1
|
Linnegar B, Kerlin DH, Eby P, Kemsley P, McCallum H, Peel AJ. Horse populations are severely underestimated in a region at risk of Hendra virus spillover. Aust Vet J 2024; 102:342-352. [PMID: 38567676 DOI: 10.1111/avj.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To identify the size and distribution of the horse population in the Northern Rivers Region of NSW, including changes from 2007 to 2021, to better understand populations at risk of Hendra virus transmission. METHODS Census data from the 2007 Equine Influenza (EI) outbreak were compared with data collected annually by New South Wales Local Land Services (LLS) (2011-2021), and with field observations via road line transects (2021). RESULTS The horse populations reported to LLS in 2011 (3000 horses; 0.77 horses/km2) was 145% larger than that reported during the EI outbreak in 2007 (1225 horses; 0.32 horses/km2). This was inconsistent with the 6% increase in horses recorded from 2011 to 2020 within the longitudinal LLS dataset. Linear modelling suggested the true horse population of this region in 2007 was at least double that reported at the time. Distance sampling in 2021 estimated the region's population at 10,185 horses (3.89 per km2; 95% CI = 4854-21,372). Field sampling and modelling identified higher horse densities in rural cropland, with the percentage of conservation land, modified grazing, and rural residential land identified as the best predictors of horse densities. CONCLUSIONS Data from the 2007 EI outbreak no longer correlates to the current horse population in size or distribution and was likely not a true representation at the time. Current LLS data also likely underestimates horse populations. Ongoing efforts to further quantify and map horse populations in Australia are important for estimating and managing the risk of equine zoonoses.
Collapse
Affiliation(s)
- B Linnegar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - D H Kerlin
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - P Eby
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Large Landscape Conservation, Bozeman, Montana, USA
| | - P Kemsley
- North Coast Local Land Services, Wollongbar, New South Wales, Australia
| | - H McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - A J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
2
|
Qiu X, Wang F, Sha A. Infection and transmission of henipavirus in animals. Comp Immunol Microbiol Infect Dis 2024; 109:102183. [PMID: 38640700 DOI: 10.1016/j.cimid.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Henipavirus (HNV) is well known for two zoonotic viruses in the genus, Hendra virus (HeV) and Nipah virus (NiV), which pose serious threat to human and animal health. In August 2022, a third zoonotic virus in the genus Henipavirus, Langya virus (LayV), was discovered in China. The emergence of HeV, NiV, and LayV highlights the persistent threat of HNV to human and animal health. In addition to the above three HNVs, new species within this genus are still being discovered. Although they have not yet caused a pandemic in humans or livestock, they still have the risk of spillover as a potential threat to the health of humans and animals. It's important to understand the infection and transmission of different HNV in animals for the prevention and control of current or future HNV epidemics. Therefore, this review mainly summarizes the animal origin, animal infection and transmission of HNV that have been found worldwide, and further analyzes and summarizes the rules of infection and transmission, so as to provide a reference for relevant scientific researchers. Furthermore, it can provide a direction for epidemic prevention and control, and animal surveillance to reduce the risk of the global pandemic of HNV.
Collapse
Affiliation(s)
- Xinyu Qiu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Feng Wang
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China.
| |
Collapse
|
3
|
Diederich S, Babiuk S, Boshra H. A Survey of Henipavirus Tropism-Our Current Understanding from a Species/Organ and Cellular Level. Viruses 2023; 15:2048. [PMID: 37896825 PMCID: PMC10611353 DOI: 10.3390/v15102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Henipaviruses are single-stranded RNA viruses that have been shown to be virulent in several species, including humans, pigs, horses, and rodents. Isolated nearly 30 years ago, these viruses have been shown to be of particular concern to public health, as at least two members (Nipah and Hendra viruses) are highly virulent, as well as zoonotic, and are thus classified as BSL4 pathogens. Although only 5 members of this genus have been isolated and characterized, metagenomics analysis using animal fluids and tissues has demonstrated the existence of other novel henipaviruses, suggesting a far greater degree of phylogenetic diversity than is currently known. Using a variety of molecular biology techniques, it has been shown that these viruses exhibit varying degrees of tropism on a species, organ/tissue, and cellular level. This review will attempt to provide a general overview of our current understanding of henipaviruses, with a particular emphasis on viral tropism.
Collapse
Affiliation(s)
- Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E EM4, Canada;
| | - Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
4
|
Edwards SJ, Rowe B, Reid T, Tachedjian M, Caruso S, Blasdell K, Watanabe S, Bergfeld J, Marsh GA. Henipavirus-induced neuropathogenesis in mice. Virology 2023; 587:109856. [PMID: 37541184 DOI: 10.1016/j.virol.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses that can cause fatal encephalitis in humans. Many animal models have been used to study henipavirus pathogenesis. In the mouse, HeV infection has previously shown that intranasal challenge can lead to neurological infection, however mice similarly challenged with NiV show no evidence of virus infecting the brain. We generated recombinant HeV (rHeV) and NiV (rNiV) where selected proteins were switched to examine their role in neuroinvasion in the mouse. These viruses displayed similar growth kinetics when compared to wildtype in vitro. In the mouse, infection outcomes with recombinant virus did not differ to infection outcomes of wildtype viruses. Virus was detected in the brain of 5/30 rHeV-challenged mice, but not rNiV-challenged mice. To confirm the permissiveness of mouse neurons to these viruses, primary mouse neurons were successfully infected in vitro, suggesting that other pathobiological factors contribute to the differences in disease outcomes in mice.
Collapse
Affiliation(s)
- Sarah J Edwards
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia; Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Brenton Rowe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia
| | - Tristan Reid
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia
| | - Mary Tachedjian
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia
| | - Sarah Caruso
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia
| | - Kim Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia
| | - Shumpei Watanabe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia
| | - Jemma Bergfeld
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia
| | - Glenn A Marsh
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC, 3219, Australia; Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
5
|
Pigeaud DD, Geisbert TW, Woolsey C. Animal Models for Henipavirus Research. Viruses 2023; 15:1980. [PMID: 37896758 PMCID: PMC10610982 DOI: 10.3390/v15101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Declan D. Pigeaud
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Orosco FL. Advancing the frontiers: Revolutionary control and prevention paradigms against Nipah virus. Open Vet J 2023; 13:1056-1070. [PMID: 37842102 PMCID: PMC10576574 DOI: 10.5455/ovj.2023.v13.i9.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Nipah Virus (NiV) is a highly virulent pathogen that poses a significant threat to human and animal populations. This review provides a comprehensive overview of the latest control and prevention strategies against NiV, focusing on vaccine development, antiviral drug discovery, early diagnosis, surveillance, and high-level biosecurity measures. Advancements in vaccine research, including live-attenuated vaccines, virus-like particles, and mRNA-based vaccines, hold promise for preventing NiV infections. In addition, antiviral drugs, such as remdesivir, ribavirin, and favipiravir, have the potential to inhibit NiV replication. Early diagnosis through molecular and serological assays, immunohistochemistry, and real-time reverse transcription polymerase chain reaction plays a crucial role in timely detection. Surveillance efforts encompassing cluster-based and case-based systems enhance outbreak identification and provide valuable insights into transmission dynamics. Furthermore, the implementation of high-level biosecurity measures in agriculture, livestock practices, and healthcare settings is essential to minimize transmission risks. Collaboration among researchers, public health agencies, and policymakers is pivotal in refining and implementing these strategies to effectively control and prevent NiV outbreaks and safeguard public health on a global scale.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig City, Philippines
| |
Collapse
|
7
|
Rapid, sensitive, and specific, low-resource molecular detection of Hendra virus. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
8
|
Quarleri J, Galvan V, Delpino MV. Henipaviruses: an expanding global public health concern? GeroScience 2022; 44:2447-2459. [PMID: 36219280 PMCID: PMC9550596 DOI: 10.1007/s11357-022-00670-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 01/18/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae that cause severe disease outbreaks in humans and also can infect and cause lethal disease across a broad range of mammalian species. Another related Henipavirus has been very recently identified in China in febrile patients with pneumonia, the Langya virus (LayV) of probable animal origin in shrews. NiV and HeV were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 90%. They are responsible for rare and sporadic outbreaks with no approved treatment modalities. NiV and HeV have wide cellular tropism that contributes to their high pathogenicity. From their natural hosts bats, different scenarios propitiate their spillover to pigs, horses, and humans. Henipavirus-associated respiratory disease arises from vasculitis and respiratory epithelial cell infection while the neuropathogenesis of Henipavirus infection is still not completely understood but appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection. This brief review offers an overview of direct and indirect mechanisms of HeV and NiV pathogenicity and their interaction with the human immune system, as well as the main viral strategies to subvert such responses.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Verónica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veterans Affairs, Oklahoma City VA Health Care System, Oklahoma City, OK, USA
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
10
|
Lewis CE, Pickering B. Livestock and Risk Group 4 Pathogens: Researching Zoonotic Threats to Public Health and Agriculture in Maximum Containment. ILAR J 2022; 61:86-102. [PMID: 34864994 PMCID: PMC8759435 DOI: 10.1093/ilar/ilab029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Maximum-containment laboratories are a unique and essential component of the bioeconomy of the United States. These facilities play a critical role in the national infrastructure, supporting research on a select set of especially dangerous pathogens, as well as novel, emerging diseases. Understanding the ecology, biology, and pathology at the human-animal interface of zoonotic spillover events is fundamental to efficient control and elimination of disease. The use of animals as human surrogate models or as target-host models in research is an integral part of unraveling the interrelated components involved in these dynamic systems. These models can prove vitally important in determining both viral- and host-factors associated with virus transmission, providing invaluable information that can be developed into better risk mitigation strategies. In this article, we focus on the use of livestock in maximum-containment, biosafety level-4 agriculture (BSL-4Ag) research involving zoonotic, risk group 4 pathogens and we provide an overview of historical associated research and contributions. Livestock are most commonly used as target-host models in high-consequence, maximum-containment research and are routinely used to establish data to assist in risk assessments. This article highlights the importance of animal use, insights gained, and how this type of research is essential for protecting animal health, food security, and the agriculture economy, as well as human public health in the face of emerging zoonotic pathogens. The utilization of animal models in high-consequence pathogen research and continued expansion to include available species of agricultural importance is essential to deciphering the ecology of emerging and re-emerging infectious diseases, as well as for emergency response and mitigation preparedness.
