1
|
Khairullah AR, Yanestria SM, Effendi MH, Moses IB, Jati Kusala MK, Fauzia KA, Ayuti SR, Fauziah I, Martua Silaen OS, Priscilia Riwu KH, Aryaloka S, Eka Puji Dameanti FNA, Raissa R, Hasib A, Furqoni AH. Campylobacteriosis: A rising threat in foodborne illnesses. Open Vet J 2024; 14:1733-1750. [PMID: 39308719 PMCID: PMC11415892 DOI: 10.5455/ovj.2024.v14.i8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 09/25/2024] Open
Abstract
Campylobacteriosis is a foodborne illness that is contracted by eating contaminated food, particularly animal products like meat from diseased animals or corpses tainted with harmful germs. The epidemiology of campylobacteriosis varies significantly between low-, middle-, and high-income countries. Campylobacter has a complicated and poorly known survival strategy for getting past host barriers and causing sickness in humans. The adaptability of Campylobacter to unfavorable environments and the host's immune system seems to be one of the most crucial elements of intestinal colonization. A Campylobacter infection may result in fever, nausea, vomiting, and mild to severe bloody diarrhea in humans. Effective and rapid diagnosis of Campylobacter species infections in animal hosts is essential for both individual treatment and disease management at the farm level. According to the most recent meta-analysis research, the main risk factor for campylobacteriosis is travel, which is followed by eating undercooked chicken, being exposed to the environment, and coming into close contact with livestock. Campylobacter jejuni, and occasionally Campylobacter coli, are the primary causes of Campylobacter gastroenteritis, the most significant Campylobacter infection in humans for public health. The best antibiotic medications for eradicating and decreasing Campylobacter in feces are erythromycin, clarithromycin, or azithromycin. The best strategy to reduce the number of human infections caused by Campylobacter is to restrict the amount of contamination of the poultry flock and its products, even if the majority of infections are contracted through handling or ingestion of chicken.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Siti Rani Ayuti
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Surabaya, Indonesia
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Abdullah Hasib
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Abdul Hadi Furqoni
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
2
|
McLure A, Smith JJ, Firestone SM, Kirk MD, French N, Fearnley E, Wallace R, Valcanis M, Bulach D, Moffatt CRM, Selvey LA, Jennison A, Cribb DM, Glass K. Source attribution of campylobacteriosis in Australia, 2017-2019. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2527-2548. [PMID: 37032319 PMCID: PMC10947381 DOI: 10.1111/risa.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Campylobacter jejuni and Campylobacter coli infections are the leading cause of foodborne gastroenteritis in high-income countries. Campylobacter colonizes a variety of warm-blooded hosts that are reservoirs for human campylobacteriosis. The proportions of Australian cases attributable to different animal reservoirs are unknown but can be estimated by comparing the frequency of different sequence types in cases and reservoirs. Campylobacter isolates were obtained from notified human cases and raw meat and offal from the major livestock in Australia between 2017 and 2019. Isolates were typed using multi-locus sequence genotyping. We used Bayesian source attribution models including the asymmetric island model, the modified Hald model, and their generalizations. Some models included an "unsampled" source to estimate the proportion of cases attributable to wild, feral, or domestic animal reservoirs not sampled in our study. Model fits were compared using the Watanabe-Akaike information criterion. We included 612 food and 710 human case isolates. The best fitting models attributed >80% of Campylobacter cases to chickens, with a greater proportion of C. coli (>84%) than C. jejuni (>77%). The best fitting model that included an unsampled source attributed 14% (95% credible interval [CrI]: 0.3%-32%) to the unsampled source and only 2% to ruminants (95% CrI: 0.3%-12%) and 2% to pigs (95% CrI: 0.2%-11%) The best fitting model that did not include an unsampled source attributed 12% to ruminants (95% CrI: 1.3%-33%) and 6% to pigs (95% CrI: 1.1%-19%). Chickens were the leading source of human Campylobacter infections in Australia in 2017-2019 and should remain the focus of interventions to reduce burden.
