1
|
Hallas-Møller M, Burow M, Henrissat B, Johansen KS. Cryptococcus neoformans: plant-microbe interactions and ecology. Trends Microbiol 2024; 32:984-995. [PMID: 38519353 DOI: 10.1016/j.tim.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
While the opportunistic human pathogens Cryptococcus neoformans and Cryptococcus gattii are often isolated from plants and plant-related material, evidence suggests that these Cryptococcus species do not directly infect plants. Studies find that plants are important for Cryptococcus mating and dispersal. However, these studies have not provided enough detail about how plants and these fungi interact, especially in ways that could show the fungi are capable of causing disease. This review synthesizes recent findings from studies utilizing different plant models associated with the ecology of C. neoformans and C. gattii. Unanswered questions about their environmental role are highlighted. Overall, current research indicates that Cryptococcus utilizes plants as a substrate rather than harming them, arguing against Cryptococcus as a genuine plant pathogen. We hypothesize that plants represent reservoirs that aid dispersal, not hosts vulnerable to infection.
Collapse
Affiliation(s)
- Magnus Hallas-Møller
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kgs, Lyngby, Denmark
| | - Katja Salomon Johansen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
2
|
Dornelas JCM, Paixão VM, Carmo PHF, Costa MC, Gomes ECQ, de Resende-Stoianoff MA, Santos DA. Influence of the agrochemical benomyl on Cryptococcus gattii-plant interaction in vitro and in vivo. Braz J Microbiol 2024; 55:2463-2471. [PMID: 38963475 PMCID: PMC11405651 DOI: 10.1007/s42770-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.
Collapse
Affiliation(s)
- João C M Dornelas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Vivian M Paixão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Paulo H F Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Eldon C Q Gomes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Maria Aparecida de Resende-Stoianoff
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
3
|
Benedict K, Smith DJ, Gold JAW. Epidemiology of Cryptococcosis Among Patients With Commercial Health Insurance and Patients With Medicaid, United States, 2016-2022. Open Forum Infect Dis 2024; 11:ofae260. [PMID: 38798897 PMCID: PMC11127481 DOI: 10.1093/ofid/ofae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
In 2 large health insurance claims databases, cryptococcosis prevalence was 3.4 cases per 100 000 commercially insured patients and 6.5 per 100 000 Medicaid patients. Prevalence was higher among males, non-Hispanic Black patients, and residents of the Southern United States, likely reflecting the disproportionate burden of HIV in these populations.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dallas J Smith
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Omura M, Satoh K, Tamura T, Komori A, Makimura K. Molecular epidemiological investigation of Cryptococcus spp. carried by captive koalas ( Phascolarctos cinereus) in Japan. Microbiol Spectr 2024; 12:e0290323. [PMID: 38411053 PMCID: PMC11210188 DOI: 10.1128/spectrum.02903-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause cryptococcosis, a systemic mycosis that infects a wide range of species. Recent molecular biological investigations have allowed for the genotyping of these species, providing more detailed information on their pathogenicity and infection routes. Koalas (Phascolarctos cinereus) are frequently colonized by Cryptococcus spp., but molecular epidemiological studies have yet to be conducted in Japan. Here, we conducted multi-locus sequence typing (MLST) analysis on Cryptococcus spp. colonization isolates obtained from all koalas kept in seven parks across Japan. Out of 46 koalas examined, 10 (22%) were positive for C. gattii and 3 (6.5%) were positive for C. neoformans. All C. gattii isolates belonged to molecular type VGI and were either sequence type (ST) 51 or a novel ST, and all C. neoformans isolates belonged to molecular type VNI and ST23. Despite the frequent movement of koalas between parks, the STs were relatively park-specific, suggesting that the floor of the rearing barns is a source of infection and may act as a reservoir. MLST analysis confirmed that C. gattii was transported, established, and spread by koalas in areas where C. gattii was not originally present. MLST analysis is considered useful in assessing the pathogenicity and tracing the transmission routes of Cryptococcus spp. carried by koalas.IMPORTANCEThis is the first study to conduct a multi-locus sequence typing analysis on Cryptococcus spp. carried by captive koalas in Japan. Cryptococcosis remains a globally high-fatality fungal infection in humans, and captive koalas are known to carry a high percentage of Cryptococcus spp. Through this research, the molecular types and transmission routes of Cryptococcus spp. carried by koalas have been elucidated, revealing the potential role of enclosure flooring as a reservoir. It has been confirmed that Cryptococcus gattii, which is not endemic in Japan, has become established through koalas and is spreading to new individuals in Japan. This study is believed to provide valuable insights into koala conservation and contribute to the One Health approach for Cryptococcosis, a zoonotic infection.
Collapse
Affiliation(s)
- Miki Omura
- Laboratory of Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Kazuo Satoh
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Takashi Tamura
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Aya Komori
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Koichi Makimura
- Laboratory of Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| |
Collapse
|
5
|
Viveiro LRDG, Rehem AR, Santos ELDS, do Carmo PHF, Junqueira JC, Scorzoni L. In vitro effects of selective serotonin reuptake inhibitors on Cryptococcus gattii capsule and biofilm. Pathog Dis 2024; 82:ftae001. [PMID: 38204138 PMCID: PMC10849314 DOI: 10.1093/femspd/ftae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Infections caused by Cryptococcus gattii mainly affect immunocompetent individuals and the treatment presents important limitations. This study aimed to validate the efficacy of selective serotonin reuptake inhibitors (SSRI), fluoxetine hydrochloride (FLH), and paroxetine hydrochloride (PAH) in vitro against C. gattii. The antifungal activity of SSRI using the microdilution method revealed a minimal inhibitory concentration (MIC) of 31.25 µg/ml. The combination of FLH or PAH with amphotericin B (AmB) was analyzed using the checkerboard assay and the synergistic effect of SSRI in combination with AmB was able to reduce the SSRI or AmB MIC values 4-8-fold. When examining the effect of SSRI on the induced capsules, we observed that FLH and PAH significantly decreased the size of C. gattii capsules. In addition, the effects of FLH and PAH were evaluated in biofilm biomass and viability. The SSRI were able to reduce biofilm biomass and biofilm viability. In conclusion, our results indicate the use of FLH and PAH exhibited in vitro anticryptococcal activity, representing a possible future alternative for the cryptococcosis treatment.
Collapse
Affiliation(s)
- Letícia Rampazzo da Gama Viveiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São Paulo 12245-000, Brazil
| | - Amanda Rodrigues Rehem
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São Paulo 12245-000, Brazil
| | - Evelyn Luzia De Souza Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São Paulo 12245-000, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São Paulo 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São Paulo 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São Paulo 12245-000, Brazil
- Programa de Pós-Graduação em Enfermagem, Universidade de Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| |
Collapse
|
6
|
Singh A, Singh SK. Direct antimicrobial effects of chemokines on Cryptococcus spp, with special emphasis on a 'CXC' chemokine. J Mycol Med 2023; 33:101415. [PMID: 37549615 DOI: 10.1016/j.mycmed.2023.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Cryptococcus species are ingenious human pathogens that are widespread globally. They continue to cause over 200,000 deaths per year. Presently due to the rise in resistance and therapy failure, it is necessary to shift the focus to an alternate therapeutic strategy against this pathogen. One promising approach is to emphasize the host defense system in order to develop more precise and customized treatment strategies. In this regard, research has revealed that interferon-γ-inducible CXCL10 chemokine, amongst other chemokines spanning both CXC and CC categories, has a direct killing effect in vitro against Cryptococcus neoformans and Cryptococcus gattii, with a significantly greater microbicidal effect against the former. Moreover, when CXCL10 is used in combination with CCL5, there is a significant reduction in the survival of C. gattii at normal-serum level concentration, indicating a previously unreported synergistic effect of these two chemokines. Confocal and STED microscopic studies have demonstrated that CXCL10 has both cell wall/membrane and intracellular targets against this fungus. These findings present new possibilities for developing chemokine-derived small molecule antifungals and may represent a step forward in creating precision medicine tailored to each patient.
Collapse
Affiliation(s)
- Arpita Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
7
|
Serna-Espinosa BN, Forero-Castro M, Morales-Puentes ME, Parra-Giraldo CM, Escandón P, Sánchez-Quitian ZA. First report of environmental isolation of Cryptococcus and Cryptococcus-like yeasts from Boyacá, Colombia. Sci Rep 2023; 13:15755. [PMID: 37735454 PMCID: PMC10514045 DOI: 10.1038/s41598-023-41994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
The Cryptococcus genus comprises more than 100 species, of which C. neoformans and C. gattii are the leading cause of cryptococcosis. The distribution of C. gattii and C. neoformans species complexes has been extensively studied and widely reported globally. Other species such as Naganishia albida, Papiliotrema laurentii, and Papiliotrema flavescens have been reported as pathogenic yeasts. Since there are no reports of environmental isolation in the Boyacá region (Colombia), this study aimed to isolate and characterize Cryptococcus and Cryptococcus-like yeasts from pigeon feces, Eucalyptus, and olive trees distributed in the municipalities of Tunja and Ricaute Alto. The environmental data was recovered, and the isolations obtained were identified by microscopy, biochemical test, MALDI-TOF MS, URA5-RFLP, and sequencing of the ITS and LSU loci. For the 93 pigeon dropping samples collected in Tunja, 23 yielded to C. neoformans, 3 to N. globosa, 2 N. albida and 1 to P. laurentii. Of the 1188 samples collected from olive trees, 17 (1.43%) positive samples were identified as C. gattii species complex (4), C. neoformans species complex (2), P. laurentii (3), N. albida (2), N. globosa (5) and P. flavescens (1). Likewise, specimens of C. neoformans presented molecular type VNI and molecular type VNII; for C. gattii the molecular types found were VGIII and one VGIV by URA5-RFLP but VGIII by MALDI-TOF and sequencing of the ITS and LSU. Therefore, it can be concluded that the species of Cryptococcus, Naganishia and Papiliotrema genera, are present in the environment of Boyacá, and show a predilection for climate conditions that are typical of this region.
