1
|
Malaty GR, Decourt B, Shill HA, Sabbagh MN. Biomarker Assessment in Parkinson's Disease Dementia and Dementia with Lewy Bodies by the Immunomagnetic Reduction Assay and Clinical Measures. J Alzheimers Dis Rep 2024; 8:1361-1371. [PMID: 39493956 PMCID: PMC11530035 DOI: 10.3233/adr-240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 11/05/2024] Open
Abstract
Background Plasma biomarker assays provide an opportunity to reassess whether Alzheimer's disease, Parkinson's disease dementia (PDD), and dementia with Lewy bodies (DLB) plasma biomarkers are diagnostically useful. Objective We hypothesized that immunomagnetic reduction (IMR) of plasma biomarkers could differentiate between patients with PDD and DLB and healthy patients when combined with established clinical testing measures. Methods Plasma samples from 61 participants (12 PDD, 12 DLB, 37 controls) were analyzed using IMR to quantify amyloid-β 42 (Aβ42), total tau (t-tau), phosphorylated tau at threonine 181 (p-tau181), and α-synuclein (α-syn). Receiver operating characteristic curve (ROC) analysis was used to obtain sensitivity, specificity, and area under the ROC curve. Biomarker results were combined with clinical measures from the Unified Parkinson's Disease Rating Scale (UPDRS), Montreal Cognitive Assessment, and Hoehn-Yahr stage to optimize diagnostic test performance. Results Participants with PDD had higher α-syn than those with DLB and healthy participants and were distinguishable by their biomarker products Aβ42×p-tau181 and Aβ42×α-syn. Patients with DLB had higher p-tau181 than those with PDD and healthy participants and were distinguishable by their concentrations of α-syn×p-tau181. Plasma α-syn plus UPDRS versus either test alone increased sensitivity, specificity, and AUC when healthy patients were compared with those with PDD and DLB. Combined clinical examination scores and plasma biomarker products demonstrated utility in differentiating PDD from DLB when p-tau181 was combined with UPDRS, α-syn was combined with UPDRS, and α-syn×p-tau181 was combined with UPDRS. Conclusions In this pilot study, IMR plasma p-tau181 and α-syn may discriminate between PDD and DLB when used in conjunction with clinical testing.
Collapse
Affiliation(s)
- Giovanni R. Malaty
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neurosciences, Health Sciences Center, Texas Tech University, Lubbock, TX, USA
| | - Holly A. Shill
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
2
|
Xu Q, Kim Y, Chung K, Schulz P, Gottlieb A. Prediction of Mild Cognitive Impairment Status: Pilot Study of Machine Learning Models Based on Longitudinal Data From Fitness Trackers. JMIR Form Res 2024; 8:e55575. [PMID: 39024003 PMCID: PMC11294783 DOI: 10.2196/55575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 06/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Early signs of Alzheimer disease (AD) are difficult to detect, causing diagnoses to be significantly delayed to time points when brain damage has already occurred and current experimental treatments have little effect on slowing disease progression. Tracking cognitive decline at early stages is critical for patients to make lifestyle changes and consider new and experimental therapies. Frequently studied biomarkers are invasive and costly and are limited for predicting conversion from normal to mild cognitive impairment (MCI). OBJECTIVE This study aimed to use data collected from fitness trackers to predict MCI status. METHODS In this pilot study, fitness trackers were worn by 20 participants: 12 patients with MCI and 8 age-matched controls. We collected physical activity, heart rate, and sleep data from each participant for up to 1 month and further developed a machine learning model to predict MCI status. RESULTS Our machine learning model was able to perfectly separate between MCI and controls (area under the curve=1.0). The top predictive features from the model included peak, cardio, and fat burn heart rate zones; resting heart rate; average deep sleep time; and total light activity time. CONCLUSIONS Our results suggest that a longitudinal digital biomarker differentiates between controls and patients with MCI in a very cost-effective and noninvasive way and hence may be very useful for identifying patients with very early AD who can benefit from clinical trials and new, disease-modifying therapies.