Collapse
Affiliation(s)
- Angus McLure
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - James J. Smith
- Food Safety Standards and Regulation, Health Protection BranchQueensland HealthBrisbaneAustralia
- School of Biology and Environmental Science, Faculty of ScienceQueensland University of TechnologyBrisbaneAustralia
| | - Simon Matthew Firestone
- Melbourne Veterinary School, Faculty of ScienceThe University of MelbourneMelbourneAustralia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - Nigel French
- Infectious Disease Research Centre, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
- New Zealand Food Safety Science and Research Centre, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Emily Fearnley
- Department for Health and WellbeingGovernment of South AustraliaAdelaideAustralia
| | - Rhiannon Wallace
- Agassiz Research and Development Centre, Agriculture and Agri‐Food CanadaAgassizCanada
| | - Mary Valcanis
- The Doherty Institute for Infection and ImmunityMelbourneAustralia
- Microbiological Diagnostic Unit Public Health LaboratoryThe University of MelbourneMelbourneAustralia
| | - Dieter Bulach
- The Doherty Institute for Infection and ImmunityMelbourneAustralia
- Melbourne BioinformaticsThe University of MelbourneMelbourneAustralia
| | - Cameron R. M. Moffatt
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - Linda A. Selvey
- School of Public Health, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Amy Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland HealthBrisbaneAustralia
| | - Danielle M. Cribb
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| | - Kathryn Glass
- National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
| |
Collapse
|
3
|
Grout L, Marshall J, Hales S, Baker MG, French N. Dairy Cattle Density and Temporal Patterns of Human Campylobacteriosis and Cryptosporidiosis in New Zealand. ECOHEALTH 2022; 19:273-289. [PMID: 35689151 PMCID: PMC9276729 DOI: 10.1007/s10393-022-01593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Public health risks associated with the intensification of dairy farming are an emerging concern. Dairy cattle are a reservoir for a number of pathogens that can cause human illness. This study examined the spatial distribution of dairy cattle density and explored temporal patterns of human campylobacteriosis and cryptosporidiosis notifications in New Zealand from 1997 to 2015. Maps of dairy cattle density were produced, and temporal patterns of disease rates were assessed for urban versus rural areas and for areas with different dairy cattle densities using descriptive temporal analyses. Campylobacteriosis and cryptosporidiosis rates displayed strong seasonal patterns, with highest rates in spring in rural areas and, for campylobacteriosis, summer in urban areas. Increases in rural cases often preceded increases in urban cases. Furthermore, disease rates in areas with higher dairy cattle densities tended to peak before areas with low densities or no dairy cattle. Infected dairy calves may be a direct or indirect source of campylobacteriosis or cryptosporidiosis infection in humans through environmental or occupational exposure routes, including contact with animals or feces, recreational contact with contaminated waterways, and consumption of untreated drinking water. These results have public health implications for populations living, working, or recreating in proximity to dairy farms.
Collapse
Affiliation(s)
- Leah Grout
- Department of Public Health, University of Otago, Wellington, 6021, New Zealand.
| | - Jonathan Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, 6021, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, 6021, New Zealand
| | - Nigel French
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| |
Collapse
|
4
|
Hakeem MJ, Lu X. Survival and Control of Campylobacter in Poultry Production Environment. Front Cell Infect Microbiol 2021; 10:615049. [PMID: 33585282 PMCID: PMC7879573 DOI: 10.3389/fcimb.2020.615049] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Campylobacter species are Gram-negative, motile, and non-spore-forming bacteria with a unique helical shape that changes to filamentous or coccoid as an adaptive response to environmental stresses. The relatively small genome (1.6 Mbp) of Campylobacter with unique cellular and molecular physiology is only understood to a limited extent. The overall strict requirement of this fastidious microorganism to be either isolated or cultivated in the laboratory settings make itself to appear as a weak survivor and/or an easy target to be inactivated in the surrounding environment of poultry farms, such as soil, water source, dust, surfaces and air. The survival of this obligate microaerobic bacterium from poultry farms to slaughterhouses and the final poultry products indicates that Campylobacter has several adaptive responses and/or environmental niches throughout the poultry production chain. Many of these adaptive responses remain puzzles. No single control method is yet known to fully address Campylobacter contamination in the poultry industry and new intervention strategies are required. The aim of this review article is to discuss the transmission, survival, and adaptation of Campylobacter species in the poultry production environments. Some approved and novel control methods against Campylobacter species throughout the poultry production chain will also be discussed.