Collapse
Affiliation(s)
- Charles E Lewis
- Corresponding Author: Dr Charles E. Lewis, DVM, MPH, MS, National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada. E-mail:
| | | |
Collapse
|
11
|
Yuen KY, Fraser NS, Henning J, Halpin K, Gibson JS, Betzien L, Stewart AJ. Hendra virus: Epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health 2020; 12:100207. [PMID: 33363250 PMCID: PMC7750128 DOI: 10.1016/j.onehlt.2020.100207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022] Open
Abstract
Hendra virus (HeV) continues to pose a serious public health concern as spillover events occur sporadically. Terminally ill horses can exhibit a range of clinical signs including frothy nasal discharge, ataxia or forebrain signs. Early signs, if detected, can include depression, inappetence, colic or mild respiratory signs. All unvaccinated ill horses in areas where flying foxes exist, may potentially be infected with HeV, posing a significant risk to the veterinary community. Equivac® HeV vaccine has been fully registered in Australia since 2015 (and under an Australian Pesticides and Veterinary Medicines Authority special permit since 2012) for immunization of horses against HeV and is the most effective and direct solution to prevent disease transmission to horses and protect humans. No HeV vaccinated horse has tested positive for HeV infection. There is no registered vaccine to prevent, or therapeutics to treat, HeV infection in humans. Previous equine HeV outbreaks tended to cluster in winter overlapping with the foaling season (August to December), when veterinarians and horse owners have frequent close contact with horses and their bodily fluids, increasing the chance of zoonotic disease transmission. The most southerly case was detected in 2019 in the Upper Hunter region in New South Wales, which is Australia's Thoroughbred horse breeding capital. Future spillover events are predicted to move further south and inland in Queensland and New South Wales, aligning with the moving distribution of the main reservoir hosts. Here we (1) review HeV epidemiology and climate change predicted infection dynamics, (2) present a biosecurity protocol for veterinary clinics and hospitals to adopt, and (3) describe diagnostic tests currently available and those under development. Major knowledge and research gaps have been identified, including evaluation of vaccine efficacy in foals to assess current vaccination protocol recommendations. Hendra virus (HeV) continues to pose a serious public health threat to the equine and veterinary industries. HeV cases are likely to expand further south and inland due to climate change. Strict HeV specific biosecurity protocols should be implemented to protect veterinary staff. Research into HeV vaccination protocols in foals is required for evidence-based recommendations. Point-of-care and other diagnostic tests for HeV are currently under development.
Collapse
Key Words
- Biosecurity
- Climate change
- HeV, Hendra virus
- Infectious disease
- LAMP, Loop-mediated isothermal amplification
- MFI, Median fluorescent intensity
- NSW, New South Wales
- NiV, Nipah virus
- OIE, World Organization for Animal Health
- One health
- PC, Physical containment
- PPE, Personal protective equipment
- QLD, Queensland
- RNA, Ribonucleic acid
- SNT, Serum neutralization test
- Se, Sensitivity
- Sp, Specificity
- Vaccine
- Zoonosis
- iELISA, Indirect enzyme-linked immunosorbent assay
- qRT-PCR, Real-time reverse transcription polymerase chain reaction
- sG, Soluble G
Collapse
Affiliation(s)
- Ka Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Natalie S Fraser
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Kim Halpin
- Australian Centre for Disease Preparedness, Commonwealth Science and Industry Research Organization (CSIRO), Geelong, VIC 3219, Australia
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Lily Betzien
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Allison J Stewart
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
12
|
Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system. Pathog Dis 2020; 77:5462651. [PMID: 30985897 DOI: 10.1093/femspd/ftz023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae. These viruses were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 75%. While outbreaks of Nipah and Hendra virus infections remain rare and sporadic, there is concern that NiV has pandemic potential. Despite increased attention, little is understood about the neuropathogenesis of henipavirus infection. Neuropathogenesis appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection, but the relative contributions remain unknown while respiratory disease arises from vasculitis and respiratory epithelial cell infection. This review will address NiV basic clinical disease, pathology and pathogenesis with a particular focus on central nervous system (CNS) infection and address the necessity of a model of relapsed CNS infection. Additionally, the innate immune responses to NiV infection in vitro and in the CNS are reviewed as it is likely linked to any persistent CNS infection.
Collapse
Affiliation(s)
- Brian E Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| |
Collapse
|
13
|
Barba M, Fairbanks EL, Daly JM. Equine viral encephalitis: prevalence, impact, and management strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:99-110. [PMID: 31497528 PMCID: PMC6689664 DOI: 10.2147/vmrr.s168227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Members of several different virus families cause equine viral encephalitis, the majority of which are arthropod-borne viruses (arboviruses) with zoonotic potential. The clinical signs caused are rarely pathognomonic; therefore, a clinical diagnosis is usually presumptive according to the geographical region. However, recent decades have seen expansion of the geographical range and emergence in new regions of numerous viral diseases. In this context, this review presents an overview of the prevalence and distribution of the main viral causes of equine encephalitis and discusses their impact and potential approaches to limit their spread.
Collapse
Affiliation(s)
- Marta Barba
- Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Emma L Fairbanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
14
|
Degeling C, Gilbert GL, Annand E, Taylor M, Walsh MG, Ward MP, Wilson A, Johnson J. Managing the risk of Hendra virus spillover in Australia using ecological approaches: A report on three community juries. PLoS One 2018; 13:e0209798. [PMID: 30596719 PMCID: PMC6312203 DOI: 10.1371/journal.pone.0209798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hendra virus (HeV) infection is endemic in Australian flying-fox populations. Habitat loss has increased the peri-urban presence of flying-foxes, increasing the risk of contact and therefore viral 'spillovers' into horse and human populations. An equine vaccine is available and horse-husbandry practices that minimize HeV exposure are encouraged, but their adoption is suboptimal. Ecological approaches-such as habitat creation and conservation-could complement vaccination and behavioural strategies by reducing spillover risks, but these are controversial. METHODS We convened three community juries (two regional; one metropolitan) to elicit the views of well-informed citizens on the acceptability of adding ecological approaches to current interventions for HeV risk. Thirty-one participants of diverse backgrounds, mixed genders and ages were recruited using random-digit-dialling. Each jury was presented with balanced factual evidence, given time to ask questions of expert presenters and, after deliberation, come to well-reasoned conclusions. RESULTS All juries voted unanimously that ecological strategies should be included in HeV risk management strategies but concluded that current interventions-including vaccination and changing horse-husbandry practices-must remain the priority. The key reasons given for adopting ecological approaches were: (i) they address underlying drivers of disease emergence, (ii) the potential to prevent spillover of other bat-borne pathogens, and (iii) there would be broader community benefits. Juries differed regarding the best mechanism to create/conserve flying-fox habitat: participants in regional centres favoured direct government action, whereas the metropolitan jury preferred to place the burden on landholders. CONCLUSIONS Informed citizens acknowledge the value of addressing the drivers of bat-borne infectious risks but differ substantially as to the best implementation strategies. Ecological approaches to securing bat habitat could find broad social support in Australia, but disagreement about how best to achieve them indicates the need for negotiation with affected communities to co-develop fair, effective and locally appropriate policies.