Collapse
Affiliation(s)
- Qidi Xu
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yejin Kim
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karen Chung
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paul Schulz
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Kaya BM, Oz S, Esenturk O. Application of fiber loop ringdown spectroscopy technique for a new approach to beta-amyloid monitoring for Alzheimer Disease's early detection. Biomed Phys Eng Express 2024; 10:035037. [PMID: 38626737 DOI: 10.1088/2057-1976/ad3f1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024]
Abstract
A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aβ42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aβ42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aβ42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6μs ± 3.9μs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aβ42 in different concentrations. The lowest Aβ42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Burak Malik Kaya
- Vocational School of Health Service, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey
- Translational Medicine Research Center, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey
| | - Semih Oz
- Vocational School of Health Service, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey
| | - Okan Esenturk
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
4
|
Singh N, Sharma S, Ghosh KK, Gupta B, Kuca K. Prominent Perspective on Existing Biological Hallmarks of Alzheimer's Disease. Curr Top Med Chem 2024; 24:1120-1133. [PMID: 38591203 DOI: 10.2174/0115680266292514240404040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Biomarkers are the most significant diagnosis tools tending towards unique approaches and solutions for the prevention and cure of Alzheimer's Disease (AD). The current report provides a clear perception of the concept of various biomarkers and their prominent features through analysis to provide a possible solution for the inhibition of events in AD. Scientists around the world truly believe that crucial hallmarks can serve as critical tools in the early diagnosis, cure, and prevention, as well as the future of medicine. The awareness and understanding of such biomarkers would provide solutions to the puzzled mechanism of this neuronal disorder. Some of the argued biomarkers in the present article are still in an experimental phase as they need to undergo specific clinical trials before they can be considered for treatment.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Engineering Science, Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010 (C.G.), India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010 (C.G.), India
| | - Bhanushree Gupta
- Centre of Basic Sciences, Pt. Ravishankar Shukla University, Raipur, 492010 (C.G.), India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
- Research Institute for Biomedical Science, University of Hradec Králové, Antonína Dvoraka 451/1, 500 02 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Kemiläinen B, Tiainen S, Rauramaa T, Luikku AJ, Herukka SK, Koivisto A, Hiltunen M, Verdooner S, Johnson K, Chambers M, Kaarniranta K, Leinonen V. Exploring the Association Between Visual Field Testing and CERAD Neuropsychological Battery in Idiopathic Normal Pressure Hydrocephalus Patients. J Alzheimers Dis 2024; 100:247-260. [PMID: 38848179 DOI: 10.3233/jad-231414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Association between visual field test indices and The Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery (CERAD-NB) is unknown. Idiopathic normal pressure hydrocephalus (iNPH) patients provide a unique set of patient data for analysis. Objective To assess the reliability of visual field testing using the CERAD-NB in patients with iNPH and to investigate the association between visual field test results and cognitive function. Methods 62 probable iNPH patients were subjected to comprehensive ophthalmological examination, ophthalmological optical coherence tomography imaging studies, visual field testing, and CERAD-NB. Based on visual field indices, the patients were divided into two groups: unreliable (n = 19) and reliable (n = 43). Independent T-test analysis was performed to examine the relationship between visual field test results and cognitive function. Pearson Chi-square test was used for non-continuous variables. Results The unreliable group performed worse in CERAD-NB subtests compared to the reliable group. Statistically significant differences were observed in nine out of ten subtests, with only Clock Drawing showing no statistical significance. Pairwise comparison of the groups showed no statistical significance between amyloid-β (Aβ) biopsy, hyperphosphorylated tau biopsy, apolipoprotein E allele or the ophthalmological status of the patient. But there was a statistically significant difference in cerebrospinal fluid Aβ42 and age between the groups. Conclusions Patients with unreliable visual field tests performed worse on CERAD-NB subtests. CERAD-NB subtests do not provide a specific cut-off value to refrain patients from visual field testing. Should patients with unreliable visual field tests be screened for cognitive impairment?
Collapse
Affiliation(s)
- Benjam Kemiläinen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sonja Tiainen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Antti J Luikku
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Anne Koivisto
- Unit of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Geriatrics/Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Ken Johnson
- NeuroVision Imaging Inc., Sacramento, CA, USA
| | | | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Schneeweis A, Pak DTS. Wherefore Art Tau? Functional importance of site-specific tau phosphorylation in diverse subcellular domains. Int J Biochem Cell Biol 2023; 164:106475. [PMID: 37778693 DOI: 10.1016/j.biocel.2023.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Tau has canonically been considered as an axonal protein, but studies have observed tau localization in other subcellular domains of neurons. This relocated tau has been identified in both physiological and pathological conditions, and it is often labeled mislocalized. Furthermore, these forms of tau are referred to as "hyperphosphorylated" without specifying the phosphosites involved. On the contrary, we speculate that tau may have multiple physiological functions in various locations regulated via specific phosphorylation sites, although this picture is obscured by a lack of comprehensive phosphosite analysis. Here, we examine findings in the literature on the subcellular location of tau and potential roles tau has in those regions. We intentionally focus on the site-specific phosphorylated patterns involved in governing these properties, which are not well elucidated. To facilitate understanding of these events, we have begun establishing a comprehensive map of tau phosphorylation signatures. Such efforts may clarify tau's diverse physiological functions beyond the axon as well as promote development of novel therapeutic strategies directed against distinct tau subpopulations.
Collapse
Affiliation(s)
- Amanda Schneeweis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
7
|
Gaur A, Rivet L, Mah E, Bawa KK, Gallagher D, Herrmann N, Lanctôt KL. Novel fluid biomarkers for mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2023; 91:102046. [PMID: 37647995 DOI: 10.1016/j.arr.2023.102046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Mild cognitive impairment (MCI) is a well-established prodromal stage of dementia (e.g., Alzheimer's disease) that is often accompanied by early signs of neurodegeneration. To facilitate a better characterization of the underlying pathophysiology, we assessed the available literature to evaluate potential fluid biomarkers in MCI. Peer-reviewed articles that measured cerebrospinal fluid (CSF) and/or peripheral biomarkers of neuronal injury (total-tau [T-tau], neurofilament light chain [NfL], heart-type fatty acid binding protein [HFABP], neuron-specific enolase, ubiquitin C-terminal hydrolase L1) and/or astroglial pathology (glial fibrillary acidic protein [GFAP], S100 calcium-binding protein B) in MCI and healthy controls were assessed. Group differences were summarized by standardized mean differences (SMDs) and 95% confidence intervals calculated using a random-effects model. Heterogeneity was quantified using I2. A total of 107 studies were included in the meta-analysis and 10 studies were qualitatively reviewed. In CSF, concentrations of NfL (SMD = 0.69 [0.56, 0.83]), GFAP (SMD = 0.41 [0.07, 0.75]), and HFABP (SMD = 0.57 [0.26, 0.89]) were elevated in MCI. In blood, increased concentrations of T-tau (SMD = 0.19 [0.09, 0.29]), NfL (SMD = 0.41 [0.32, 0.49]), and GFAP (SMD = 0.39 [0.23, 0.55]) were found in MCI. Heterogeneity that was identified in all comparisons was explored using meta-regression and subgroup analysis. Elevated NfL and GFAP can be detected in both CSF and peripheral blood. Monitoring these biomarkers in clinical settings may provide important insight into underlying neurodegenerative processes in MCI.