Collapse
Affiliation(s)
- Briggith-Nathalia Serna-Espinosa
- Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - Maribel Forero-Castro
- Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - María Eugenia Morales-Puentes
- Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Calle 26 # 51-20, Bogotá, D.C., Colombia
| | - Zilpa Adriana Sánchez-Quitian
- Grupo de Investigación Gestión Ambiental, Facultad de Ciencias e Ingeniería, Departamento de Biología y Microbiología, Universidad de Boyacá, Carrera 2ª Este No. 64-169, Tunja, Boyacá, Colombia.
| |
Collapse
|
8
|
Maciel-Ramos E, Castillejo-Adalid LA, Rodríguez-Hernández JJ, Vázquez-Lima MG, López-Félix BE, Rodríguez-Florido MA. Pituitary cryptococcoma in an immunocompetent patient with panhypopituitarism: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE2372. [PMID: 37158394 PMCID: PMC10550688 DOI: 10.3171/case2372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cryptococcosis is the most common mycosis of the central nervous system. It may develop in immunocompetent and immunocompromised patients, the latter representing most cases. The most common presentation of the disease is meningitis, whereas intra-axial lesions in the form of cryptococcoma are less frequent with a greater tendency to present in immunocompetent patients. The presentation of pituitary cryptococcoma is exceptional. To the best of the authors' knowledge, there is only one case published in the medical literature. OBSERVATIONS The authors present the case of a 30-year-old male without a relevant medical history. He was referred to our center with a pituitary mass on magnetic resonance imaging and panhypopituitarism. The patient underwent endonasal endoscopic transsphenoidal tumor resection, and a histopathological diagnosis of pituitary cryptococcoma was made. Medical management included fluconazole and intravenous amphotericin. LESSONS This case underscores the neurosurgical and medical management of an exceptional clinical presentation of pituitary cryptococcoma in an immunocompetent patient. To the best of the authors' knowledge, there is only one case published in the medical literature. This case provides an invaluable review of the clinical, imaging, and therapeutic considerations regarding this exceptional clinical entity.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco A. Rodríguez-Florido
- Pathology, Specialties Hospital of the National Medical Center “Siglo XXI,” Mexican Social Security Institute, Mexico City, Mexico
| |
Collapse
|
9
|
Wu PH, Chen CH, Lin YT, Ao Y, Lin KH, Hsih WH, Chou CH, Chi CY, Ho MW, Hsueh PR. Cryptococcus tetragattii Meningitis Associated with Travel, Taiwan. Emerg Infect Dis 2023; 29:447-448. [PMID: 36692971 PMCID: PMC9881798 DOI: 10.3201/eid2902.221425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Meningitis caused by Cryptococcus tetragattii fungus is rare and has been found in specific geographic regions. We report a case of meningitis caused by C. tetragattii (molecular type VGIV) in an immunocompetent patient in Taiwan. The patient had traveled to Egypt and was positive for granulocyte-macrophage colony-stimulating factor autoantibody.
Collapse
|
10
|
Robin TB, Rani NA, Ahmed N, Prome AA, Bappy MNI, Ahmed F. Identification of novel drug targets and screening potential drugs against Cryptococcus gattii: An in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
11
|
Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SCA. Pulmonary Cryptococcosis. J Fungi (Basel) 2022; 8:1156. [PMID: 36354923 PMCID: PMC9696922 DOI: 10.3390/jof8111156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Pulmonary cryptococcosis describes an invasive lung mycosis caused by Cryptococcus neoformans or Cryptococcus gattii complex. It is often a high-consequence disease in both immunocompromised and immunocompetent populations, and may be misdiagnosed as pulmonary malignancy, leading to a delay in therapy. Epidemiology follows that of cryptococcal meningoencephalitis, with C. gattii infection more common in certain geographic regions. Diagnostic tools include histopathology, microscopy and culture, and the detection of cryptococcal polysaccharide antigen or Cryptococcus-derived nucleic acids. All patients with lung cryptococcosis should have a lumbar puncture and cerebral imaging to exclude central nervous system disease. Radiology is key, both as an adjunct to laboratory testing and as the initial means of detection in asymptomatic patients or those with non-specific symptoms. Pulmonary cryptococcomas (single or multiple) may also be associated with disseminated disease and/or cryptococcal meningitis, requiring prolonged treatment regimens. Optimal management for severe disease requires extended induction (amphotericin B and flucytosine) and consolidation therapy (fluconazole) with close clinical monitoring. Susceptibility testing is of value for epidemiology and in regions where relatively high minimum inhibitory concentrations to azoles (particularly fluconazole) have been noted. Novel diagnostic tools and therapeutic agents promise to improve the detection and treatment of cryptococcosis, particularly in low-income settings where the disease burden is high.
Collapse
Affiliation(s)
- Annaleise R. Howard-Jones
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sparks
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David Pham
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Justin Beardsley
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Wembabazi A, Nassozi DR, Akot E, Ochola TI, Kweka PT, Katamu NT, Meya D, Achan B. Prevalence of Cryptococcus gattii in Ugandan HIV-infected patients presenting with cryptococcal meningitis. PLoS One 2022; 17:e0270597. [PMID: 35839221 PMCID: PMC9286220 DOI: 10.1371/journal.pone.0270597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
Cryptococcal meningitis (CM) is a life threatening disease and leading cause of opportunistic fungal-related mortality in HIV/AIDS. Most CM infections are caused by C. neoformans species complexes but the prevalence of Cryptococcus gattii species complexes in Uganda is unknown however, it is known in a few other parts of Africa. We estimated the prevalence of C. gattii in patients living with HIV and a diagnosis of cryptococcal meningitis in Uganda.
Methods
Cryptococcus isolates (n = 200) obtained from cerebrospinal fluid of patients with CM recruited at the Infectious Diseases Institute, Kampala, Uganda, were tested by phenotypic methods. The Cryptococcus isolates were sub-cultured on Sabouraud Dextrose Agar plates for 48 hours. The yeast colonies were examined by India ink stain, urea hydrolysis, and C. gattii was identified by blue pigmentation on CGB agar. The results were analyzed for frequency of C. gattii. Patient demographic characteristics were collected from the case record forms.
Results
From the 200 patients’ case record forms, 87 (43.5%) were female and 113 (56.5%) were male. The median age was 35 (19–64) years. Most patients, 93% (187/200) were from Central Uganda in the districts of Kampala and Wakiso. 97.51% (157/161) of the patients had absolute CD4 lymphocyte counts of less than 200 cells per cubic millimeter; 1.86% (3/161) 200–350 cells per cubic millimeter and 0.62% (1/161) above 500 cells per cubic millimeter. 45.4% (74/163) were not yet on HAART and 54.6% (89/163) were on HAART. 66.7% (58/87) had poor adherence to HAART treatment and 33.3% (29/87) had reported good adherence to HAART treatment. A total of 200 clinical isolates of Cryptococcus isolates were tested. No (0% (0/200) C. gattii was identified among the Cryptococcus isolates.
Conclusion
In this study among patients living with HIV and a diagnosis of cryptococcal meningitis in Uganda, we found no C. gattii infections.
Collapse
Affiliation(s)
- Abel Wembabazi
- School of Health Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Dianah Rhoda Nassozi
- School of Health Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Enid Akot
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Timothy Isaac Ochola
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Prosper Tom Kweka
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Nelson Tom Katamu
- School of Health Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (BA); (DM)
| | - Beatrice Achan
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail: (BA); (DM)
| |
Collapse
|
13
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
14
|
van der Torre MH, Andrews RA, Hooker EL, Rankin A, Dodd S. Systematic review on Cryptococcus neoformans/Cryptococcus gattii species complex infections with recommendations for practice in health and care settings. CLINICAL INFECTION IN PRACTICE 2022. [DOI: 10.1016/j.clinpr.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
15
|
Naicker SD, Firacative C, van Schalkwyk E, Maphanga TG, Monroy-Nieto J, Bowers JR, Engelthaler DM, Meyer W, Govender NP. Molecular type distribution and fluconazole susceptibility of clinical Cryptococcus gattii isolates from South African laboratory-based surveillance, 2005–2013. PLoS Negl Trop Dis 2022; 16:e0010448. [PMID: 35767529 PMCID: PMC9242473 DOI: 10.1371/journal.pntd.0010448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
As is the case globally, Cryptococcus gattii is a less frequent cause of cryptococcosis than Cryptococcus neoformans in South Africa. We performed multilocus sequence typing (MLST) and fluconazole susceptibility testing of 146 isolates randomly selected from 750 South African patients with C. gattii disease identified through enhanced laboratory surveillance, 2005 to 2013. The dominant molecular type was VGIV (101/146, 70%), followed by VGI (40/146, 27%), VGII (3/146, 2%) and VGIII (2/146, 1%). Among the 146 C. gattii isolates, 99 different sequence types (STs) were identified, with ST294 (14/146, 10%) and ST155 (10/146, 7%) being most commonly observed. The fluconazole MIC50 and MIC90 values of 105 (of 146) randomly selected C. gattii isolates were 4 μg/ml and 16 μg/ml, respectively. VGIV isolates had a lower MIC50 value compared to non-VGIV isolates, but these values were within one double-dilution of each other. HIV-seropositive patients had a ten-fold increased adjusted odds of a VGIV infection compared to HIV-seronegative patients, though with small numbers (99/136; 73% vs. 2/10; 20%), the confidence interval (CI) was wide (95% CI: 1.93–55.31, p = 0.006). Whole genome phylogeny of 98 isolates of South Africa’s most prevalent molecular type, VGIV, identified that this molecular type is highly diverse, with two interesting clusters of ten and six closely related isolates being identified, respectively. One of these clusters consisted only of patients from the Mpumalanga Province in South Africa, suggesting a similar environmental source. This study contributed new insights into the global population structure of this important human pathogen. Cryptococcus is the most common cause of meningitis among adults in South Africa. Most human disease is caused by the members of two species complexes within the genus, Cryptococcus neoformans and Cryptococcus gattii. The environmental range of these species complexes, both found in soil, overlaps in southern Africa though C. gattii is a less common human pathogen. C. gattii is divided into six molecular types: VGI, VGII, VGIII, VGIV, VGV and VGVI. In earlier molecular epidemiology studies including relatively few isolates, most southern African isolates were confirmed as molecular type VGIV. We aimed to determine the molecular diversity of C. gattii in South Africa by genotyping patient isolates obtained through laboratory surveillance, 2005–2013. We confirmed that VGIV was the dominant molecular type and that HIV-seropositive patients were more likely to be infected with VGIV compared to those HIV-seronegative. Analysis of the genomes of South African VGIV isolates revealed that they spanned the whole VGIV clade and confirmed that most isolates did not cluster specifically. However, we observed two interesting clusters of closely related isolates, consisting of patients from three neighbouring provinces in South Africa, suggesting a similar environmental source. Further studies of clinical and environmental African C. gattii isolates are needed to gain a better understanding of this pathogen.
