: (i) net CSF flow and cohort, (ii) net CSF flow and disease severity (CAP-score), and (iii) CSF volume after correcting for age and sex. RESULTS Group-wise analyses support a decrease in net CSF flow in HD (mean 0.14 ± 0.27 mL/min) relative to control (mean 0.32 ± 0.20 mL/min) participants (p = 0.02), with lowest flow in the manifest HD cohort (mean 0.04 ± 0.25 mL/min). This finding was explained by hyperdynamic CSF movement, manifesting as higher caudal systolic CSF flow velocity and higher diastolic cranial CSF flow velocity across the cardiac cycle, in HD (caudal flow: 0.17 ± 0.07 mL/s, cranial flow: 0.14 ± 0.08 mL/s) compared to control (caudal flow: 0.13 ± 0.06 mL/s, cranial flow: 0.11 ± 0.04 mL/s) participants. A positive correlation between cranial diastolic flow and disease severity was observed (p = 0.02). INTERPRETATIONS Findings support aqueductal CSF flow dynamics changing with disease severity in HD. These accelerated changes are consistent with changes observed over the typical adult lifespan, and may have relevance to mutant Huntington retention and intrathecally administered therapeutics responsiveness. ANN NEUROL 2023;94:885-894.
Collapse
Affiliation(s)
- Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod J. Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Colin D. McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciaran Considine
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Nazeri A, Dehkharghanian T, Lindsay KE, LaMontagne P, Shimony JS, Benzinger TL, Sotiras A. The Spatial Patterns and Determinants of Cerebrospinal Fluid Circulation in the Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553149. [PMID: 37645835 PMCID: PMC10462043 DOI: 10.1101/2023.08.13.553149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The circulation of cerebrospinal fluid (CSF) is essential for maintaining brain homeostasis and clearance, and impairments in its flow can lead to various brain disorders. Recent studies have shown that CSF circulation can be interrogated using low b-value diffusion magnetic resonance imaging (low-b dMRI). Nevertheless, the spatial organization of intracranial CSF flow dynamics remains largely elusive. Here, we developed a whole-brain voxel-based analysis framework, termed CSF pseudo-diffusion spatial statistics (C Ψ SS ), to examine CSF mean pseudo-diffusivity (M Ψ ), a measure of CSF flow magnitude derived from low-b dMRI. We showed that intracranial CSF M Ψ demonstrates characteristic covariance patterns by employing seed-based correlation analysis. Importantly, we applied non-negative matrix factorization analysis to further elucidate the covariance patterns of CSF M Ψ in a hypothesis-free, data-driven way. We identified distinct CSF spaces that consistently displayed unique pseudo-diffusion characteristics across multiple imaging datasets. Our study revealed that age, sex, brain atrophy, ventricular anatomy, and cerebral perfusion differentially influence M Ψ across these CSF spaces. Notably, individuals with anomalous CSF flow patterns displayed incidental findings on multimodal neuroradiological examinations. Our work sets forth a new paradigm to study CSF flow, with potential applications in clinical settings.
Collapse
Affiliation(s)
- Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Kevin E. Lindsay
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute of Informatics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Yamada S, Hiratsuka S, Otani T, Ii S, Wada S, Oshima M, Nozaki K, Watanabe Y. Usefulness of intravoxel incoherent motion MRI for visualizing slow cerebrospinal fluid motion. Fluids Barriers CNS 2023; 20:16. [PMID: 36899412 PMCID: PMC9999497 DOI: 10.1186/s12987-023-00415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND In the cerebrospinal fluid (CSF) dynamics, the pulsations of cerebral arteries and brain is considered the main driving force for the reciprocating bidirectional CSF movements. However, measuring these complex CSF movements on conventional flow-related MRI methods is difficult. We tried to visualize and quantify the CSF motion by using intravoxel incoherent motion (IVIM) MRI with low multi-b diffusion-weighted imaging. METHODS Diffusion-weighted sequence with six b values (0, 50, 100, 250, 500, and 1000 s/mm2) was performed on 132 healthy volunteers aged ≥ 20 years and 36 patients with idiopathic normal pressure hydrocephalus (iNPH). The healthy volunteers were divided into three age groups (< 40, 40 to < 60, and ≥ 60 years). In the IVIM analysis, the bi-exponential IVIM fitting method using the Levenberg-Marquardt algorithm was adapted. The average, maximum, and minimum values of ADC, D, D*, and fraction of incoherent perfusion (f) calculated by IVIM were quantitatively measured in 45 regions of interests in the whole ventricles and subarachnoid spaces. RESULTS Compared with healthy controls aged ≥ 60 years, the iNPH group had significantly lower mean f values in all the parts of the lateral and 3rd ventricles, whereas significantly higher mean f value in the bilateral foramina of Luschka. In the bilateral Sylvian fossa, which contain the middle cerebral bifurcation, the mean f values increased gradually with increasing age, whereas those were significantly lower in the iNPH group. In the 45 regions of interests, the f values in the bilateral foramina of Luschka were the most positively correlated with the ventricular size and indices specific to iNPH, whereas that in the anterior part of the 3rd ventricle was the most negatively correlated with the ventricular size and indices specific to iNPH. Other parameters of ADC, D, and D* were not significantly different between the two groups in any locations. CONCLUSIONS The f value on IVIM MRI is useful for evaluating small pulsatile complex motion of CSF throughout the intracranial CSF spaces. Patients with iNPH had significantly lower mean f values in the whole lateral ventricles and 3rd ventricles and significantly higher mean f value in the bilateral foramina of Luschka, compared with healthy controls aged ≥ 60 years.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan. .,Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan. .,Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | | | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Satoshi Ii
- Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
19
|
Wolf K, Luetzen N, Mast H, Kremers N, Reisert M, Beltrán S, Fung C, Beck J, Urbach H. CSF Flow and Spinal Cord Motion in Patients With Spontaneous Intracranial Hypotension: A Phase Contrast MRI Study. Neurology 2023; 100:e651-e660. [PMID: 36357188 PMCID: PMC9969913 DOI: 10.1212/wnl.0000000000201527] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Spontaneous intracranial hypotension (SIH) is characterized by loss of CSF volume. We hypothesize that in this situation of low volume, a larger CSF flow and spinal cord motion at the upper spine can be measured by noninvasive phase contrast MRI. METHODS A prospective, age-, sex-, and body mass index (BMI)-matched controlled cohort study on patients with SIH presenting with spinal longitudinal extradural fluid collection (SLEC) was conducted from October 2021 to February 2022. Cardiac-gated 2D phase contrast MRI sequences were acquired at segment C2/C3, and C5/C6 for CSF flow, and spinal cord motion analysis. Data processing was fully automated. CSF flow and spinal cord motion were analyzed by peak-to-peak amplitude and total displacement per segment and heartbeat, respectively. Clinical data included age, height, BMI, duration of symptoms, Bern score according to Dobrocky et al., and type of the spinal CSF leak according to Schievink et al. Groups were compared via the Mann-Whitney U test; multiple linear regression analysis was performed to address possible relations. RESULTS Twenty patients with SIH and 40 healthy controls were analyzed; each group consisted of 70% women. Eleven patients with SIH presented with type 1 leak, 8 with type 2, and 1 was indeterminate. CSF flow per heartbeat was increased at C2/C3 (peak-to-peak amplitude 65.68 ± 18.3 vs 42.50 ± 9.8 mm/s, total displacement 14.32 ± 3.5 vs 9.75 ± 2.7 mm, p < 0.001, respectively). Craniocaudal spinal cord motion per heartbeat was larger at segment C2/C3 (peak-to-peak amplitude 7.30 ± 2.4 vs 5.82 ± 2.0 mm/s, total displacement 1.01 ± 0.4 vs 0.74 ± 0.4 mm, p = 0.006, respectively) and at segment C5/C6 (total displacement 1.41 ± 0.7 vs 0.97 ± 0.4 mm, p = 0.021). DISCUSSION SLEC-positive patients with SIH show higher CSF flow and higher spinal cord motion at the upper cervical spine. This increased craniocaudal motion of the spinal cord per heartbeat might produce increased mechanical strain on neural tissue and adherent structures, which may be a mechanism leading to cranial nerve dysfunction, neck pain, and stiffness in SIH. Noninvasive phase contrast MRI of CSF flow and spinal cord motion is a promising diagnostic tool in SIH. TRIAL REGISTRATION INFORMATION German Clinical Trials Register, identification number: DRKS00017351. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that noninvasive phase contrast MRI of the upper spine identifies differences in CSF flow and spinal cord motion in patients with SIH compared with healthy controls.