Collapse
Affiliation(s)
- Amish Gaur
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Luc Rivet
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ethan Mah
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Kritleen K Bawa
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Damien Gallagher
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON M5T 1R8, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON M5T 1R8, Canada
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
8
|
Solorzano A, Brady M, Bhatt N, Johnson A, Burgess B, Leyva H, Puangmalai N, Jerez C, Wood R, Kayed R, Deane R. Central and peripheral tau retention modulated by an anti-tau antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553682. [PMID: 37645819 PMCID: PMC10462070 DOI: 10.1101/2023.08.17.553682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.
Collapse
|
9
|
Noor Eddin A, Hamsho K, Adi G, Al-Rimawi M, Alfuwais M, Abdul Rab S, Alkattan K, Yaqinuddin A. Cerebrospinal fluid microRNAs as potential biomarkers in Alzheimer's disease. Front Aging Neurosci 2023; 15:1210191. [PMID: 37476007 PMCID: PMC10354256 DOI: 10.3389/fnagi.2023.1210191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Alzheimer's disease (AD) is the leading form of dementia worldwide, but its early detection and diagnosis remain a challenge. MicroRNAs (miRNAs) are a group of small endogenous RNA molecules that regulate mRNA expression. Recent evidence suggests miRNAs play an important role in the five major hallmarks of AD pathophysiology: amyloidogenesis, tauopathy, neuroinflammation, synaptic dysfunction, and neuronal death. Compared to traditional biomarkers of AD, miRNAs display a greater degree of stability in cerebrospinal fluid. Moreover, aberrant changes in miRNA expression can be measured over time to monitor and guide patient treatment. Specific miRNA profiles and combinations may also be used to distinguish AD subjects from normal controls and other causes of dementia. Because of these properties, miRNAs are now being considered as promising and potential biomarkers of AD. This review comprehensively summarizes the diagnostic potential and regulatory roles miRNAs play in AD.
Collapse
|
10
|
Dato C, Micaglio E, Moresco G, Rondinone O, Vitali P, Pappone C, Fontana L, Miozzo M, Bet L. Case report: Chorea and cognitive decline in a young woman: instrumental and genetic assessment of a case originally diagnosed as multiple sclerosis. Front Genet 2023; 14:1129289. [PMID: 37434948 PMCID: PMC10331612 DOI: 10.3389/fgene.2023.1129289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/04/2023] [Indexed: 07/13/2023] Open
Abstract
We describe the case of a young woman affected by debilitating chorea and rapidly progressive cognitive decline. While her original diagnosis was multiple sclerosis, we performed a full instrumental and genetic assessement, though which we identified multiple genetic variants, including a novel variant of the APP gene. We propose some possible mechanisms by which such variants may contribute to neuroinflammation and ultimately lead to this devastating clinical course.
Collapse
Affiliation(s)
- Clemente Dato
- Unit of Neurology and Stroke Unit, IRCCS Policlinico San Donato, Milan, Italy
- Department of Neurology, Azienda Ospedaliera di Melegnano e Della Martesana, Melegnano, Italy
| | - Emanuele Micaglio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giada Moresco
- Medical Genetics, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Ornella Rondinone
- Medical Genetics, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Vitali
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Radiology, IRCCS Policlinico, San Donato, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Luciano Bet
- Unit of Neurology and Stroke Unit, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
11
|
Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and Scope in Neurological Disorders. Neurochem Res 2023; 48:2029-2058. [PMID: 36795184 DOI: 10.1007/s11064-023-03873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.,Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| |
Collapse
|
12
|
Dai CL, Liu F, Iqbal K, Gong CX. Gut Microbiota and Immunotherapy for Alzheimer's Disease. Int J Mol Sci 2022; 23:15230. [PMID: 36499564 PMCID: PMC9741026 DOI: 10.3390/ijms232315230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Currently, no effective treatment is available that can slow or halt the progression of the disease. The gut microbiota can modulate the host immune system in the peripheral and central nervous system through the microbiota-gut-brain axis. Growing evidence indicates that gut microbiota dysbiosis plays an important role in the pathogenesis of AD, and modulation of the gut microbiota may represent a new avenue for treating AD. Immunotherapy targeting Aβ and tau has emerged as the most promising disease-modifying therapy for the treatment of AD. However, the underlying mechanism of AD immunotherapy is not known. Importantly, preclinical and clinical studies have highlighted that the gut microbiota exerts a major influence on the efficacy of cancer immunotherapy. However, the role of the gut microbiota in AD immunotherapy has not been explored. We found that immunotherapy targeting tau can modulate the gut microbiota in an AD mouse model. In this article, we focused on the crosstalk between the gut microbiota, immunity, and AD immunotherapy. We speculate that modulation of the gut microbiota induced by AD immunotherapy may partially underlie the efficacy of the treatment.
