1
|
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, Valencia-Bacca JD, Shahid F, Hernandez GE, Nutter NA, Walker KA, Bennett EF, Young TM, Barnes AJ, Ornelles DA, Miller VL, Zafar MA. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun 2025; 16:940. [PMID: 39843522 PMCID: PMC11754592 DOI: 10.1038/s41467-025-56309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae. We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract.
Collapse
Affiliation(s)
- Andrew S Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew W Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | - Ravinder K Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Maidul Islam
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Juan D Valencia-Bacca
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Fawaz Shahid
- Wake Forest University, Winston Salem, Winston Salem, NC, USA
| | - Giovanna E Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Noah A Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Emma F Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Taylor M Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew J Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Chen L, Qiu C, Lu Y, Lin J, Xu L. Aggressive Infection by K1/ST1265 Klebsiella pneumoniae Leading to Multiple Abscesses: Case Report and Literature Review. Infect Drug Resist 2025; 18:43-49. [PMID: 39776756 PMCID: PMC11705983 DOI: 10.2147/idr.s489161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) has attracted increasing attention in recent years. Diabetes and serotype K1 or K2 are risk factors for invasive liver abscess syndrome including liver abscesses and the metastatic complications such as bacteremia, meningitis, endophthalmitis, and necrotizing fasciitis. Simultaneous infections of the liver, lungs, prostate, brain, and eyes are exceedingly rare. In this paper, a 41-year-old male patient who presented with a 4-day history of fever with polydipsia and polyuria and untreated diabetes deteriorated dramatically with sepsis, prostate abscess, lung abscess, liver abscess and intracranial infection as well as endophthalmitis. He was diagnosed with infection by K1/ST1265 hypervirulent Klebsiella pneumoniae and after treatment with antibiotics and abscess drainage, while the patient still passed away. K1/ST1265 hvKp exhibits exceptionally high virulence and invasiveness, necessitating broad awareness and vigilant monitoring.
Collapse
Affiliation(s)
- Lina Chen
- Department of Critical Care Medicine, Jiangshan People’s Hospital, Quzhou, People’s Republic of China
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Canhu Qiu
- Department of Critical Care Medicine, Jiangshan People’s Hospital, Quzhou, People’s Republic of China
| | - Ye Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jianqing Lin
- Department of Critical Care Medicine, Jiangshan People’s Hospital, Quzhou, People’s Republic of China
| | - Liping Xu
- Department of Critical Care Medicine, Jiangshan People’s Hospital, Quzhou, People’s Republic of China
| |
Collapse
|
3
|
Gu L, Ai T, Ye Q, Wang Y, Wang H, Xu D. Development and validation of a clinical-radiomics nomogram for the early prediction of Klebsiella pneumoniae liver abscess. Ann Med 2024; 56:2413923. [PMID: 39392039 PMCID: PMC11485847 DOI: 10.1080/07853890.2024.2413923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND AIM Pyogenic liver abscess (PLA) is a devastating and potentially life-threatening disease globally, with Klebsiella pneumoniae liver abscess (KPLA) being the most prevalent in Asia. This study aims to develop an effective and comprehensive nomogram combining clinical and radiomics features for early prediction of KPLA. METHODS 255 patients with PLA from 2013 to 2023 were enrolled and randomly divided into the training and validation cohorts at a 7:3 ratio. The differences between the two cohorts of patients were assessed via univariate analysis. The radiomics features were extracted from imaging data from enhanced CT of liver abscesses. The optimal radiomics features were filtered using the independent sample t-test and least absolute shrinkage and selection operator, and a radiomics score (Rad-score) was calculated by weighting their respective coefficients. Clinically independent predictors were identified from the clinical data and combined with the Rad-score to develop a nomogram by multivariate logistic regression. The predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and clinical decision curve. RESULTS The nomogram incorporated four clinical features of diabetes mellitus, cryptogenic liver abscess, C-reactive protein level, and splenomegaly, and the Rad-score that was constructed based on seven optimal radiomics features. It had an AUC of 0.929 (95% CI, 0.894-0.964) and 0.923 (95% CI, 0.864-0.981) in the training and validation cohorts, respectively. The calibration and decision curves showed that the nomogram had good agreement and clinical applicability. CONCLUSIONS The clinical-radiomics nomogram performed well in predicting KPLA, hopefully serving as a reference for early diagnosis of KPLA.