Collapse
Affiliation(s)
- Katharina Wolf
- From the Departments of Neurology and Neurophysiology (K.W., S.B.), Neuroradiology (N.L., H.M., N.K., H.U.), Radiology, Medical Physics (M.R.), and Neurosurgery (C.F., J.B.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Eisma JJ, McKnight CD, Hett K, Elenberger J, Song AK, Stark AJ, Claassen DO, Donahue MJ. Choroid plexus perfusion and bulk cerebrospinal fluid flow across the adult lifespan. J Cereb Blood Flow Metab 2023; 43:269-280. [PMID: 36200473 PMCID: PMC9903224 DOI: 10.1177/0271678x221129101] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
The choroid plexus (ChP) comprises a collection of modified ependymal cells that play an important role in the production of brain cerebrospinal fluid (CSF), and ChP perfusion aberrations have been implicated in a range of cerebrovascular and neurodegenerative disorders. To provide an exemplar for the growing interest in ChP activity, we evaluated ChP perfusion and bulk CSF flow cross-sectionally across the healthy adult lifespan. Participants (n = 77; age range = 21-86 years) were scanned at 3T using T1-weighted, T2-weighted-FLAIR, perfusion-weighted pCASL, and phase contrast MRI to calculate ChP anatomy, perfusion, and aqueductal CSF flow, respectively. Regression models were applied to evaluate aging effects on ChP volume and ChP perfusion in the lateral ventricles, as well as CSF flow. ChP volume (mean ± std = 2.81 ± 1.1 cm3) increased (p < 0.001), ChP perfusion (36.3 ± 8.6 mL/100 g/min) decreased (p = 0.0078), and ChP total blood flow (1.13 ± 0.34 mL/min) increased (p < 0.001) with age. Cranial-to-caudal net CSF flow (0.245 ± 0.20 mL/min) decreased, absolute CSF flow (4.86 ± 2.96 mL/min) increased, and CSF regurgitant fraction (0.87 ± 0.126) increased with age (all: p < 0.001). ChP perfusion was directly related to net cranial-to-caudal CSF flow through the aqueduct (p = 0.033). The implications of these findings are discussed in the context of the growing literature on CSF circulatory dysfunction in neurodegeneration and cerebrovascular disease.
Collapse
Affiliation(s)
- Jarrod J Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Tierradentro-Garcia LO, Onyango L, Dennis R, Freeman CW, Haddad S, Kozak B, Hwang M. Evaluation of the Cerebrospinal Fluid Flow Dynamics with Microvascular Imaging Ultrasound in Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:245. [PMID: 36832374 PMCID: PMC9955478 DOI: 10.3390/children10020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Microvascular imaging ultrasound (MVI) can detect slow blood flow in small-caliber cerebral vessels. This technology may help assess flow in other intracranial structures, such as the ventricular system. In this study, we describe the use of MVI for characterizing intraventricular cerebrospinal fluid (CSF) flow dynamics in infants. MATERIALS AND METHODS We included infants with brain ultrasound that had MVI B-Flow cine clips in the sagittal plane. Two blinded reviewers examined the images, dictated a diagnostic impression, and identified the third ventricle, cerebral aqueduct, fourth ventricle, and CSF flow direction. A third reviewer evaluated the discrepancies. We evaluated the association of visualization of CSF flow as detectable with MVI, with the diagnostic impressions. We also assessed the inter-rater reliability (IRR) for detecting CSF flow. RESULTS We evaluated 101 infants, mean age 40 ± 53 days. Based on brain MVI B-Flow, a total of 49 patients had normal brain US scans, 40 had hydrocephalus, 26 had intraventricular hemorrhage (IVH), and 14 had hydrocephalus+IVH. Using spatially moving MVI signal in the third ventricle, cerebral aqueduct, and fourth ventricle as the criteria for CSF flow, CSF flow was identified in 10.9% (n = 11), 15.8% (n = 16), and 16.8% (n = 17) of cases, respectively. Flow direction was detected in 19.8% (n = 20) of cases; 70% (n = 14) was caudocranial, 15% (n = 3) was craniocaudal, and 15% (n = 3) bidirectional, with IRR = 0.662, p < 0.001. Visualization of CSF flow was significantly associated with the presence of IVH alone (OR 9.7 [3.3-29.0], p < 0.001) and IVH+hydrocephalus (OR 12.4 [3.5-440], p < 0.001), but not with hydrocephalus alone (p = 0.116). CONCLUSION This study demonstrates that MVI can detect CSF flow dynamics in infants with a history of post-hemorrhagic hydrocephalus with a high IRR.
Collapse
Affiliation(s)
| | - Levy Onyango
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca Dennis
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Colbey W. Freeman
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophie Haddad
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brandi Kozak
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
van der Thiel MM, Backes WH, Ramakers IHGB, Jansen JFA. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? Neurosci Biobehav Rev 2023; 144:104999. [PMID: 36529311 DOI: 10.1016/j.neubiorev.2022.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The cerebral waste clearance system (i.e, glymphatic or intramural periarterial drainage) works through a network of perivascular spaces (PVS). Dysfunction of this system likely contributes to aggregation of Amyloid-β and subsequent toxic plaques in Alzheimer's disease (AD). A promising, non-invasive technique to study this system is MRI, though applications in dementia are still scarce. This review focusses on recent non-contrast enhanced (non-CE) MRI techniques which determine and visualise physiological aspects of the clearance system at multiple levels, i.e., cerebrospinal fluid flow, PVS-flow and interstitial fluid movement. Furthermore, various MRI studies focussing on aspects of the clearance system which are relevant to AD are discussed, such as studies on ageing, sleep alterations, and cognitive decline. Additionally, the complementary function of non-CE to CE methods is elaborated upon. We conclude that non-CE studies have great potential to determine which parts of the waste clearance system are affected by AD and in which stages of cognitive impairment dysfunction of this system occurs, which could allow future clinical trials to target these specific mechanisms.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
23
|
De Vito A, Ben Zvi I, D'Arco F. MR Protocols for Paediatric Neurosurgical Common Conditions: An Update Guide for Neurosurgeons. Adv Tech Stand Neurosurg 2023; 48:57-72. [PMID: 37770681 DOI: 10.1007/978-3-031-36785-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The biggest challenge for clinicians and surgeons when it comes to radiological examinations is the ability to request the right modalities and to understand the strengths and limitations of each modality. This is particularly important in paediatric neurosciences where despite magnetic resonance imaging (MRI) being the main imaging modality, there are several protocols, technical limitations of specific scanners and issues related to sedation that need to be taken into account. In this chapter, we describe a simple approach for six common neurosurgical conditions to guide the paediatric neurosurgeons in requesting the right MR protocol and understanding the rationale of it.Paediatric neuro-oncology, epilepsy and neck/skull base protocols are discussed elsewhere in this book and therefore will not be a focus in this chapter (Bernasconi et al., Epilepsia 60:1054-68, 2019; D'Arco et al., Neuroradiology 64:1081-100; 2022; Avula et al., Childs Nerv Syst 37:2497-508; 2021).