Collapse
Affiliation(s)
| | | | | | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314, USA
| |
Collapse
|
13
|
Sun S, Mao J, Wang Y. The Role of Gut Microbiota in the Pathogenesis of Alzheimer’s Disease. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a degenerative disease of the central nervous system, Alzheimer’s disease (AD) is featured by mental and behavioral dysfunction, and progressive memory loss, which is the most common type of dementia. The incidence of AD is increasing as life expectancy is prolonged, but the
pathogenesis of AD remains largely unknown. Recently, the role of gut microbiota in the pathogenesis of AD has drawn increasing attention. The composition of gut microbiota varies across age groups, and the changes in the microbiota metabolites may influence the central nervous system via
the brain-gut axis. So far, it has been confirmed that gut bacteria are involved in various pathogenic mechanisms of AD, including amyloid β-protein deposition, Tau protein hyperphosphorylation, neuroinflammation, oxidative stress injury, increased blood-brain barrier permeability,
neurotransmitter imbalance, reduced generation of brain-derived neurotrophic factor, and insulin resistance. An important direction of research is to investigate the regulation of gut microbiota for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Shaoqiang Sun
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Yingde Wang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| |
Collapse
|
14
|
Samson AD, Shen K, Grady CL, McIntosh AR. Exploration of salient risk factors involved in mild cognitive impairment. Eur J Neurosci 2022; 56:5368-5383. [PMID: 35388543 DOI: 10.1111/ejn.15665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
Mild cognitive impairment (MCI) is a prevalent and complex condition among older adults that often progresses into Alzheimer's disease (AD). Although MCI affects individuals differently, there are specific indicators of risk commonly associated with the development of MCI. The present study explored the prevalence of seven established MCI risk categories within a large sample of older adults with and without MCI. We explored trends across the different diagnostic groups and extracted the most salient risk factors related to MCI using partial least squares. Neuropsychological risk categories showed the largest differences across groups, with the cognitively unimpaired groups outperforming the MCI groups on all measures. Apolipoprotein E4 (ApoE4) carriers were significantly more common among the more severe MCI group, whereas ApoE4 non-carriers were more common in the healthy controls. Participants with subjective and objective cognitive impairment were trending towards AD-like cerebral spinal fluid (CSF) biomarker levels. Increased age, being male and having fewer years of education were identified as important risk factors of MCI. Higher CSF tau levels were correlated with ApoE4 carrier status, age and a decrease in the ability to carry out daily activities across all diagnostic groups. Amyloid beta1-42 CSF concentration was positively correlated with cognitive and memory performance and non-ApoE4 carrier status regardless of diagnostic status. Unlike previous research, poor cardiovascular health or being female had no relation to MCI. Altogether, the results highlighted risk factors that were specific to persons with MCI, findings that will inform future research in healthy aging, MCI and AD.
Collapse
Affiliation(s)
- Alexandria D Samson
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Kelly Shen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cheryl L Grady
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
15
|
Khoury MA, Bahsoun MA, Fadhel A, Shunbuli S, Venkatesh S, Ghazvanchahi A, Mitha S, Chan K, Fornazzari LR, Churchill NW, Ismail Z, Munoz DG, Schweizer TA, Moody AR, Fischer CE, Khademi A. Delusional Severity Is Associated with Abnormal Texture in FLAIR MRI. Brain Sci 2022; 12:600. [PMID: 35624987 PMCID: PMC9139341 DOI: 10.3390/brainsci12050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: This study examines the relationship between delusional severity in cognitively impaired adults with automatically computed volume and texture biomarkers from the Normal Appearing Brain Matter (NABM) in FLAIR MRI. Methods: Patients with mild cognitive impairment (MCI, n = 24) and Alzheimer’s Disease (AD, n = 18) with delusions of varying severities based on Neuropsychiatric Inventory-Questionnaire (NPI-Q) (1—mild, 2—moderate, 3—severe) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were analyzed for this task. The NABM region, which is gray matter (GM) and white matter (WM) combined, was automatically segmented in FLAIR MRI volumes with intensity standardization and thresholding. Three imaging biomarkers were computed from this region, including NABM volume and two texture markers called “Integrity” and “Damage”. Together, these imaging biomarkers quantify structural changes in brain volume, microstructural integrity and tissue damage. Multivariable regression was used to investigate relationships between imaging biomarkers and delusional severities (1, 2 and 3). Sex, age, education, APOE4 and baseline cerebrospinal fluid (CSF) tau were included as co-variates. Results: Biomarkers were extracted from a total of 42 participants with longitudinal time points representing 164 imaging volumes. Significant associations were found for all three NABM biomarkers between delusion level 3 and level 1. Integrity was also sensitive enough to show differences between delusion level 1 and delusion level 2. A significant specified interaction was noted with severe delusions (level 3) and CSF tau for all imaging biomarkers (p < 0.01). APOE4 homozygotes were also significantly related to the biomarkers. Conclusion: Cognitively impaired older adults with more severe delusions have greater global brain disease burden in the WM and GM combined (NABM) as measured using FLAIR MRI. Relative to patients with mild delusions, tissue degeneration in the NABM was more pronounced in subjects with higher delusional symptoms, with a significant association with CSF tau. Future studies are required to establish potential tau-associated mechanisms of increased delusional severity.