Collapse
Affiliation(s)
- Chris Degeling
- Australian Centre for Health Engagement Evidence and Values, School of Health and Society, University of Wollongong, Wollongong, NSW, Australia
- * E-mail:
| | - Gwendolyn L. Gilbert
- Sydney Health Ethics, School of Public Health, University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Disease and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Edward Annand
- Marie Bashir Institute for Infectious Disease and Biosecurity, University of Sydney, Sydney, NSW, Australia
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
- EquiEpiVet, Picton, NSW, Australia
| | - Melanie Taylor
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Michael G. Walsh
- Marie Bashir Institute for Infectious Disease and Biosecurity, University of Sydney, Sydney, NSW, Australia
- Westmead Clinical School, Sydney Medical School, University of Sydney, Westmead, NSW, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Andrew Wilson
- Menzies Centre for Health Policy, University of Sydney, Sydney, NSW, Australia
| | - Jane Johnson
- Sydney Health Ethics, School of Public Health, University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Disease and Biosecurity, University of Sydney, Sydney, NSW, Australia
- Westmead Clinical School, Sydney Medical School, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
15
|
Kumar B, Manuja A, Gulati BR, Virmani N, Tripathi B. Zoonotic Viral Diseases of Equines and Their Impact on Human and Animal Health. Open Virol J 2018; 12:80-98. [PMID: 30288197 PMCID: PMC6142672 DOI: 10.2174/1874357901812010080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Zoonotic diseases are the infectious diseases that can be transmitted to human beings and vice versa from animals either directly or indirectly. These diseases can be caused by a range of organisms including bacteria, parasites, viruses and fungi. Viral diseases are highly infectious and capable of causing pandemics as evidenced by outbreaks of diseases like Ebola, Middle East Respiratory Syndrome, West Nile, SARS-Corona, Nipah, Hendra, Avian influenza and Swine influenza. EXPALANTION Many viruses affecting equines are also important human pathogens. Diseases like Eastern equine encephalitis (EEE), Western equine encephalitis (WEE), and Venezuelan-equine encephalitis (VEE) are highly infectious and can be disseminated as aerosols. A large number of horses and human cases of VEE with fatal encephalitis have continuously occurred in Venezuela and Colombia. Vesicular stomatitis (VS) is prevalent in horses in North America and has zoonotic potential causing encephalitis in children. Hendra virus (HeV) causes respiratory and neurological disease and death in man and horses. Since its first outbreak in 1994, 53 disease incidents have been reported in Australia. West Nile fever has spread to many newer territories across continents during recent years.It has been described in Africa, Europe, South Asia, Oceania and North America. Japanese encephalitis has expanded horizons from Asia to western Pacific region including the eastern Indonesian archipelago, Papua New Guinea and Australia. Rabies is rare in horses but still a public health concern being a fatal disease. Equine influenza is historically not known to affect humans but many scientists have mixed opinions. Equine viral diseases of zoonotic importance and their impact on animal and human health have been elaborated in this article. CONCLUSION Equine viral diseases though restricted to certain geographical areas have huge impact on equine and human health. Diseases like West Nile fever, Hendra, VS, VEE, EEE, JE, Rabies have the potential for spread and ability to cause disease in human. Equine influenza is historically not known to affect humans but some experimental and observational evidence show that H3N8 influenza virus has infected man. Despite our pursuit of understanding the complexity of the vector-host-pathogen mediating disease transmission, it is not possible to make generalized predictions concerning the degree of impact of disease emergence. A targeted, multidisciplinary effort is required to understand the risk factors for zoonosis and apply the interventions necessary to control it.
Collapse
Affiliation(s)
- Balvinder Kumar
- ICAR-National Research Centre on Equines, Hisar-125001, India
| | | | | | | | | |
Collapse
|
16
|
Henipavirus Infection: Natural History and the Virus-Host Interplay. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Middleton DJ, Riddell S, Klein R, Arkinstall R, Haining J, Frazer L, Mottley C, Evans R, Johnson D, Pallister J. Experimental Hendra virus infection of dogs: virus replication, shedding and potential for transmission. Aust Vet J 2018; 95:10-18. [PMID: 28124415 DOI: 10.1111/avj.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Characterisation of experimental Hendra virus (HeV) infection in dogs and assessment of associated transmission risk. METHODS Beagle dogs were exposed oronasally to Hendra virus/Australia/Horse/2008/Redlands or to blood collected from HeV-infected ferrets. Ferrets were exposed to oral fluids collected from dogs after canine exposure to HeV. Observations made and samples tested post-exposure were used to assess the clinical course and replication sites of HeV in dogs, the infectivity for ferrets of canine oral fluids and features of HeV infection in dogs following contact with infective blood. RESULTS Dogs were reliably infected with HeV and were generally asymptomatic. HeV was re-isolated from the oral cavity and virus clearance was associated with development of virus neutralising antibody. Major sites of HeV replication in dogs were the tonsils, lower respiratory tract and associated lymph nodes. Virus replication was documented in canine kidney and spleen, confirming a viraemic phase for canine HeV infection and suggesting that urine may be a source of infectious virus. Infection was transmitted to ferrets via canine oral secretions, with copy numbers for the HeV N gene in canine oral swabs comparable to those reported for nasal swabs of experimentally infected horses. CONCLUSION HeV is not highly pathogenic for dogs, but their oral secretions pose a potential transmission risk to people. The time-window for transmission risk is circumscribed and corresponds to the period of acute infection before establishment of an adaptive immune response. The likelihood of central nervous system involvement in canine HeV infection is unclear, as is any long-term consequence.
Collapse
Affiliation(s)
- D J Middleton
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - S Riddell
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - R Klein
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - R Arkinstall
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - J Haining
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - L Frazer
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - C Mottley
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - R Evans
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - D Johnson
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| | - J Pallister
- CSIRO Australian Animal Health Laboratory, PB24 Geelong, Victoria, 3220, Australia
| |
Collapse
|
18
|
Schemann K, Annand EJ, Reid PA, Lenz MF, Thomson PC, Dhand NK. Investigation of the effect of Equivac® HeV Hendra virus vaccination on Thoroughbred racing performance. Aust Vet J 2018; 96:132-141. [PMID: 29399777 DOI: 10.1111/avj.12679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the effect of Equivac® HeV Hendra virus vaccine on Thoroughbred racing performance. DESIGN Retrospective pre-post intervention study. METHODS Thoroughbreds with at least one start at one of six major south-eastern Queensland race tracks between 1 July 2012 and 31 December 2016 and with starts in the 3-month periods before and after Hendra virus vaccinations were identified. Piecewise linear mixed models compared the trends in 'Timeform rating' and 'margin to winner' before and after initial Hendra virus vaccination. Generalised linear mixed models similarly compared the odds of 'winning', 'placing' (1st-3rd) and 'winning any prize money'. Timeform rating trends were also compared before and after the second and subsequent vaccinations. RESULTS Analysis of data from 4208 race starts by 755 horses revealed no significant difference in performance in the 3 months before versus 3 months after initial Hendra vaccination for Timeform rating (P = 0.32), 'Margin to winner' (P = 0.45), prize money won (P = 0.25), wins (P = 0.64) or placings (P = 0.77). Further analysis for Timeform rating for 7844 race starts by 928 horses failed to identify any significant change in Timeform rating trends before versus after the second and subsequent vaccinations (P = 0.16) or any evidence of a cumulative effect for the number of vaccines received (P = 0.22). CONCLUSION No evidence of an effect of Hendra virus vaccination on racing performance was found. The findings allow owners, trainers, industry regulators and animal health authorities to make informed decisions about vaccination.