Collapse
Affiliation(s)
- Andrea De Vito
- Department of Neuroradiology, H. S. Gerardo Monza, Monza, Italy.
| | - Ido Ben Zvi
- Paediatric Neurosurgery Department, Great Ormond Street Hospital, London, UK
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
24
|
Tan QC, Xing XW, Zhang JT, He MW, Ma YB, Wu L, Wang X, Wang HF, Yu SY. Correlation between blood glucose and cerebrospinal fluid glucose levels in patients with differences in glucose metabolism. Front Neurol 2023; 14:1103026. [PMID: 37181574 PMCID: PMC10174426 DOI: 10.3389/fneur.2023.1103026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives We aimed to determine a method to identify normal cerebrospinal fluid (CSF) glucose levels by examining the correlation between blood and CSF glucose levels in patients with normal and abnormal glucose metabolism. Methods One hundred ninety-five patients were divided into two groups according to their glucose metabolism. The glucose levels were obtained from CSF and fingertip blood at 6, 5, 4, 3, 2, 1, and 0 h before lumbar puncture. SPSS 22.0 software was used for the statistical analysis. Results In both the normal and abnormal glucose metabolism groups, CSF glucose levels increased with blood glucose levels at 6, 5, 4, 3, 2, 1, and 0 h before lumbar puncture. In the normal glucose metabolism group, the CSF/blood glucose ratio range was 0.35-0.95 at 0-6 h before lumbar puncture, and the CSF/average blood glucose ratio range was 0.43-0.74. In the abnormal glucose metabolism group, the CSF/blood glucose ratio range was 0.25-1.2 at 0-6 h before lumbar puncture, and the CSF/average blood glucose ratio range was 0.33-0.78. Conclusion The CSF glucose level is influenced by the blood glucose level 6 h before lumbar puncture. In patients with normal glucose metabolism, direct measurement of the CSF glucose level can be used to determine whether the CSF level is normal. However, in patients with abnormal or unclear glucose metabolism, the CSF/average blood glucose ratio should be used to determine whether the CSF glucose level is normal.
Collapse
Affiliation(s)
| | - Xiao Wei Xing
- Hainan Branch of People’s Liberation Army General Hospital, Sanya, China
| | - Jia Tang Zhang
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Jia Tang Zhang,
| | - Mian Wang He
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Yu Bao Ma
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Lei Wu
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xiaolin Wang
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Hong Fen Wang
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Sheng Yuan Yu
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Liu G, Ladrón-de-Guevara A, Izhiman Y, Nedergaard M, Du T. Measurements of cerebrospinal fluid production: a review of the limitations and advantages of current methodologies. Fluids Barriers CNS 2022; 19:101. [PMID: 36522656 PMCID: PMC9753305 DOI: 10.1186/s12987-022-00382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cerebrospinal fluid (CSF) is an essential and critical component of the central nervous system (CNS). According to the concept of the "third circulation" originally proposed by Cushing, CSF is mainly produced by the choroid plexus and subsequently leaves the cerebral ventricles via the foramen of Magendie and Luschka. CSF then fills the subarachnoid space from whence it disperses to all parts of the CNS, including the forebrain and spinal cord. CSF provides buoyancy to the submerged brain, thus protecting it against mechanical injury. CSF is also transported via the glymphatic pathway to reach deep interstitial brain regions along perivascular channels; this CSF clearance pathway promotes transport of energy metabolites and signaling molecules, and the clearance of metabolic waste. In particular, CSF is now intensively studied as a carrier for the removal of proteins implicated in neurodegeneration, such as amyloid-β and tau. Despite this key function of CSF, there is little information about its production rate, the factors controlling CSF production, and the impact of diseases on CSF flux. Therefore, we consider it to be a matter of paramount importance to quantify better the rate of CSF production, thereby obtaining a better understanding of CSF dynamics. To this end, we now review the existing methods developed to measure CSF production, including invasive, noninvasive, direct, and indirect methods, and MRI-based techniques. Depending on the methodology, estimates of CSF production rates in a given species can extend over a ten-fold range. Throughout this review, we interrogate the technical details of CSF measurement methods and discuss the consequences of minor experimental modifications on estimates of production rate. Our aim is to highlight the gaps in our knowledge and inspire the development of more accurate, reproducible, and less invasive techniques for quantitation of CSF production.
Collapse
Affiliation(s)
- Guojun Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yara Izhiman
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Ting Du
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
26
|
Cai H, Zou Y, Gao H, Huang K, Liu Y, Cheng Y, Liu Y, Zhou L, Zhou D, Chen Q. Radiological biomarkers of idiopathic normal pressure hydrocephalus: new approaches for detecting concomitant Alzheimer's disease and predicting prognosis. PSYCHORADIOLOGY 2022; 2:156-170. [PMID: 38665278 PMCID: PMC10917212 DOI: 10.1093/psyrad/kkac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 04/28/2024]
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a clinical syndrome characterized by cognitive decline, gait disturbance, and urinary incontinence. As iNPH often occurs in elderly individuals prone to many types of comorbidity, a differential diagnosis with other neurodegenerative diseases is crucial, especially Alzheimer's disease (AD). A growing body of published work provides evidence of radiological methods, including multimodal magnetic resonance imaging and positron emission tomography, which may help noninvasively differentiate iNPH from AD or reveal concurrent AD pathology in vivo. Imaging methods detecting morphological changes, white matter microstructural changes, cerebrospinal fluid circulation, and molecular imaging have been widely applied in iNPH patients. Here, we review radiological biomarkers using different methods in evaluating iNPH pathophysiology and differentiating or detecting concomitant AD, to noninvasively predict the possible outcome postshunt and select candidates for shunt surgery.
Collapse
Affiliation(s)
- Hanlin Cai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinxi Zou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Bissenas A, Fleeting C, Patel D, Al-Bahou R, Patel A, Nguyen A, Woolridge M, Angelle C, Lucke-Wold B. CSF Dynamics: Implications for Hydrocephalus and Glymphatic Clearance. CURRENT RESEARCH IN MEDICAL SCIENCES 2022; 1:24-42. [PMID: 36649460 PMCID: PMC9840530 DOI: 10.56397/crms.2022.12.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Beyond its neuroprotective role, CSF functions to rid the brain of toxic waste products through glymphatic clearance. Disturbances in the circulation of CSF and glymphatic exchange are common among those experiencing HCP syndrome, which often results from SAH. Normally, the secretion of CSF follows a two-step process, including filtration of plasma followed by the introduction of ions, bicarbonate, and water. Arachnoid granulations are the main site of CSF absorption, although there are other influencing factors that affect this process. The pathway through which CSF is through to flow is from its site of secretion, at the choroid plexus, to its site of absorption. However, the CSF flow dynamics are influenced by the cardiovascular system and interactions between CSF and CNS anatomy. One, two, and three-dimensional models are currently methods researchers use to predict and describe CSF flow, both under normal and pathological conditions. They are, however, not without their limitations. "Rest-of-body" models, which consider whole-body compartments, may be more effective for understanding the disruption to CSF flow due to hemorrhages and hydrocephalus. Specifically, SAH is thought to prevent CSF flow into the basal cistern and paravascular spaces. It is also more subject to backflow, caused by the presence of coagulation cascade products. In regard to the fluid dynamics of CSF, scar tissue, red blood cells, and protein content resulting from SAH may contribute to increased viscosity, decreased vessel diameter, and increased vessel resistance. Outside of its direct influence on CSF flow, SAH may result in one or both forms of hydrocephalus, including noncommunicating (obstructive) and communicating (nonobstructive) HCP. Imaging modalities such as PC-MRI, Time-SLIP, and CFD model, a mathematical model relying on PC-MRI data, are commonly used to better understand CSF flow. While PC-MRI utilizes phase shift data to ultimately determine CSF speed and flow, Time-SLIP compares signals generated by CSF to background signals to characterizes complex fluid dynamics. Currently, there are gaps in sufficient CSF flow models and imaging modalities. A prospective area of study includes generation of models that consider "rest-of-body" compartments and elements like arterial pulse waves, respiratory waves, posture, and jugular venous posture. Going forward, imaging modalities should work to focus more on patients in nature in order to appropriately assess how CSF flow is disrupted in SAH and HCP.