Collapse
Affiliation(s)
- Marc A. Khoury
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
| | - Mohamad-Ali Bahsoun
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Ayad Fadhel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
| | - Shukrullah Shunbuli
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
| | - Saanika Venkatesh
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | - Abdollah Ghazvanchahi
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Samir Mitha
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Karissa Chan
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Luis R. Fornazzari
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - David G. Munoz
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Alan R. Moody
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada;
| | - Corinne E. Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - April Khademi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
16
|
Wu X, Li R, Lai T, Tao G, Liu F, Li N. Universal Nanoparticle Counting Platform for Tetraplexed Biomarkers by Integrating Immunorecognition and Nucleic Acid Hybridization in One Assay. Anal Chem 2021; 93:16873-16879. [PMID: 34874148 DOI: 10.1021/acs.analchem.1c03858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a simple and universal strategy for simultaneous quantification of proteins and nucleic acid biomarkers in one assay is valuable, particularly for disease diagnosis and pathogenesis studies. Herein, a universal and amplification-free quantum dot-doped nanoparticle counting platform was developed by integrating immunorecognition and nucleic acid hybridization in one assay. The assay can be performed at room temperature, which is friendly for routine analysis. Multiplexed biomarkers associated with Alzheimer's disease (AD) including proteins and nucleic acids were detected. For simultaneous detection of tetraplex biomarkers, the assay for amyloid β 1-42 (Aβ42), tau protein, miR-146a, and miR-138 presented limit of detection values of 250 pg/mL, 55.7 pg/mL, 52.5 pM, and 0.62 pM, respectively. By spiking all the above four biomarkers in one artificial cerebrospinal fluid sample, the recoveries were found to be 94.7-117.2%. Using tau protein as the model, four measurements in 88 days presented a coefficient of variance of 7.5%. The proposed platform for the multiplexed assay of proteins and nucleic acids presents the universality, reasonable sensitivity, and repeatability, which may open a new door for early diagnosis and pathogenesis research for AD and other diseases.
Collapse
Affiliation(s)
- Xi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Education Department of Heilongjiang Province, Harbin 150001, China
| | - Rongsheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Datta D, Bangirana P, Opoka RO, Conroy AL, Co K, Bond C, Zhao Y, Kawata K, Saykin AJ, John CC. Association of Plasma Tau With Mortality and Long-term Neurocognitive Impairment in Survivors of Pediatric Cerebral Malaria and Severe Malarial Anemia. JAMA Netw Open 2021; 4:e2138515. [PMID: 34889945 PMCID: PMC8665370 DOI: 10.1001/jamanetworkopen.2021.38515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Cerebral malaria (CM) and severe malarial anemia (SMA) are associated with persistent neurocognitive impairment (NCI) among children in Africa. Identifying blood biomarkers of acute brain injury that are associated with future NCI could allow early interventions to prevent or reduce NCI in survivors of severe malaria. OBJECTIVE To investigate whether acutely elevated tau levels are associated with future NCI in children after CM or SMA. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted at Mulago National Referral Hospital in Kampala, Uganda, from March 2008 to October 2015. Children aged 1.5 to 12 years with CM (n = 182) or SMA (n = 162) as well as community children (CC; n = 123) were enrolled in the study. Data analysis was conducted from January 2020 to May 2021. EXPOSURE CM or SMA. MAIN OUTCOMES AND MEASURES Enrollment plasma tau levels were measured using single-molecule array detection technology. Overall cognition (primary) and attention and memory (secondary) z scores were measured at 1 week and 6, 12, and 24 months after discharge using tools validated in Ugandan children younger than 5 years or 5 years and older. RESULTS A total of 467 children were enrolled. In the CM group, 75 (41%) were girls, and the mean (SD) age was 4.02 (1.92) years. In the SMA group, 59 (36%) were girls, and the mean (SD) age was 3.45 (1.60) years. In the CC group, 65 (53%) were girls, and the mean (SD) age was 3.94 (1.92) years. Elevated plasma tau levels (>95th percentile in CC group; >6.43 pg/mL) were observed in 100 children (55%) with CM and 69 children (43%) with SMA (P < .001). In children with CM who were younger than 5 years, elevated plasma tau levels were associated with increased mortality (odds ratio [OR], 3.06; 95% CI, 1.01-9.26; P = .048). In children with CM who were younger than 5 years at both CM episode and follow-up neurocognitive testing, plasma tau levels (log10 transformed) were associated with worse overall cognition scores over 24-month follow-up (β = -0.80; 95% CI, -1.32 to -0.27; P = .003). In children with CM who were younger than 5 years at CM episode and 5 years or older at follow-up neurocognitive testing, plasma tau was associated with worse scores in attention (β = -1.08; 95% CI, -1.79 to -0.38; P = .003) and working memory (β = -1.39; 95% CI, -2.18 to -0.60; P = .001). CONCLUSIONS AND RELEVANCE In this study, plasma tau, a marker of injury to neuronal axons, was elevated in children with CM or SMA and was associated with mortality and persistent NCI in children with CM younger than 5 years.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Katrina Co
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Caitlin Bond
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Yi Zhao
- Department of Biostatistics and Health Sciences, Indiana University School of Medicine, Indianapolis
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
- Division of Global Pediatrics, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
18
|
Novel Electrochemical Molecularly Imprinted Polymer-Based Biosensor for Tau Protein Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel electrochemical biosensor based on a molecularly imprinted polymer (MIP) was developed for the impedimetric determination of Tau protein, a biomarker of Alzheimer’s disease (AD). Indeed, a recent correlation between AD symptoms and the presence of Tau proteins in their aggregated form made hyperphosphorylated Tau protein (Tangles) a promising biomarker for Alzheimer’s diagnosis. The MIP was directly assembled on a screen-printed carbon electrode (C-SPE) and prepared by electropolymerization of 3-aminophenol (AMP) in the presence of the protein template (p-Tau-441) using cyclic voltammetry. The p-Tau-441 protein bound to the polymeric backbone was digested by the action of the proteolytic activity of proteinase K in urea and then washed away to create vacant sites. The performances of the corresponding imprinted and non-imprinted electrodes were evaluated by electrochemical impedance spectroscopy. The detection limit of the MIP-based sensors was 0.02 pM in PBS buffer pH 5.6. Good selectivity and good results in serum samples were obtained with the developed platform. The biosensor described in this work is a potential tool for screening Tau protein on-site and an attractive complement to clinically established methodologies methods as it is easy to fabricate, has a short response time and is inexpensive.