Collapse
Affiliation(s)
- K Schemann
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, New South Wales 2570, Australia.,Marie Bashir Institute for Emerging Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - E J Annand
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, New South Wales 2570, Australia.,Marie Bashir Institute for Emerging Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - P A Reid
- Equine veterinary surgeon, Brisbane, Queensland, Australia
| | - M F Lenz
- Queensland Racing Integrity Commission, Brisbane, Queensland, Australia
| | - P C Thomson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - N K Dhand
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, New South Wales 2570, Australia.,Marie Bashir Institute for Emerging Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Kumar R, Patil RD. Cryptic etiopathological conditions of equine nervous system with special emphasis on viral diseases. Vet World 2017; 10:1427-1438. [PMID: 29391683 PMCID: PMC5771167 DOI: 10.14202/vetworld.2017.1427-1438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/30/2017] [Indexed: 01/04/2023] Open
Abstract
The importance of horse (Equus caballus) to equine practitioners and researchers cannot be ignored. An unevenly distributed population of equids harbors numerous diseases, which can affect horses of any age and breed. Among these, the affections of nervous system are potent reason for death and euthanasia in equids. Many episodes associated with the emergence of equine encephalitic conditions have also pose a threat to human population as well, which signifies their pathogenic zoonotic potential. Intensification of most of the arboviruses is associated with sophisticated interaction between vectors and hosts, which supports their transmission. The alphaviruses, bunyaviruses, and flaviviruses are the major implicated groups of viruses involved with equines/humans epizootic/epidemic. In recent years, many outbreaks of deadly zoonotic diseases such as Nipah virus, Hendra virus, and Japanese encephalitis in many parts of the globe addresses their alarming significance. The equine encephalitic viruses differ in their global distribution, transmission and main vector species involved, as discussed in this article. The current review summarizes the status, pathogenesis, pathology, and impact of equine neuro-invasive conditions of viral origin. A greater understanding of these aspects might be able to provide development of advances in neuro-protective strategies in equine population.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Veterinary Pathology, Dr. G.C. Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur - 176 062, Himachal Pradesh, India
| | - Rajendra D Patil
- Department of Veterinary Pathology, Dr. G.C. Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur - 176 062, Himachal Pradesh, India
| |
Collapse
|
20
|
Horigan V, Gale P, Kosmider RD, Minnis C, Snary EL, Breed AC, Simons RR. Application of a quantitative entry assessment model to compare the relative risk of incursion of zoonotic bat-borne viruses into European Union Member States. MICROBIAL RISK ANALYSIS 2017; 7:8-28. [PMID: 32289058 PMCID: PMC7103962 DOI: 10.1016/j.mran.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/11/2023]
Abstract
This paper presents a quantitative assessment model for the risk of entry of zoonotic bat-borne viruses into the European Union (EU). The model considers four routes of introduction: human travel, legal trade of products, live animal imports and illegal import of bushmeat and was applied to five virus outbreak scenarios. Two scenarios were considered for Zaire ebolavirus (wEBOV, cEBOV) and other scenarios for Hendra virus, Marburg virus (MARV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The use of the same framework and generic data sources for all EU Member States (MS) allows for a relative comparison of the probability of virus introduction and of the importance of the routes of introduction among MSs. According to the model wEBOV posed the highest risk of an introduction event within the EU, followed by MARV and MERS-CoV. However, the main route of introduction differed, with wEBOV and MERS-CoV most likely through human travel and MARV through legal trade of foodstuffs. The relative risks to EU MSs as entry points also varied between outbreak scenarios, highlighting the heterogeneity in global trade and travel to the EU MSs. The model has the capability to allow for a continual updating of the risk estimate using new data as, and when, it becomes available. The model provides an horizon scanning tool for use when available data are limited and, therefore, the absolute risk estimates often have high uncertainty. Sensitivity analysis suggested virus prevalence in bats has a large influence on the results; a 90% reduction in prevalence reduced the risk of introduction considerably and resulted in the relative ranking of MARV falling below that for MERS-CoV, due to this parameter disproportionately affecting the risk of introduction from the trade route over human travel.
Collapse
Affiliation(s)
- Verity Horigan
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Paul Gale
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Rowena D. Kosmider
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Christopher Minnis
- The Royal Veterinary College, Royal College Street, London, England NW1 0TU, United Kingdom
| | - Emma L. Snary
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Andrew C. Breed
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Robin R.L. Simons
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
21
|
Weatherman S, Feldmann H, de Wit E. Transmission of henipaviruses. Curr Opin Virol 2017; 28:7-11. [PMID: 29035743 DOI: 10.1016/j.coviro.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
The genus Henipavirus has expanded rapidly in geographic range, number of species, and host range. Hendra and Nipah virus are two henipaviruses known to cause severe disease in humans with a high case-fatality rate. Pteropid spp. bats are the natural reservoir of Hendra and Nipah virus. From these bats, virus can be transmitted to an amplifying host, horses and pigs, and from these hosts to humans, or the virus can be transmitted directly to humans. Although the main route of shedding varies between host species, close contact is required for transmission in all hosts. Understanding the transmission routes of Hendra and Nipah virus in their respective hosts is essential for devising strategies to block zoonotic transmission.
Collapse
Affiliation(s)
- Sarah Weatherman
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
22
|
Wiethoelter AK, Schembri N, Dhand NK, Sawford K, Taylor MR, Moloney B, Wright T, Kung N, Field HE, Toribio JALML. Australian horse owners and their biosecurity practices in the context of Hendra virus. Prev Vet Med 2017; 148:28-36. [PMID: 29157371 DOI: 10.1016/j.prevetmed.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
In recent years, outbreaks of exotic as well as newly emerging infectious diseases have highlighted the importance of biosecurity for the Australian horse industry. As the first potentially fatal zoonosis transmissible from horses to humans in Australia, Hendra virus has emphasised the need to incorporate sound hygiene and general biosecurity practices into day-to-day horse management. Recommended measures are widely publicised, but implementation is at the discretion of the individual owner. This cross-sectional study aimed to determine current levels of biosecurity of horse owners and to identify factors influencing the uptake of practices utilising data from an online survey. Level of biosecurity (low, medium, high), as determined by horse owners' responses to a set of questions on the frequency of various biosecurity practices performed around healthy (9 items) and sick horses (10 items), was used as a composite outcome variable in ordinal logistic regression analyses. The majority of horse owners surveyed were female (90%), from the states of Queensland (45%) or New South Wales (37%), and were involved in either mainly competitive/equestrian sports (37%) or recreational horse activities (35%). Seventy-five percent of owners indicated that they follow at least one-third of the recommended practices regularly when handling their horses, resulting in medium to high levels of biosecurity. Main factors associated with a higher level of biosecurity were high self-rated standard of biosecurity, access to personal protective equipment, absence of flying foxes in the local area, a good sense of control over Hendra virus risk, likelihood of discussing a sick horse with a veterinarian and likelihood of suspecting Hendra virus in a sick horse. Comparison of the outcome variable with the self-rated standard of biosecurity showed that over- as well as underestimation occurred. This highlights the need for continuous communication and education to enhance awareness and understanding of what biosecurity is and how it aligns with good horsemanship. Overall, strengthened biosecurity practices will help to improve animal as well as human health and increase preparedness for future disease outbreaks.
Collapse
Affiliation(s)
- Anke K Wiethoelter
- Farm Animal & Veterinary Public Health, The University of Sydney School of Veterinary Science, NSW, 2006, Australia; Centre for Health Research, School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia.
| | - Nicole Schembri
- Centre for Health Research, School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Navneet K Dhand
- Farm Animal & Veterinary Public Health, The University of Sydney School of Veterinary Science, NSW, 2006, Australia
| | - Kate Sawford
- Farm Animal & Veterinary Public Health, The University of Sydney School of Veterinary Science, NSW, 2006, Australia
| | - Melanie R Taylor
- Centre for Health Research, School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia; Organisational Psychology, Department of Psychology, Macquarie University, NSW, 2109, Australia
| | - Barbara Moloney
- NSW Department of Primary Industries, Orange, NSW, 2800, Australia
| | - Therese Wright
- NSW Department of Primary Industries, Orange, NSW, 2800, Australia
| | - Nina Kung
- Queensland Department of Agriculture and Fisheries, Brisbane, Queensland, 4001, Australia
| | - Hume E Field
- Queensland Department of Agriculture and Fisheries, Brisbane, Queensland, 4001, Australia; EcoHealth Alliance, New York 10001, USA
| | - Jenny-Ann L M L Toribio
- Farm Animal & Veterinary Public Health, The University of Sydney School of Veterinary Science, NSW, 2006, Australia
| |
Collapse
|
23
|
Cowled C, Foo CH, Deffrasnes C, Rootes CL, Williams DT, Middleton D, Wang LF, Bean AGD, Stewart CR. Circulating microRNA profiles of Hendra virus infection in horses. Sci Rep 2017; 7:7431. [PMID: 28785041 PMCID: PMC5547158 DOI: 10.1038/s41598-017-06939-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Hendra virus (HeV) is an emerging zoonotic pathogen harbored by Australian mainland flying foxes. HeV infection can cause lethal disease in humans and horses, and to date all cases of human HeV disease have resulted from contact with infected horses. Currently, diagnosis of acute HeV infections in horses relies on the productive phase of infection when virus shedding may occur. An assay that identifies infected horses during the preclinical phase of infection would reduce the risk of zoonotic viral transmission during management of HeV outbreaks. Having previously shown that the host microRNA (miR)-146a is upregulated in the blood of HeV-infected horses days prior to the detection of viremia, we have profiled miRNAs at the transcriptome-wide level to comprehensively assess differences between infected and uninfected horses. Next-generation sequencing and the miRDeep2 algorithm identified 742 mature miRNA transcripts corresponding to 593 miRNAs in whole blood of six horses (three HeV-infected, three uninfected). Thirty seven miRNAs were differentially expressed in infected horses, two of which were validated by qRT-PCR. This study describes a methodology for the transcriptome-wide profiling of miRNAs in whole blood and supports the notion that measuring host miRNA expression levels may aid infectious disease diagnosis in the future.