Collapse
Affiliation(s)
- Serisha D. Naicker
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Erika van Schalkwyk
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Tsidiso G. Maphanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Juan Monroy-Nieto
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Jolene R. Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - David M. Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Research and Educational Network, Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| | - Nelesh P. Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council Centre for Medical Mycology, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
16
|
Dornelas JCM, Costa MC, Carmo PHF, Paixão VM, Carvalho VSD, Barreto LC, Garcia QS, Bragança GPP, Isaias RMS, Brito JCM, Resende-Stoianoff MA, Santos DA. Nicotiana benthamiana as a model for studying Cryptococcus-plant interaction. FEMS Microbiol Ecol 2022; 98:fiac036. [PMID: 35348680 DOI: 10.1093/femsec/fiac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2023] Open
Abstract
Cryptococcus gattii, an environmental yeast isolated from plants, is one of the agents of cryptococcosis. Here, we aimed to develop a plant model to study C. gattii-plant interaction, since it is unclear how it affects the plant and the yeast. We tested three inoculation methods (scarification, infiltration, and abrasion) in three plant species: Arabidopsis thaliana, Nicotiana tabacum, and N. benthamiana. Cryptococcus gattii was able to grow in all three models, with a peak of yeast cell burden after 7 days, without any pathological effects. Furthermore, the fungal burden was reduced later, confirming that C. gattii is not a phytopathogen. Cryptococcus gattii proliferation was higher in N. benthamiana, which presented an increase in the hydrogen peroxide content, antioxidant system activity, and indoleacetic acid (IAA) production. Cryptococcus gattii colonies recovered from N. benthamiana presented lower ergosterol content, reduced capsule, and increased growth rate in vitro and inside macrophages. In vitro, IAA altered C. gattii morphology and susceptibility to antifungal drugs. We hypothesize that C. gattii can temporarily colonize plant living tissues, which can be a potential reservoir of yeast virulence, with further dissemination to the environment, birds, and mammals. In conclusion, N. benthamiana is suitable for studying C. gattii-plant interaction.
Collapse
Affiliation(s)
- João C M Dornelas
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Marliete C Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Paulo H F Carmo
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Vivian M Paixão
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Vanessa S D Carvalho
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Leilane C Barreto
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Queila S Garcia
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Gracielle P P Bragança
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Rosy M S Isaias
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Júlio C M Brito
- Fundação Ezequiel Dias (FUNED), Rua Conde Pereira Carneiro, 80, Gameleira, CEP 30.510-000, Belo Horizonte, MG, Brazil
| | - Maria A Resende-Stoianoff
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
18
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
19
|
Zang X, Ke W, Wang L, Wu H, Huang Y, Deng H, Zhou M, Wu N, Xue X, Shen D. Molecular epidemiology and microbiological characteristics of Cryptococcus gattii VGII isolates from China. PLoS Negl Trop Dis 2022; 16:e0010078. [PMID: 35196319 PMCID: PMC8901052 DOI: 10.1371/journal.pntd.0010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/07/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptococcus gattii (C. gattii) is a fungal pathogen that once caused an outbreak of cryptococcosis on Vancouver Island, and had spread worldwide, while few data were available in China. In this study, seven clinical isolates of C. gattii VGII were collected from 19 hospitals, Multi-locus Sequence Typing (MLST) analysis and whole-genome sequencing (WGS) was performed, combined with published data for phylogenetic analysis. In addition, in vitro antifungal susceptibility testing, phenotypic analysis, and in vivo virulence studies were performed, subsequently, histopathological analysis of lung tissue was performed. C.gattii VGII infected patients were mainly immunocompetent male, and most of them had symptoms of central nervous system (CNS) involvement. MLST results showed that isolates from China exhibited high genetic diversity, and sequence type (ST) 7 was the major ST among the isolates. Some clinical isolates showed a close phylogenetic relationship with strains from Australia and South America. All clinical isolates did not show resistance to antifungal drugs. In addition, there was no correlation between virulence factors (temperature, melanin production, and capsule size) and virulence while in vivo experiments showed significant differences in virulence among strains. Lung fungal burden and damage to lung tissue correlated with virulence, and degree of damage to lung tissue in mice may highlight differences in virulence. Our work seeks to provide useful data for molecular epidemiology, antifungal susceptibility, and virulence differences of C. gattii VGII in China.
Collapse
Affiliation(s)
- Xuelei Zang
- Medical School of Chinese PLA, Beijing, China
- Center of Clinical Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lifeng Wang
- Center of Clinical Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hua Wu
- Department of clinical laboratory, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University; Peking University Ninth School of Clinical Medicine, Beijing, China
| | | | - Meng Zhou
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Ningxin Wu
- Department of Cadres, 971 Hospital of the Chinese People’s Liberation Army Navy, Qingdao, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University; Peking University Ninth School of Clinical Medicine, Beijing, China
- Weifang Medical University, Weifang, China
- * E-mail: (XX); (DS)
| | - Dingxia Shen
- Center of Clinical Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- * E-mail: (XX); (DS)
| |
Collapse
|
20
|
Siqueira NP, Favalessa OC, Maruyama FH, Dutra V, Nakazato L, Hagen F, Hahn RC. Domestic Birds as Source of Cryptococcus deuterogattii (AFLP6/VGII): Potential Risk for Cryptococcosis. Mycopathologia 2022; 187:103-111. [PMID: 34762221 PMCID: PMC8807445 DOI: 10.1007/s11046-021-00601-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Cryptococcosis is an infection caused by encapsulated basidiomycetous yeasts belonging to the Cryptococcus neoformans/Cryptococcus gattii species complexes. It is acquired through inhalation of infectious propagules, often resulting in meningitis and meningoencephalitis. The ecological niche of these agents is a wide variety of trees species, as well as pigeon, parrot and passerine excreta. The objective of this study was to isolate Cryptococcus yeasts from excreta of commercially traded parrots and passerines. The 237 samples were collected between October 2018 and April 2019 and processed using conventional methodologies. Nineteen colonies with a dark brown phenotype, caused by phenol oxidase activity, were isolated, suggesting the presence of pathogenic Cryptococcus yeasts. All isolates tested positive for urease activity. URA5-RFLP fingerprinting identified 14 isolates (68.4%) as C. neoformans (genotype AFLP1/VNI) and 5 (26.3%) as C. deuterogattii (genotype AFLP6/VGII). Multi-locus sequence typing was applied to investigate the relatedness of the C. deuterogattii isolates with those collected globally, showing that those originating from bird-excreta were genetically indistinguishable from some clinical isolates collected during the past two decades.
Collapse
Affiliation(s)
- Nathan P Siqueira
- Medical Mycology/Research Laboratory, Medicine School, Federal University of Mato Grosso (UFMT), Fernando Corrêa Avenue, 2387, Boa Esperança, Cuiabá, 78060-900, Brazil
| | - Olívia C Favalessa
- Medical Mycology/Research Laboratory, Medicine School, Federal University of Mato Grosso (UFMT), Fernando Corrêa Avenue, 2387, Boa Esperança, Cuiabá, 78060-900, Brazil
| | - Fernanda H Maruyama
- Veterinary Microbiology and Molecular Biology Laboratory, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Valéria Dutra
- Veterinary Microbiology and Molecular Biology Laboratory, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Luciano Nakazato
- Veterinary Microbiology and Molecular Biology Laboratory, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute (WI-KNAW), Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
| | - Rosane C Hahn
- Medical Mycology/Research Laboratory, Medicine School, Federal University of Mato Grosso (UFMT), Fernando Corrêa Avenue, 2387, Boa Esperança, Cuiabá, 78060-900, Brazil.
- Mycology Sector, Universitary Hospital Júlio Muller - EBSERH, Cuiabá, Brazil.
| |
Collapse
|
21
|
McCabe GA, McHugh JW, Goodwin T, Johnson DF, Fok A, Campbell TG. Ophthalmic manifestations of Cryptococcus gattii species complex: a case series and review of the literature. Int J Ophthalmol 2022; 15:119-127. [PMID: 35047366 DOI: 10.18240/ijo.2022.01.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
AIM To report 4 cases of Cryptococcus gattii (C. gattii) species complex infection with diverse ophthalmic manifestations, and to review the literature to examine pathobiology of disease, classical ophthalmic presentations and outcomes, and treatment modalities for this emerging pathogen. METHODS Cases of C. gattii meningoencephalitis with ophthalmic manifestations were identified via chart review at two institutions in Australia and one institution in the mid-west region of the United States and are reported as a case series. Additionally, a MEDLINE literature review was conducted to identify all reported cases of C. gattii with ophthalmic manifestations from 1990-2020. Cases were reviewed and tabulated, together with our series of patients, in this report. RESULTS Four cases of C. gattii with ophthalmic manifestations are presented; three from Australia and one from the USA. A literature review identified a total of 331 cases of C. gattii with visual sequelae. The majority of cases occurred in immunocompetent individuals. Blurred vision and diplopia were the most common presenting symptoms, with papilloedema the most common sign, reported in 10%-50% of cases. Visual loss was reported in 10%-53% of cases, as compared to rates of visual loss of 1%-9% in C. neoformans infection. Elevated intracranial pressure, cerebrospinal fluid (CSF) fungal burden, and abnormal neurological exam at presentation correlated with poor visual outcomes. The mainstays of treatment are anti-fungal agents and aggressive management of intracranial hypertension with serial lumbar punctures. CSF diversion procedures should be considered for refractory cases. Acetazolamide and mannitol are associated with high complication rates, and adjuvant corticosteroids have demonstrated higher mortality rates; these treatments should be avoided. CONCLUSION Permanent visual loss represents a devastating yet potentially preventable sequelae of C. gattii infection. Intracranial hypertension needs to be recognised early and aggressively managed. Referral to an ophthalmologist/neuro-ophthalmologist in all cases of cryptococcal infection independent of visual symptoms at time of diagnosis is recommended.