Collapse
|
19
|
Díaz-Román M, Pulopulos MM, Baquero M, Salvador A, Cuevas A, Ferrer I, Ciopat O, Gómez E. Obstructive sleep apnea and Alzheimer's disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep 2021; 44:5868470. [PMID: 32728730 DOI: 10.1093/sleep/zsaa133] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that sleep-breathing disorders, and especially obstructive sleep apnea (OSA), can be observed in patients with a higher risk of progression to Alzheimer's disease (AD). Recent evidence indicates that cerebrospinal fluid (CSF) AD-biomarkers are associated with OSA. In this study, we investigated these associations in a sample of patients with mild cognitive impairment (MCI), a condition that is considered the first clinical phase of AD, when patients showed biomarkers consistent with AD pathology. A total of 57 patients (mean age = 66.19; SD = 7.13) with MCI were included in the study. An overnight polysomnography recording was used to assess objective sleep parameters (i.e. apnea/hypopnea index [AHI], total sleep time, sleep efficiency, sleep latency, arousal index, awakening, stage 1, 2, and slow-wave sleep and rapid eye movement sleep, periodic limb movement index, O2 saturation during sleep, and percentage of time O2 saturation <90%). Phosphorylated-tau (P-tau), total-tau (T-tau), and amyloid-beta 42 (Aβ42) were measured in CSF. Unadjusted correlation analyses showed that a higher AHI (reflecting higher OSA severity) was related to higher P-tau and T-tau (both results remained significant after Bonferroni correction, p = 0.001). Importantly, these associations were observed even after adjusting for potential confounders (i.e. age, sex, body mass index, sleep medication, smoking, hypertension, and heart disease). Although more research is needed to establish a causal link, our findings provide evidence that OSA could be related to the pathophysiological mechanisms involved in neurodegeneration in MCI patients.
Collapse
Affiliation(s)
- Mónica Díaz-Román
- Sleep Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, Lluís Alcanyís Hospital, Xàtiva, Spain
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Gent, Belgium.,Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, University of Valencia, IDOCAL, Valencia, Spain
| | - Miguel Baquero
- Cognitive Disorders Unit, Department of Neurology La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, University of Valencia, IDOCAL, Valencia, Spain
| | - Ana Cuevas
- Cognitive Disorders Unit, Department of Neurology La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Inés Ferrer
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, University of Valencia, IDOCAL, Valencia, Spain.,Cognitive Disorders Unit, Department of Neurology La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Oana Ciopat
- Sleep Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Enriqueta Gómez
- Sleep Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
20
|
On-Chip Detection of the Biomarkers for Neurodegenerative Diseases: Technologies and Prospects. MICROMACHINES 2020; 11:mi11070629. [PMID: 32605280 PMCID: PMC7407176 DOI: 10.3390/mi11070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD) and glaucoma are all regarded as neurodegenerative diseases (neuro-DDs) because these diseases are highly related to the degeneration loss of functions and death of neurons with aging. The conventional diagnostic methods such as neuroimaging for these diseases are not only expensive but also time-consuming, resulting in significant financial burdens for patients and public health challenge for nations around the world. Hence early detection of neuro-DDs in a cost-effective and rapid manner is critically needed. For the past decades, some chip-based detection technologies have been developed to address this challenge, showing great potential in achieving point-of-care (POC) diagnostics of neuro-DDs. In this review, chip-based detection of neuro-DDs' biomarkers enabled by different transducing mechanisms is evaluated.
Collapse
|
21
|
Pereira M, Marques AC, Oliveira D, Martins R, Moreira FTC, Sales MGF, Fortunato E. Paper-Based Platform with an In Situ Molecularly Imprinted Polymer for β-Amyloid. ACS OMEGA 2020; 5:12057-12066. [PMID: 32548384 PMCID: PMC7271027 DOI: 10.1021/acsomega.0c00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people worldwide. Currently, an easy and effective form of diagnosis is missing, which significantly hinders a possible improvement of the patient's quality of life. In this context, biosensors emerge as a future solution, opening the doors for preventive medicine and allowing the premature diagnosis of numerous pathologies. This work presents a pioneering biosensor that combines a bottom-up design approach using paper as a platform for the electrochemical recognition of peptide amyloid β-42 (Aβ-42), a biomarker for AD present in blood, associated with visible differences in the brain tissue and responsible for the formation of senile plaques. The sensor layer relies on a molecularly imprinted polymer as a biorecognition element, created on the carbon ink electrode's surface by electropolymerizing a mixture of the target analyte (Aβ-42) and a monomer (O-phenylenediamine) at neutral pH 7.2. Next, the template molecule was removed from the polymeric network by enzymatic and acidic treatments. The vacant sites so obtained preserved the shape of the imprinted protein and were able to rebind the target analyte. Morphological and chemical analyses were performed in order to control the surface modification of the materials. The analytical performance of the biosensor was evaluated by an electroanalytical technique, namely, square wave voltammetry. For this purpose, the analytical response of the biosensor was tested with standard solutions ranging from 0.1 ng/mL to 1 μg/mL of Aβ-42. The linear response of the biosensor went down to 0.1 ng/mL. Overall, the developed biosensor offered numerous benefits, such as simplicity, low cost, reproducibility, fast response, and repeatability less than 10%. All together, these features may have a strong impact in the early detection of AD.