Collapse
Affiliation(s)
- Ashley Bissenas
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Chance Fleeting
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Drashti Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Raja Al-Bahou
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aashay Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Andrew Nguyen
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Maxwell Woolridge
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Conner Angelle
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Sheng J, Li Q, Liu T, Wang X. Cerebrospinal fluid dynamics along the optic nerve. Front Neurol 2022; 13:931523. [PMID: 36046631 PMCID: PMC9420993 DOI: 10.3389/fneur.2022.931523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The cerebrospinal fluid (CSF) plays an important role in delivering nutrients and eliminating the metabolic wastes of the central nervous system. An interrupted CSF flow could cause disorders of the brain and eyes such as Alzheimer's disease and glaucoma. This review provides an overview of the anatomy and flow pathways of the CSF system with an emphasis on the optic nerve. Imaging technologies used for visualizing the CSF dynamics and the anatomic structures associated with CSF circulation have been highlighted. Recent advances in the use of computational models to predict CSF flow patterns have been introduced. Open questions and potential mechanisms underlying CSF circulation at the optic nerves have also been discussed.
Collapse
Affiliation(s)
- Jinqiao Sheng
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of General Engineering, Beihang University, Beijing, China
| | - Qi Li
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tingting Liu
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaofei Wang
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
29
|
Magnetic resonance in the evaluation of circulation and mass transfer in human. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Proposal for a Normal Pressure Hydrocephalus Syndrome Center of Excellence. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP, terBrugge KG, Mikulis DJ. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part II-Imaging Techniques and Clinical Applications. Radiology 2021; 301:516-532. [PMID: 34698564 DOI: 10.1148/radiol.2021204088] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The glymphatic system is a recently discovered network unique to the central nervous system that allows for dynamic exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF). As detailed in part I, ISF and CSF transport along paravascular channels of the penetrating arteries and possibly veins allow essential clearance of neurotoxic solutes from the interstitium to the CSF efflux pathways. Imaging tests to investigate this neurophysiologic function, although challenging, are being developed and are reviewed herein. These include direct visualization of CSF transport using postcontrast imaging techniques following intravenous or intrathecal administration of contrast material and indirect glymphatic assessment with detection of enlarged perivascular spaces. Application of MRI techniques, including intravoxel incoherent motion, diffusion tensor imaging, and chemical exchange saturation transfer, is also discussed, as are methods for imaging dural lymphatic channels involved with CSF efflux. Subsequently, glymphatic function is considered in the context of proteinopathies associated with neurodegenerative diseases and traumatic brain injury, cytotoxic edema following acute ischemic stroke, and chronic hydrocephalus after subarachnoid hemorrhage. These examples highlight the substantial role of the glymphatic system in neurophysiology and the development of certain neuropathologic abnormalities, stressing the importance of its consideration when interpreting neuroimaging investigations. © RSNA, 2021.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Diana Vucevic
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kartik D Bhatia
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Hans G J Kortman
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Timo Krings
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kieran P Murphy
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Karel G terBrugge
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - David J Mikulis
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| |
Collapse
|
32
|
Yamada S. Cerebrospinal fluid dynamics. Croat Med J 2021; 62:399-410. [PMID: 34472743 PMCID: PMC8491047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 08/17/2024] Open
Abstract
The classical cerebrospinal fluid (CSF) circulation theory has been accepted as an established theory of CSF physiology. It describes bulk CSF flow from production site to absorption site. However, much controversy remains regarding the basic CSF physiology and the mechanisms behind the development of hydrocephalus. In the recent observations made using advanced magnetic resonance imaging (MRI) technique, namely, the time spatial inversion pulse (Time-SLIP) method, CSF was used as internal CSF tracer to trace true CSF movement. Observation of the CSF dynamics using this method reveals aspects of CSF dynamics that are different from those of classical CSF circulation theory. Cerebrospinal fluid shows pulsation but does not show bulk flow from production site to absorption site, a theory that was built upon externally injected tracer studies. Observation of the exogeneous tracer studies were true but misinterpreted. Causes of misinterpretations are the differences between results obtained using the true CSF tracer and exogenous tracers. A better understanding of the real CSF physiology can be significant for the advancement of medical sciences in the future. Revisiting CSF flow physiology is a necessary step toward this goal.
Collapse
Affiliation(s)
- Shinya Yamada
- Shinya Yamada, Department of Neurosurgery, Kugayama Hospital, 2-14-20 Kita-Karasuyama, Setagaya, Tokyo 252-0385, Japan,
| |
Collapse
|
33
|
Cho H, Kim Y, Hong S, Choi H. Cerebrospinal fluid flow in normal beagle dogs analyzed using magnetic resonance imaging. J Vet Sci 2021; 22:e2. [PMID: 33522154 PMCID: PMC7850791 DOI: 10.4142/jvs.2021.22.e2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
Background Diseases related to cerebrospinal fluid flow, such as hydrocephalus, syringomyelia, and Chiari malformation, are often found in small dogs. Although studies in human medicine have revealed a correlation with cerebrospinal fluid flow in these diseases by magnetic resonance imaging, there is little information and no standard data for normal dogs. Objectives The purpose of this study was to obtain cerebrospinal fluid flow velocity data from the cerebral aqueduct and subarachnoid space at the foramen magnum in healthy beagle dogs. Methods Six healthy beagle dogs were used in this experimental study. The dogs underwent phase-contrast and time-spatial labeling inversion pulse magnetic resonance imaging. Flow rate variations in the cerebrospinal fluid were observed using sagittal time-spatial labeling inversion pulse images. The pattern and velocity of cerebrospinal fluid flow were assessed using phase-contrast magnetic resonance imaging within the subarachnoid space at the foramen magnum level and the cerebral aqueduct. Results In the ventral aspect of the subarachnoid space and cerebral aqueduct, the cerebrospinal fluid was characterized by a bidirectional flow throughout the cardiac cycle. The mean ± SD peak velocities through the ventral and dorsal aspects of the subarachnoid space and the cerebral aqueduct were 1.39 ± 0.13, 0.32 ± 0.12, and 0.76 ± 0.43 cm/s, respectively. Conclusions Noninvasive visualization of cerebrospinal fluid flow movement with magnetic resonance imaging was feasible, and a reference dataset of cerebrospinal fluid flow peak velocities was obtained through the cervical subarachnoid space and cerebral aqueduct in healthy dogs.