Collapse
Affiliation(s)
- Grace A McCabe
- Department of Ophthalmology, the Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Jack W McHugh
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Todd Goodwin
- James Cook University, Townsville, Queensland 4811, Australia.,NQ Eye Foundation, Townsville, Queensland 4811, Australia
| | - Douglas F Johnson
- Department of Infectious Disease, the Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Anthony Fok
- Department of Neurology, the Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Thomas G Campbell
- Department of Ophthalmology, the Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia.,NQ Eye Foundation, Townsville, Queensland 4811, Australia.,Centre for Eye Research Australia, East Melbourne, Victoria 3002, Australia.,Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
22
|
Climate Change and Global Distribution of Cryptococcosis. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Francisco EC, de Jong AW, Hagen F. Cryptococcosis and Cryptococcus. Mycopathologia 2021; 186:729-731. [PMID: 34224075 PMCID: PMC8536568 DOI: 10.1007/s11046-021-00577-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Elaine Cristina Francisco
- Laboratório Especial de Micologia, Division of Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584CT, The Netherlands
| | - Auke W de Jong
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584CT, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584CT, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Cuetara MS, Jusdado Ruiz-Capillas JJ, Nuñez-Valentin MP, Rodríguez Garcia E, Garcia-Benayas E, Rojo-Amigo R, Rodriguez-Gallego JC, Hagen F, Colom MF. Successful Isavuconazole Salvage Therapy for a Cryptococcus deuterogattii (AFLP6/VGII) Disseminated Infection in a European Immunocompetent Patient. Mycopathologia 2021; 186:507-518. [PMID: 34115285 DOI: 10.1007/s11046-021-00566-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Members of the Cryptococcus gattii species complex are notorious causes of cryptococcosis as they often cause severe, life-threatening infections. Here we describe a case of a severe disseminated C. deuterogattii infection in a previously healthy patient who was initially treated with amphotericin B, 5-fluorocytosine and fluconazole, which led to a good neurological response, but the infection in the lungs remained unaltered and was not completely resolved until switching the antifungal therapy to isavuconazole. The infection was likely acquired during a one-month stay at the Azores Islands, Portugal. Environmental sampling did not yield any cryptococcal isolate; therefore, the source of this apparent autochthonous case could not be determined. Molecular typing showed that the cultured C. deuterogattii isolates were closely related to the Vancouver Island outbreak-genotype.
Collapse
Affiliation(s)
- Maria Soledad Cuetara
- Department of Microbiology, Hospital Universitario Severo Ochoa, Avda. de Orellana S/N. 28914, Leganés, Madrid, Spain.
| | | | | | | | - Elena Garcia-Benayas
- Department of Pharmacy, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Ricardo Rojo-Amigo
- Department of Immunology, Hospital Materno-Infantil-CHUAC, La Coruña, Spain
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, People's Republic of China
| | - María Francisca Colom
- Medical Mycology Laboratory, Department of Plant Production and Microbiology, University Miguel Hernández, Campus of Sant Joan D'Alacant, 03550, Alicante, Spain. .,Institute for Healthcare and Biomedical Research of Alicante, Isabial, Spain.
| |
Collapse
|
25
|
Serna-Espinosa BN, Guzmán-Sanabria D, Forero-Castro M, Escandón P, Sánchez-Quitian ZA. Environmental Status of Cryptococcus neoformans and Cryptococcus gattii in Colombia. J Fungi (Basel) 2021; 7:410. [PMID: 34073882 PMCID: PMC8225054 DOI: 10.3390/jof7060410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
The genus Cryptococcus comprises more than 80 species, including C. neoformans and C. gattii, which are pathogenic to humans, mainly affecting the central nervous system. The two species differ in geographic distribution and environmental niche. C. neoformans has a worldwide distribution and is often isolated from bird droppings. On the contrary, C. gattii is reported in tropical and subtropical regions and is associated with Eucalyptus species. This review aims to describe the distribution of environmental isolates of the Cryptococcus neoformans species complex and the Cryptococcus gattii species complex in Colombia. A systematic investigation was carried out using different databases, excluding studies of clinical isolates reported in the country. The complex of the species of C. gattii is recovered mainly from trees of the genus Eucalyptus spp., while the complex of the species of C. neoformans is recovered mainly from avian excrement, primarily Columba livia (pigeons) excrement. In addition, greater positivity was found at high levels of relative humidity. Likewise, an association was observed between the presence of the fungus in places with little insolation and cold or temperate temperatures compared to regions with high temperatures.
Collapse
Affiliation(s)
- Briggith-Nathalia Serna-Espinosa
- Grupo de Investigación Ciencias Biomédicas, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (B.-N.S.-E.); (M.F.-C.)
| | - Diomedes Guzmán-Sanabria
- Grupo de Investigación Gestión Ambiental, Departamento de Biología y Microbiología, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Carrera 2a Este No. 64-169, Tunja 150003, Colombia;
| | - Maribel Forero-Castro
- Grupo de Investigación Ciencias Biomédicas, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (B.-N.S.-E.); (M.F.-C.)
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Calle 26 No. 51-20, Bogotá 111321, Colombia;
| | - Zilpa Adriana Sánchez-Quitian
- Grupo de Investigación Gestión Ambiental, Departamento de Biología y Microbiología, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Carrera 2a Este No. 64-169, Tunja 150003, Colombia;
| |
Collapse
|
26
|
Molik DC, Tomlinson D, Davitt S, Morgan EL, Sisk M, Roche B, Meyers N, Pfrender ME. Combining natural language processing and metabarcoding to reveal pathogen-environment associations. PLoS Negl Trop Dis 2021; 15:e0008755. [PMID: 33826634 PMCID: PMC8055023 DOI: 10.1371/journal.pntd.0008755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/19/2021] [Accepted: 03/09/2021] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans is responsible for life-threatening infections that primarily affect immunocompromised individuals and has an estimated worldwide burden of 220,000 new cases each year—with 180,000 resulting deaths—mostly in sub-Saharan Africa. Surprisingly, little is known about the ecological niches occupied by C. neoformans in nature. To expand our understanding of the distribution and ecological associations of this pathogen we implement a Natural Language Processing approach to better describe the niche of C. neoformans. We use a Latent Dirichlet Allocation model to de novo topic model sets of metagenetic research articles written about varied subjects which either explicitly mention, inadvertently find, or fail to find C. neoformans. These articles are all linked to NCBI Sequence Read Archive datasets of 18S ribosomal RNA and/or Internal Transcribed Spacer gene-regions. The number of topics was determined based on the model coherence score, and articles were assigned to the created topics via a Machine Learning approach with a Random Forest algorithm. Our analysis provides support for a previously suggested linkage between C. neoformans and soils associated with decomposing wood. Our approach, using a search of single-locus metagenetic data, gathering papers connected to the datasets, de novo determination of topics, the number of topics, and assignment of articles to the topics, illustrates how such an analysis pipeline can harness large-scale datasets that are published/available but not necessarily fully analyzed, or whose metadata is not harmonized with other studies. Our approach can be applied to a variety of systems to assert potential evidence of environmental associations. We expand the utility of Natural Language Processing (NLP), backtracking through metabarcodes, utilizing papers that may not mention our subject of interest, C. neoformans, in a departure from usual text analysis methods. We confirm that C. neoformans is associated with decomposing wood which is reinforced by the inferred literature studied here on C. neoformans and its close congeneric relatives. This work demonstrates the potential utility of pairing NLP with single-locus metagenetic data for the study of Neglected Tropical Diseases. While the results of this article are largely confirmatory, we present a novel method to study the ecological niches of rare pathogens that leverages the immense amount of data available to researchers in the NCBI Sequence Read Archive (SRA) combined with a text-mining analysis based on Natural Language Processing. We demonstrate that text processing, noun identification, and verb identification can play an important role in analyzing a large corpus of documents together with metagenetic data. Forging this connection requires access to all of the available ecological 18S ribosomal RNA and Internal Transcribed Spacer NCBI SRA datasets. These datasets use metabarcoding to query taxonomic diversity in eukaryotic organisms, and in the case of the Internal Transcribed Spacer, they specifically target Fungi. The presence of specific species is inferred when diagnostic 18S or ITS gene region sequences are found in the SRA data. We searched for C. neoformans in all 18S and ITS datasets available and gathered all associated journal articles that either cite the SRA data accessions or are cited in the SRA data accessions. Published metagenetic data often have associated metadata including: latitude and longitude, temperature, and other physical characteristics describing the conditions in which the metagenetic sample was collected. These metadata are not always presented in consistent formats, so harmonizing study methods may be needed to appropriately compare metagenetic data as commonly required in metanalysis studies. We present an analysis which takes as input articles associated with SRA datasets that were found to contain evidence of C. neoformans. We apply NLP methods to this corpus of articles to describe the niche of C. neoformans. Our results reinforce the current understanding of C. neoformans’s niche, indicating the pertinence of employing an NLP analysis to identify the niche of an organism. This approach could further the description of virtually any other organism that routinely appears in metagenetic surveys, especially pathogens, whose ecological niches are unknown or poorly understood.
Collapse
Affiliation(s)
- David C. Molik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Navari Center for Digital Scholarship, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - DeAndre Tomlinson
- Science-Computing Program, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shane Davitt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Eric L. Morgan
- Navari Center for Digital Scholarship, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew Sisk
- Navari Center for Digital Scholarship, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Benjamin Roche
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Natalie Meyers
- Navari Center for Digital Scholarship, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael E. Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
27
|
Florek M, Nawrot U, Korzeniowska-Kowal A, Włodarczyk K, Wzorek A, Woźniak-Biel A, Brzozowska M, Galli J, Bogucka A, Król J. An analysis of the population of Cryptococcus neoformans strains isolated from animals in Poland, in the years 2015-2019. Sci Rep 2021; 11:6639. [PMID: 33758319 PMCID: PMC7987961 DOI: 10.1038/s41598-021-86169-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Fungi belonging to the Cryptococcus neoformans/C. gattii species complex (CNGSC) are pathogens causing severe infections in humans and animals, that for humans may result in a mortality rate ranging up to 70%. The CNGSC is divided into eight major molecular types, that may differ in their virulence and susceptibility. In order to fully understand the epidemiology of cryptococcosis, it is important to study the world distribution and population structure of these pathogens. The present study is the first presenting a population of strains isolated in Poland and one of the few using a multi-species animal group as a source of the specimen. The pathogen was present in 2.375% of the tested animals. The URA5-RFLP and MALDI-TOF MS analyses have revealed that the population consisted exclusively of C. neoformans strains, with a predominance of major molecular type VNIV (C. neoformans var. neoformans). The MALDI-TOF MS was used to perform the CNGSC strains identification on both the species and sub-species level. Despite the fact that the animals providing the specimens were not treated with 5-fluorocytosine, around 10% of the tested population presented MIC values exceeding 64 mg/L, indicating the existence of the 5-fluorocytosine-resistant strains in the environment.