Collapse
Affiliation(s)
- Mohammed J Hakeem
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Ste Anne de Bellevue, QC, Canada
| |
Collapse
|
5
|
Varrone L, Stafford RJ, Lilly K, Selvey L, Glass K, Ford L, Bulach D, Kirk MD. Investigating locally relevant risk factors for Campylobacter infection in Australia: protocol for a case-control study and genomic analysis. BMJ Open 2018; 8:e026630. [PMID: 30580279 PMCID: PMC6318611 DOI: 10.1136/bmjopen-2018-026630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION The CampySource project aims to identify risk factors for human Campylobacter infection in Australia. We will investigate locally relevant risk factors and those significant in international studies in a case-control study. Case isolates and contemporaneous isolates from food and animal sources will be sequenced to conduct source attribution modelling, and findings will be combined with the case-control study in a source-assigned analysis. METHODS AND ANALYSIS The case-control study will include 1200 participants (600 cases and 600 controls) across three regions in Australia. Cases will be recruited from campylobacteriosis notifications to health departments. Only those with a pure and viable Campylobacter isolate will be eligible for selection to allow for whole genome sequencing of isolates. Controls will be recruited from notified cases of influenza, frequency matched by sex, age group and geographical area of residence. All participants will be interviewed by trained telephone interviewers using a piloted questionnaire.We will collect Campylobacter isolates from retail meats and companion animals (specifically dogs), and all food, animal and human isolates will undergo whole genome sequencing. We will use sequence data to estimate the proportion of human infections that can be attributed to animal and food reservoirs (source attribution modelling), and to identify spatial clusters and temporal trends. Source-assigned analysis of the case-control study data will also be conducted where cases are grouped according to attributed sources. ETHICS AND DISSEMINATION Human and animal ethics have been approved. Genomic data will be published in online archives accompanied by basic metadata. We anticipate several publications to come from this study.
Collapse
Affiliation(s)
- Liana Varrone
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Russell J Stafford
- Communicable Diseases Branch, Queensland Health, Brisbane, Queensland, Australia
| | - Kim Lilly
- Hunter New England Population Health, Newcastle, New South Wales, Australia
| | - Linda Selvey
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Laura Ford
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Dieter Bulach
- College of Health and Medicine, Melbourne Bioinformatics, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Facciolà A, Riso R, Avventuroso E, Visalli G, Delia S, Laganà P. Campylobacter: from microbiology to prevention. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2017; 58:E79-E92. [PMID: 28900347 PMCID: PMC5584092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/20/2017] [Indexed: 12/03/2022]
Abstract
In last years, Campylobacter spp has become one of the most important foodborne pathogens even in high-income countries. Particularly, in Europe, Campylobacteriosis is, since 2005, the foodborne disease most frequently notified and the second in USA, preceded by the infection due to Salmonella spp. Campylobacter spp is a commensal microorganism of the gastrointestinal tract of many wild animals (birds such as ducks and gulls), farm animals (cattle and pigs) and companion animals (such as dogs and cats) and it is responsible for zoonoses. The transmission occurs via the fecal-oral route through ingestion of contaminated food and water. The disease varied from a watery diarrhea to a severe inflammatory diarrhea with abdominal pain and fever and can be burdened by some complications. The main recognized sequelae are Guillain-Barré Syndrome (GBS), the Reactive Arthritis (REA) and irritable bowel syndrome (IBS). Recently, many cases of Campylobacter spp isolated from human infections, showed an important resistance to various antibiotics such as tetracyclines and fluoroquinolones. For these reasons, the prevention of this infection plays an essential role. Many preventive measures exist to limit the transmission of the pathogens and the subsequent disease such as the health surveillance, the vaccination of the poultry and the correct food hygiene throughout the entire production chain. A global surveillance of Campylobacteriosis is desirable and should include data from all countries, including notifications of cases and the microbiological data typing of strains isolated from both human and animal cases.
Collapse
Affiliation(s)
| | | | | | | | | | - P. Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
7
|
Huang H, Brooks BW, Lowman R, Carrillo CD. Campylobacter species in animal, food, and environmental sources, and relevant testing programs in Canada. Can J Microbiol 2015; 61:701-21. [DOI: 10.1139/cjm-2014-0770] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Campylobacter species, particularly thermophilic campylobacters, have emerged as a leading cause of human foodborne gastroenteritis worldwide, with Campylobacter jejuni, Campylobacter coli, and Campylobacter lari responsible for the majority of human infections. Although most cases of campylobacteriosis are self-limiting, campylobacteriosis represents a significant public health burden. Human illness caused by infection with campylobacters has been reported across Canada since the early 1970s. Many studies have shown that dietary sources, including food, particularly raw poultry and other meat products, raw milk, and contaminated water, have contributed to outbreaks of campylobacteriosis in Canada. Campylobacter spp. have also been detected in a wide range of animal and environmental sources, including water, in Canada. The purpose of this article is to review (i) the prevalence of Campylobacter spp. in animals, food, and the environment, and (ii) the relevant testing programs in Canada with a focus on the potential links between campylobacters and human health in Canada.