Collapse
Affiliation(s)
- Hyunju Cho
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Yejin Kim
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Saebyel Hong
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Hojung Choi
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
34
|
Klinge PM, McElroy A, Donahue JE, Brinker T, Gokaslan ZL, Beland MD. Abnormal spinal cord motion at the craniocervical junction in hypermobile Ehlers-Danlos patients. J Neurosurg Spine 2021; 35:18-24. [PMID: 34020423 DOI: 10.3171/2020.10.spine201765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The craniocervical junction (CCJ) is anatomically complex and comprises multiple joints that allow for wide head and neck movements. The thecal sac must adjust to such movements. Accordingly, the thecal sac is not rigidly attached to the bony spinal canal but instead tethered by fibrous suspension ligaments, including myodural bridges (MDBs). The authors hypothesized that pathological spinal cord motion is due to the laxity of such suspension bands in patients with connective tissue disorders, e.g., hypermobile Ehlers-Danlos syndrome (EDS). METHODS The ultrastructure of MDBs that were intraoperatively harvested from patients with Chiari malformation was investigated with transmission electron microscopy, and 8 patients with EDS were compared with 8 patients without EDS. MRI was used to exclude patients with EDS and craniocervical instability (CCI). Real-time ultrasound was used to compare the spinal cord at C1-2 of 20 patients with EDS with those of 18 healthy control participants. RESULTS The ultrastructural damage of the collagen fibrils of the MDBs was distinct in patients with EDS, indicating a pathological mechanical laxity. In patients with EDS, ultrasound revealed increased cardiac pulsatory motion and irregular displacement of the spinal cord during head movements. CONCLUSIONS Laxity of spinal cord suspension ligaments and the associated spinal cord motion disorder are possible pathogenic factors for chronic neck pain and headache in patients with EDS but without radiologically proven CCI.
Collapse
Affiliation(s)
| | | | | | - Thomas Brinker
- 3Department of Neurosurgery, Medical School Hannover, Germany
| | | | - Michael D Beland
- 4Radiology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
35
|
Terem I, Dang L, Champagne A, Abderezaei J, Pionteck A, Almadan Z, Lydon AM, Kurt M, Scadeng M, Holdsworth SJ. 3D amplified MRI (aMRI). Magn Reson Med 2021; 86:1674-1686. [PMID: 33949713 PMCID: PMC8252598 DOI: 10.1002/mrm.28797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
Purpose Amplified MRI (aMRI) has been introduced as a new method of detecting and visualizing pulsatile brain motion in 2D. Here, we improve aMRI by introducing a novel 3D aMRI approach. Methods 3D aMRI was developed and tested for its ability to amplify sub‐voxel motion in all three directions. In addition, 3D aMRI was qualitatively compared to 2D aMRI on multi‐slice and 3D (volumetric) balanced steady‐state free precession cine data and phase contrast (PC‐MRI) acquired on healthy volunteers at 3T. Optical flow maps and 4D animations were produced from volumetric 3D aMRI data. Results 3D aMRI exhibits better image quality and fewer motion artifacts compared to 2D aMRI. The tissue motion was seen to match that of PC‐MRI, with the predominant brain tissue displacement occurring in the cranial‐caudal direction. Optical flow maps capture the brain tissue motion and display the physical change in shape of the ventricles by the relative movement of the surrounding tissues. The 4D animations show the complete brain tissue and cerebrospinal fluid (CSF) motion, helping to highlight the “piston‐like” motion of the ventricles. Conclusions Here, we introduce a novel 3D aMRI approach that enables one to visualize amplified cardiac‐ and CSF‐induced brain motion in striking detail. 3D aMRI captures brain motion with better image quality than 2D aMRI and supports a larger amplification factor. The optical flow maps and 4D animations of 3D aMRI may open up exciting applications for neurological diseases that affect the biomechanics of the brain and brain fluids.
Collapse
Affiliation(s)
- Itamar Terem
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Structural Biology, Stanford University, Stanford, California, USA
| | - Leo Dang
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand
| | - Allen Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Javid Abderezaei
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Aymeric Pionteck
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Zainab Almadan
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna-Maria Lydon
- Centre for Advanced MRI, University of Auckland, Auckland, New Zealand
| | - Mehmet Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA.,Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand.,Department of Radiology, University of California, San Diego, California, USA
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand
| |
Collapse
|
36
|
Yamada S, Ishikawa M, Nozaki K. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS 2021; 18:20. [PMID: 33874972 PMCID: PMC8056523 DOI: 10.1186/s12987-021-00243-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/13/2021] [Indexed: 11/15/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is considered an age-dependent chronic communicating hydrocephalus associated with cerebrospinal fluid (CSF) malabsorption; however, the aetiology of ventricular enlargement in iNPH has not yet been elucidated. There is accumulating evidence that support the hypothesis that various alterations in CSF dynamics contribute to ventricle dilatation in iNPH. This review focuses on CSF dynamics associated with ventriculomegaly and summarises the current literature based on three potential aetiology factors: genetic, environmental and hydrodynamic. The majority of gene mutations that cause communicating hydrocephalus were associated with an abnormal structure or dysfunction of motile cilia on the ventricular ependymal cells. Aging, alcohol consumption, sleep apnoea, diabetes and hypertension are candidates for the risk of developing iNPH, although there is no prospective cohort study to investigate the risk factors for iNPH. Alcohol intake may be associated with the dysfunction of ependymal cilia and sustained high CSF sugar concentration due to uncontrolled diabetes increases the fluid viscosity which in turn increases the shear stress on the ventricular wall surface. Sleep apnoea, diabetes and hypertension are known to be associated with the impairment of CSF and interstitial fluid exchange. Oscillatory shear stress to the ventricle wall surfaces is considerably increased by reciprocating bidirectional CSF movements in iNPH. Increased oscillatory shear stress impedes normal cilia beating, leading to motile cilia shedding from the ependymal cells. At the lack of ciliary protection, the ventricular wall is directly exposed to increased oscillatory shear stress. Additionally, increased oscillatory shear stress may be involved in activating the flow-mediated dilation signalling of the ventricular wall. In conclusion, as the CSF stroke volume at the cerebral aqueduct increases, the oscillatory shear stress increases, promoting motor cilia shedding and loss of ependymal cell coverage. These are considered to be the leading causes of ventricular enlargement in iNPH.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Masatsune Ishikawa
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan.,Rakuwa Villa Ilios, Kyoto, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
37
|
Eide PK, Valnes LM, Lindstrøm EK, Mardal KA, Ringstad G. Direction and magnitude of cerebrospinal fluid flow vary substantially across central nervous system diseases. Fluids Barriers CNS 2021; 18:16. [PMID: 33794929 PMCID: PMC8017867 DOI: 10.1186/s12987-021-00251-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Several central nervous system diseases are associated with disturbed cerebrospinal fluid (CSF) flow patterns and have typically been characterized in vivo by phase-contrast magnetic resonance imaging (MRI). This technique is, however, limited by its applicability in space and time. Phase-contrast MRI has yet to be compared directly with CSF tracer enhanced imaging, which can be considered gold standard for assessing long-term CSF flow dynamics within the intracranial compartment. Methods Here, we studied patients with various CSF disorders and compared MRI biomarkers of CSF space anatomy and phase-contrast MRI at level of the aqueduct and cranio-cervical junction with dynamic intrathecal contrast-enhanced MRI using the contrast agent gadobutrol as CSF tracer. Tracer enrichment of cerebral ventricles was graded 0–4 by visual assessment. An intracranial pressure (ICP) score was used as surrogate marker of intracranial compliance. Results The study included 94 patients and disclosed marked variation of CSF flow measures across disease categories. The grade of supra-aqueductal reflux of tracer varied, with strong reflux (grades 3–4) in half of patients. Ventricular tracer reflux correlated with stroke volume and aqueductal CSF pressure gradient. CSF flow in the cerebral aqueduct was retrograde (from 4th to 3rd ventricle) in one third of patients, with estimated CSF net flow volume about 1.0 L/24 h. In the cranio-cervical junction, net flow was cranially directed in 78% patients, with estimated CSF net flow volume about 4.7 L/24 h. Conclusions The present observations provide in vivo quantitative evidence for substantial variation in direction and magnitude of CSF flow, with re-direction of aqueductal flow in communicating hydrocephalus, and significant extra-cranial CSF production. The grading of ventricular reflux of tracer shows promise as a clinical useful method to assess CSF flow pattern disturbances in patients. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00251-6.