Collapse
Affiliation(s)
- Magdalena Florek
- Department of Pathology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland.
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211a, 50-556, Wrocław, Poland
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Katarzyna Włodarczyk
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211a, 50-556, Wrocław, Poland
| | - Anna Wzorek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic of Birds and Exotic Animals, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Magdalena Brzozowska
- Referral Animal Hospital Strömsholm, Djursjukhusvägen 11, 73494, Strömsholm, Sweden
| | - Józef Galli
- Veterinary Laboratory Vetlab, Wodzisławska 6, 52-017, Wrocław, Poland
| | - Anna Bogucka
- Veterinary Laboratory Vetlab, Wodzisławska 6, 52-017, Wrocław, Poland
| | - Jarosław Król
- Department of Pathology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
28
|
Paccoud O, Bougnoux ME, Desnos-Ollivier M, Varet B, Lortholary O, Lanternier F. Cryptococcus gattii in Patients with Lymphoid Neoplasms: An Illustration of Evolutive Host-Fungus Interactions. J Fungi (Basel) 2021; 7:212. [PMID: 33809570 PMCID: PMC8001097 DOI: 10.3390/jof7030212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Recent outbreaks of Cryptococcus gattii (CG) infections in North America have sparked renewed interest in the pathogenic potential of CG, and have underscored notable differences with Cryptococcus neoformans in terms of geographic distribution, pathogen virulence, and host susceptibility. While cases of CG are increasingly reported in patients with a wide variety of underlying conditions, only very few have been reported in patients with lymphoid neoplasms. Herein, we report a case of autochthonous CG meningitis in a patient receiving ibrutinib for chronic lymphocytic leukemia in France, and review available data on the clinical epidemiology of CG infections in patients with lymphoid neoplasms. We also summarise recent data on the host responses to CG infection, as well as the potential management pitfalls associated with its treatment in the haematological setting. The clinical epidemiology, clinical presentation, and course of disease during infections caused by CG involve complex interactions between environmental exposure to CG, infecting genotype, pathogen virulence factors, host susceptibility, and host immune responses. Future treatment guidelines should address the challenges associated with the management of antifungal treatments in the onco-haematological setting and the potential drug-drug interactions.
Collapse
Affiliation(s)
- Olivier Paccoud
- University of Paris, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (O.P.); (O.L.)
| | - Marie-Elisabeth Bougnoux
- University of Paris, Department of Mycology, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France;
| | - Marie Desnos-Ollivier
- Molecular Mycology Unit, Centre National de la Recherche Scientifique (CNRS), National Reference Center for Invasive Mycoses & Antifungals (NRCMA), Pasteur Institute, UMR2000, 75015 Paris, France;
| | - Bruno Varet
- University of Paris, Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France;
| | - Olivier Lortholary
- University of Paris, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (O.P.); (O.L.)
- Molecular Mycology Unit, Centre National de la Recherche Scientifique (CNRS), National Reference Center for Invasive Mycoses & Antifungals (NRCMA), Pasteur Institute, UMR2000, 75015 Paris, France;
| | - Fanny Lanternier
- University of Paris, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (O.P.); (O.L.)
- Molecular Mycology Unit, Centre National de la Recherche Scientifique (CNRS), National Reference Center for Invasive Mycoses & Antifungals (NRCMA), Pasteur Institute, UMR2000, 75015 Paris, France;
| |
Collapse
|
29
|
Thompson L, Porte L, Díaz V, Díaz MC, Solar S, Valenzuela P, Norley N, Pires Y, Carreño F, Valenzuela S, Shabani R, Rickerts V, Weitzel T. Cryptococcus bacillisporus (VGIII) Meningoencephalitis Acquired in Santa Cruz, Bolivia. J Fungi (Basel) 2021; 7:jof7010055. [PMID: 33467409 PMCID: PMC7830430 DOI: 10.3390/jof7010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
We describe a case of chronic meningoencephalitis with hydrocephalus caused by Cryptococcus bacillisporus (VGIII) in an immunocompetent patient from Santa Cruz, Bolivia. This first report of a member of the Cryptococcus gattii species complex from Bolivia suggests that C. bacillisporus (VGIII) is present in this tropical region of the country and complements our epidemiological and clinical knowledge of this group of emerging fungal pathogens in South America.
Collapse
Affiliation(s)
- Luis Thompson
- Unidad de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile; (L.T.); (S.S.); (P.V.)
| | - Lorena Porte
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Violeta Díaz
- Servicio de Neurología, Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - María Cristina Díaz
- Programa de Microbiologia y Micologia, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 7650568, Chile;
| | - Sebastián Solar
- Unidad de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile; (L.T.); (S.S.); (P.V.)
| | - Pablo Valenzuela
- Unidad de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile; (L.T.); (S.S.); (P.V.)
| | - Nicole Norley
- Mycology Section, FG 16, Robert-Koch Institute, 13353 Berlin, Germany; (N.N.); (R.S.)
| | - Yumai Pires
- Servicio de Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Fernando Carreño
- Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Sergio Valenzuela
- Servicio de Neurocirugía, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Rukmane Shabani
- Mycology Section, FG 16, Robert-Koch Institute, 13353 Berlin, Germany; (N.N.); (R.S.)
| | - Volker Rickerts
- Mycology Section, FG 16, Robert-Koch Institute, 13353 Berlin, Germany; (N.N.); (R.S.)
- Correspondence: (V.R.); (T.W.)
| | - Thomas Weitzel
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
- Instituto de Ciencias e Innovación en Medicina (ICIM), Universidad del Desarrollo, Santiago 7550000, Chile
- Correspondence: (V.R.); (T.W.)
| |
Collapse
|
30
|
Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020; 11:mBio.01020-20. [PMID: 33024032 PMCID: PMC7542357 DOI: 10.1128/mbio.01020-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. Hence, the alarming frequency of fungal infections in medical and agricultural settings requires effective research to understand the virulent nature of fungal pathogens and improve the outcome of infection in susceptible hosts. Mycology-driven research has benefited from a contemporary and unified approach of omics technology, deepening the biological, biochemical, and biophysical understanding of these emerging fungal pathogens. Here, we review the current state-of-the-art multi-omics technologies, explore the power of data integration strategies, and highlight discovery-based revelations of globally important and taxonomically diverse fungal pathogens. This information provides new insight for emerging pathogens through an in-depth understanding of well-characterized fungi and provides alternative therapeutic strategies defined through novel findings of virulence, adaptation, and resistance.
Collapse
|
31
|
Vélez N, Escandón P. Multilocus sequence typing (MLST) of clinical and environmental isolates of Cryptococcus neoformans and Cryptococcus gattii in six departments of Colombia reveals high genetic diversity. Rev Soc Bras Med Trop 2020; 53:e20190422. [PMID: 32935773 PMCID: PMC7491559 DOI: 10.1590/0037-8682-0422-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/29/2020] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION The average annual incidence of cryptococcosis in Colombia is 0.23 cases per 100,000 inhabitants in the general population, and 1.1 cases per 1000 in inhabitants with Acquired Immune Deficiency Syndrome (AIDS). In addition, the causal fungus has been isolated from the environment, with serotypes A-B and C in different regions. This study aims to determine the genetic association between clinical and environmental isolates of C. neoformans/C. gattii in Colombia. METHODS Multilocus sequence typing (MLST) was used to identify possible clones, providing information about the epidemiology, ecology, and etiology of this pathogen in Colombia. RESULTS A total of 110 strains, both clinical (n=61) and environmental (n=49), with 21 MLST sequence types (ST) of C. neoformans (n=14STs) and C. gattii (n=7STs) were identified. The STs which shared clinical and environmental isolate sources were grouped in different geographical categories; for C. neoformans, ST93 was identified in six departments, ST77 in five departments; and for C. gattii, ST25 was identified in three departments and ST79 in two. CONCLUSIONS High genetic diversity was found in isolates of C. neoformans/gattii by MLST, suggesting the presence of environmental sources harboring strains which may be sources of infection for humans, especially in immunocompromised patients; these data contribute to the information available in the country on the distribution and molecular variability of C. neoformans and C. gattii isolates recovered in Colombia.
Collapse
Affiliation(s)
- Norida Vélez
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| |
Collapse
|
32
|
Xie LM, Lin GL, Dong HN, Liao YX, Liu YL, Qin JF, Guo XG. Evaluation of lateral flow immunochromatographic assay for diagnostic accuracy of cryptococcosis. BMC Infect Dis 2020; 20:650. [PMID: 32887568 PMCID: PMC7472705 DOI: 10.1186/s12879-020-05368-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background Cryptococcus is a conditional pathogenic fungus causing cryptococcosis, which is one of the most serious fungal diseases faced by humans. Lateral flow immunochromatographic assay (LFA) is successfully applied to the rapid detection of cryptococcal antigens. Methods Studies were retrieved systematically from the Embase, PubMed, Web of Science, and Cochrane Library before July 2019. The quality of the studies was assessed by Review Manager 5.0 based on the Quality Assessment of Diagnostic Accuracy Study guidelines. The extracted data from the included studies were analyzed by Meta-DiSc 1.4. Stata 12.0 software was used to detect the publication bias. Results A total of 15 articles with 31 fourfold tables were adopted by inclusion and exclusion criteria. The merged sensitivity and specificity in serum were 0.98 and 0.98, respectively, and those in the cerebrospinal fluid were 0.99 and 0.99, respectively. Conclusions Compared to the urine and other samples, LFA in serum and cerebrospinal fluid is favorable evidence for the diagnosis of cryptococcosis with high specificity and sensitivity.
