1
|
Agnew J, Gorzelski A, Zhu J, Romero A. Coconut fatty acids exhibit strong repellency and week-long efficacy against several urban pest arthropods of the southwestern United States. PEST MANAGEMENT SCIENCE 2023; 79:3511-3519. [PMID: 37144346 DOI: 10.1002/ps.7531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND The southwestern United States is home to a variety of arthropods including Turkestan cockroaches, Blatta lateralis (Walker); hematophagous kissing bugs, Tritoma rubida (Uhler); and Arizona bark scorpions, Centruroides sculpturatus Ewing. These arthropods cause medical concern when they become established around homes and/or invade indoors. Traditionally, the management of these pests has relied primarily on the use of chemical insecticides; however, they offer poor prospects for control owing to their lack of efficacy as well as the effects of insecticides on humans and the environment. Botanical repellents are an option that has not been fully investigated for the management of these pests. Here, we investigated the behavioral responses of common urban pests of the southwestern USA to recently discovered coconut fatty acids (CFAs), to establish the potential use of these compounds as repellents. RESULTS Fresh residues of CFA mixture (CFAm) and their constituents caprylic acid, capric acid, capric acid methyl ester, lauric acid, and lauric acid methyl ester, tested at a concentration of 1 mg cm-2 , strongly repelled all arthropods. The repellent activity of CFAm lasted for at least 7 days, and the addition of lavender oil, used as an odor-masking agent, did not decrease this effect. Concentrations of CFAm ten times lower (0.1 mg cm-2 ) still repelled Turkestan cockroaches, and concentrations 100 times lower (0.01 mg cm-2 ) repelled T. rubida and scorpions. CONCLUSIONS CFAm and some of their constituents are efficacious, economical, and logistically feasible for inclusion in integrated pest management programs for these important urban pests of the southwestern USA. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- John Agnew
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA
| | - Ashton Gorzelski
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Junwei Zhu
- United States Department of Agriculture, Agricultural Research Service, Agroecosystem Management Research Unit, University of Nebraska, Lincoln, NE, USA
| | - Alvaro Romero
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
2
|
Rivas N, Cuatepotzo-Jiménez V, Noguéz-García J, Alejandre-Aguilar R. Triatoma protracta woodi Usinger, 1939 (Hemiptera: Reduviidae): new report on the state of Hidalgo, México. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2022; 47:130-132. [PMID: 36629365 DOI: 10.52707/1081-1710-47.1.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Nancy Rivas
- Laboratorio Entomología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n. Col. Casco de Santo Tomas, C.P. 11340, Ciudad de México, México
| | - Vanessa Cuatepotzo-Jiménez
- Área de Entomología, Laboratorio Estatal de Salud Pública de Hidalgo, Servicios de Salud Hidalgo, Pachuca de Soto, Hidalgo, México
| | - Julio Noguéz-García
- Área de Entomología, Laboratorio Estatal de Salud Pública de Hidalgo, Servicios de Salud Hidalgo, Pachuca de Soto, Hidalgo, México
| | - Ricardo Alejandre-Aguilar
- Laboratorio Entomología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n. Col. Casco de Santo Tomas, C.P. 11340, Ciudad de México, México,
| |
Collapse
|
3
|
Flores-López CA, Mitchell EA, Reisenman CE, Sarkar S, Williamson PC, Machado CA. Phylogenetic diversity of two common Trypanosoma cruzi lineages in the Southwestern United States. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105251. [PMID: 35183751 DOI: 10.1016/j.meegid.2022.105251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a devastating parasitic disease endemic to Central and South America, Mexico, and the USA. We characterized the genetic diversity of Trypanosoma cruzi circulating in five triatomine species (Triatoma gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga and T. recurva) collected in Texas and Southern Arizona using multilocus sequence typing (MLST) with four single-copy loci (cytochrome oxidase subunit II- NADH dehydrogensase subunit 1 region (COII-ND1), mismatch-repair class 2 (MSH2), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and a nuclear gene with ID TcCLB.506529.310). All T. cruzi variants fall in two main genetic lineages: 75% of the samples corresponded to T. cruzi Discrete Typing Unit (DTU) I (TcI), and 25% to a North American specific lineage previously labelled TcIV-USA. Phylogenetic and sequence divergence analyses of our new data plus all previously published sequence data from those four loci collected in the USA, show that TcIV-USA is significantly different from any other previously defined T. cruzi DTUs. The significant level of genetic divergence between TcIV-USA and other T. cruzi DTUs should lead to an increased focus on understanding the epidemiological importance of this DTU, as well as its geographical range and pathogenicity in humans and domestic animals. Our findings further corroborate the fact that there is a high genetic diversity of the parasite in North America and emphasize the need for appropriate surveillance and vector control programs for Chagas disease in southern USA and Mexico.
Collapse
Affiliation(s)
- Carlos A Flores-López
- Department of Biology, University of Maryland, College Park, MD, USA; Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Elizabeth A Mitchell
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Sahotra Sarkar
- Department of Philosophy and Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Philip C Williamson
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Creative Testing Solutions, Tempe, AZ, USA
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
4
|
Mathison BA, Sapp SGH. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. Zookeys 2021; 1069:1-313. [PMID: 34819766 PMCID: PMC8595220 DOI: 10.3897/zookeys.1069.67403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The classification of "parasites" in the medical field is a challenging notion, a group which historically has included all eukaryotes exclusive of fungi that invade and derive resources from the human host. Since antiquity, humans have been identifying and documenting parasitic infections, and this collective catalog of parasitic agents has expanded considerably with technology. As our understanding of species boundaries and the use of molecular tools has evolved, so has our concept of the taxonomy of human parasites. Consequently, new species have been recognized while others have been relegated to synonyms. On the other hand, the decline of expertise in classical parasitology and limited curricula have led to a loss of awareness of many rarely encountered species. Here, we provide a comprehensive checklist of all reported eukaryotic organisms (excluding fungi and allied taxa) parasitizing humans resulting in 274 genus-group taxa and 848 species-group taxa. For each species, or genus where indicated, a concise summary of geographic distribution, natural hosts, route of transmission and site within human host, and vectored pathogens are presented. Ubiquitous, human-adapted species as well as very rare, incidental zoonotic organisms are discussed in this annotated checklist. We also provide a list of 79 excluded genera and species that have been previously reported as human parasites but are not believed to be true human parasites or represent misidentifications or taxonomic changes.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USAInstitute for Clinical and Experimental PathologySalt Lake CityUnited States of America
| | - Sarah G. H. Sapp
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USACenters for Disease Control and PreventionAtlantaUnited States of America
| |
Collapse
|
5
|
Nielsen DH, Koch K, Roachell W, Delgado B, Bast J. First Record of an Established Population of Triatoma sanguisuga (Hemiptera: Reduviidae) in Richardson County, Nebraska. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2519-2523. [PMID: 34283239 DOI: 10.1093/jme/tjab122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 06/13/2023]
Abstract
In 2017, a single adult Triatoma sanguisuga (LeConte) (Hemiptera: Reduviidae) was identified from Indian Cave State Park in Nemaha County, NE. The following summer, a single adult specimen was found in a 4-H insect collection at the Nebraska State Fair from Richardson County. A subsequent investigation found that these were collected from a residence in Richardson County and three more adults were collected in 2019. In 2020, the latter three kissing bugs were submitted to Public Health Command-Central's DoD Food Analysis and Diagnostic Laboratory (DOD FADL) for confirmatory species identification and diagnostic testing for Trypanosoma cruzi, the causative agent of Chagas disease. One specimen tested positive for T. cruzi using a real-time dual-target PCR screen followed by confirmatory dual-target traditional PCR. Based on these findings, a survey plan was developed for Richardson and surrounding counties in southeast Nebraska. In July of 2020, two adult and seven nymphs (multiple instars) of T. sanguisuga were collected in Richardson County, one of which tested positive for T. cruzi. This is the first record of an established population of T. sanguisuga and T. cruzi-infected kissing bugs in Nebraska.