Collapse
Affiliation(s)
- Per Kristian Eide
- Deptartment of Neurosurgery, Oslo University Hospital-Rikshospitalet, Nydalen, PB 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Lars Magnus Valnes
- Deptartment of Neurosurgery, Oslo University Hospital-Rikshospitalet, Nydalen, PB 4950, 0424, Oslo, Norway
| | - Erika Kristina Lindstrøm
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Kent-Andre Mardal
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Geir Ringstad
- Department. of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
38
|
Williams G, Thyagaraj S, Fu A, Oshinski J, Giese D, Bunck AC, Fornari E, Santini F, Luciano M, Loth F, Martin BA. In vitro evaluation of cerebrospinal fluid velocity measurement in type I Chiari malformation: repeatability, reproducibility, and agreement using 2D phase contrast and 4D flow MRI. Fluids Barriers CNS 2021; 18:12. [PMID: 33736664 PMCID: PMC7977612 DOI: 10.1186/s12987-021-00246-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. METHODS An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. RESULTS Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). CONCLUSION Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.
Collapse
Affiliation(s)
- Gwendolyn Williams
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Suraj Thyagaraj
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Audrey Fu
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844, USA
| | - John Oshinski
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Eleonora Fornari
- CIBM, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mark Luciano
- Department of Neurosurgery, John Hopkins University, Baltimore, MD, USA
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Bryn A Martin
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA.
- Alcyone Therapeutics Inc, Lowell, MA, USA.
| |
Collapse
|
39
|
Wymer DT, Patel KP, Burke WF, Bhatia VK. Phase-Contrast MRI: Physics, Techniques, and Clinical Applications. Radiographics 2021; 40:122-140. [PMID: 31917664 DOI: 10.1148/rg.2020190039] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With phase-contrast imaging, the MRI signal is used to visualize and quantify velocity. This imaging modality relies on phase data, which are intrinsic to all MRI signals. With use of bipolar gradients, degrees of phase shift are encoded and in turn correlated directly with the velocity of protons. The acquisition of diagnostic-quality images requires selection of the correct imaging plane to ensure accurate measurement and selection of the encoding velocity and thus prevent aliasing and achieve the highest signal-to-noise ratio. Multiple applications of phase-contrast imaging are actively used in clinical practice. One of the most common clinical uses is in cardiac valvular flow imaging, at which the data are used to assess the severity of valvular disease and quantify the shunt fraction. In neurologic imaging, phase-contrast imaging can be used to measure the flow of cerebrospinal fluid. This measurement can aid in the diagnosis and direct management of normal pressure hydrocephalus or be used to evaluate the severity of stenosis, such as that in Chiari I malformations. At vascular analysis, phase-contrast imaging can be used to visualize arterial and venous flow, and this application is used most commonly in the brain. Three-dimensional imaging can yield highly detailed flow data in a technique referred to as four-dimensional flow. A more recently identified application is in MR elastography. Shear waves created by using an impulse device can be velocity encoded, and this velocity is directly proportional to the stiffness of the organ, or the shear modulus. This imaging modality is most commonly used in the liver for evaluation of cirrhosis and steatosis, although research on the assessment of other organs is being performed. Phase-contrast imaging is an important tool in the arsenal of MRI examinations and has many applications. Proper use of phase-contrast imaging requires an understanding of the many practical and technical factors and unique physics principles underlying the technique.©RSNA, 2020.
Collapse
Affiliation(s)
- David T Wymer
- From the Department of Diagnostic Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Kunal P Patel
- From the Department of Diagnostic Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - William F Burke
- From the Department of Diagnostic Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| | - Vinay K Bhatia
- From the Department of Diagnostic Radiology, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL 33140
| |
Collapse
|
40
|
Wolf K, Reisert M, Beltrán SF, Klingler JH, Hubbe U, Krafft AJ, Egger K, Hohenhaus M. Focal cervical spinal stenosis causes mechanical strain on the entire cervical spinal cord tissue - A prospective controlled, matched-pair analysis based on phase-contrast MRI. NEUROIMAGE-CLINICAL 2021; 30:102580. [PMID: 33578322 PMCID: PMC7875814 DOI: 10.1016/j.nicl.2021.102580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Focally increased spinal cord motion at the level of cervical spinal stenosis has been revealed by phase-contrast MRI (PC-MRI). OBJECTIVE To investigate spinal cord motion among patients suffering of degenerative cervical myelopathy (DCM) across the entire cervical spine applying automated segmentation and standardized PC-MRI post-processing protocols. METHODS Prospective, matched-pair controlled trial on 29 patients with stenosis at C5/C6. MRI-protocol covering all cervical segments: 3D T2-SPACE, prospectively ECG-triggered sagittal PC-MRI. Segmentation by trained 3D hierarchical deep convolutional neural network and data processing were conducted via in-house software pipeline. Parameters per segment: maximum velocity, peak-to-peak (PTP)-amplitude, total displacement, PTP-amplitudeHB (PTP-amplitude per duration of heartbeat), and, for characterization of intraindividual alterations, the PTP-amplitude index between the cervical segments C3/C4-C7/T1 and C2/C3. RESULTS Spinal cord motion was increased at C4/C5, C5/C6 and C6/C7 among patients (all parameters, p < 0.001-0.025). The PTP-amplitude index revealed an increase from C3/C4 to C4/C5 (p = 0.002), C4/C5 to C5/C6 (p = 0.037) and a decrease from C5/C6 to C6/C7 and C6/C7 to C7/T1 (p < 0.001, each). This implied an up-building stretch on spinal cord tissue cranial and a mechanical compression caudal of the stenotic level. Furthermore, significant far range effects across the entire cervical spinal cord were observed (e.g. PTP-amplitude C2/C3 vs. C6/C7, p = 0.026) in contrast to controls (p = 1.00). CONCLUSION This study revealed the nature and extends of mechanical stress on the entire cervical spinal cord tissue due to focal stenosis. These pathophysiological alterations of spinal cord motion can be expected to be clinically relevant.
Collapse
Affiliation(s)
- Katharina Wolf
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Saúl Felipe Beltrán
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan-Helge Klingler
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrich Hubbe
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Radiology, Tauernklinikum Zell am See/Mittersill, Salzburg, Austria
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
41
|
Ito D, Ishikawa C, Jeffery ND, Kitagawa M. Cerebrospinal fluid flow on time-spatial labeling inversion pulse images before and after treatment of congenital hydrocephalus in a dog. J Vet Intern Med 2021; 35:490-496. [PMID: 33421205 PMCID: PMC7848343 DOI: 10.1111/jvim.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
A 3-month-old male cross-breed dog presented with signs of progressive diffuse brain disease. Noncommunicating congenital hydrocephalus concurrent with cervical syringomyelia was diagnosed on magnetic resonance images. On time-spatial labeling inversion pulse (Time-SLIP) images CSF flow through the mesencephalic aqueduct was poorly defined and there was flow into the syrinx across the craniocervical junction. After percutaneous ventricular drainage and ventriculoperitoneal shunting, CSF flow through the aqueduct was clearly detected and flow into the syrinx disappeared. In addition, CSF flow in the subarachnoid space at the pons and ventral aspect of the cervical subarachnoid space was restored. Signs of neurological dysfunction improved after ventriculoperitoneal shunting and the cerebral parenchyma was increased in thickness on 2-year follow-up computed tomography images. Patterns of CSF flow on Time-SLIP images before and after CSF drainage or ventriculoperitoneal shunting aid in clarifying disease pathogenesis and confirm effects of CSF drainage.