Collapse
Affiliation(s)
- Christopher Cowled
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | - Chwan-Hong Foo
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Celine Deffrasnes
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | | - David T Williams
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Deborah Middleton
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Andrew G D Bean
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cameron R Stewart
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
24
|
Mendez DH, Büttner P, Kelly J, Nowak M, Speare Posthumously R. Difficulties experienced by veterinarians when communicating about emerging zoonotic risks with animal owners: the case of Hendra virus. BMC Vet Res 2017; 13:56. [PMID: 28214468 PMCID: PMC5316153 DOI: 10.1186/s12917-017-0970-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Communication skills are essential for veterinarians who need to discuss animal health related matters with their clients. When dealing with an emerging zoonosis, such as Hendra virus (HeV), veterinarians also have a legal responsibility to inform their clients about the associated risks to human health. Here we report on part of a mixed methods study that examined the preparedness of, and difficulties experienced by, veterinarians communicating about HeV-related risks with their clients. METHODS Phase 1 was an exploratory, qualitative study that consisted of a series of face-to-face, semi-structured interviews with veterinary personnel from Queensland, Australia (2009-10) to identify the barriers to HeV management in equine practices. Phase 2a was a quantitative study that surveyed veterinarians from the same region (2011) and explored the veterinarians' preparedness and willingness to communicate about HeV-related risks, and the reactions of their clients that they experienced. The second study included both multiple choice and open-ended questions. RESULTS The majority of the participants from Phase 2a (83.1%) declared they had access to a HeV management plan and over half (58.6%) had ready-to-use HeV information available for clients within their practice. Most (87%) reported "always or sometimes" informing clients about HeV-related risks when a horse appeared sick. When HeV was suspected, 58.1% of participants reported their clients were receptive to their safety directives and 24.9% of clients were either initially unreceptive, overwhelmed by fear, or in denial of the associated risks. The thematic analysis of the qualitative data from Phases 1 and 2a uncovered similar themes in relation to HeV-related communication issues experienced by veterinarians: "clients' intent to adhere"; "adherence deemed redundant"; "misunderstanding or denial of risk"; "cost"; "rural culture"; "fear for reputation". The theme of "emotional state of clients" was only identified during Phase 1. CONCLUSION Warning horse owners about health and safety issues that may affect them when present in a veterinary work environment is a legal requirement for veterinarians. However, emerging zoonoses are unpredictable events that may require a different communication approach. Future training programs addressing veterinary communication skills should take into account the particular issues inherent to managing an emerging zoonosis and emphasise the importance of maintaining human safety. Veterinary communication skills and approaches required when dealing with emerging zoonoses should be further investigated.
Collapse
Affiliation(s)
- Diana H Mendez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| | - Petra Büttner
- Centre for Chronic Disease Prevention, James Cook University, Cairns, QLD 4870, Australia.,Tropical Health Solutions Pty Ltd, Townsville, 4811, QLD, Australia
| | - Jenny Kelly
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia.,Centre for Nursing and Midwifery Research, James Cook University, Townsville, QLD 4811, Australia
| | - Madeleine Nowak
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | | |
Collapse
|
25
|
SMITH CS, McLAUGHLIN A, FIELD HE, EDSON D, MAYER D, OSSEDRYVER S, BARRETT J, WALTISBUHL D. Twenty years of Hendra virus: laboratory submission trends and risk factors for infection in horses. Epidemiol Infect 2016; 144:3176-3183. [PMID: 27357144 PMCID: PMC9150281 DOI: 10.1017/s0950268816001400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/12/2016] [Indexed: 11/07/2022] Open
Abstract
Hendra virus (HeV) was first described in 1994 in an outbreak of acute and highly lethal disease in horses and humans in Australia. Equine cases continue to be diagnosed periodically, yet the predisposing factors for infection remain unclear. We undertook an analysis of equine submissions tested for HeV by the Queensland government veterinary reference laboratory over a 20-year period to identify and investigate any patterns. We found a marked increase in testing from July 2008, primarily reflecting a broadening of the HeV clinical case definition. Peaks in submissions for testing, and visitations to the Government HeV website, were associated with reported equine incidents. Significantly differing between-year HeV detection rates in north and south Queensland suggest a fundamental difference in risk exposure between the two regions. The statistical association between HeV detection and stockhorse type may suggest that husbandry is a more important risk determinant than breed per se. The detection of HeV in horses with neither neurological nor respiratory signs poses a risk management challenge for attending veterinarians and laboratory staff, reinforcing animal health authority recommendations that appropriate risk management strategies be employed for all sick horses, and by anyone handling sick horses or associated biological samples.
Collapse
Affiliation(s)
- C. S. SMITH
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - A. McLAUGHLIN
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - H. E. FIELD
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- EcoHealth Alliance, New York, New York, USA
| | - D. EDSON
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- Department of Agriculture, Canberra, Australian Capital Territory, Australia
| | - D. MAYER
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - S. OSSEDRYVER
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - J. BARRETT
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - D. WALTISBUHL
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Foo CH, Rootes CL, Cowley K, Marsh GA, Gould CM, Deffrasnes C, Cowled CJ, Klein R, Riddell SJ, Middleton D, Simpson KJ, Wang LF, Bean AGD, Stewart CR. Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion. PLoS Pathog 2016; 12:e1005974. [PMID: 27783670 PMCID: PMC5082662 DOI: 10.1371/journal.ppat.1005974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.
Collapse
Affiliation(s)
- Chwan Hong Foo
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christina L. Rootes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Karla Cowley
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cathryn M. Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Celine Deffrasnes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christopher J. Cowled
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Reuben Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sarah J. Riddell
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Deborah Middleton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cameron R. Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
27
|
Broder CC, Weir DL, Reid PA. Hendra virus and Nipah virus animal vaccines. Vaccine 2016; 34:3525-34. [PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/30/2015] [Accepted: 03/11/2016] [Indexed: 01/07/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, United States.
| | - Dawn L Weir
- Navy Environmental and Preventive Medicine Unit Six, Joint Base Pearl Harbor Hickam, HI, 96860, United States
| | - Peter A Reid
- Equine Veterinary Surgeon, Brisbane, Queensland, 4034, Australia
| |
Collapse
|
28
|
Field HE, Smith CS, de Jong CE, Melville D, Broos A, Kung N, Thompson J, Dechmann DKN. Landscape Utilisation, Animal Behaviour and Hendra Virus Risk. ECOHEALTH 2016; 13:26-38. [PMID: 26403793 DOI: 10.1007/s10393-015-1066-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/05/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Hendra virus causes sporadic fatal disease in horses and humans in eastern Australia. Pteropid bats (flying-foxes) are the natural host of the virus. The mode of flying-fox to horse transmission remains unclear, but oro-nasal contact with flying-fox urine, faeces or saliva is the most plausible. We used GPS data logger technology to explore the landscape utilisation of black flying-foxes and horses to gain new insight into equine exposure risk. Flying-fox foraging was repetitious, with individuals returning night after night to the same location. There was a preference for fragmented arboreal landscape and non-native plant species, resulting in increased flying-fox activity around rural infrastructure. Our preliminary equine data logger study identified significant variation between diurnal and nocturnal grazing behaviour that, combined with the observed flying-fox foraging behaviour, could contribute to Hendra virus exposure risk. While we found no significant risk-exposing difference in individual horse movement behaviour in this study, the prospect warrants further investigation, as does the broader role of animal behaviour and landscape utilisation on the transmission dynamics of Hendra virus.
Collapse
Affiliation(s)
- H E Field
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia.