Collapse
Affiliation(s)
- David H Nielsen
- Entomological Sciences Division, Public Health Command-Central, Ft. Sam Houston, TX 78234, USA
- Entomolgy Program, Nebraska Department of Agriculture, 301 Centennial Mall South, Lincoln, NE 68509-4756, USA
| | - Kyle Koch
- Entomology Department, University of Nebraska-Lincoln, Lincoln, NE 68583-0816, USA
| | - Walter Roachell
- Entomological Sciences Division, Public Health Command-Central, Ft. Sam Houston, TX 78234, USA
| | - Bernardo Delgado
- Entomological Sciences Division, Public Health Command-Central, Ft. Sam Houston, TX 78234, USA
| | - Joshua Bast
- Entomological Sciences Division, Public Health Command-Central, Ft. Sam Houston, TX 78234, USA
| |
Collapse
|
6
|
Surveillance of Trypanosoma cruzi infection in Triatomine vectors, feral dogs and cats, and wild animals in and around El Paso county, Texas, and New Mexico. PLoS Negl Trop Dis 2021; 15:e0009147. [PMID: 33600455 PMCID: PMC7924784 DOI: 10.1371/journal.pntd.0009147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/02/2021] [Accepted: 01/14/2021] [Indexed: 01/03/2023] Open
Abstract
The causative agent of Chagas disease, Trypanosoma cruzi, is transmitted by triatomine vectors. The insect is endemic in the Americas, including the United States, where epidemiological studies are limited, particularly in the Southwestern region. Here, we have determined the prevalence of T. cruzi in triatomines, feral cats and dogs, and wild animals, the infecting parasite genotypes and the mammalian host bloodmeal sources of the triatomines at four different geographical sites in the U.S.-Mexico border, including El Paso County, Texas, and nearby cities in New Mexico. Using qualitative polymerase chain reaction to detect T. cruzi infections, we found 66.4% (n = 225) of triatomines, 45.3% (n = 95) of feral dogs, 39.2% (n = 24) of feral cats, and 71.4% (n = 7) of wild animals positive for T. cruzi. Over 95% of T. cruzi genotypes or discrete typing units (DTUs) identified were TcI and some TcIV. Furthermore, Triatoma rubida was the triatomine species most frequently (98.2%) collected in all samples analyzed. These findings suggest a high prevalence of T. cruzi infections among triatomines, and feral and wild animals in the studied sites. Therefore, our results underscore the urgent need for implementation of a systematic epidemiological surveillance program for T. cruzi infections in insect vectors, and feral and wild animals, and Chagas disease in the human population in the southwestern region of the United States. Chagas disease is caused by the parasite Trypanosoma cruzi and one of the major transmission routes is the contaminated feces of blood-feeding triatomine insect vectors, popularly known as kissing bugs. In recent years, this disease has become an important public health concern to the United States and other nonendemic regions of the world. Despite many studies about the prevalence of T. cruzi in triatomines, and domestic, feral and wild animals in central and southern Texas, there have been no studies in west Texas and New Mexico. In this study, we report the presence of triatomines in residences in El Paso County, TX, and surrounding communities in New Mexico (cities of Anthony and Las Cruces), as well as T. cruzi infections in feral and wild animals. Using two molecular techniques to analyze the bloodmeal source in triatomines, we detected 12 different mammalian bloodmeal sources, including human and canine. Finally, parasite genotyping showed that most (95%) of the samples belonged to the genotype TcI, which is prevalent in North America. Our findings indicate that the El Paso County and surrounding communities (>950,000 people) are high risk areas for T. cruzi transmission to humans, feral cats and dogs, and wild animals. Thus, there is an urgent necessity for a public health epidemiological surveillance program for T. cruzi infections in kissing bugs, feral and wild animals, and in the human population in the U.S.-Mexico border region.
Collapse
|
7
|
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). MICROBIOME 2020; 8:146. [PMID: 33040738 PMCID: PMC7549230 DOI: 10.1186/s40168-020-00921-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Anbu Poosakkannu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Giampiero Batani
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam, Houston, TX USA
| | - Jan Zima
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
Martínez-Ibarra JA, Nogueda-Torres B, Montañez-Valdez OD, Michel-Parra JG, Valenzuela-Campos R. Biological Parameters of Two Triatoma rubida Subspecies (Hemiptera: Reduviidae) and Their Laboratory Hybrids. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1390-1398. [PMID: 32307539 DOI: 10.1093/jme/tjaa069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 06/11/2023]
Abstract
Chagas disease is one of the most important vector-borne diseases in Latin America, including Mexico. Recently, autochthonous cases have also been detected in the United States of America. It is suspected that two subspecies of Triatoma rubida (Uhler), T. r. sonoriana (Usinger) and T. r. uhleri (Usinger), considered efficient vectors of Trypanosoma cruzi Chagas in Mexico, could interbreed and potentially generate offspring with superior biological characteristics. In this study, the biological parameters of T. r. sonoriana, T. r. uhleri and their laboratory hybrids were evaluated. Hybrids of the two subspecies surpassed both parental subspecies, T. r. sonoriana and T. r. uhleri, in three (numbers of required blood meals to molt [16-20], feeding [10.5-17 min] and defecation times [˂1 min post-feeding]) of nine studied biological parameters. Moreover, the hybrids surpassed T. r. uhleri in two additional parameters, development time (298 d) and mortality (39-42%). Both the hybrid and the two parental cohorts had comparable results in the remaining four (onset of feeding, number of obtained females, number of eggs laid, and eclosion rate) of nine studied parameters. Thus, we conclude that hybrid vigor could result in an increased risk of T. cruzi transmission to humans and animals.
Collapse
Affiliation(s)
- José Alejandro Martínez-Ibarra
- Laboratorio de Entomología Médica, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Cuerpo Académico de Cuencas, Humedales y Sustentabilidad, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Benjamín Nogueda-Torres
- Becario de COFAA, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Ciudad de México, México
| | - Oziel Dante Montañez-Valdez
- Laboratorio de Entomología Médica, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Cuerpo Académico de Cuencas, Humedales y Sustentabilidad, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - J Guadalupe Michel-Parra
- Cuerpo Académico de Cuencas, Humedales y Sustentabilidad, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Ricardo Valenzuela-Campos
- Laboratorio de Entomología Médica, Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
9
|
Lynn M, Bossak BH, Sandifer PA, Watson A, Nolan MS. Contemporary autochthonous human Chagas disease in the USA. Acta Trop 2020; 205:105361. [PMID: 32006523 DOI: 10.1016/j.actatropica.2020.105361] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Chagas disease is a leading cause of non-ischemic cardiomyopathy in Latin America and an infection of emerging importance in the USA. Recent studies have uncovered evidence of an active peridomestic cycle in southern states, yet autochthonous transmission to humans has been rarely reported. We conducted a systematic review of the literature and public health department reports to investigate suspected or confirmed locally acquired cases of Chagas in the USA. We found 76 cases of contemporary suspected or confirmed locally acquired Chagas disease, nearly ten times the case counts cited in the prior 50 years of scientific literature. Shared risk factors among cases include rural residence, history of hunting or camping, and agricultural or outdoor work. The results of this review suggest that the disease burden and risk of autochthonous Chagas infection is potentially higher in the USA than previously recognized.
Collapse
|
10
|
Behrens-Bradley N, Smith S, Beatty NL, Love M, Ahmad N, Dorn PL, Schmidt JO, Klotz SA. Kissing Bugs Harboring Trypanosoma cruzi, Frequently Bite Residents of the US Southwest But Do Not Cause Chagas Disease. Am J Med 2020; 133:108-114.e13. [PMID: 31295438 DOI: 10.1016/j.amjmed.2019.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Kissing bugs are common household pests in the Desert Southwest of the United States. These hematophagous bugs enter homes and suck blood from resident humans and pets. They are vectors of Trypanosoma cruzi, an enzootic parasite in small mammals and the cause of Chagas disease in humans. Autochthonous cases of Chagas disease are rare in the United States despite the presence of the vector and parasite. Environmental and biological factors accounting for this phenomenon need studying. METHODS Homeowners in Bisbee and Tucson, Arizona captured kissing bugs inside homes during 2017-2018. Bugs were tested for presence of T. cruzi by polymerase chain reaction. Residents bitten by kissing bugs were tested for Chagas disease by serology. We evaluated invaded homes in the 2 cities. RESULTS Three species of kissing bugs (n = 521) were collected in or near homes. Triatoma rubida was the most common triatomine in Tucson; T. recurva in Bisbee. T. protracta was uncommon. Seventeen percent of bugs captured in Bisbee and 51.1% in Tucson harbored T. cruzi. Bite victims (n = 105) recalled more than 2200 bites. Reactions to bites were common, including 32 episodes of anaphylaxis in 11 people (10.5%). Tests for Chagas disease (n = 116) were negative. Median age of houses was 91 years in Bisbee and 7 years in Tucson. Bisbee houses had pier and beam foundations. Tucson houses were built on concrete slabs. CONCLUSIONS Kissing bugs harboring T. cruzi readily entered new and old homes. Bites of humans caused severe, life-threatening reactions. There was no serological evidence of Chagas disease among those bitten.
Collapse
Affiliation(s)
| | - Shannon Smith
- Department of Medicine, University of Arizona, Tucson
| | | | - Maria Love
- Department of Immunobiology, University of Arizona, Tucson
| | - Nafees Ahmad
- Department of Immunobiology, University of Arizona, Tucson
| | | | | | | |
Collapse
|
11
|
Beatty NL, Perez-Velez CM, Yaglom HD, Carson S, Liu E, Khalpey ZI, Klotz SA, Elliott SP. Evidence of Likely Autochthonous Transmission of Chagas Disease in Arizona. Am J Trop Med Hyg 2019; 99:1534-1536. [PMID: 30277208 DOI: 10.4269/ajtmh.18-0485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A healthy 16-year-old girl born and raised in Tucson, AZ, had screening and confirmatory testing revealing Chagas disease; clinical evaluation established that she had the indeterminate form of chronic Chagas disease with evidence of likely autochthonous transmission. Trypanosoma cruzi DNA was detected by conventional polymerase chain reaction in Triatoma rubida captured at her home.
Collapse
Affiliation(s)
- Norman L Beatty
- Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Hayley D Yaglom
- Arizona Department of Health Services, Office of Infectious Disease Services, Bureau of Epidemiology and Disease Control, Phoenix, Arizona
| | | | - Eugene Liu
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Zain I Khalpey
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona
| | - Stephen A Klotz
- Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Sean P Elliott
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
12
|
Dye-Braumuller KC, Gorchakov R, Gunter SM, Nielsen DH, Roachell WD, Wheless A, Debboun M, Murray KO, Nolan MS. Identification of Triatomines and Their Habitats in a Highly Developed Urban Environment. Vector Borne Zoonotic Dis 2019; 19:265-273. [PMID: 30571182 PMCID: PMC6459272 DOI: 10.1089/vbz.2018.2352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Eleven triatomine species, the vector for Chagas disease, are endemic in the southern U.S. While traditionally thought to only occur in rural habitats and sylvatic transmission cycles, recent studies provide compounding evidence that triatomines could exist in urban habitats and domestic transmission cycles in Texas. We conducted a study of active and passive surveillance techniques over 3 years (2016-2018) in the City of Houston, Harris County, Texas to determine the presence of triatomines in this metroplex. Active surveillance methods uncovered Triatoma sanguisuga nymphs from two locations in downtown Houston city parks. We also documented the first Trypanosoma cruzi positive kissing bug collected in an urban environment of Harris County, Texas. Our findings provide evidence that triatomines can be found in heavily populated U.S. urban environments, and warrant public health support for expanded triatomine and Chagas disease surveillance in city settings.