Collapse
Affiliation(s)
- Daisuke Ito
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| | - Chieko Ishikawa
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| | - Nick D Jeffery
- Veterinary Medicine and Biomedical Science, Department of Small Animal Clinical Sciences, Texas A&M University, Texas, USA
| | - Masato Kitagawa
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| |
Collapse
|
42
|
Christen MA, Schweizer‐Gorgas D, Richter H, Joerger FB, Dennler M. Quantification of cerebrospinal fluid flow in dogs by cardiac-gated phase-contrast magnetic resonance imaging. J Vet Intern Med 2021; 35:333-340. [PMID: 33274812 PMCID: PMC7848380 DOI: 10.1111/jvim.15932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) flow in disease has been investigated with two-dimensional (2D) phase-contrast magnetic resonance imaging (PC-MRI) in humans. Despite similar diseases occurring in dogs, PC-MRI is not routinely performed and CSF flow and its association with diseases is poorly understood. OBJECTIVES To adapt 2D and four-dimensional (4D) PC-MRI to dogs and to apply them in a group of neurologically healthy dogs. ANIMALS Six adult Beagle dogs of a research colony. METHODS Prospective, experimental study. Sequences were first optimized on a phantom mimicking small CSF spaces and low velocity flow. Then, 4D PC-MRI and 2D PC-MRI at the level of the mesencephalic aqueduct, foramen magnum (FM), and cervical spine were performed. RESULTS CSF displayed a bidirectional flow pattern on 2D PC-MRI at each location. Mean peak velocity (and range) in cm/s was 0.92 (0.51-2.08) within the mesencephalic aqueduct, 1.84 (0.89-2.73) and 1.17 (0.75-1.8) in the ventral and dorsal subarachnoid space (SAS) at the FM, and 2.03 (range 1.1-3.0) and 1.27 (range 0.96-1.82) within the ventral and dorsal SAS of the cervical spine. With 4D PC-MRI, flow velocities of >3 cm/s were visualized in the phantom, but no flow data were obtained in dogs. CONCLUSION Peak flow velocities were measured with 2D PC-MRI at all 3 locations and slower velocities were recorded in healthy Beagle dogs compared to humans. These values serve as baseline for future applications. The current technical settings did not allow measurement of CSF flow in Beagle dogs by 4D PC-MRI.
Collapse
Affiliation(s)
- Muriel A. Christen
- Division of Clinical Radiology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Henning Richter
- Clinic of Diagnostic Imaging, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Fabiola B. Joerger
- Department of Clinical Diagnostics and Services, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Matthias Dennler
- Clinic of Diagnostic Imaging, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
43
|
Rasmussen JC, Kwon S, Pinal A, Bareis A, Velasquez FC, Janssen CF, Morrow JR, Fife CE, Karni RJ, Sevick-Muraca EM. Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head-down tilt using near-infrared fluorescence imaging. Physiol Rep 2021; 8:e14375. [PMID: 32097544 PMCID: PMC7058174 DOI: 10.14814/phy2.14375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/04/2022] Open
Abstract
Evidence overwhelmingly suggests that the lymphatics play a critical role in the clearance of cerebrospinal fluid (CSF) from the cranial space. Impairment of CSF outflow into the lymphatics is associated with a number of pathological conditions including spaceflight‐associated neuro‐ocular syndrome (SANS), a problem that limits long‐duration spaceflight. We used near‐infrared fluorescence lymphatic imaging (NIRFLI) to dynamically visualize the deep lymphatic drainage pathways shared by CSF outflow and disrupted during head‐down tilt (HDT), a method used to mimic the cephalad fluid shift that occurs in microgravity. After validating CSF clearance into the lymph nodes of the neck in swine, a pilot study was conducted in human volunteers to evaluate the effect of gravity on the flow of lymph through these deep cervical lymphatics. Injected into the palatine tonsils, ICG was imaged draining into deep jugular lymphatic vessels and subsequent cervical lymph nodes. NIRFLI was performed under HDT, sitting, and supine positions. NIRFLI shows that lymphatic drainage through pathways shared by CSF outflow are dependent upon gravity and are impaired under short‐term HDT. In addition, lymphatic contractile rates were evaluated from NIRFLI following intradermal ICG injections of the lower extremities. Lymphatic contractile activity in the legs was slowed in the gravity neutral, supine position, but increased under the influence of gravity regardless of whether its force direction opposed (sitting) or favored (HDT) lymphatic flow toward the heart. These studies evidence the role of a lymphatic contribution in SANS.
Collapse
Affiliation(s)
- John C Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sunkuk Kwon
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amanda Pinal
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexander Bareis
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fred C Velasquez
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher F Janssen
- Center for Laboratory Animal Medicine and Care, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John R Morrow
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Caroline E Fife
- Department of Geriatrics, Baylor College of Medicine, Houston, TX, USA.,The Wound Care Clinic, CHI St. Luke's Health, The Woodlands Hospital, The Woodlands, TX, USA
| | - Ron J Karni
- Department of Otorhinolaryngology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eva M Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine at The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
44
|
Jaeger E, Sonnabend K, Schaarschmidt F, Maintz D, Weiss K, Bunck AC. Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics. Fluids Barriers CNS 2020; 17:43. [PMID: 32677977 PMCID: PMC7364783 DOI: 10.1186/s12987-020-00206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow. METHODS In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitivity encoding [CSE, a combination of compressed sensing and parallel imaging (SENSE) provided by the manufacturer] with acceleration factors between 4 and 10. A conventional scan using SENSE was used as reference. Extracted parameters were peak velocity, absolute net flow, forward flow and backward flow. Bland-Altman analysis was performed to determine the scan-rescan reproducibility and the agreement between SENSE and compressed SENSE. Additionally, a time accumulated flow error was calculated. In one additional subject flow of the spinal canal at the level of the entire spinal cord was assessed. RESULTS Averaged acquisition times were 10:21 min (SENSE), 9:31 min (CSE4), 6:25 min (CSE6), 4:53 min (CSE8) and 3:51 min (CSE10). Acquisition of the CSF flow surrounding the entire spinal cord took 14:40 min. Bland-Altman analysis showed good agreement for peak velocity, but slight overestimations for absolute net flow, forward flow and backward flow (< 1 ml/min) in CSE4-8. Results of the accumulated flow error were similar for CSE4 to CSE8. CONCLUSION A quantitative analysis of acceleration factors CSE4-10 showed that CSE with an acceleration factor up to 6 is feasible. This allows a scan time reduction of 40% and enables the acquisition and analysis of the CSF flow dynamics surrounding the entire spinal cord within a clinically acceptable scan time.
Collapse
Affiliation(s)
- Elena Jaeger
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| | - Kristina Sonnabend
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Biostatistics Department, Leibniz University Hannover, Hannover, Germany
| | - David Maintz
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| | - Kilian Weiss
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.,Philips GmbH, Hamburg, Germany
| | - Alexander C Bunck
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
45
|
Lakhera D, Azad RK, Azad S, Singh R, Sharma R. Magnetic Resonance Imaging Cerebrospinal Fluid Hydrodynamics in Patients with Meningitis. J Clin Imaging Sci 2020; 10:29. [PMID: 32494508 PMCID: PMC7265375 DOI: 10.25259/jcis_24_2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/01/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The objective of the study was to evaluate the cerebrospinal fluid (CSF) flow alterations in meningitis using phase-contrast magnetic resonance imaging (PCMRI). MATERIALS AND METHODS Fifty patients with clinically confirmed or strongly suspected infectious meningitis and 20 controls were evaluated with MRI. Quantitative CSF analysis was performed at the level of cerebral aqueduct using cardiac-gated PCMRI. Velocity encoding (Venc) was kept at 20 cm/s. Patients were subdivided into Group I (patients with hydrocephalus [n = 21]) and Group II (patients without hydrocephalus [n = 29]). RESULTS The mean peak velocity and stroke volume in controls were 2.49 ± 0.86 cm/s and 13.23 ± 6.84 µl and in patients were 2.85 ± 2.90 cm/s and 16.30 ± 20.02 µl, respectively. A wide variation of flow parameters was noted in meningitis irrespective of the degree of ventricular dilatation. A significant difference in peak velocity and stroke volume was noted in Group II as compared to controls. Viral meningitis showed milder alteration of CSF flow dynamics as compared to bacterial and tuberculous etiologies. At a cutoff value of 3.57 cm/s in peak CSF velocity, the specificity was 100% and sensitivity was 22.7% to differentiate between viral and non-viral meningitis. CONCLUSION Alteration of CSF flow dynamics on PCMRI can improve segregation of patients into viral and non- viral etiologies, especially in those in whom contrast is contraindicated or not recommended. This may aid in institution of appropriate clinical treatment.