Collapse
Affiliation(s)
- Hongsheng Huang
- Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Brian W. Brooks
- Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Ruff Lowman
- Food Safety Risk Analysis, Food Policy Coordination, Policy and Programs, Canadian Food Inspection Agency, 1400 Merivale Road, Tower 2, Ottawa, Ontario, Canada
| | | |
Collapse
|
8
|
Weinberger M, Lerner L, Valinsky L, Moran-Gilad J, Nissan I, Agmon V, Peretz C. Increased incidence of Campylobacter spp. infection and high rates among children, Israel. Emerg Infect Dis 2013; 19:1828-31. [PMID: 24188185 PMCID: PMC3837641 DOI: 10.3201/eid1911.120900] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During 1999-2010, the annual incidence of Campylobacter spp. infection in Israel increased from 31.04 to 90.99 cases/100,000 population, a yearly increase of 10.24%. Children <2 years of age were disproportionally affected; incidence in this age group (356.12 cases/100,000 population) was >26-fold higher than for the 30-<50 age group.
Collapse
|
9
|
Wagenaar JA, French NP, Havelaar AH. Preventing Campylobacter at the source: why is it so difficult? Clin Infect Dis 2013; 57:1600-6. [PMID: 24014733 DOI: 10.1093/cid/cit555] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Campylobacteriosis in humans, caused by Campylobacter jejuni and Campylobacter coli, is the most common recognized bacterial zoonosis in the European Union and the United States. The acute phase is characterized by gastrointestinal symptoms. The long-term sequelae (Guillain-Barré syndrome, reactive arthritis, and postinfectious irritable bowel syndrome) contribute considerably to the disease burden. Attribution studies identified poultry as the reservoir responsible for up to 80% of the human Campylobacter infections. In the European Union, an estimated 30% of the human infections are associated with consumption and preparation of poultry meat. Until now, interventions in the poultry meat production chain have not been effectively introduced except for targeted interventions in Iceland and New Zealand. Intervention measures (eg, biosecurity) have limited effect or are hampered by economic aspects or consumer acceptance. In the future, a multilevel approach should be followed, aiming at reducing the level of contamination of consumer products rather than complete absence of Campylobacter.
Collapse
Affiliation(s)
- Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University
| | | | | |
Collapse
|
10
|
The risk of transfer of foodborne bacterial hazards in Turkey through the consumption of meat; risk ranking of muscle foods with the potential to transfer Campylobacter spp. Food Secur 2013. [DOI: 10.1007/s12571-012-0230-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the public health impact of food-related illness in light of recent high-profile outbreaks and advances in the methodology to estimate illness burden. It includes mainly literature from high-income countries, as burden of illness estimations have been focussed in these countries. RECENT FINDINGS The public health burden of food-related illness is very high, no matter what method is used to measure it. Outbreaks provide only a partial insight because they represent a small proportion of all cases of food-related illness. Recent outbreaks have demonstrated a very wide variety of contaminated food vehicles and illustrated the challenges in investigations when the contaminated foodstuff is an ingredient of many other food items. SUMMARY Outbreaks will continue to challenge public health responses so that maintaining capacity to respond rapidly is crucial. Technological advances, such as whole genome sequencing, pave the way for identifying food-related illness much more rapidly than at present. There is a need to improve diagnostic yield in clinical laboratories and culturing organisms will remain important. Perhaps one of the greatest challenges, though, is to maintain the interest and support of the public when investigating food-related illness.
Collapse
|
12
|
Baker MG, Kvalsvig A, Zhang J, Lake R, Sears A, Wilson N. Declining Guillain-Barré syndrome after campylobacteriosis control, New Zealand, 1988-2010. Emerg Infect Dis 2012; 18:226-33. [PMID: 22304786 PMCID: PMC3310455 DOI: 10.3201/eid1802.111126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Food safety measures that lower incidence of campylobacteriosis might also prevent Guillain-Barré syndrome.
Collapse
|