Collapse
Affiliation(s)
| | - Rodion Gorchakov
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Sarah M. Gunter
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - David H. Nielsen
- Public Health Command Central, JBSA-Fort Sam Houston, San Antonio, Texas
| | - Walter D. Roachell
- Public Health Command Central, JBSA-Fort Sam Houston, San Antonio, Texas
| | - Anna Wheless
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Mustapha Debboun
- Mosquito and Vector Control Division, Harris County Public Health, Houston, Texas
| | - Kristy O. Murray
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Melissa S. Nolan
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
- Department of Epidemiology, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
13
|
Volpedo G, Costa L, Ryan N, Halsey G, Satoskar A, Oghumu S. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venom Anim Toxins Incl Trop Dis 2019; 25:e144118. [PMID: 31130996 PMCID: PMC6483407 DOI: 10.1590/1678-9199-jvatitd-1441-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) comprise of a group of seventeen infectious
conditions endemic in many developing countries. Among these diseases are three
of protozoan origin, namely leishmaniasis, Chagas disease, and African
trypanosomiasis, caused by the parasites Leishmania spp.,
Trypanosoma cruzi, and Trypanosoma brucei
respectively. These diseases have their own unique challenges which are
associated with the development of effective prevention and treatment methods.
Collectively, these parasitic diseases cause more deaths worldwide than all
other NTDs combined. Moreover, many current therapies for these diseases are
limited in their efficacy, possessing harmful or potentially fatal side effects
at therapeutic doses. It is therefore imperative that new treatment strategies
for these parasitic diseases are developed. Nanoparticulate drug delivery
systems have emerged as a promising area of research in the therapy and
prevention of NTDs. These delivery systems provide novel mechanisms for targeted
drug delivery within the host, maximizing therapeutic effects while minimizing
systemic side effects. Currently approved drugs may also be repackaged using
these delivery systems, allowing for their potential use in NTDs of protozoan
origin. Current research on these novel delivery systems has provided insight
into possible indications, with evidence demonstrating their improved ability to
specifically target pathogens, penetrate barriers within the host, and reduce
toxicity with lower dose regimens. In this review, we will examine current
research on these delivery systems, focusing on applications in the treatment of
leishmaniasis, Chagas disease, and African trypanosomiasis. Nanoparticulate
systems present a unique therapeutic alternative through the repositioning of
existing medications and directed drug delivery.
Collapse
Affiliation(s)
- Greta Volpedo
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Lourena Costa
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| | - Nathan Ryan
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Gregory Halsey
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Abhay Satoskar
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Steve Oghumu
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Dodd RY, Groves JA, Townsend RL, Notari EP, Foster GA, Custer B, Busch MP, Stramer SL. Impact of one-time testing for Trypanosoma cruzi
antibodies among blood donors in the United States. Transfusion 2018; 59:1016-1023. [DOI: 10.1111/trf.15118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Roger Y. Dodd
- Scientific Affairs; American Red Cross; Gaithersburg Maryland
| | - Jamel A. Groves
- Scientific Affairs; American Red Cross; Gaithersburg Maryland
| | | | | | | | - Brian Custer
- Vitalant Research Institute; San Francisco California
| | | | | |
Collapse
|
15
|
Hamer SA, Curtis-Robles R, Hamer GL. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. CURRENT OPINION IN INSECT SCIENCE 2018; 28:98-104. [PMID: 30551774 DOI: 10.1016/j.cois.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Abstract
Citizen-collected arthropod vectors are useful for epidemiological studies of vector-borne disease, especially since the vectors encountered by the public are the subset of vectors in nature that have a disproportionate impact on health. Programs integrating educational efforts with collecting efforts may be particularly effective for public health initiatives, resulting in an empowered public with knowledge of vector-borne disease prevention. Citizen science programs have been successfully implemented for the collection of unprecedented sample sets of mosquitos, ticks, and triatomines. Cyber infrastructure employed in digital epidemiology-including websites, email, mobile phone apps, and social media platforms-has facilitated vector citizen science initiatives to assess disease risk over vast spatial and temporal scales, advancing research to mitigate vector-borne disease risk.
Collapse
Affiliation(s)
- Sarah A Hamer
- Department of Veterinary Integrative Biosciences, 4458 TAMU, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel Curtis-Robles
- Department of Veterinary Integrative Biosciences, 4458 TAMU, Texas A&M University, College Station, TX 77843, USA
| | - Gabriel L Hamer
- Department of Entomology, 2475 TAMU, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Montes-Rincón LM, Galaviz-Silva L, Molina-Garza ZJ. [Anti-Trypanosoma cruzi antibodies in Latin American migrants in transit through the México- USA border]. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2018; 38:54-60. [PMID: 29668134 DOI: 10.7705/biomedica.v38i0.3526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 04/09/2017] [Indexed: 06/08/2023]
Abstract
INTRODUCTION In recent years, American trypanosomiasis has become an emergent public health problem in countries receiving migrant populations such as México, USA, Canada or those in Europe. OBJECTIVE To analyze the prevalence of anti-Trypanosoma cruzi antibodies in Latin American migrants on their way to USA and Canada by means of serological techniques. MATERIAL AND METHODS ELISA and IHA were performed to detect anti-T. cruzi antibodies. Also, each participant filled out a socioeconomic questionnaire to determine the associated factors with seropositive cases, which could facilitate the transmission in the migrants' country of origin. RESULTS Total seroprevalence among the studied population was 20% (24/120). The highest prevalence was found in migrants from Guatemala with 37.5% (6/16), followed by Honduras (22.6%; 12/53), El Salvador (16%; 4/25), and México (8.7%, 3/23). From the total 120 surveyed migrants, 105 (87.5%) recognized the vector of Chagas' disease, and 62 (59%) assured having been bitten by it. Highly significant statistical associations were found between infection and the construction materials for walls and the presence of pets (dogs) inside houses (p≤0.01), as well as with the building materials for backyards, inadequate basic services, and animal breeding inside corrals built around dwellings (p≤0.05). CONCLUSION Non-endemic countries receiving migrants from endemic areas should enhance or develop better health policies to prevent transfusion-transmitted Chagas or congenital parasite transmission.
Collapse
Affiliation(s)
- Laura Mayela Montes-Rincón
- Laboratorio de Patología Molecular y Experimental, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México.
| | | | | |
Collapse
|
17
|
Curtis-Robles R, Auckland LD, Snowden KF, Hamer GL, Hamer SA. Analysis of over 1500 triatomine vectors from across the US, predominantly Texas, for Trypanosoma cruzi infection and discrete typing units. INFECTION GENETICS AND EVOLUTION 2017; 58:171-180. [PMID: 29269323 DOI: 10.1016/j.meegid.2017.12.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023]
Abstract
Across the Americas, triatomine insects harbor diverse strains of Trypanosoma cruzi (T. cruzi), agent of Chagas disease. Geographic patterns of vector infection and parasite strain associations, especially in vectors encountered by the public, may be useful in assessing entomological risk, but are largely unknown across the US. We collected Triatoma spp. from across the US (mainly Texas), in part using a citizen science initiative, and amplified T. cruzi DNA to determine infection prevalence and parasite discrete typing units (DTUs). We found 54.4% infection prevalence in 1510 triatomines of 6 species; prevalence in adult T. gerstaeckeri (63.3%; n=897) and T. lecticularia (66.7%; n=66) was greater than in T. sanguisuga (47.6%; n=315), T. indictiva (47.8% n=67), T. rubida (14.1%; n=64), and T. protracta (10.5%; n=19). The odds of infection in adults were 9.73 times higher than in nymphs (95% CI 4.46-25.83). PCR of the spliced leader intergenic region (SL-IR) and/or the putative lathosterol/episterol oxidase TcSC5D gene revealed exclusively T. cruzi DTUs TcI and TcIV; 5.5% of T. cruzi-positive samples were not successfully typed. T. gerstaeckeri (n=548) were more frequently infected with TcI (53.9%) than TcIV (34.4%), and 11.9% showed mixed TcI/TcIV infections. In contrast, T. sanguisuga (n=135) were more frequently infected with TcIV (79.3%) than TcI (15.6%), and 5.2% showed mixed infections. Relative abundance of parasite DTUs varied spatially, with both TcI and TcIV co-circulating in vectors in central Texas, while TcIV predominated in northern Texas. Given prior findings implicating TcI in human disease and TcI and TcIV in animal disease in the US, knowledge of spatial distribution of T. cruzi infection and DTUs in vectors is important to understanding public and veterinary health risk of T. cruzi infection.
Collapse
Affiliation(s)
- Rachel Curtis-Robles
- Department of Veterinary Integrative Biosciences, 4458 TAMU, Texas A&M University, College Station, TX 77843, USA.
| | - Lisa D Auckland
- Department of Veterinary Integrative Biosciences, 4458 TAMU, Texas A&M University, College Station, TX 77843, USA.
| | - Karen F Snowden
- Department of Veterinary Pathobiology, 4467 TAMU, Texas A&M University, College Station, TX 77843, USA.
| | - Gabriel L Hamer
- Department of Entomology, 2475 TAMU, Texas A&M University, College Station, TX 77843, USA.