- EcoHealth Alliance, New York, NY, 10001, USA.
| | - C S Smith
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
| | - C E de Jong
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
| | - D Melville
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
| | - A Broos
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
| | - N Kung
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
| | - J Thompson
- Queensland Herbarium, Department of Environment and Heritage Protection, Brisbane, QLD, 4066, Australia
| | - D K N Dechmann
- Max Planck Institute for Ornithology, Radolfzell, Germany
| |
Collapse
|
29
|
Hing S, Narayan EJ, Thompson RCA, Godfrey SS. The relationship between physiological stress and wildlife disease: consequences for health and conservation. WILDLIFE RESEARCH 2016. [DOI: 10.1071/wr15183] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wildlife populations are under increasing pressure from a variety of threatening processes, ranging from climate change to habitat loss, that can incite a physiological stress response. The stress response influences immune function, with potential consequences for patterns of infection and transmission of disease among and within wildlife, domesticated animals and humans. This is concerning because stress may exacerbate the impact of disease on species vulnerable to extinction, with consequences for biodiversity conservation globally. Furthermore, stress may shape the role of wildlife in the spread of emerging infectious diseases (EID) such as Hendra virus (HeV) and Ebola virus. However, we still have a limited understanding of the influence of physiological stress on infectious disease in wildlife. We highlight key reasons why an improved understanding of the relationship between stress and wildlife disease could benefit conservation, and animal and public health, and discuss approaches for future investigation. In particular, we recommend that increased attention be given to the influence of anthropogenic stressors including climate change, habitat loss and management interventions on disease dynamics in wildlife populations.
Collapse
|
30
|
Henipaviruses. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153454 DOI: 10.1007/978-3-319-33133-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first henipaviruses, Hendra virus (HeV), and Nipah virus (NiV) were pathogenic zoonoses that emerged in the mid to late 1990s causing serious disease outbreaks in livestock and humans. HeV was recognized in Australia 1994 in horses exhibiting respiratory disease along with a human case fatality, and then NiV was identified during a large outbreak of human cases of encephalitis with high mortality in Malaysia and Singapore in 1998–1999 along with respiratory disease in pigs which served as amplifying hosts. The recently identified third henipavirus isolate, Cedar virus (CedPV), is not pathogenic in animals susceptible to HeV and NiV disease. Molecular detection of additional henipavirus species has been reported but no additional isolates of virus have been reported. Central pathological features of both HeV and NiV infection in humans and several susceptible animal species is a severe systemic and often fatal neurologic and/or respiratory disease. In people, both viruses can also manifest relapsed encephalitis following recovery from an acute infection, particularly NiV. The recognized natural reservoir hosts of HeV, NiV, and CedPV are pteropid bats, which do not show clinical illness when infected. With spillovers of HeV continuing to occur in Australia and NiV in Bangladesh and India, these henipaviruses continue to be important transboundary biological threats. NiV in particular possesses several features that highlight a pandemic potential, such as its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals along with a capacity of limited human-to-human transmission. Several henipavirus animal challenge models have been developed which has aided in understanding HeV and NiV pathogenesis as well as how they invade the central nervous system, and successful active and passive immunization strategies against HeV and NiV have been reported which target the viral envelope glycoproteins.
Collapse
|
31
|
Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, Bryden WL, Middleton D, Reid PA, McFarlane RA, Martin G, Tabor GM, Skerratt LF, Anderson DL, Crameri G, Quammen D, Jordan D, Freeman P, Wang LF, Epstein JH, Marsh GA, Kung NY, McCallum H. Ecological dynamics of emerging bat virus spillover. Proc Biol Sci 2015; 282:20142124. [PMID: 25392474 DOI: 10.1098/rspb.2014.2124] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Collapse
Affiliation(s)
- Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA, USA
| | - Peggy Eby
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA, USA
| | - Ina L Smith
- New and Emerging Zoonotic Diseases, CSIRO, Australian Animal Health Laboratory, East Geelong, Victoria 3220, Australia
| | - David Westcott
- CSIRO Ecosystem Sciences and Tropical Environment and Sustainability Sciences, James Cook University, Atherton, Queensland 4883, Australia
| | - Wayne L Bryden
- Equine Research Unit, School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland 4343, Australia
| | - Deborah Middleton
- New and Emerging Zoonotic Diseases, CSIRO, Australian Animal Health Laboratory, East Geelong, Victoria 3220, Australia
| | - Peter A Reid
- Equine Veterinary Surgeon, Brisbane, Queensland 4034, Australia
| | - Rosemary A McFarlane
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 0200, Australia
| | - Gerardo Martin
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Gary M Tabor
- Center for Large Landscape Conservation, Bozeman, MT 59771, USA
| | - Lee F Skerratt
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Dale L Anderson
- Equine Research Unit, School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland 4343, Australia
| | - Gary Crameri
- New and Emerging Zoonotic Diseases, CSIRO, Australian Animal Health Laboratory, East Geelong, Victoria 3220, Australia
| | | | - David Jordan
- New South Wales Department of Primary Industries, 1423 Bruxner Highway, Wollongbar, New South Wales 2477, Australia
| | - Paul Freeman
- New South Wales Department of Primary Industries, 1423 Bruxner Highway, Wollongbar, New South Wales 2477, Australia
| | - Lin-Fa Wang
- New and Emerging Zoonotic Diseases, CSIRO, Australian Animal Health Laboratory, East Geelong, Victoria 3220, Australia Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857
| | | | - Glenn A Marsh
- New and Emerging Zoonotic Diseases, CSIRO, Australian Animal Health Laboratory, East Geelong, Victoria 3220, Australia
| | - Nina Y Kung
- Animal Biosecurity and Welfare Program, Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland 4001, Australia
| | - Hamish McCallum
- Griffith School of Environment, Griffith University, Brisbane 4111, Australia
| |
Collapse
|
32
|
Gilkerson JR, Bailey KE, Diaz-Méndez A, Hartley CA. Update on Viral Diseases of the Equine Respiratory Tract. Vet Clin North Am Equine Pract 2015; 31:91-104. [DOI: 10.1016/j.cveq.2014.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
33
|
Martin G, Plowright R, Chen C, Kault D, Selleck P, Skerratt LF. Hendra virus survival does not explain spillover patterns and implicates relatively direct transmission routes from flying foxes to horses. J Gen Virol 2015; 96:1229-1237. [PMID: 25667321 DOI: 10.1099/vir.0.000073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/25/2015] [Indexed: 11/18/2022] Open
Abstract
Hendra virus (HeV) is lethal to humans and horses, and little is known about its epidemiology. Biosecurity restrictions impede advances, particularly on understanding pathways of transmission. Quantifying the environmental survival of HeV can be used for making decisions and to infer transmission pathways. We estimated HeV survival with a Weibull distribution and calculated parameters from data generated in laboratory experiments. HeV survival rates based on air temperatures 24 h after excretion ranged from 2 to 10 % in summer and from 12 to 33 % in winter. Simulated survival across the distribution of the black flying fox (Pteropus alecto), a key reservoir host, did not predict spillover events. Based on our analyses we concluded that the most likely pathways of transmission did not require long periods of virus survival and were likely to involve relatively direct contact with flying fox excreta shortly after excretion.
Collapse
Affiliation(s)
- Gerardo Martin
- James Cook University, Townsville, Queensland, Australia
| | - Raina Plowright
- Pennsylvania State University, State College, PA, USA.,Montana State University, Bozeman, MT, USA.,James Cook University, Townsville, Queensland, Australia
| | - Carla Chen
- Monash University, Melbourne, Victoria, Australia.,James Cook University, Townsville, Queensland, Australia
| | - David Kault
- James Cook University, Townsville, Queensland, Australia
| | - Paul Selleck
- Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Lee F Skerratt
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
34
|
Sing A. A Review of Hendra Virus and Nipah Virus Infections in Man and Other Animals. ZOONOSES - INFECTIONS AFFECTING HUMANS AND ANIMALS 2015. [PMCID: PMC7120151 DOI: 10.1007/978-94-017-9457-2_40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) emerged in the last decade of the twentieth century. They were the cause of a number of outbreaks of respiratory and neurological disease infecting horses and pigs respectively. Transmission from infected domestic animal species resulted in human infections as well, with high case fatality rates a feature. Today they continue to cause outbreaks of human and animal disease. NiV causes yearly disease outbreaks in humans in Bangladesh, and HeV causes sporadic disease outbreaks in horses in north eastern Australia. Due to their zoonotic nature, they have been ideal candidates for collaborative projects in the One Health space, bringing public health and animal health professionals together. This has lead to insightful epidemiological studies, which has resulted in practical disease prevention solutions including a horse vaccine for HeV and NiV spill-over prevention interventions in the field. As more surveillance is undertaken, their known distributions have expanded, as has the range of reservoir host species. The majority of bat species for which there is evidence of henipavirus infection belong to the group known as the Old World family of fruit and nectar feeding bats (Family Pteropodidae, Suborder Megachiroptera). This review of the bat borne henipaviruses discusses the epidemiology, pathology, transmission and disease symptoms in these closely related viruses which belong to the Genus Henipavirus, Family Paramyxoviridae.