Collapse
Affiliation(s)
- Marta
V. Pereira
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana C. Marques
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Daniela Oliveira
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
| | - Rodrigo Martins
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Felismina T. C. Moreira
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
| | - M. Goreti F. Sales
- BioMark,
Sensor Research/ISEP, School of Engineering, Polytechnic Institute
Porto 4249-015 Porto, Portugal
- CEB,
Centre of Biological Engineering Minho University, 4710-957 Braga, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT,
Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
23
|
Song C, Deng P, Que L. Rapid multiplexed detection of beta-amyloid and total-tau as biomarkers for Alzheimer's disease in cerebrospinal fluid. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1845-1852. [PMID: 29857195 DOI: 10.1016/j.nano.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
Abstract
This paper reports the multiplexed monitoring of two promising biomarkers, beta-amyloid (Aβ42) and total tau (T-tau), in both buffer and cerebrospinal fluid (CSF) for Alzheimer's disease (AD) using label-free optical nanosensors. It has been found that 7.8 pg/ml of Aβ42 in buffer and 15.6 pg/ml of T-au in buffer can be readily detected with very good specificity. Based on our measurements, the purchased CSF itself contains Aβ42, whose concentration is estimated to be about 400 pg/ml. Aβ42 and T-tau in the mixtures of Aβ42 and T-tau spiked in CSF have been detected successfully, indicating the feasibility of the optical nanosensors to detect these biomarkers in clinical samples. For the measurements, only a small amount (~1 μl) of the samples is required. This type of sensor is suitable for point-of-care application to diagnose the AD due to its low cost and ease-of-operation.
Collapse
Affiliation(s)
- Chao Song
- Electrical and Computer Engineering Department, Iowa State University, USA
| | - Pan Deng
- Electrical and Computer Engineering Department, Iowa State University, USA
| | - Long Que
- Electrical and Computer Engineering Department, Iowa State University, USA.
| |
Collapse
|
24
|
Takeda S, Commins C, DeVos SL, Nobuhara CK, Wegmann S, Roe AD, Costantino I, Fan Z, Nicholls SB, Sherman AE, Trisini Lipsanopoulos AT, Scherzer CR, Carlson GA, Pitstick R, Peskind ER, Raskind MA, Li G, Montine TJ, Frosch MP, Hyman BT. Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Ann Neurol 2016; 80:355-67. [PMID: 27351289 DOI: 10.1002/ana.24716] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/04/2016] [Accepted: 06/26/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or, in fact, a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in the postmortem AD brain and can be taken up by neurons and seed aggregates. METHODS We have examined seeding and uptake properties of brain extracellular tau from various sources, including interstitial fluid (ISF) and CSF from an AD transgenic mouse model and postmortem ventricular and antemortem lumbar CSF from AD patients. RESULTS We found that brain ISF and CSF tau from the AD mouse model can be taken up by cells and induce intracellular aggregates. Ventricular CSF from AD patients contained a rare HMW tau species that exerted a higher seeding activity. Notably, the HMW tau species was also detected in lumbar CSF from AD patients, and its levels were significantly elevated compared to control subjects. HMW tau derived from CSF of AD patients was seed competent in vitro. INTERPRETATION These findings suggest that CSF from an AD brain contains potentially bioactive HMW tau species, giving new insights into the role of CSF tau and biomarker development for AD. Ann Neurol 2016;80:355-367.
Collapse
Affiliation(s)
- Shuko Takeda
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.
| | - Caitlin Commins
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Sarah L DeVos
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Chloe K Nobuhara
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Susanne Wegmann
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Allyson D Roe
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Isabel Costantino
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Zhanyun Fan
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Samantha B Nicholls
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Alexis E Sherman
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | | | - Clemens R Scherzer
- Neurogenomics Lab and Parkinson Personalized Medicine Program, Harvard Medical School and Brigham & Women's Hospital, Cambridge, MA
| | | | | | - Elaine R Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Murray A Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Ge Li
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Thomas J Montine
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Matthew P Frosch
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Bradley T Hyman
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| |
Collapse
|
25
|
Haris M, Yadav SK, Rizwan A, Singh A, Cai K, Kaura D, Wang E, Davatzikos C, Trojanowski JQ, Melhem ER, Marincola FM, Borthakur A. T1rho MRI and CSF biomarkers in diagnosis of Alzheimer's disease. NEUROIMAGE-CLINICAL 2015; 7:598-604. [PMID: 25844314 PMCID: PMC4375645 DOI: 10.1016/j.nicl.2015.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/14/2023]
Abstract
In the current study, we have evaluated the performance of magnetic resonance (MR) T1rho (T1ρ) imaging and CSF biomarkers (T-tau, P-tau and Aβ-42) in characterization of Alzheimer's disease (AD) patients from mild cognitive impairment (MCI) and control subjects. With informed consent, AD (n = 27), MCI (n = 17) and control (n = 17) subjects underwent a standardized clinical assessment and brain MRI on a 1.5-T clinical-scanner. T1ρ images were obtained at four different spin-lock pulse duration (10, 20, 30 and 40 ms). T1ρ maps were generated by pixel-wise fitting of signal intensity as a function of the spin-lock pulse duration. T1ρ values from gray matter (GM) and white matter (WM) of medial temporal lobe were calculated. The binary logistic regression using T1ρ and CSF biomarkers as variables was performed to classify each group. T1ρ was able to predict 77.3% controls and 40.0% MCI while CSF biomarkers predicted 81.8% controls and 46.7% MCI. T1ρ and CSF biomarkers in combination predicted 86.4% controls and 66.7% MCI. When comparing controls with AD, T1ρ predicted 68.2% controls and 73.9% AD, while CSF biomarkers predicted 77.3% controls and 78.3% for AD. Combination of T1ρ and CSF biomarkers improved the prediction rate to 81.8% for controls and 82.6% for AD. Similarly, on comparing MCI with AD, T1ρ predicted 35.3% MCI and 81.9% AD, whereas CSF biomarkers predicted 53.3% MCI and 83.0% AD. Collectively CSF biomarkers and T1ρ were able to predict 59.3% MCI and 84.6% AD. On receiver operating characteristic analysis T1ρ showed higher sensitivity while CSF biomarkers showed greater specificity in delineating MCI and AD from controls. No significant correlation between T1ρ and CSF biomarkers, between T1ρ and age, and between CSF biomarkers and age was observed. The combined use of T1ρ and CSF biomarkers have promise to improve the early and specific diagnosis of AD. Furthermore, disease progression form MCI to AD might be easily tracked using these two parameters in combination. Increased T1rho was observed in MCI and AD compared to controls. Increased T-tau and P-tau and decreased Aβ1-42 were observed in MCI and AD. Combined biomarkers have promise to improve early and specific diagnosis of AD. MCI to AD progression might be tracked using these two biomarkers in combination.