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, 4458 TAMU, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
18
|
Brito RN, Gorla DE, Diotaiuti L, Gomes ACF, Souza RCM, Abad-Franch F. Drivers of house invasion by sylvatic Chagas disease vectors in the Amazon-Cerrado transition: A multi-year, state-wide assessment of municipality-aggregated surveillance data. PLoS Negl Trop Dis 2017; 11:e0006035. [PMID: 29145405 PMCID: PMC5689836 DOI: 10.1371/journal.pntd.0006035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022] Open
Abstract
Background Insecticide spraying efficiently controls house infestation by triatomine bugs, the vectors of Trypanosoma cruzi. The strategy, however, is ineffective against sylvatic triatomines, which can transmit Chagas disease by invading (without colonizing) man-made structures. Despite growing awareness of the relevance of these transmission dynamics, the drivers of house invasion by sylvatic triatomines remain poorly understood. Methods/Findings About 12,000 sylvatic triatomines were caught during routine surveillance in houses of Tocantins state, Brazil, in 2005–2013. Using negative binomial regression, information-theoretic model evaluation/averaging, and external model validation, we investigated the effects of regional (Amazon/Cerrado), landscape (preservation/disturbance), and climate covariates (temperature, rainfall) on the municipality-aggregated numbers of house-invading Rhodnius pictipes, R. robustus, R. neglectus, and Panstrongylus geniculatus. House invasion by R. pictipes and R. robustus was overall more frequent in the Amazon biome, tended to increase in municipalities with more well-preserved land, and decreased in rainier municipalities. Across species, invasion decreased with higher landscape-disturbance levels and in hotter-day municipalities. Invasion by R. neglectus and P. geniculatus increased somewhat with more land at intermediate disturbance and peaked in average-rainfall municipalities. Temperature effects were more pronounced on P. geniculatus than on Rhodnius spp. Conclusions We report widespread, frequent house invasion by sylvatic triatomines in the Amazon–Cerrado transition. Our analyses indicate that readily available environmental metrics may help predict the risk of contact between sylvatic triatomines and humans at coarse geographic scales, and hint at specific hypotheses about climate and deforestation effects on those vectors–with some taxon-specific responses and some seemingly general trends. Thus, our focal species appear to be quite sensitive to higher temperatures, and might be less common in more heavily-disturbed than in better-preserved environments. This study illustrates, in sum, how entomological routine-surveillance data can be efficiently used for Chagas disease risk prediction and stratification when house-colonizing vectors are absent. Triatomine bugs are the vectors of Chagas disease, still a key public health concern in the Americas. Insecticide spraying efficiently controls house infestation by triatomines, but is useless against sylvatic bugs–which can transmit the disease by simply invading human residences. Although this behavior is common, the drivers of house invasion by wild triatomines remain poorly understood. Using municipality-aggregated data from routine surveillance, we investigated whether and how some major environmental factors affect house invasion by four triatomine species across the transition between Amazon rainforests and Cerrado savannahs in Brazil. We found that house invasion (i) is widespread, (ii) varies by region for some species, (iii) is overall less frequent in areas with higher levels of landscape disturbance, and (iv) is less common in hotter and in rainier sites. Although the effects of landscape disturbance and climate differed somewhat among bug species, the general approach we describe here may help advance Chagas disease risk assessment when house-colonizing vectors are absent.
Collapse
Affiliation(s)
- Raíssa N. Brito
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David E. Gorla
- Laboratorio de Eco-Epidemiología Espacial de Enfermedades Transmitidas por Vectores, Instituto de Altos Estudios Espaciales Mario Gulich–CONAE / Universidad Nacional de Córdoba–CONICET, Falda del Cañete, Córdoba, Argentina
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anália C. F. Gomes
- Coordenação de Vigilância de Doenças Vetoriais e Zoonoses, Secretaria Estadual de Saúde do Tocantins, Palmas, Tocantins, Brazil
| | - Rita C. M. Souza
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Abad-Franch
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: ,
| |
Collapse
|
19
|
Short EE, Caminade C, Thomas BN. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases. Infect Dis (Lond) 2017; 10:1178633617732296. [PMID: 29317829 PMCID: PMC5755797 DOI: 10.1177/1178633617732296] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/20/2017] [Indexed: 01/07/2023] Open
Abstract
The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected.
Collapse
Affiliation(s)
- Erica E Short
- Environmental Science Program, Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Cyril Caminade
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
20
|
Indacochea A, Gard CC, Hansen IA, Pierce J, Romero A. Short-Range Responses of the Kissing Bug Triatoma rubida (Hemiptera: Reduviidae) to Carbon Dioxide, Moisture, and Artificial Light. INSECTS 2017; 8:insects8030090. [PMID: 28850059 PMCID: PMC5620710 DOI: 10.3390/insects8030090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
Abstract
The hematophagous bug Triatoma rubida is a species of kissing bug that has been marked as a potential vector for the transmission of Chagas disease in the Southern United States and Northern Mexico. However, information on the distribution of T. rubida in these areas is limited. Vector monitoring is crucial to assess disease risk, so effective trapping systems are required. Kissing bugs utilize extrinsic cues to guide host-seeking, aggregation, and dispersal behaviors. These cues have been recognized as high-value targets for exploitation by trapping systems. A modern video-tracking system was used with a four-port olfactometer system to quantitatively assess the behavioral response of T. rubida to cues of known significance. Also, response of T. rubida adults to seven wavelengths of light-emitting diodes (LED) in paired-choice pitfall was evaluated. Behavioral data gathered from these experiments indicate that T. rubida nymphs orient preferentially to airstreams at either 1600 or 3200 ppm carbon dioxide and prefer relative humidity levels of about 30%, while adults are most attracted to 470 nm light. These data may serve to help design an effective trapping system for T. rubida monitoring. Investigations described here also demonstrate the experimental power of combining an olfactometer with a video-tracking system for studying insect behavior.
Collapse
Affiliation(s)
- Andres Indacochea
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Charlotte C Gard
- Department of Economics, Applied Statistics, and International Business, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Jane Pierce
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Artesia, NM 88210, USA.
| | - Alvaro Romero
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
21
|
Abstract
Chagas disease, also known as American trypanosomiasis, is caused by the flagellate protozoan Trypanosoma cruzi. It is a significant health concern in South and Central America, where millions of people are infected or at risk of infection, and is an emerging health concern in the US. The occurrence of Chagas disease in natural environments is supported by mammal host species, but those primary species may vary based on geographic location. In South Texas, the primary host species for the disease is poorly understood, and required a field study to determine the spatial distribution of T. cruzi prevalence in free-ranging mammals. Our study objectives were to determine the spatial distribution and prevalence of T. cruzi parasites in free-ranging mammals. We compared T. cruzi prevalence among species, among vegetative communities, and among different topographies (i.e., floodplain versus upland). From December 2011 through December 2013, 450 blood and tissue samples from geolocated free-ranging wildlife mammal species were analyzed with the use of polymerase chain reaction to detect protozoan T. cruzi DNA. We also calculated mammal abundance with the use of mark-recapture methodology and recorded capture-site characteristics such as vegetation structure. We found that animals in grasslands had a significantly lower infection rate when summed across all species compared with animals in dense hardwoods and semi-improved woodlands (P=0.001). A higher percentage of infections were found in the lower-elevation floodplain-65% (28/43) of animals sampled, compared to upland areas-25% (9/36) of animals sampled. Our study suggested that common free-ranging meso-mammals supported T. cruzi in natural environments and are of public health concern in South Texas. Mitigation strategies should consider a range of management activities to include vegetation management, selective application of insecticides, and changes in human behavior in high-risk areas.
Collapse
|
22
|
Harris N, Woc-Colburn L, Gunter SM, Gorchakov R, Murray KO, Rossmann S, Garcia MN. Autochthonous Chagas disease in the southern United States: A case report of suspected residential and military exposures. Zoonoses Public Health 2017; 64:491-493. [PMID: 28418113 DOI: 10.1111/zph.12360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 11/28/2022]
Abstract
Chagas disease is a parasitic infection that can result in a progressive dilated cardiomyopathy. Here, we present the epidemiologic details of a suspected locally acquired transmission case originating from the southern United States. This is the first published report of Chagas disease in a young, healthy United States veteran with repeat triatomine exposures in Arizona. Military personnel and Arizona residents should be aware of their Chagas disease transmission risks.
Collapse
Affiliation(s)
- N Harris
- Baylor College of Medicine, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - L Woc-Colburn
- Baylor College of Medicine, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA.,Baylor College of Medicine, National School of Tropical Medicine, Houston, TX, USA
| | - S M Gunter
- Baylor College of Medicine, National School of Tropical Medicine, Houston, TX, USA
| | - R Gorchakov
- Baylor College of Medicine, National School of Tropical Medicine, Houston, TX, USA
| | - K O Murray
- Baylor College of Medicine, National School of Tropical Medicine, Houston, TX, USA
| | - S Rossmann
- Gulf Coast Regional Blood Center, Houston, TX, USA
| | - M N Garcia
- Baylor College of Medicine, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA.,Baylor College of Medicine, National School of Tropical Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Browne AJ, Guerra CA, Alves RV, da Costa VM, Wilson AL, Pigott DM, Hay SI, Lindsay SW, Golding N, Moyes CL. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data 2017; 4:170050. [PMID: 28398292 PMCID: PMC5387921 DOI: 10.1038/sdata.2017.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/13/2017] [Indexed: 01/19/2023] Open
Abstract
Chagas is a potentially fatal chronic disease affecting large numbers of people across the Americas and exported throughout the world through human population movement. It is caused by the Trypanosoma cruzi parasite, which is transmitted by triatomine vectors to humans and a wide range of alternative host species. The database described here was compiled to allow the risk of vectorial transmission to humans to be mapped using geospatial models. The database collates all available records, published since 2003, for prevalence and occurrence of infection in humans, vectors and alternative hosts, and links each record to a defined time and location. A total of 16,802 records of infection have been extracted from the published literature and unpublished sources. The resulting database can be used to improve our understanding of the geographic variation in vector infection prevalence and to estimate the risk of vectorial transmission of T. cruzi to humans.