Collapse
Affiliation(s)
- Devkant Lakhera
- Departments of Radiodiagnosis, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Rajiv Kumar Azad
- Departments of Radiodiagnosis, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Sheenam Azad
- Departments of Pathology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Ragini Singh
- Departments of Pediatrics, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Rohitash Sharma
- Departments of Neurology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| |
Collapse
|
46
|
Yamada S, Ishikawa M, Ito H, Yamamoto K, Yamaguchi M, Oshima M, Nozaki K. Cerebrospinal fluid dynamics in idiopathic normal pressure hydrocephalus on four-dimensional flow imaging. Eur Radiol 2020; 30:4454-4465. [PMID: 32246220 DOI: 10.1007/s00330-020-06825-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To evaluate complex CSF movements and shear stress in patients with idiopathic normal pressure hydrocephalus (iNPH) on four-dimensional (4D) flow MRI. METHODS Three-dimensional velocities and volumes of the reciprocating CSF movements through 12 ROIs from the foramen of Monro to the upper cervical spine were measured in 41 patients with iNPH, 23 patients with co-occurrence of iNPH and Alzheimer's disease (AD), and 9 age-matched controls, using 4D flow imaging and application. Stroke volume, reversed-flow rate, and shear stress were automatically calculated. Relationships between flow-related parameters and morphological measurements were also assessed. RESULTS Stroke volumes, reversed-flow rates, and shear stress at the cerebral aqueduct were significantly higher in patients with iNPH than in controls. Patients with pure iNPH had significantly higher shear stress at the ventral aspect of the cerebral aqueduct than those with co-occurrence of iNPH and AD. The stroke volume at the upper end of the cerebral aqueduct had the strongest association with the anteroposterior diameter of the lower end of the cerebral aqueduct (r = 0.52). The stroke volume at the foramen of Monro had significant associations with the indices specific to iNPH. The shear stress at the dorsal aspect of the cerebral aqueduct had the strongest association with the diameter of the foramen of Magendie (r = 0.52). CONCLUSIONS Stroke volumes, reversed-flow rates, and shear stress through the cerebral aqueduct on 4D flow MRI are useful parameters for iNPH diagnosis. These findings can aid in elucidating the mechanism of ventricular enlargement in iNPH. KEY POINTS • The CSF stroke volume and bimodal shear stress at the cerebral aqueduct were considerably higher in patients with iNPH. • The patients with pure iNPH had significantly higher shear stress at the ventral aspect of the cerebral aqueduct than those with co-occurrence of iNPH and AD. • The shear stress at the cerebral aqueduct was significantly associated with the diameter of the foramen of Magendie.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Masatsune Ishikawa
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan.,Rakuwa Villa Ilios, Kyoto, Japan
| | - Hirotaka Ito
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Kazuo Yamamoto
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Makoto Yamaguchi
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
47
|
Bogomyakova OB, Vasilkiv LM, Stankevich YA, Savelov AA, Korostyshevskaya AM, Tulupov AA. [Decompensation of chronic internal hydrocephalus in an adult patient]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2020; 84:86-92. [PMID: 33306303 DOI: 10.17116/neiro20208406186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a rare case of decompensated chronic internal hydrocephalus in an adult patient. A 35-year-old woman experienced acute intracranial hypertension in 3 weeks after relief of postoperative inflammation in the oral cavity (tooth extraction). MRI revealed severe internal hydrocephalus. Third ventriculostomy was followed by significant clinical improvement. However, postoperative survey and subsequent neuroimaging confirmed no reduction of ventricular system. Thus, decompensation of chronic hydrocephalus following dental intervention and subsequent oral inflammation was assumed. Impaired venous outflow from the brain and destabilization of CSF circulation can be considered as a pathogenetic mechanism.
Collapse
Affiliation(s)
| | - L M Vasilkiv
- International Tomography Center, Novosibirsk, Russia
| | | | - A A Savelov
- International Tomography Center, Novosibirsk, Russia
| | | | - A A Tulupov
- International Tomography Center, Novosibirsk, Russia
- Novosibirsk National Research State University, Novosibirsk, Russia
| |
Collapse
|
48
|
Zhao C, Shao M, Carass A, Li H, Dewey BE, Ellingsen LM, Woo J, Guttman MA, Blitz AM, Stone M, Calabresi PA, Halperin H, Prince JL. Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magn Reson Imaging 2019; 64:132-141. [PMID: 31247254 PMCID: PMC7094770 DOI: 10.1016/j.mri.2019.05.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 11/29/2022]
Abstract
Magnetic resonance (MR) images with both high resolutions and high signal-to-noise ratios (SNRs) are desired in many clinical and research applications. However, acquiring such images takes a long time, which is both costly and susceptible to motion artifacts. Acquiring MR images with good in-plane resolution and poor through-plane resolution is a common strategy that saves imaging time, preserves SNR, and provides one viewpoint with good resolution in two directions. Unfortunately, this strategy also creates orthogonal viewpoints that have poor resolution in one direction and, for 2D MR acquisition protocols, also creates aliasing artifacts. A deep learning approach called SMORE that carries out both anti-aliasing and super-resolution on these types of acquisitions using no external atlas or exemplars has been previously reported but not extensively validated. This paper reviews the SMORE algorithm and then demonstrates its performance in four applications with the goal to demonstrate its potential for use in both research and clinical scenarios. It is first shown to improve the visualization of brain white matter lesions in FLAIR images acquired from multiple sclerosis patients. Then it is shown to improve the visualization of scarring in cardiac left ventricular remodeling after myocardial infarction. Third, its performance on multi-view images of the tongue is demonstrated and finally it is shown to improve performance in parcellation of the brain ventricular system. Both visual and selected quantitative metrics of resolution enhancement are demonstrated.
Collapse
Affiliation(s)
- Can Zhao
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Muhan Shao
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Li
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Blake E Dewey
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Lotta M Ellingsen
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | - Jonghye Woo
- Department of Radiology, Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Boston, MA, USA
| | | | - Ari M Blitz
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen Stone
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD, USA
| | | | - Henry Halperin
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Abstract
MRI is a commonly used diagnostic tool in neurology, and all neurologists should possess a working knowledge of imaging fundamentals. An overview of current and impending MRI techniques is presented to help the referring clinician communicate better with the imaging department, understand the utility and limitations of current and emerging technology, improve specificity and appropriateness when ordering MRI studies, and recognize key findings.
Collapse
Affiliation(s)
- Nandor K Pinter
- Dent Neurologic Institute, 3980A Sheridan Drive, Suite 101, Amherst, NY 14226, USA; Department of Neurosurgery, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph V Fritz
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 501, Amherst, NY 14226, USA; NeuroNetPro, Amherst, NY, USA.
| |
Collapse
|
50
|
McComb JG. Commentary: Converting Pediatric Patients and Young Adults From a Shunt to a Third Ventriculostomy: A Multicenter Evaluation. Neurosurgery 2019; 87:E106-E107. [DOI: 10.1093/neuros/nyz483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- J Gordon McComb
- Division of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|