Collapse
Affiliation(s)
- Li-Min Xie
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China.,Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Geng-Ling Lin
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China.,Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Hao-Neng Dong
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China.,Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ying-Xia Liao
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China.,Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ye-Ling Liu
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China.,Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jian-Feng Qin
- Department of Clinical Pharmacy, The Pharmic School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China. .,Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
33
|
Huang C, Tsui CKM, Chen M, Pan K, Li X, Wang L, Chen M, Zheng Y, Zheng D, Chen X, Jiang L, Wei L, Liao W, Cao C. Emerging Cryptococcus gattii species complex infections in Guangxi, southern China. PLoS Negl Trop Dis 2020; 14:e0008493. [PMID: 32845884 PMCID: PMC7449396 DOI: 10.1371/journal.pntd.0008493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
The emergence and spread of cryptococcosis caused by the Cryptococcus gattii species complex has become a major public concern worldwide. C. deuterogattii (VGIIa) outbreaks in the Pacific Northwest region demonstrate the expansion of this fungal infection to temperate climate regions. However, infections due to the C. gattii species complex in China have rarely been reported. In this study, we studied eleven clinical strains of the C. gattii species complex isolated from Guangxi, southern China. The genetic identity and variability of these isolates were analyzed via multi-locus sequence typing (MLST), and the phylogenetic relationships among these isolates and global isolates were evaluated. The mating type, physiological features and antifungal susceptibilities of these isolates were also characterized. Among the eleven isolates, six belonged to C. deuterogattii, while five belonged to C. gattii sensu stricto. The C. deuterogattii strains from Guangxi, southern China were genetically variable and clustered with different clinical isolates from Brazil. All strains were MATα, and three C. deuterogattii isolates (GX0104, GX0105 and GX0147) were able to undergo sexual reproduction. Moreover, most strains had capsule and were capable of melanin production when compared to the outbreak strain from Canada. Most isolates were susceptible to antifungal drugs; yet one of eleven immunocompetent patients died of cryptococcal meningitis caused by C. deuterogattii (GX0147). Our study indicated that the highly pathogenic C. deuterogattii may be emerging in southern China, and effective nationwide surveillance of C. gattii species complex infection is necessary. Cryptococcosis is a fatal systemic fungal disease caused by Cryptococcus neoformans/gattii species complexes. As a former member of the C. neoformans, C. gattii had been easily neglected before being elevated to species level. Human C. gattii species complex infection was previously confined to the tropical and subtropical regions worldwide. However, in 1999, an outbreak of C. gattii species complex occurred on Vancouver Island in Canada then expanded to the Pacific Northwest in the USA, causing over 200 infections. The highly virulent, highly pathogenic and more resistant to antifungal drugs of this species have become a therapeutic problem. To initiate a better understanding of the infection characteristics and pathogenicity of C. gattii species complex in Guangxi, southern China, the current study aimed to characterize the C. gattii species complex isolates genetically and phenotypically. The ISHAM consensus MLST scheme was utilized to investigate the genetic structure of C. gattii species complex and to correlate their geographic origin, clinical source, virulence factors and antifungal susceptibility. The authors expect that this work can support surveillance and encourage more research and public health initiatives to prevent and control the cryptococcosis cause by C. gattii species complex.
Collapse
Affiliation(s)
- Chunyang Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Clement K. M. Tsui
- Department of Pathology, Sidra Medicine, Qatar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine–Qatar, Doha, Qatar
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Kaisu Pan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Meini Chen
- Clinical Medicine (8-year program), XiangYa School of Medicine, Central South University, Changsha, P. R. China
| | - Yanqing Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Dongyan Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xingchun Chen
- The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Li Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Lili Wei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
- * E-mail: (WL); (CC)
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
- * E-mail: (WL); (CC)
| |
Collapse
|
34
|
Rossi A, Bannon K, Sanchez MD, Bradway DS. Pathology in Practice. J Am Vet Med Assoc 2020; 254:935-937. [PMID: 30938609 DOI: 10.2460/javma.254.8.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Rattanavong S, Dubot-Pérès A, Mayxay M, Vongsouvath M, Lee SJ, Cappelle J, Newton PN, Parker DM. Spatial epidemiology of Japanese encephalitis virus and other infections of the central nervous system infections in Lao PDR (2003-2011): A retrospective analysis. PLoS Negl Trop Dis 2020; 14:e0008333. [PMID: 32453806 PMCID: PMC7274481 DOI: 10.1371/journal.pntd.0008333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 06/05/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infections are important contributors to morbidity and mortality and the causative agents for ~50% patients are never identified. The causative agents of some CNS infections have distinct spatial and temporal patterns. METHODOLOGY/PRINCIPAL FINDINGS Here we present the results of a spatial epidemiological and ecological analysis of CNS infections in Lao PDR (2003-2011). The data came from hospitalizations for suspected CNS infection at Mahosot Hospital in Vientiane. Out of 1,065 patients, 450 were assigned a confirmed diagnosis. While many communities in Lao PDR are in rural and remote locations, most patients in these data came from villages along major roads. Japanese encephalitis virus ((JEV); n = 94) and Cryptococcus spp. (n = 70) were the most common infections. JEV infections peaked in the rainy season and JEV patients came from villages with higher surface flooding during the same month as admission. JEV infections were spatially dispersed throughout rural areas and were most common in children. Cryptococcus spp. infections clustered near Vientiane (an urban area) and among adults. CONCLUSIONS/SIGNIFICANCE The spatial and temporal patterns identified in this analysis are related to complex environmental, social, and geographic factors. For example, JEV infected patients came from locations with environmental conditions (surface water) that are suitable to support larger mosquito vector populations. Most patients in these data came from villages that are near major roads; likely the result of geographic and financial access to healthcare and also indicating that CNS diseases are underestimated in the region (especially from more remote areas). As Lao PDR is undergoing major developmental and environmental changes, the space-time distributions of the causative agents of CNS infection will also likely change. There is a major need for increased diagnostic abilities; increased access to healthcare, especially for rural populations; and for increased surveillance throughout the nation.
Collapse
Affiliation(s)
- Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Unité des Virus Émergents (UVE: Aix-Marseille Univ–IRD 190 –Inserm 1207 –IHU Méditerranée Infection), Marseille, France
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Sue J. Lee
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Julien Cappelle
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- UMR ASTRE, CIRAD, INRA, Montpellier University, Montpellier, France
- UMR EpiA, INRA, VetAgro Sup, Marcy l’Etoile, France
| | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Daniel M. Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, United States of America
- Department of Epidemiology, School of Medicine, University of California, Irvine, United States of America
| |
Collapse
|
36
|
Li YH, Liu TB. Zinc Finger Proteins in the Human Fungal Pathogen Cryptococcus neoformans. Int J Mol Sci 2020; 21:ijms21041361. [PMID: 32085473 PMCID: PMC7072944 DOI: 10.3390/ijms21041361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc is one of the essential trace elements in eukaryotes and it is a critical structural component of a large number of proteins. Zinc finger proteins (ZNFs) are zinc-finger domain-containing proteins stabilized by bound zinc ions and they form the most abundant proteins, serving extraordinarily diverse biological functions. In recent years, many ZNFs have been identified and characterized in the human fungal pathogen Cryptococcus neoformans, a fungal pathogen causing fatal meningitis mainly in immunocompromised individuals. It has been shown that ZNFs play important roles in the morphological development, differentiation, and virulence of C. neoformans. In this review, we, first, briefly introduce the ZNFs and their classification. Then, we explain the identification and classification of the ZNFs in C. neoformans. Next, we focus on the biological role of the ZNFs functionally characterized so far in the sexual reproduction, virulence factor production, ion homeostasis, pathogenesis, and stress resistance in C. neoformans. We also discuss the perspectives on future function studies of ZNFs in C. neoformans.
Collapse
Affiliation(s)
- Yuan-Hong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-1088
| |
Collapse
|
37
|
Schmertmann LJ, Kan A, Mella VSA, Fernandez CM, Crowther MS, Madani G, Malik R, Meyer W, Krockenberger MB. Prevalence of cryptococcal antigenemia and nasal colonization in a free-ranging koala population. Med Mycol 2020; 57:848-857. [PMID: 30649397 DOI: 10.1093/mmy/myy144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Cryptococcosis, caused by environmental fungi in the Cryptococcus neoformans and Cryptococcus gattii species complexes, affects a variety of hosts, including koalas (Phascolarctos cinereus). Cryptococcal antigenemia and nasal colonization are well characterized in captive koalas, but free-ranging populations have not been studied systematically. Free-ranging koalas (181) from the Liverpool Plains region of New South Wales, Australia, were tested for cryptococcal antigenemia (lateral flow immunoassay) and nasal colonization (bird seed agar culture). Results were related to environmental and individual koala characteristics. Eucalypt trees (14) were also randomly tested for the presence of Cryptococcus spp. by bird seed agar culture. In sum, 5.5% (10/181) and 6.6% (12/181) of koalas were positive for antigenemia and nasal colonization, respectively, on at least one occasion. And 64.3% (9/14) of eucalypts were culture-positive for Cryptococcus spp. URA5 restriction fragment length polymorphism analysis identified most isolates as C. gattii VGI, while C. neoformans VNI was only found in one koala and one tree. Colonized koalas were significantly more likely to test positive for antigenemia. No associations between antigenemia or colonization, and external environmental characteristics (the relative abundance of Eucalyptus camaldulensis and season), or individual koala characteristics (body condition, sex, and age), could be established, suggesting that antigenemia and colonization are random outcomes of host-pathogen-environment interactions. The relationship between positive antigenemia status and a relatively high abundance of E. camaldulensis requires further investigation. This study characterizes cryptococcosis in a free-ranging koala population, expands the ecological niche of the C. gattii/C. neoformans species complexes and highlights free-ranging koalas as important sentinels for this disease.