Collapse
Affiliation(s)
- Annie J Browne
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Carlos A Guerra
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, Maryland 20850, USA
| | - Renato Vieira Alves
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal 70058-900, Brasil
| | - Veruska Maia da Costa
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal 70058-900, Brasil
| | - Anne L Wilson
- School of Biosciences, Durham University, Durham DH1 3LE, UK
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA
| | - Simon I Hay
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK.,Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA
| | - Steve W Lindsay
- School of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Nick Golding
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catherine L Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
24
|
Sueth-Santiago V, Decote-Ricardo D, Morrot A, Freire-de-Lima CG, Lima MEF. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World J Biol Chem 2017; 8:57-80. [PMID: 28289519 PMCID: PMC5329715 DOI: 10.4331/wjbc.v8.i1.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/30/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Almost 110 years after the first studies by Dr. Carlos Chagas describing an infectious disease that was named for him, Chagas disease remains a neglected illness and a death sentence for infected people in poor countries. This short review highlights the enormous need for new studies aimed at the development of novel and more specific drugs to treat chagasic patients. The primary tool for facing this challenge is deep knowledge about the similarities and differences between the parasite and its human host.
Collapse
|
25
|
Klotz SA, Shirazi FM, Boesen K, Beatty NL, Dorn PL, Smith S, Schmidt JO. Kissing Bug (Triatoma spp.) Intrusion into Homes: Troublesome Bites and Domiciliation. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:45-49. [PMID: 27042091 PMCID: PMC4807888 DOI: 10.4137/ehi.s32834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Kissing bugs (Triatoma spp.) frequently enter homes and bite human and pet occupants. Bites may lead to severe allergic reactions and, in some cases, death. Kissing bugs are also vectors of Trypanosoma cruzi, the cause of Chagas disease. In general, modern houses in the United States are not conducive to domiciliation of kissing bugs (bugs living out their entire life within the home with the presence of eggs, nymphs, adults, and exuviae). Construction features such as concrete foundations, solid walls and ceilings, window screens, tight thresholds for doors and windows, and other measures impede bug entry into homes, and air conditioning reduces the need for open doors and windows. Where Chagas disease is endemic in Mexico and Central and South America, homes often have thatch roofs, adobe walls, and open doors and windows. We investigated numerous instances of kissing bug intrusions into homes in Southern Arizona, California, and Louisiana and documented the reactions to kissing bug bites. Our work confirms the importance of modern home construction in limiting kissing bug intrusions. Older homes, especially those lacking modern screening, caulking, and weather stripping to reduce air leakage, may be subject to kissing bug intrusions and domiciliation. We describe a community in Southern Arizona where domiciliation of homes by Triatoma recurva is common. We also provide recent data regarding kissing bug bites and allergic reactions to the bites.
Collapse
Affiliation(s)
- Stephen A. Klotz
- Division of Infectious Diseases, University of Arizona, Tucson, AZ, USA
| | - F. Mazda Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Keith Boesen
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Norman L. Beatty
- Division of Infectious Diseases, University of Arizona, Tucson, AZ, USA
| | - Patricia L. Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, USA
| | - Shannon Smith
- Division of Infectious Diseases, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
26
|
Shender LA, Lewis MD, Rejmanek D, Mazet JAK. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA. PLoS Negl Trop Dis 2016; 10:e0004291. [PMID: 26797311 PMCID: PMC4721664 DOI: 10.1371/journal.pntd.0004291] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/19/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. METHODOLOGY/PRINCIPLE FINDINGS We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. CONCLUSIONS/SIGNIFICANCE Triatoma protracta populations in California are frequently infected with T. cruzi. Our data extend the northern limits of the range of TcI and identify a novel genetic exchange event between TcI and TcIV. High similarity between sequences from California and specific Latin American strains indicates US strains may be equally capable of causing human disease. Additional genetic characterization of Californian and other US T. cruzi strains is recommended.
Collapse
Affiliation(s)
- Lisa A. Shender
- Wildlife Health Center; One Health Institute; School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| | - Michael D. Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Daniel Rejmanek
- Wildlife Health Center; One Health Institute; School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Jonna A. K. Mazet
- Wildlife Health Center; One Health Institute; School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
27
|
Curtis-Robles R, Wozniak EJ, Auckland LD, Hamer GL, Hamer SA. Combining Public Health Education and Disease Ecology Research: Using Citizen Science to Assess Chagas Disease Entomological Risk in Texas. PLoS Negl Trop Dis 2015; 9:e0004235. [PMID: 26658425 PMCID: PMC4687635 DOI: 10.1371/journal.pntd.0004235] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Chagas disease is a zoonotic parasitic disease well-documented throughout the Americas and transmitted primarily by triatomine 'kissing bug' vectors. In acknowledgment of the successful history of vector control programs based on community participation across Latin America, we used a citizen science approach to gain novel insight into the geographic distribution, seasonal activity, and Trypanosoma cruzi infection prevalence of kissing bugs in Texas while empowering the public with information about Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS We accepted submissions of kissing bugs encountered by the public in Texas and other states from 2013-2014 while providing educational literature about Chagas disease. In the laboratory, kissing bugs were identified to species, dissected, and tested for T. cruzi infection. A total of 1,980 triatomines were submitted to the program comprised of at least seven species, of which T. gerstaeckeri and T. sanguisuga were the most abundant (85.7% of submissions). Triatomines were most commonly collected from dog kennels and outdoor patios; Overall, 10.5% of triatomines were collected from inside the home. Triatomines were submitted from across Texas, including many counties which were not previously known to harbor kissing bugs. Kissing bugs were captured primarily throughout April-October, and peak activity occurred in June-July. Emails to our dedicated account regarding kissing bugs were more frequent in the summer months (June-August) than the rest of the year. We detected T. cruzi in 63.3% of tested bugs. CONCLUSIONS/SIGNIFICANCE Citizen science is an efficient approach for generating data on the distribution, phenology, and infection prevalence of kissing bugs-vectors of the Chagas disease parasite-while educating the public and medical community.
Collapse
Affiliation(s)
- Rachel Curtis-Robles
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Edward J. Wozniak
- Texas Department of State Health Services, Uvalde, Texas, United States of America
- Texas State Guard Medical Brigade, Uvalde, Texas, United States of America
| | - Lisa D. Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
28
|
Abad-Franch F, Lima MM, Sarquis O, Gurgel-Gonçalves R, Sánchez-Martín M, Calzada J, Saldaña A, Monteiro FA, Palomeque FS, Santos WS, Angulo VM, Esteban L, Dias FBS, Diotaiuti L, Bar ME, Gottdenker NL. On palms, bugs, and Chagas disease in the Americas. Acta Trop 2015. [PMID: 26196330 DOI: 10.1016/j.actatropica.2015.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Palms are ubiquitous across Neotropical landscapes, from pristine forests or savannahs to large cities. Although palms provide useful ecosystem services, they also offer suitable habitat for triatomines and for Trypanosoma cruzi mammalian hosts. Wild triatomines often invade houses by flying from nearby palms, potentially leading to new cases of human Chagas disease. Understanding and predicting triatomine-palm associations and palm infestation probabilities is important for enhancing Chagas disease prevention in areas where palm-associated vectors transmit T. cruzi. We present a comprehensive overview of palm infestation by triatomines in the Americas, combining a thorough reanalysis of our published and unpublished records with an in-depth review of the literature. We use site-occupancy modeling (SOM) to examine infestation in 3590 palms sampled with non-destructive methods, and standard statistics to describe and compare infestation in 2940 palms sampled by felling-and-dissection. Thirty-eight palm species (18 genera) have been reported to be infested by ∼39 triatomine species (10 genera) from the USA to Argentina. Overall infestation varied from 49.1-55.3% (SOM) to 62.6-66.1% (dissection), with important heterogeneities among sub-regions and particularly among palm species. Large palms with complex crowns (e.g., Attalea butyracea, Acrocomia aculeata) and some medium-crowned palms (e.g., Copernicia, Butia) are often infested; in slender, small-crowned palms (e.g., Euterpe) triatomines associate with vertebrate nests. Palm infestation tends to be higher in rural settings, but urban palms can also be infested. Most Rhodnius species are probably true palm specialists, whereas Psammolestes, Eratyrus, Cavernicola, Panstrongylus, Triatoma, Alberprosenia, and some Bolboderini seem to use palms opportunistically. Palms provide extensive habitat for enzootic T. cruzi cycles and a critical link between wild cycles and transmission to humans. Unless effective means to reduce contact between people and palm-living triatomines are devised, palms will contribute to maintaining long-term and widespread, albeit possibly low-intensity, transmission of human Chagas disease.