Collapse
Key Words
- AD, Alzheimer's disease
- Alzheimer's disease
- Aβ1-42, amyloid beta 42
- CSF biomarkers
- CSF, cerebrospinal fluid
- FOV, field of view
- GM, gray matter
- MCI, mild cognitive impairment
- MMSE, Mini-Mental State Examination
- MPRAGE, magnetization prepared rapid acquisition gradient-echo
- MRI, magnetic resonance imaging
- MTL, medial temporal lobe
- Medial temporal lobe
- Mild cognitive impairment
- PET, positron emission tomography
- ROC, receiver operating characteristic.
- T-tau, total tau
- T1rho
- T1ρ, T1rho
- TE, echo time
- TI, inversion time
- TR, repetition time
- TSL, total spin lock
- WM, white matter
Collapse
Affiliation(s)
- Mohammad Haris
- Research Branch, Sidra Medical and Research Center, Doha, Qatar ; Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Santosh K Yadav
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Arshi Rizwan
- All India Institute of Medical Science, Ansari Nagar East, New Delhi, Delhi 110029, India
| | - Anup Singh
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA ; Center for Biomedical Engineering, Indian institute of Technology, New Delhi, India
| | - Kejia Cai
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA ; Center for Magnetic Resonance Research, Radiology Department, University of Illinois at Chicago, IL, USA
| | - Deepak Kaura
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Ena Wang
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology & Lab Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arijitt Borthakur
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Dyrba M, Barkhof F, Fellgiebel A, Filippi M, Hausner L, Hauenstein K, Kirste T, Teipel SJ. Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data. J Neuroimaging 2015; 25:738-47. [PMID: 25644739 DOI: 10.1111/jon.12214] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI). METHODS We applied a Support Vector Machine (SVM) classifier to DTI and volumetric magnetic resonance imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42-), 35 positive MCI subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity (MD), and mode of anisotropy (MO) maps. For comparison, we studied classification based on gray matter (GM) and WM volume. RESULTS We obtained accuracies of up to 68% for MO and 63% for GM volume when it came to distinguishing between MCI-Aβ42- and MCI-Aβ42+. When it came to separating MCI-Aβ42+ from HC we achieved an accuracy of up to 77% for MD and a significantly lower accuracy of 68% for GM volume. The accuracy of multimodal classification was not higher than the accuracy of the best single modality. CONCLUSIONS Our results suggest that DTI data provide better prediction accuracy than GM volume in predementia AD.
Collapse
Affiliation(s)
- Martin Dyrba
- German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Andreas Fellgiebel
- Department of Psychiatry, University Medical Center Mainz, Mainz, Germany
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Thomas Kirste
- Mobile Multimedia Information Systems Group, University of Rostock, Rostock, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases, Rostock, Germany.,Clinic for Psychosomatic and Psychotherapeutic Medicine, University Medicine Rostock, Rostock, Germany
| | | |
Collapse
|
27
|
Golomb J, Kluger A, Ferris SH. Mild cognitive impairment: historical development and summary of research. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034453 PMCID: PMC3181818 DOI: 10.31887/dcns.2004.6.4/jgolomb] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review article broadly traces the historical development, diagnostic criteria, clinical and neuropathological characteristics, and treatment strategies related to mild cognitive impairment (MCI), The concept of MCI is considered in the context of other terms that have been developed to characterize the elderly with varying degrees of cognitive impairment Criteria based on clinical global scale ratings, cognitive test performance, and performance on other domains of functioning are discussed. Approaches employing clinical, neuropsychological, neuroimaging, biological, and molecular genetic methodology used in the validation of MCI are considered, including results from cross-sectional, longitudinal, and postmortem investigations. Results of recent drug treatment studies of MCI and related methodological issues are also addressed.
Collapse
Affiliation(s)
- James Golomb
- Department of Neurology, William & Sylvia Silberstein Institute for Aging and Dementia, New York University Medical Center, New York, NY
| | | | | |
Collapse
|