Collapse
Affiliation(s)
- Laura J Schmertmann
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Alex Kan
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Valentina S A Mella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Cristina M Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Mathew S Crowther
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - George Madani
- PO Box 3113, Hilltop, New South Wales 2575, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006
| |
Collapse
|
38
|
Diaz JH. The Disease Ecology, Epidemiology, Clinical Manifestations, and Management of Emerging Cryptococcus gattii Complex Infections. Wilderness Environ Med 2019; 31:101-109. [PMID: 31813737 DOI: 10.1016/j.wem.2019.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023]
Abstract
Cryptococcus neoformans, a soil-dwelling fungus found worldwide, can cause cryptococcosis, an opportunistic fungal infection of the lungs and central nervous system. One former member of the C neoformans complex, Cryptococcus gattii, has caused meningitis in immunosuppressed and immunocompetent persons in endemic regions in Africa and Asia. Between 1999 and 2004, C gattii caused outbreaks of human cryptococcosis in unexpected, nonendemic, nontropical regions on Vancouver Island, Canada, and throughout the US Pacific Northwest and California. C gattii was recognized as an emerging species with several genotypes and a unique environmental relationship with trees that are often encountered in the wilderness and in landscaped parks. Because C gattii infections have a high case-fatality rate, wilderness medicine clinicians should be aware of this emerging pathogen, its disease ecology and risk factors, its expanding geographic distribution in North America, and its ability to cause fatal disease in both immunosuppressed and immunocompetent persons.
Collapse
Affiliation(s)
- James H Diaz
- Environmental and Occupational Health Sciences, School of Public Health, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA; School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA.
| |
Collapse
|
39
|
Engelthaler DM, Casadevall A. On the Emergence of Cryptococcus gattii in the Pacific Northwest: Ballast Tanks, Tsunamis, and Black Swans. mBio 2019; 10:e02193-19. [PMID: 31575770 PMCID: PMC6775458 DOI: 10.1128/mbio.02193-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The appearance of Cryptococcus gattii in the North American Pacific Northwest (PNW) in 1999 was an unexpected and is still an unexplained event. Recent phylogenomic analyses strongly suggest that this pathogenic fungus arrived in the PNW approximately 7 to 9 decades ago. In this paper, we theorize that the ancestors of the PNW C. gattii clones arrived in the area by shipborne transport, possibly in contaminated ballast, and established themselves in coastal waters early in the 20th century. In 1964, a tsunami flooded local coastal regions, transporting C. gattii to land. The occurrence of cryptococcosis in animals and humans 3 decades later suggests that adaptation to local environs took time, possibly requiring an increase in virulence and further dispersal. Tsunamis as a mechanism for the seeding of land with pathogenic waterborne microbes may have important implications for our understanding of how infectious diseases emerge in certain regions. This hypothesis suggests experimental work for its validation or refutation.
Collapse
|
40
|
Cryptococcus gattii VGII isolated from native forest and river in Northern Brazil. Braz J Microbiol 2019; 50:495-500. [PMID: 30852797 DOI: 10.1007/s42770-019-00066-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. In the northern region of Brazil, this disease is caused by Cryptococcus neoformans genotype VNI and Cryptococcus gattii genotype VGII. However, few environmental studies have been conducted in this large tropical area. AIMS This study was performed to isolate, genotype, and determine the frequency of cryptococcal agents in environmental samples near Manaus, Amazonas, Brazil. METHODS A total of 970 environmental samples (290 from soil, 290 from decaying plants, 5 from insects, 280 from the Negro river, and 105 from small streams within the city of Manaus) were collected and plated on Niger seed agar. In addition, 20 sub-cultures obtained from each positive sample were analyzed by PCR-RFLP (URA5) and PCR for genotyping and determination of mating type. RESULTS Six samples were positive for isolates from the C. gattii species complex. Of those, three samples were from Adolpho Ducke Forest Reserve and three were from the Negro river. All isolates were C. gattii genotype VGII (mating type MATα). CONCLUSION Genotype VGII proved to be the most important genotype found in the environmental samples. The genotype VGII has been described as one of the most virulent and less susceptible to antifungals and responsible for important outbreaks. This is the first study to demonstrate isolation of C. gattii (VGII) from the Negro river.
Collapse
|
41
|
Maruyama FH, de Paula DAJ, Menezes IDG, Favalessa OC, Hahn RC, de Almeida ADBPF, Sousa VRF, Nakazato L, Dutra V. Genetic Diversity of the Cryptococcus gattii Species Complex in Mato Grosso State, Brazil. Mycopathologia 2019; 184:45-51. [PMID: 30627957 DOI: 10.1007/s11046-018-0313-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Cryptococcosis is caused by fungi of the genus Cryptococcus. Owing to its importance, this study aimed to analyze the genetic diversity of C. gattii isolates from animals, humans, and the environment in Mato Grosso State (MT), Brazil, during November 2010-December 2017. All isolates of the C. gattii species complex were subjected to molecular genotyping via Restriction Fragment Length Polymorphism (PCR-RFLP) and Multi-locus Sequence Typing (MLST). PCR-RFLP analysis revealed that 21 isolates presented the genotype VGII, which is considered the most common and virulent genotype globally among. MLST analysis revealed the presence of 14 sequence types (STs), of which 5 are considered new genotypes. Clonal Complex (CC) CC182 (n = 5; 23,80%) and CC309 (n = 3; 14,28%) were the most frequent. CC distribution in relation to origin revealed that three CCs were found in animals with a predominance of CC182 (66,66%), while nine were found in humans, and two CCs were found in the environment. Extensive genetic variability was observed among the isolates in the State of Mato Grosso. STs belonging to the already described clonal complexes (CC) indicate the global expansion and adaptation of isolates in several other countries. Therefore, detection of clonal complexes and STs already described in other regions and the occurrence of new STs in the present study help further the current understanding of the geographic dispersion and genetic origin of the C. gattii species complex.
Collapse
Affiliation(s)
- Fernanda Harumi Maruyama
- Postgraduate Course in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Mato Grosso, Cuiabá, Brazil.
| | - Daphine Ariadne Jesus de Paula
- Postgraduate Course in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Isabela de Godoy Menezes
- Postgraduate Course in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Olívia Cometti Favalessa
- Postgraduate Course in Health Sciences, Department of Molecular Biology, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Rosane Christine Hahn
- Postgraduate Course in Health Sciences, Department of Molecular Biology, Federal University of Mato Grosso, Cuiabá, Brazil
| | | | - Valéria Régia Franco Sousa
- Postgraduate Course in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Luciano Nakazato
- Postgraduate Course in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Valéria Dutra
- Postgraduate Course in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
42
|
Acheson ES, Galanis E, Bartlett K, Mak S, Klinkenberg B. Searching for clues for eighteen years: Deciphering the ecological determinants of Cryptococcus gattii on Vancouver Island, British Columbia. Med Mycol 2018; 56:129-144. [PMID: 28525610 DOI: 10.1093/mmy/myx037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus gattii emerged on Vancouver Island in 1999 for unknown reasons, causing human and animal fatalities and illness. The apparent emergence of this fungus in another temperate area, this time in the Pacific Northwest, suggests the fungus may have expanded its ecological niche. Yet studies that directly examine the potential roles of climatic and land use changes on C. gattii are still lacking. We aim to summarize the existing global literature on the ecology of C. gattii, with particular focus on the gap in knowledge surrounding the potential effects of climatic and land use changes. We systematically reviewed English peer-reviewed literature on the ecological determinants of C. gattii. We included studies published from January 1970 through June 2016 and identified 56 relevant studies for our review. We identified environmental isolations of C. gattii from 18 countries, spanning 72 separate regions across six continents. Fifty-three tree species were associated with C. gattii, spanning 10 climate classifications and 36 terrestrial ecoregions. No studies directly tested the potential effects of climatic changes (including climatic oscillations and global climate change) on C. gattii, while only one study directly assessed those of land use change. To improve model predictions of current and future distributions of C. gattii, more focus is needed on the potential effects of climatic and land use changes to help decrease the public health risk. The apparent emergence of C. gattii in British Columbia is also an opportunity to explore the factors behind emerging infectious diseases in Canada and elsewhere.
Collapse
Affiliation(s)
- Emily Sohanna Acheson
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| | - Eleni Galanis
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4.,School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Karen Bartlett
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sunny Mak
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4
| | - Brian Klinkenberg
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| |
Collapse
|
43
|
Pakshir K, Fakhim H, Vaezi A, Meis JF, Mahmoodi M, Zomorodian K, Javidnia J, Ansari S, Hagen F, Badali H. Molecular epidemiology of environmental Cryptococcus species isolates based on amplified fragment length polymorphism. J Mycol Med 2018; 28:599-605. [PMID: 30322827 DOI: 10.1016/j.mycmed.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Cryptococcosis is a major opportunistic fungal infection caused by members of the genus Cryptococcus, mainly those belonging to the Cryptococcus neoformans/Cryptococcus gattii species complexes. Here, we report a comprehensive molecular epidemiological study of the environmental distribution of Cryptococcus isolates in Shiraz, Iran with review of litreature. METHOD A total of 406 samples were obtained from Eucalyptus trees and 139 samples from pigeon droppings. Cryptococcus species identification and genotyping were performed by amplified fragment length polymorphism (AFLP) fingerprinting sequencing and sequencing of the ITS rDNA region. RESULTS Majority of the isolates belonged to the Naganishia taxon (n=69) including N. albida (formerly C. albidus, n=62), N. globosa (formerly C. saitoi, n=4), N. adeliensis (formerly C. adeliensis, n=2), N. diffluens (formerly C. diffluens, n=1), and the identified C. neoformans isolates (n=25) belonged to genotype AFLP1/VNI (n=22) and AFLP1B/VNII (n=3). CONCLUSION More research efforts should be employed to isolate C. gattii species complex from environmental niches in Iran and provide additional evidence related to novel molecular types.
Collapse
Affiliation(s)
- K Pakshir
- Basic Sciences in Infectious Diseases Research Center, Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Fakhim
- Department of Medical Mycology and Parasitology, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - A Vaezi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands; Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - M Mahmoodi
- Basic Sciences in Infectious Diseases Research Center, Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - K Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - J Javidnia
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands; Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - H Badali
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
44
|
Isolation of Cryptococcus gattii VGIII from feline nasal injury. Med Mycol Case Rep 2018; 22:55-57. [PMID: 30258766 PMCID: PMC6151965 DOI: 10.1016/j.mmcr.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Hereby we communicate the first autochthon isolation of Cryptococcus gattii VGIII in Chile, which was obtained from a nasal injury in a domestic cat in the Valparaíso region in Chile. The strain was identified using morphophysiological tests, MALDI-TOF, and URA5 gene PCR-RFLP analysis.