Collapse
Affiliation(s)
- Fernando Abad-Franch
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane - Fiocruz, Rua Teresina 476, Manaus 69057-070, Amazonas, Brazil; Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou - Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte 30190-002, Minas Gerais, Brazil.
| | - Marli M Lima
- Laboratório de Ecoepidemiologia da Doença de Chagas, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, Rio de Janeiro, Brazil
| | - Otília Sarquis
- Laboratório de Ecoepidemiologia da Doença de Chagas, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, Rio de Janeiro, Brazil
| | - Rodrigo Gurgel-Gonçalves
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Asa Norte, Brasília 70904-970, Distrito Federal, Brazil
| | - María Sánchez-Martín
- Instituto de Salud Global de Barcelona - ISGlobal, c/ Rosselló 132, 5° 2ª, 08036 Barcelona, Catalunya, Spain
| | - José Calzada
- Insituto Conmemorativo Gorgas de Estudios de la Salud, Av. Justo Arosemena y Calle 32, Panamá 0816-02593, Panama
| | - Azael Saldaña
- Insituto Conmemorativo Gorgas de Estudios de la Salud, Av. Justo Arosemena y Calle 32, Panamá 0816-02593, Panama
| | - Fernando A Monteiro
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, Rio de Janeiro, Brazil
| | - Francisco S Palomeque
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329-4027, USA
| | - Walter S Santos
- Laboratório de Doença de Chagas, Seção de Parasitologia, Instituto Evandro Chagas - SVS/MS, Rodovia BR 316 km 7 s/n, 67030-000 Ananindeua, Pará, Brazil
| | - Victor M Angulo
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Universidad Industrial de Santander, Calle 9 no. 27, Piedecuesta 680002, Santander, Colombia
| | - Lyda Esteban
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Universidad Industrial de Santander, Calle 9 no. 27, Piedecuesta 680002, Santander, Colombia
| | - Fernando B S Dias
- Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou - Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - Liléia Diotaiuti
- Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou - Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - María Esther Bar
- Laboratorio de Artrópodos, Facultad de Ciencia Exactas y Naturales, Universidad Nacional del Nordeste, Av. Libertad 5470, CP 3400 Corrientes, Argentina
| | - Nicole L Gottdenker
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Buhaya MH, Galvan S, Maldonado RA. Incidence of Trypanosoma cruzi infection in triatomines collected at Indio Mountains Research Station. Acta Trop 2015; 150:97-9. [PMID: 26193424 DOI: 10.1016/j.actatropica.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is an emerging infectious disease in the United States. In our study, 24 out of 39 triatomines, from the specie Triatoma rubida, were infected with T. cruzi. Additionally, only the genotype TcI was characterized among the parasite specimens. Improved knowledge of local epidemiology is needed to prevent transmission of Chagas disease.
Collapse
|
30
|
Wozniak EJ, Lawrence G, Gorchakov R, Alamgir H, Dotson E, Sissel B, Sarkar S, Murray KO. The Biology of the Triatomine Bugs Native to South Central Texas and Assessment of the Risk They Pose for Autochthonous Chagas Disease Exposure. J Parasitol 2015; 101:520-8. [DOI: 10.1645/15-748] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Anti-Trypanosoma cruzi activity of 10 medicinal plants used in northeast Mexico. Acta Trop 2014; 136:14-8. [PMID: 24742906 DOI: 10.1016/j.actatropica.2014.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 12/15/2022]
Abstract
The aim of this study was to screen the trypanocidal activity of plants used in traditional Mexican medicine for the treatment of various diseases related to parasitic infections. Cultured Trypanosoma cruzi epimastigotes were incubated for 96h with different concentrations of methanolic extracts obtained from Artemisia mexicana, Castela texana, Cymbopogon citratus, Eryngium heterophyllum, Haematoxylum brasiletto, Lippia graveolens, Marrubium vulgare, Persea americana, Ruta chalepensis and Schinus molle. The inhibitory concentration (IC50) was determined for each extract via a colorimetric method. Among the evaluated species, the methanolic extracts of E. heterophyllum, H. brasiletto, M. vulgare and S. molle exhibited the highest trypanocidal activity, showing percentages of growth inhibition between 88 and 100% at a concentration of 150μg/ml. These medicinal plants may represent a valuable source of new bioactive compounds for the therapeutic treatment of trypanosomiasis.
Collapse
|
32
|
Garcia MN, Hotez PJ, Murray KO. Potential novel risk factors for autochthonous and sylvatic transmission of human Chagas disease in the United States. Parasit Vectors 2014; 7:311. [PMID: 24996479 PMCID: PMC4094476 DOI: 10.1186/1756-3305-7-311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022] Open
Abstract
Chagas disease is an emerging vector-borne disease in the United States that causes progressive dilated cardiomyopathy in a third of infected humans. While transmission studies have been performed in Latin America, little is known about the source of infection in locally acquired cases in the United States. This letter describes the underlying factors possibly leading to an increased risk of disease transmission among high-risk groups in the United States.
Collapse
Affiliation(s)
- Melissa N Garcia
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Avenue #550, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
33
|
Bonney KM. Chagas disease in the 21st century: a public health success or an emerging threat? ACTA ACUST UNITED AC 2014; 21:11. [PMID: 24626257 PMCID: PMC3952655 DOI: 10.1051/parasite/2014012] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major public health burden in Latin America and a potentially serious emerging threat to a number of countries throughout the world. Although public health programs have significantly reduced the prevalence of Chagas disease in Latin America in recent decades, the number of infections in the United States and non-endemic countries in Europe and the Western Pacific Region continues to rise. Moreover, there is still no vaccine or highly effective cure available for the approximately 10 million people currently infected with T. cruzi, a third of which will develop potentially fatal cardiomyopathy and/or severe digestive tract disorders. As Chagas disease becomes an increasingly globalized public health issue in the twenty-first century, continued attentiveness from governmental and health organizations as well as improved diagnostic tools, expanded surveillance and increased research funding will be required to maintain existing public health successes and stymie the spread of the disease to new areas and populations.
Collapse
Affiliation(s)
- Kevin M Bonney
- Department of Biological Sciences, Kingsborough Community College, City University of New York, 2001 Oriental Boulevard, Brooklyn, New York 11235-2398, USA
| |
Collapse
|
34
|
A guide for screening, diagnosing, and managing Chagas disease in the United States. JAAPA 2013; 26:16-22. [DOI: 10.1097/01.jaa.0000433834.11889.7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Kjos SA, Marcet PL, Yabsley MJ, Kitron U, Snowden KF, Logan KS, Barnes JC, Dotson EM. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:1126-39. [PMID: 24180119 PMCID: PMC3932564 DOI: 10.1603/me12242] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The host-vector-parasite interactions in Chagas disease peridomestic transmission cycles in the United States are not yet well understood. Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) infection prevalence and bloodmeal sources were determined for adult and immature triatomine (Hemiptera: Reduviidae) specimens collected from residential settings in central Texas. Sequenced cytochrome b DNA segments obtained from triatomine digestive tract identified nine vertebrate hosts and one invertebrate host in four triatomine species (Triatoma gerstaeckeri, Triatoma indictiva, Triatoma protracta, and Triatoma sanguisuga). The broad range of wild and domestic host species detected in triatomine specimens collected from residential sites indicates high host diversity and potential movement between the sylvatic and peridomestic settings. Domestic dogs appear to be key in the maintenance of the peridomestic transmission cycle as both a blood host for the triatomine vectors and a potential reservoir for the parasite. The high rate of T. cruzi infection among triatomine specimens that were collected from inside houses, outside houses, and dog kennels (69, 81, and 82%, respectively) suggests a current risk for Chagas disease vector-borne transmission for humans and domestic animals in residential settings in Texas because of overlap with the sylvatic cycle.
Collapse
Affiliation(s)
- Sonia A Kjos
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G49, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Martínez-Ibarra JA, Paredes-González E, Licón-Trillo Á, Montañez-Valdez OD, Rocha-Chávez G, Nogueda-Torres B. The biology of three Mexican-American species of Triatominae (Hemiptera: Reduviidae): Triatoma recurva, Triatoma protracta and Triatoma rubida. Mem Inst Oswaldo Cruz 2013; 107:659-63. [PMID: 22850957 DOI: 10.1590/s0074-02762012000500013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/15/2012] [Indexed: 11/21/2022] Open
Abstract
The values of biological parameters related to hatching, lifespan, the number of blood meals between moults, mortality, time lapse before the beginning of feeding, feeding time and defecation delay for each instar of three Mexican-American species of Triatominae, Triatoma recurva, Triatoma protracta (former subspecies protracta) and Triatoma rubida (former subspecies uhleri), were evaluated and compared. No significant (p > 0.05) differences were recorded among the three species with respect to the average time required to hatch. This time was approximately 19 days. The average egg-to-adult development time was significantly (p < 0.05) shorter for T. rubida. The number of blood meals at each nymphal instar varied from one-five for each species. The mortality rates were higher for the first-instar nymphs of the three species studied. The mean time lapse before the beginning of feeding was between 0.3-3 min for most nymphs of all instars of each species studied. The mean feeding time was the longest for T. recurva, followed by T. protracta. The defecation delay was less than 10 min for T. recurva and T. rubida. Given these results, only T. rubida should be considered an important potential vector of Trypanosoma cruzi transmission to humans in areas of Mexico where these species exist, whereas T. recurva and T. protracta would be of secondary importance.