Collapse
Affiliation(s)
- Andreas Sing
- Dept. of Infectiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Bayern Germany
| |
Collapse
|
35
|
Monaghan P, Green D, Pallister J, Klein R, White J, Williams C, McMillan P, Tilley L, Lampe M, Hawes P, Wang LF. Detailed morphological characterisation of Hendra virus infection of different cell types using super-resolution and conventional imaging. Virol J 2014; 11:200. [PMID: 25428656 PMCID: PMC4254186 DOI: 10.1186/s12985-014-0200-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/07/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hendra virus (HeV) is a pleomorphic virus belonging to the Paramyxovirus family. Our long-term aim is to understand the process of assembly of HeV virions. As a first step, we sought to determine the most appropriate cell culture system with which to study this process, and then to use this model to define the morphology of the virus and identify the site of assembly by imaging key virus encoded proteins in infected cells. METHODS A range of primary cells and immortalised cell lines were infected with HeV, fixed at various time points post-infection, labelled for HeV proteins and imaged by confocal, super-resolution and transmission electron microscopy. RESULTS Significant differences were noted in viral protein distribution depending on the infected cell type. At 8 hpi HeV G protein was detected in the endoplasmic reticulum and M protein was seen predominantly in the nucleus in all cells tested. At 18 hpi, HeV-infected Vero cells showed M and G proteins throughout the cell and in transmission electron microscope (TEM) sections, in pleomorphic virus-like structures. In HeV infected MDBK, A549 and HeLa cells, HeV M protein was seen predominantly in the nucleus with G protein at the membrane. In HeV-infected primary bovine and porcine aortic endothelial cells and two bat-derived cell lines, HeV M protein was not seen at such high levels in the nucleus at any time point tested (8,12, 18, 24, 48 hpi) but was observed predominantly at the cell surface in a punctate pattern co-localised with G protein. These HeV M and G positive structures were confirmed as round HeV virions by TEM and super-resolution (SR) microscopy. SR imaging demonstrated for the first time sub-virion imaging of paramyxovirus proteins and the respective localisation of HeV G, M and N proteins within virions. CONCLUSION These findings provide novel insights into the structure of HeV and show that for HeV imaging studies the choice of tissue culture cells may affect the experimental results. The results also indicate that HeV should be considered a predominantly round virus with a mean diameter of approximately 280 nm by TEM and 310 nm by SR imaging.
Collapse
Affiliation(s)
- Paul Monaghan
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Diane Green
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Jackie Pallister
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Reuben Klein
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - John White
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Catherine Williams
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| | - Paul McMillan
- Department of Biochemistry and Molecular Biology, Melbourne, Australia.
- ARC Centre of Excellence for Coherent X-ray Science, Melbourne, Australia.
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
- Current Address: Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Melbourne, Australia.
- ARC Centre of Excellence for Coherent X-ray Science, Melbourne, Australia.
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
- Current Address: Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Marko Lampe
- Leica Microsystems, CMS GmbH, Ernst-Leitz Strasse 17-37, Wetzlar, Germany.
- Current Address: European Molecular Biology Laboratory, Meyerhofstr 1, D-69117, Heidelberg, Germany.
- Current Address: Translational Lung Research Center (TLRC), Department Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - Pippa Hawes
- Pirbright Institute, Pirbright, Woking, Surrey, GU240NF, UK.
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
- Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
36
|
Abstract
Hendra virus infection of horses occurred sporadically between 1994 and 2010 as a result of spill-over from the viral reservoir in Australian mainland flying-foxes, and occasional onward transmission to people also followed from exposure to affected horses. An unprecedented number of outbreaks were recorded in 2011 leading to heightened community concern. Release of an inactivated subunit vaccine for horses against Hendra virus represents the first commercially available product that is focused on mitigating the impact of a Biosafety Level 4 pathogen. Through preventing the development of acute Hendra virus disease in horses, vaccine use is also expected to reduce the risk of transmission of infection to people.
Collapse
Affiliation(s)
- Deborah Middleton
- Australian Animal Health Laboratory, CSIRO, PB 24, Geelong, Victoria 3220, Australia.
| |
Collapse
|
37
|
Mendez DH, Kelly J, Buttner P, Nowak M, Speare R. Management of the slowly emerging zoonosis, Hendra virus, by private veterinarians in Queensland, Australia: a qualitative study. BMC Vet Res 2014; 10:215. [PMID: 25224910 PMCID: PMC4173005 DOI: 10.1186/s12917-014-0215-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
Background Veterinary infection control for the management of Hendra virus (HeV), an emerging zoonosis in Australia, remained suboptimal until 2010 despite 71.4% (5/7) of humans infected with HeV being veterinary personnel or assisting a veterinarian, three of whom died before 2009. The aim of this study was to identify the perceived barriers to veterinary infection control and HeV management in private veterinary practice in Queensland, where the majority of HeV outbreaks have occurred in Australia. Results Most participants agreed that a number of key factors had contributed to the slow uptake of adequate infection control measures for the management of HeV amongst private veterinarians: a work culture characterised by suboptimal infection control standards and misconceptions about zoonotic risks; a lack of leadership and support from government authorities; the difficulties of managing biosecurity and public health issues from a private workforce perspective; and the slow pattern of emergence of HeV. By 2010, some infection control and HeV management changes had been implemented. Participants interviewed agreed that further improvements remained necessary; but also cautioned that this was a complex process which would require time. Conclusion Private veterinarians and government authorities prior to 2009 were unprepared to handle new slowly emerging zoonoses, which may explain their mismanagement of HeV. Slowly emerging zoonoses may be of low public health significance but of high significance for specialised groups such as veterinarians. Private veterinarians, who are expected to fulfil an active biosecurity and public health role in the frontline management of such emerging zoonoses, need government agencies to better recognise their contribution, to consult with the veterinary profession when devising guidelines for the management of zoonoses and to provide them with greater leadership and support. We propose that specific infection control guidelines for the management of slowly emerging zoonoses in private veterinary settings need to be developed.
Collapse
|
38
|
Hendra virus in Queensland, Australia, during the winter of 2011: veterinarians on the path to better management strategies. Prev Vet Med 2014; 117:40-51. [PMID: 25175674 PMCID: PMC7132398 DOI: 10.1016/j.prevetmed.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022]
Abstract
We surveyed private equine veterinarians about their use of personal protective equipment when examining healthy, sick and dead horses. Practices had official Hendra virus management guidelines and a dedicated field kit available but no standardised management protocols. Not all participants used all possible personal protective equipment when attending horses, regardless of health status. Personal protective equipment usage increased when the likelihood of a horse being infected with the zoonosis Hendra virus increased. Those who had dealt with horses suspected of or were trained in Hendra virus management were more likely to use appropriate protective equipment.
Following the emergence of Hendra virus (HeV), private veterinarians have had to adopt additional infection control strategies to manage this zoonosis. Between 1994 and 2010, seven people became infected with HeV, four fatally. All infected people were at a higher risk of exposure from contact with horses as they were either veterinary personnel, assisting veterinarians, or working in the horse industry. The management of emerging zoonoses is best approached from a One Health perspective as it benefits biosecurity as well as a public health, including the health of those most at risk, in this case private veterinarians. In 2011 we conducted a cross-sectional study of private veterinarians registered in Queensland and providing veterinary services to horses. The aim of this study was to gauge if participants had adopted recommendations for improved infection control, including the use of personal protective equipment (PPE), and the development of HeV specific management strategies during the winter of 2011. A majority of participants worked in practices that had a formal HeV management plan, mostly based on the perusal of official guidelines and an HeV field kit. The use of PPE increased as the health status of an equine patient decreased, demonstrating that many participants evaluated the risk of exposure to HeV appropriately; while others remained at risk of HeV infection by not using the appropriate PPE even when attending a sick horse. This study took place after Biosecurity Queensland had sent a comprehensive package about HeV management to all private veterinarians working in Queensland. However, those who had previous HeV experience through the management of suspected cases or had attended a HeV specific professional education programme in the previous 12 months were more likely to use PPE than those who had not. This may indicate that for private veterinarians in Queensland personal experience and face-to-face professional education sessions may be more effective in the improvement of HeV management than passive education via information packages. The role of different education pathways in the sustainable adoption of veterinary infection control measures should be further investigated.
Collapse
|
39
|
Mendez D, Büttner P, Speare R. Response of Australian veterinarians to the announcement of a Hendra virus vaccine becoming available. Aust Vet J 2014; 91:328-31. [PMID: 23889099 DOI: 10.1111/avj.12092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DESIGN A cross-sectional study of private veterinarians providing equine services in Queensland. RESULTS The study revealed that a majority of veterinarians would support the introduction of a Hendra virus (HeV) vaccine. Moreover, almost half of the respondents intended to make vaccination a prerequisite to horse patient presentation. However, participants also responded that a vaccine would not reduce the risk sufficiently to cease or downgrade their HeV management plan and infection control measures. CONCLUSION When devising promoting and marketing campaigns, government agencies and manufacturers should consider private veterinarians' intentions as a significant driver for the uptake of the HeV vaccine.