Collapse
|
45
|
Nyazika TK, Tatuene JK, Kenfak-Foguena A, Verweij PE, Meis JF, Robertson VJ, Hagen F. Epidemiology and aetiologies of cryptococcal meningitis in Africa, 1950-2017: protocol for a systematic review. BMJ Open 2018; 8:e020654. [PMID: 30061436 PMCID: PMC6067404 DOI: 10.1136/bmjopen-2017-020654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Cryptococcal meningitis is a neglected disease and an AIDS-defining illness, responsible for 15% of all AIDS-related deaths globally. In 2014, the estimated number of incident cryptococcal meningitis cases was 223 100, with 73% of them occurring in Africa. Currently available data on the prevalence, incidence, aetiologies and mortality of cryptococcal meningitis across Africa are sparse and of limited quality. We propose to conduct the first systematic review to summarise the epidemiological data available on cryptococcal meningitis and its aetiological causes in Africa. METHODS AND ANALYSIS We will search PubMed, MEDLINE, Excerpta Medica Database, ISI Web of Science, Africa Index Medicus, Cumulative Index to Nursing and Allied Health for studies on cryptococcal meningitis published between 1st January 1950 and 31st December 2017, involving adults and/or children residing in Africa. After study selection, full text paper acquisition and data extraction, we will use validated tools and checklists to assess the quality of reporting and risk of bias for each study. Heterogeneity across studies will be assessed using the χ2 test on Cochrane's Q statistic and a random effect meta-analysis will be used to estimate the overall prevalence, incidence density and mortality of cryptococcal meningitis across studies with similar characteristics. This protocol is prepared and presented in accordance with the 2015 Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols guidelines. Reporting of the results will be compliant with the Meta-Analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. ETHICS AND DISSEMINATION There is no requirement for ethical approval since we will be using data from published studies. The final report will be published in a peer-reviewed journal and further presented at conferences. This study is expected to provide useful contextual estimates needed to inform treatment policies on the African continent and assess the impact of diagnostic and prevention strategies on the burden of cryptococcal meningitis in the post antiretroviral therapy era. PROSPERO REGISTRATION NUMBER CRD42017081312.
Collapse
Affiliation(s)
- Tinashe K Nyazika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joseph Kamtchum Tatuene
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Brain Infections Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Alain Kenfak-Foguena
- Division of Infectious Diseases, Department of Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Valerie J Robertson
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
46
|
Uppar A, Raj ARP, Konar S, Kandregula S, Shukla D, Somanna S, Devi BI, C Y, Chandrashekar N. Intracranial Cryptococcoma-Clinicopathologic Correlation and Surgical Outcome: A Single-Institution Experience. World Neurosurg 2018; 115:e349-e359. [PMID: 29678697 DOI: 10.1016/j.wneu.2018.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To describe clinical characteristics of patients with intracranial cryptococcoma, clinicopathologic findings, and outcomes after surgery. MATERIALS AND METHODS Clinical data were collected from hospital case records, and pathologic confirmation was done by a neuropathologist. Clinical details, imaging features, and treatment modalities were evaluated and correlated with outcomes based on regular follow-up. RESULTS This case series included 5 cases of histology- and culture-proven intracranial cryptococcoma. Three patients (60%) were aged between the 3rd and 5th decades. Three cases were supratentorial in location, and 2 were in the posterior fossa. One patient presented with seizures. Three patients (60%) presented with fever. Three patients (60%) had papilledema, and 4 (80%) had signs of meningeal irritation. Four patients (80%) were immunocompetent. Only 1 patient was immunocompromised. All lesions were peripherally enhancing on computed tomography. Four of 5 patients underwent surgical decompression without any residue. Only 1 patient underwent stereotactic biopsy. All patients received antifungal therapy. One patient who was immunocompromised developed multiorgan failure and died after 2 months after surgery (20%). Of 5 cases, 4 (80%) had a good outcome with a mean follow-up of 5 years. CONCLUSIONS Cryptococcus gattii is a rarer species implicated in intracranial cryptococcoma that is seen along with the more common Cryptococcus neoformans. Early diagnosis and surgical decompression followed by intravenous amphotericin B therapy for at least 6 weeks and concomitant therapy with fluconazole for prolonged periods may reduce morbidity and mortality.
Collapse
Affiliation(s)
- Alok Uppar
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - A R Prabhu Raj
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Subhas Konar
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sandeep Kandregula
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sampath Somanna
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - B Indira Devi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Yasha C
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Nagarathna Chandrashekar
- Department of Neuro Microbiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
47
|
Basnayake TL, Lim A, Currie BJ. Pulmonary cryptococcal infection presenting with multiple lung nodules. Respir Med Case Rep 2018; 23:122-124. [PMID: 29619316 PMCID: PMC5881413 DOI: 10.1016/j.rmcr.2018.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 10/31/2022] Open
Abstract
Pulmonary infections from the environmental fungus Cryptococcus gattii (C. gattii) are notable for cryptococcomas, which are usually solitary and can be very large. As with infections with Cryptococcus neoformans (C. neoformans) patients can have concomitant cryptococcal meningitis; however, unlike for C. neoformans, infections with C. gattii often occur in immunocompetent patients. The highest published incidence of C. gattii infection has been in the Indigenous Australian population of Arnhem Land in the tropical north of the country. More recently C. gattii has been responsible for outbreaks of cryptococcosis in the Pacific Northwest of Canada and the United States of America (USA). A previously healthy Indigenous male from Arnhem Land presented with pulmonary cryptococcosis with chest imaging showing >50 bilateral lung nodules. This unusual occurrence was attributed to probable inhalation of fungal elements from prior use of a high-pressure leaf blower to clear eucalyptus and other debris in a remote bush camp.
Collapse
Affiliation(s)
- Thilini L Basnayake
- Department of Respiratory and Sleep Medicine, Royal Darwin Hospital, Darwin, NT, Australia.,Flinders University, School of Medicine, Darwin, NT, Australia
| | - Aijye Lim
- Department of Anatomical Pathology, Territory Pathology, Royal Darwin Hospital, Darwin, NT, Australia
| | - Bart J Currie
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia.,Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
48
|
Montagna MT, De Donno A, Caggiano G, Serio F, De Giglio O, Bagordo F, D'Amicis R, Lockhart SR, Cogliati M. Molecular characterization of Cryptococcus neoformans and Cryptococcus gattii from environmental sources and genetic comparison with clinical isolates in Apulia, Italy. ENVIRONMENTAL RESEARCH 2018; 160:347-352. [PMID: 29054089 DOI: 10.1016/j.envres.2017.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the environmental distribution of Cryptococcus neoformans and C. gattii species complex molecular types, mating types and sequence types in Apulia, a region of Southern Italy. A total of 2078 specimens from arboreal and animal sources were analyzed. The percentage of positive samples was similar among both arboreal and animal specimens: 4.2% vs. 5.1% for C. neoformans species complex and 0.6% vs. 1.4% for C. gattii species complex. Molecular typing identified 78 isolates as VNI (76 αA and two aA), one as AD-hybrid αADa, and 16 as VGI aB. VNI isolates presented 10 different sequence types (STs) and VGI isolates two. The most frequent STs among C. neoformans and C. gattii species complex isolates were ST23 (51%) and ST156 (90%), respectively. Comparison with molecular types and STs results obtained from 21 clinical isolates collected in Apulia showed that one C. neoformans VNI clinical isolate shared an identical sequence type of one arboreal isolate (ST61) and that one C. gattii VGI clinical isolate matched with the main ST (ST156) present in the environment. In addition, molecular type VNIV was found only among clinical isolates and was absent in the investigated environmental area. In conclusion, the present study identified which C. neoformans and C. gattii species complex genotypes are circulating in Apulia, defined their ecological niches and revealed the relationship with clinical cases. It represents a basal study for addressing future investigations and public health interventions in the region.
Collapse
Affiliation(s)
- Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy.
| | - Francesca Serio
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Bagordo
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - R D'Amicis
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Shawn R Lockhart
- Fungal Reference Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
49
|
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
|
50
|
Kanjanapradit K, Kosjerina Z, Tanomkiat W, Keeratichananont W, Panthuwong S. Pulmonary Cryptococcosis Presenting With Lung Mass: Report of 7 Cases and Review of Literature. Clin Med Insights Pathol 2017; 10:1179555717722962. [PMID: 28814908 PMCID: PMC5546643 DOI: 10.1177/1179555717722962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Pulmonary cryptococcosis is commonly found in immunocompromised patients. This microorganism rarely infects immunocompetent individuals, and when it does, it causes mild symptoms. The radiological findings of this disease may involve an intrapulmonary mass that mimics lung tumor. The objective of this study was to review the clinicopathological information, radiological findings, and treatment of patients who presented with intrapulmonary mass due to cryptococcosis. This study collected data from 7 patients who were treated at Songklanagarind Hospital, Songkhla, Thailand, between 2009 and 2014. Their clinical data, radiological findings, pathological results, and treatment protocols were reviewed. The patients were 2 women and 5 men, ranging in age from 37 to 79 years old. One case was an immunocompromised host. Four cases experienced the chest symptoms of dyspnea, hemoptysis, and chronic cough. The most common location of mass was the left lower lobe (71%). Four cases had a history of bird contact. Lung lobectomy was performed in 3 cases (42%), and all of the patients were treated with oral fluconazole. An intrapulmonary mass caused by this microorganism is mainly found in immunocompetent patients. Treatment with the antifungal drug fluconazole is very effective.
Collapse
Affiliation(s)
- Kanet Kanjanapradit
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Zdravko Kosjerina
- Department of Anatomical Pathology, Institute for Lung Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Wiwatana Tanomkiat
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Warangkana Keeratichananont
- Division of Respiratory and Respiratory Critical Care Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Siripen Panthuwong
- Division of Infectious Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|