Collapse
|
37
|
Espinoza B, Martínez-Ibarra JA, Villalobos G, De La Torre P, Laclette JP, Martínez-Hernández F. Genetic variation of North American Triatomines (Insecta: Hemiptera: Reduviidae): initial divergence between species and populations of Chagas disease vector. Am J Trop Med Hyg 2012; 88:275-84. [PMID: 23249692 DOI: 10.4269/ajtmh.2012.12-0105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The triatomines vectors of Trypanosoma cruzi are principal factors in acquiring Chagas disease. For this reason, increased knowledge of domestic transmission of T. cruzi and control of its insect vectors is necessary. To contribute to genetic knowledge of North America Triatominae species, we studied genetic variations and conducted phylogenetic analysis of different triatomines species of epidemiologic importance. Our analysis showed high genetic variations between different geographic populations of Triatoma mexicana, Meccus longipennis, M. mazzottii, M. picturatus, and T. dimidiata species, suggested initial divergence, hybridation, or classifications problems. In contrast, T. gerstaeckeri, T. bolivari, and M. pallidipennis populations showed few genetics variations. Analysis using cytochrome B and internal transcribed spacer 2 gene sequences indicated that T. bolivari is closely related to the Rubrofasciata complex and not to T. dimidiata. Triatoma brailovskyi and T. gerstaeckeri showed a close relationship with Dimidiata and Phyllosoma complexes.
Collapse
Affiliation(s)
- Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is a major cause of morbidity and mortality in Central and South America. Initial infection and ensuing chronic infection often go undetected in the human host. High seroprevalence of T. cruzi infection is well documented in endemic areas. Designated as “a neglected tropical disease” by the World Health Organization, rural economically disadvantaged and marginalized populations in endemic countries traditionally have the highest rates of infection. As economic hardship, political instability, and the search for opportunity spur migration of infected humans from endemic to non-endemic areas of the world, blood bank data have documented rising seroprevalence of T. cruzi in traditionally nonendemic areas. In these areas, T. cruzi is transmitted through blood transfusion, organ transplantation, and maternal-fetal mechanisms. Increasing awareness of large numbers of infected immigrants in nonendemic countries, and the medical care they require, has focused attention on the need for strategic programs for screening affected populations, education of healthcare providers, and provision of necessary medical services for those infected. Physicians in nonendemic countries should be able to recognize signs and symptoms of acute and chronic Chagas disease as migration and globalization increase the burden of disease in non-endemic areas.
Collapse
|
39
|
Hemmige V, Tanowitz H, Sethi A. Trypanosoma cruzi infection: a review with emphasis on cutaneous manifestations. Int J Dermatol 2012; 51:501-8. [PMID: 22515575 DOI: 10.1111/j.1365-4632.2011.05380.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chagas disease, an infection caused by the protozoan Trypanosoma cruzi and transmitted by the Reduuvid insect vector, remains a major cause of morbidity in Central and South America over a century after its discovery in 1909. Though major advances in preventing the spread of this disease have been made in recent decades, millions of individuals remain chronically infected due to prior exposure to T. cruzi and are at risk for future complications from the disease. Dermatologic manifestations of acute infection may include localized swelling at the site of inoculation (chagoma), conjunctivitis (Romaña's sign), and a generalized morbilliform eruption (schizotrypanides). Reactivation of quiescent infection in immunocompromised hosts due to the acquired immunodeficiency syndrome or organ transplantation can present with fever and skin lesions including panniculitis. The widespread emigration of chronic carriers of T. cruzi to North America, Europe, and Australia makes it imperative that dermatologists worldwide be familiar with this entity to ensure proper diagnosis and treatment.
Collapse
Affiliation(s)
- Vagish Hemmige
- Section of Infectious Diseases and Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA. vagish.hemmige@uchospitals..edu
| | | | | |
Collapse
|
40
|
Walter J, Fletcher E, Moussaoui R, Gandhi K, Weirauch C. Do bites of kissing bugs cause unexplained allergies? Results from a survey in triatomine-exposed and unexposed areas in southern california. PLoS One 2012; 7:e44016. [PMID: 22937146 PMCID: PMC3429444 DOI: 10.1371/journal.pone.0044016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The bite of Triatominae can cause cutaneous allergic reactions and even anaphylaxis. Since the early 1980s, no population-based surveys have been done in Southern California, and none was ever carried out in inland Los Angeles or Riverside Counties. OBJECTIVES To measure the frequency of insect sightings, bites and allergic reactions in a suburban area of eastern Los Angeles County and along with rural and urban sites in Riverside County. METHODS A door-to-door survey was done in triatomine exposed and unexposed areas. Logistic regression modeling was used for the analysis, and study participants were asked to collect insects. RESULTS Out of the 221 study participants in the exposed areas, 46 (20%) knew about the presence of Triatominae in their neighborhood. Fifteen (7%) persons reported triatomine sightings in their house during the month preceding the interview. Also, 15 (7%) participants reported ever being bitten by a triatomine. Ten (5%) participants collected either a Triatoma protracta Uhler and/or Paratriatoma hirsuta Barber in and around their house. Twenty-nine (13%) persons in the rural Riverside County reported symptoms compatible with allergy to triatomine bites. This was 4 times higher than in the urban control area where only 4 (3%) of 115 persons reported these symptoms. The association between living in a triatomine-exposed area and self-reported symptoms suggestive of allergies increased slightly when adjusted for the participant's sex and the age of their house (adjusted odds ratio: 5.1, 95% confidence interval: 1.2 to 22.0). Reporting these symptoms was associated with seeing Triatominae in the neighborhood and having been bitten. CONCLUSION Allergies to triatomine bites could be a significant problem in inland Southern California. Further investigations, a diagnostic test and better information of persons living in triatomine-exposed areas are needed.
Collapse
Affiliation(s)
- Jan Walter
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America.
| | | | | | | | | |
Collapse
|
41
|
Calderón-Fernández GM, Girotti JR, Juárez MP. Cuticular hydrocarbon pattern as a chemotaxonomy marker to assess intraspecific variability in Triatoma infestans, a major vector of Chagas' disease. MEDICAL AND VETERINARY ENTOMOLOGY 2012; 26:201-209. [PMID: 21929581 DOI: 10.1111/j.1365-2915.2011.00978.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Triatoma infestans Klug (Hemiptera: Reduviidae) populations were sampled in various localities throughout most of the species' geographic range of distribution in Argentina, Bolivia, Paraguay and Peru. In order to contribute to understanding of the diversity and population structure of this major vector of Chagas' disease, cuticular hydrocarbon (CHC) profiles were analysed by capillary gas chromatography and variations evaluated by statistical methods of classification and ordination. High levels of intrapopulation variation were detected, along with low levels of variability among populations. Based on relative amounts of the major odd-numbered straight-chain hydrocarbons n-C27 to n-C33, two hydrocarbon phenotypes were evident, unequally distributed along the species' geographic range. Analysis of CHC patterns showed that T. infestans populations segregate into two major groups consisting of an Andean group, which comprises specimens from Peru and most parts of Bolivia, and a non-Andean group, which includes all specimens from Argentina and Paraguay, together with those from Tarija (Bolivia). Pyrethroid-resistant and -susceptible specimens were differentiated based on relative amounts of some straight and monomethyl-branched hydrocarbon components.
Collapse
Affiliation(s)
- G M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | |
Collapse
|
42
|
Villalobos G, Martínez-Ibarra JA, Martínez-Hernández F, López-Alcaide S, Alejandre-Aguilar R. The morphological variation of the eggs and genital plates of two morphotypes of Triatoma protracta Uhler, 1894. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2012; 37:179-186. [PMID: 22548552 DOI: 10.1111/j.1948-7134.2012.00215.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The control of triatomine insects is necessary because these insects are the principal vectors of Trypanosoma cruzi, the agent of Chagas disease. Nevertheless, some of these vectors, such as Triatoma protracta, have not been studied adequately and their importance and taxonomic status has not yet been defined in detail and must be reevaluated in view of the continuing taxonomic uncertainties associated with the species. To help clarify the taxonomic status of T. protracta, the eggs and genital plates of two morphotypes were analyzed. Qualitative and quantitative morphological differences were observed in two morphotypes, designated T. p. protracta and T. p. nahuatlae according to Ryckman (1962). The morphotype T. p. protracta exhibited large and wide eggs with pores forming large padded polygonal structures, whereas the eggs of the morphotype T. p. nahuatlae were small and smooth. The size of the 9(th) genital urosternite was longer and wider in females in contrast to males in both morphotypes. However, these size differences were relatively greater in T. p. protracta. The high morphological variation found between the morphotypes of T. protracta suggests that they should be separated. Accordingly, it is probable that this group should be re-classified.
Collapse
Affiliation(s)
- Guiehdani Villalobos
- Laboratorio de Entomología, Depto. de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Casco de Santo Tomás, PC 11340, D.F., México
| | | | | | | | | |
Collapse
|
43
|
Ribeiro JMC, Assumpção TCF, Pham VM, Francischetti IMB, Reisenman CE. An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera). JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:563-72. [PMID: 22679863 PMCID: PMC3544468 DOI: 10.1603/me11243] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The kissing bug Triatoma rubida (Uhler, 1894) is found in southwestern United States and parts of Mexico where it is found infected with Trypanosoma cruzi, invades human dwellings and causes allergies from their bites. Although the protein salivary composition of several triatomine species is known, not a single salivary protein sequence is known from T. rubida. Furthermore, the salivary diversity of related hematophagous arthropods is very large probably because of the immune pressure from their hosts. Here we report the sialotranscriptome analysis of T. rubida based on the assembly of 1,820 high-quality expressed sequence tags, 51% of which code for putative secreted peptides, including lipocalins, members of the antigen five family, apyrase, hemolysin, and trialysin families. Interestingly, T. rubida lipocalins are at best 40% identical in primary sequence to those of T. protracta, a kissing bug that overlaps its range with T. rubida, indicating the diversity of the salivary lipocalins among species of the same hematophagous genus. We additionally found several expressed sequence tags coding for proteins of clear Trypanosoma spp. origin. This work contributes to the future development of markers of human and pet exposure to T. rubida and to the possible development of desensitization therapies. Supp. Data 1 and 2 (online only) of the transcriptome and deducted protein sequences can be obtained from http://exon.niaid.nih.gov/transcriptome/Trubida/Triru-S1-web.xlsx and http://exon.niaid.nih.gov/transcriptome/Trubida/Triru-S2-web.xlsx.