Collapse
Affiliation(s)
- D Mendez
- Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University, Townsville, 4810, Queensland, Australia.
| | | | | |
Collapse
|
40
|
Middleton D, Pallister J, Klein R, Feng YR, Haining J, Arkinstall R, Frazer L, Huang JA, Edwards N, Wareing M, Elhay M, Hashmi Z, Bingham J, Yamada M, Johnson D, White J, Foord A, Heine HG, Marsh GA, Broder CC, Wang LF. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg Infect Dis 2014; 20:372-9. [PMID: 24572697 PMCID: PMC3944873 DOI: 10.3201/eid2003.131159] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In recent years, the emergence of several highly pathogenic zoonotic diseases in humans has led to a renewed emphasis on the interconnectedness of human, animal, and environmental health, otherwise known as One Health. For example, Hendra virus (HeV), a zoonotic paramyxovirus, was discovered in 1994, and since then, infections have occurred in 7 humans, each of whom had a strong epidemiologic link to similarly affected horses. As a consequence of these outbreaks, eradication of bat populations was discussed, despite their crucial environmental roles in pollination and reduction of the insect population. We describe the development and evaluation of a vaccine for horses with the potential for breaking the chain of HeV transmission from bats to horses to humans, thereby protecting horse, human, and environmental health. The HeV vaccine for horses is a key example of a One Health approach to the control of human disease.
Collapse
Affiliation(s)
| | | | - Reuben Klein
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Yan-Ru Feng
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Jessica Haining
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Rachel Arkinstall
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Leah Frazer
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Jin-An Huang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Nigel Edwards
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Mark Wareing
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Martin Elhay
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Zia Hashmi
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - John Bingham
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Manabu Yamada
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Dayna Johnson
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - John White
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Adam Foord
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Hans G. Heine
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Glenn A. Marsh
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Christopher C. Broder
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang)
- Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi)
- National Institute of Animal Health, Ibaraki, Japan (M. Yamada)
- Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)
| |
Collapse
|
41
|
Rockx B. Recent developments in experimental animal models of Henipavirus infection. Pathog Dis 2014; 71:199-206. [PMID: 24488776 DOI: 10.1111/2049-632x.12149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/27/2022] Open
Abstract
Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans.
Collapse
Affiliation(s)
- Barry Rockx
- Galveston National Laboratory, Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
42
|
Hazelton B, Ba Alawi F, Kok J, Dwyer DE. Hendra virus: a one health tale of flying foxes, horses and humans. Future Microbiol 2013; 8:461-74. [PMID: 23534359 DOI: 10.2217/fmb.13.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hendra virus, a member of the family Paramyxoviridae, was first recognized following a devastating outbreak in Queensland, Australia, in 1994. The naturally acquired symptomatic infection, characterized by a rapidly progressive illness involving the respiratory system and/or CNS, has so far only been recognized in horses and humans. However, there is potential for other species to be infected, with significant consequences for animal and human health. Prevention of infection involves efforts to interrupt the bat-to-horse and horse-to-human transmission interfaces. Education and infection-control efforts remain the key to reducing risk of transmission, particularly as no effective antiviral treatment is currently available. The recent release of an equine Hendra G glycoprotein subunit vaccine is an exciting advance that offers the opportunity to curb the recent increase in equine transmission events occurring in endemic coastal regions of Australia and thereby reduce the risk of infection in humans.
Collapse
Affiliation(s)
- Briony Hazelton
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, New South Wales 2145, Australia.
| | | | | | | |
Collapse
|
43
|
Croser EL, Marsh GA. The changing face of the henipaviruses. Vet Microbiol 2013; 167:151-8. [PMID: 23993256 DOI: 10.1016/j.vetmic.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/12/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023]
Abstract
The Henipavirus genus represents a group of paramyxoviruses that are some of the deadliest of known human and veterinary pathogens. Hendra and Nipah viruses are zoonotic pathogens that can cause respiratory and encephalitic illness in humans with mortality rates that exceed 70%. Over the past several years, we have seen an increase in the number of cases and an altered clinical presentation of Hendra virus in naturally infected horses. Recent increase in the number of cases has also been reported with human Nipah virus infections in Bangladesh. These factors, along with the recent discovery of henipa and henipa-like viruses in Africa, Asia and South and Central America adds, a truly global perspective to this group of emerging viruses.
Collapse
Affiliation(s)
- Emma L Croser
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Private Bag 24, Geelong 3220, Australia.
| | | |
Collapse
|
44
|
McCaskill JL, Marsh GA, Monaghan P, Wang LF, Doran T, McMillan NAJ. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation. PLoS One 2013; 8:e64360. [PMID: 23691205 PMCID: PMC3653894 DOI: 10.1371/journal.pone.0064360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/13/2013] [Indexed: 12/24/2022] Open
Abstract
Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen.
Collapse
Affiliation(s)
- Jana L. McCaskill
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Glenn A. Marsh
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Paul Monaghan
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Timothy Doran
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Nigel A. J. McMillan
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
- Griffith Health Institute and School of Medical Science, Griffith University, Southport, Queensland, Australia
- * E-mail:
| |
Collapse
|
45
|
Dhondt KP, Horvat B. Henipavirus infections: lessons from animal models. Pathogens 2013; 2:264-87. [PMID: 25437037 PMCID: PMC4235719 DOI: 10.3390/pathogens2020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022] Open
Abstract
The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.
Collapse
Affiliation(s)
- Kévin P Dhondt
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| | - Branka Horvat
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| |
Collapse
|
46
|
Marsh GA, Virtue ER, Smith I, Todd S, Arkinstall R, Frazer L, Monaghan P, Smith GA, Broder CC, Middleton D, Wang LF. Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets. Virol J 2013; 10:95. [PMID: 23521919 PMCID: PMC3724489 DOI: 10.1186/1743-422x-10-95] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Background Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. Methods A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. Results Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. Conclusions Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length.
Collapse
Affiliation(s)
- Glenn A Marsh
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Microsphere suspension array assays for detection and differentiation of Hendra and Nipah viruses. BIOMED RESEARCH INTERNATIONAL 2013; 2013:289295. [PMID: 23509705 PMCID: PMC3581118 DOI: 10.1155/2013/289295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/25/2012] [Indexed: 11/18/2022]
Abstract
Microsphere suspension array systems enable the simultaneous fluorescent identification of multiple separate nucleotide targets in a single reaction. We have utilized commercially available oligo-tagged microspheres (Luminex MagPlex-TAG) to construct and evaluate multiplexed assays for the detection and differentiation of Hendra virus (HeV) and Nipah virus (NiV). Both these agents are bat-borne zoonotic paramyxoviruses of increasing concern for veterinary and human health. Assays were developed targeting multiple sites within the nucleoprotein (N) and phosphoprotein (P) encoding genes. The relative specificities and sensitivities of the assays were determined using reference isolates of each virus type, samples from experimentally infected horses, and archival veterinary diagnostic submissions. Results were assessed in direct comparison with an established qPCR. The microsphere array assays achieved unequivocal differentiation of HeV and NiV and the sensitivity of HeV detection was comparable to qPCR, indicating high analytical and diagnostic specificity and sensitivity.
Collapse
|
48
|
Abstract
Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease.
Collapse
|
49
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|
50
|
Abstract
Hendra virus, first identified in 1994 in Queensland, is an emerging zoonotic pathogen gaining importance in Australia because a growing number of infections are reported in horses and people. The virus, a member of the family Paramyxoviridae (genus Henipavirus), is transmitted to horses by pteropid bats (fruit bats or flying foxes), with human infection a result of direct contact with infected horses. Case-fatality rate is high in both horses and people, and so far, more than 60 horses and four people have died from Hendra virus infection in Australia. Human infection is characterised by an acute encephalitic syndrome or relapsing encephalitis, for which no effective treatment is currently available. Recent identification of Hendra virus infection in a domestic animal outside the laboratory setting, and the large range of pteropid bats in Australia, underpins the potential of this virus to cause greater morbidity and mortality in both rural and urban populations and its importance to both veterinary and human health. Attempts at treatment with ribavirin and chloroquine have been unsuccessful. Education, hygiene, and infection control measures have hitherto been the mainstay of prevention, while access to monoclonal antibody treatment and development of an animal vaccine offer further opportunities for disease prevention and control.
Collapse
|