Collapse
Affiliation(s)
- José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway room 2E32D, Rockville, MD 20852, USA.
| | | | | | | | | |
Collapse
|
44
|
Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas' Disease in the United States. Clin Microbiol Rev 2011; 24:655-81. [PMID: 21976603 PMCID: PMC3194829 DOI: 10.1128/cmr.00005-11] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century.
Collapse
Affiliation(s)
- Caryn Bern
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
45
|
Reisenman CE, Gregory T, Guerenstein PG, Hildebrand JG. Feeding and defecation behavior of Triatoma rubida (Uhler, 1894) (Hemiptera: Reduviidae) under laboratory conditions, and its potential role as a vector of Chagas disease in Arizona, USA. Am J Trop Med Hyg 2011; 85:648-56. [PMID: 21976567 PMCID: PMC3183772 DOI: 10.4269/ajtmh.2011.11-0137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/26/2011] [Indexed: 11/07/2022] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi, which is transmitted to humans by blood-sucking triatomine insects. This disease is endemic throughout Mexico and Central and South America, but only a few autochthonous cases have been reported in the United States, despite the fact that infected insects readily invade houses and feed on humans. Competent vectors defecate during or shortly after feeding so that infective feces contact the host. We thus studied the feeding and defecation behaviors of the prevalent species in southern Arizona, Triatoma rubida. We found that whereas defecation during feeding was frequent in females (93%), it was very rare in immature stages (3%), and absent in males. Furthermore, more than half of the immature insects that exhibited multiple feeding bouts (62%) defecated during interruptions of feeding, i.e., while likely on or near the host. These results indicate that T. rubida potentially could transmit T. cruzi to humans.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Neuroscience, College of Science, University of Arizona, Tucson, 85721-0077, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Chagas disease, or American trypanosomiasis, is a parasitic infection caused by the flagellate protozoan Trypanosoma cruzi, an organism that is endemic to Latin America. While Chagas disease is primarily a vector-borne illness, new cases are emerging in non-endemic areas due to globalization of immigration and non-vectorial transmission routes. This article discusses the mode of transmission, evolving epidemiology, pathogenesis, diagnosis, treatment and prevention and control of the disease.
Collapse
|
47
|
Hwang WS, Zhang G, Maslov D, Weirauch C. Infection rates of Triatoma protracta (Uhler) with Trypanosoma cruzi in Southern California and molecular identification of trypanosomes. Am J Trop Med Hyg 2010; 83:1020-2. [PMID: 21036830 DOI: 10.4269/ajtmh.2010.10-0167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report Trypanosoma cruzi infection rates of the native kissing bug Triatoma protracta in southern California. The rates are within the historically reported range, but differ significantly between the two sites (19% in Escondido and 36% in Glendora). Identification of T. cruzi in T. protracta was conducted for the first time by using partial 18S ribosomal RNA and 24Sα ribosomal RNA sequences. Incongruence of 24Sα ribosomal RNA phylogeny with current T. cruzi genotype classification supports non-clonality of some T. cruzi genotypes.
Collapse
Affiliation(s)
- Wei Song Hwang
- Department of Entomology, and Department of Biology, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
48
|
Sarkar S, Strutz SE, Frank DM, Rivaldi CL, Sissel B, Sánchez-Cordero V. Chagas disease risk in Texas. PLoS Negl Trop Dis 2010; 4:e836. [PMID: 20957148 PMCID: PMC2950149 DOI: 10.1371/journal.pntd.0000836] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chagas disease, caused by Trypanosoma cruzi, remains a serious public health concern in many areas of Latin America, including México. It is also endemic in Texas with an autochthonous canine cycle, abundant vectors (Triatoma species) in many counties, and established domestic and peridomestic cycles which make competent reservoirs available throughout the state. Yet, Chagas disease is not reportable in Texas, blood donor screening is not mandatory, and the serological profiles of human and canine populations remain unknown. The purpose of this analysis was to provide a formal risk assessment, including risk maps, which recommends the removal of these lacunae. METHODS AND FINDINGS The spatial relative risk of the establishment of autochthonous Chagas disease cycles in Texas was assessed using a five-stage analysis. 1. Ecological risk for Chagas disease was established at a fine spatial resolution using a maximum entropy algorithm that takes as input occurrence points of vectors and environmental layers. The analysis was restricted to triatomine vector species for which new data were generated through field collection and through collation of post-1960 museum records in both México and the United States with sufficiently low georeferenced error to be admissible given the spatial resolution of the analysis (1 arc-minute). The new data extended the distribution of vector species to 10 new Texas counties. The models predicted that Triatoma gerstaeckeri has a large region of contiguous suitable habitat in the southern United States and México, T. lecticularia has a diffuse suitable habitat distribution along both coasts of the same region, and T. sanguisuga has a disjoint suitable habitat distribution along the coasts of the United States. The ecological risk is highest in south Texas. 2. Incidence-based relative risk was computed at the county level using the Bayesian Besag-York-Mollié model and post-1960 T. cruzi incidence data. This risk is concentrated in south Texas. 3. The ecological and incidence-based risks were analyzed together in a multi-criteria dominance analysis of all counties and those counties in which there were as yet no reports of parasite incidence. Both analyses picked out counties in south Texas as those at highest risk. 4. As an alternative to the multi-criteria analysis, the ecological and incidence-based risks were compounded in a multiplicative composite risk model. Counties in south Texas emerged as those with the highest risk. 5. Risk as the relative expected exposure rate was computed using a multiplicative model for the composite risk and a scaled population county map for Texas. Counties with highest risk were those in south Texas and a few counties with high human populations in north, east, and central Texas showing that, though Chagas disease risk is concentrated in south Texas, it is not restricted to it. CONCLUSIONS For all of Texas, Chagas disease should be designated as reportable, as it is in Arizona and Massachusetts. At least for south Texas, lower than N, blood donor screening should be mandatory, and the serological profiles of human and canine populations should be established. It is also recommended that a joint initiative be undertaken by the United States and México to combat Chagas disease in the trans-border region. The methodology developed for this analysis can be easily exported to other geographical and disease contexts in which risk assessment is of potential value.
Collapse
Affiliation(s)
- Sahotra Sarkar
- Section of Integrative Biology, University of Texas, Austin, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
49
|
Nohara LL, Lema C, Bader JO, Aguilera RJ, Almeida IC. High-content imaging for automated determination of host-cell infection rate by the intracellular parasite Trypanosoma cruzi. Parasitol Int 2010; 59:565-70. [PMID: 20688189 DOI: 10.1016/j.parint.2010.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 07/17/2010] [Accepted: 07/24/2010] [Indexed: 10/19/2022]
Abstract
Chagas disease affects 8-11 million people, mostly in Latin America. Sequelae include cardiac, peripheral nervous and/or gastrointestinal disorders, thus placing a large economic and social burden on endemic countries. The pathogenesis and the evolutive pattern of the disease are not fully clarified. Moreover, available drugs are partially effective and toxic, and there is no vaccine. Therefore, there is an urgent need to speed up basic and translational research in the field. Here, we applied automated high-content imaging to generate multiparametric data on a cell-by-cell basis to precisely and quickly determine several parameters associated with in vitro infection of host cell by Trypanosoma cruzi, the causative agent of Chagas disease. Automated and manual quantifications were used to determine the percentage of T. cruzi-infected cells in a 96-well microplate format and the data generated was statistically evaluated. Most importantly, this automated approach can be widely applied for discovery of potential drugs as well as molecular pathway elucidation not only in T. cruzi but also in other human intracellular pathogens.
Collapse
Affiliation(s)
- L L Nohara
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | | | | | | | | |
Collapse
|
50
|
Bao Y, Weiss LM, Ma YF, Lisanti MP, Tanowitz HB, Das BC, Zheng R, Huang H. Molecular cloning and characterization of mitogen-activated protein kinase 2 in Trypanosoma cruzi. Cell Cycle 2010; 9:2888-96. [PMID: 20603604 DOI: 10.4161/cc.9.14.12372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major signal transduction systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified a Trypanosoma cruzi homologue of the MAPK family that we have called TcMAPK2. Sequence analyses demonstrates TcMAPK2 has high homology with lower eukaryotic ERK2 but has significant differences from mammalian ERK2. Enzymatic assays of both recombinant TcMAPK2 and native protein obtained by immunoprecipitation using anti-TcMAPK2 demonstrated that both preparations of TcMAPK2 were catalytically active. Immunofluorescence analysis of the subcellular localization of TcMAPK2 determined it is mainly cytoplasmic in epimastigotes, along the flagella in trypomastigotes and on the plasma membrane of intracellular amastigotes. Phosphorylated TcMAPK2 was highest in trypomastigotes and lowest in amastigotes. Recombinant TcMAPK2 was able to phosphorylate the recombinant protein of a cAMP specific phosphodiesterase. Overexpression of TcMAPK2 in epimastigotes inhibited growth and development leading to death. TcMAPK2 has an important role in the stress response of the parasite and may be important in regulating proliferation and differentiation.
Collapse
Affiliation(s)
- Yi Bao
- Departments of Pathology and Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|