Collapse
Affiliation(s)
- Li Gu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yihang Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dong Xu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Long Q, Zhao X, Chen C, Hao M, Qin X. Clinical features and risk factors for pyogenic liver abscess caused by multidrug-resistant organisms: A retrospective study. Virulence 2024; 15:2356680. [PMID: 38767562 PMCID: PMC11110708 DOI: 10.1080/21505594.2024.2356680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
The incidence rate of pyogenic liver abscess caused by multidrug-resistant bacteria has increased in recent years. This study aimed to identify the clinical characteristics and risk factors for pyogenic liver abscess caused by multidrug-resistant bacteria. We conducted a retrospective analysis of the clinical features, laboratory test results, and causes of pyogenic liver abscesses in 239 patients admitted to a tertiary hospital. Multivariable logistic regression was used to identify risk factors for multidrug resistance. Among patients with pyogenic liver abscesses, the rate of infection caused by multidrug-resistant organisms was observed to be 23.0% (55/239), with a polymicrobial infection rate of 14.6% (35/239). Additionally, 71 cases (29.7%) were associated with biliary tract disease. Patients with pyogenic liver abscesses caused by multidrug-resistant organisms had a significantly higher likelihood of polymicrobial infection and increased mortality (7/44 [15.9%] vs. 3/131 [2.3%]; p = .003). The Charlson Comorbidity Index (adjusted odds ratio [aOR]: 1.32, 95% confidence interval [CI]: 1.06-1.68), hospitalization (aOR: 10.34, 95% CI: 1.86-60.3) or an invasive procedure (aOR: 9.62; 95% CI: 1.66-71.7) within the past 6 months, and gas in the liver on imaging (aOR: 26.0; 95% CI: 3.29-261.3) were independent risk factors for pyogenic liver abscess caused by multidrug-resistant bacteria. A nomogram was constructed based on the risk factors identified. The nomogram showed high diagnostic accuracy (specificity, 0.878; sensitivity 0.940). Multidrug-resistant organisms causing pyogenic liver abscesses have specific characteristics. Early identification of patients at high risk of infection with multidrug-resistant organisms could help improve their management and enable personalized treatment.
Collapse
Affiliation(s)
- Qin Long
- Institute of Antibiotics, Huashan Hospital Fudan University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hunan Traditional Chinese Medicine College, Zhuzhou, Hunan, China
| | - Xiaoyu Zhao
- Institute of Antibiotics, Huashan Hospital Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Chang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hunan Traditional Chinese Medicine College, Zhuzhou, Hunan, China
| | - Min Hao
- Institute of Antibiotics, Huashan Hospital Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Xiaohua Qin
- Institute of Antibiotics, Huashan Hospital Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| |
Collapse
|
5
|
Chen Y, Zhou Y, Xu Z. Concurrent Klebsiella pneumoniae liver abscess and infective endocarditis: A rare case report and literature review. IDCases 2024; 38:e02117. [PMID: 39651042 PMCID: PMC11625305 DOI: 10.1016/j.idcr.2024.e02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
Background Investigating the clinical characteristics and treatment strategies of pyogenic liver abscess (PLA) complicated by infective endocarditis (IE), this study draws on a successfully treated case of PLA caused by Klebsiella pneumoniae, alongside a literature review of similar cases. Case Summary We report a 50-year-old male with type 2 diabetes who presented with acute fever, chills, and a liver abscess. The patient was initially treated with intravenous ceftriaxone (2 g daily). Due to the onset of septic shock, the antibiotic regimen was escalated to piperacillin-tazobactam (4.5 g every 8 h) and levofloxacin (0.5 g daily). Ultrasound-guided percutaneous drainage of the liver abscess was performed, and blood cultures confirmed Klebsiella pneumoniae. Upon the development of infective endocarditis, the treatment was adjusted to a combination of ceftriaxone and amikacin for one week, followed by six weeks of ceftriaxone monotherapy, resulting in full recovery. Conclusion This case report illustrates the rare association of Klebsiella pneumoniae-induced PLA with IE in a diabetic patient. It emphasizes the importance of individualized treatment strategies, with insights drawn from this case contributing to the understanding of managing such complex infections. While the successful outcome of this case provides valuable clinical insights, it highlights the need for careful consideration in treatment approaches. The findings from this single case should guide clinicians in similar scenarios but should not be generalized without further evidence.
Collapse
Affiliation(s)
- Yuanwen Chen
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518101, China
| | - Yisheng Zhou
- Department of Cardiology, Guangzhou Development District Hospital (Guangzhou Huangpu District People's Hospital), Guangdong 510730, China
| | - Zhibin Xu
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
6
|
You X, Wang L, Wang H, Xu Y, Chen Y, Xu H, Ji X, Ma X, Xu X. Liver abscess induced by intestinal hypervirulent Klebsiella pneumoniae through down-regulation of tryptophan-IPA-IL22 axis. iScience 2024; 27:110849. [PMID: 39429788 PMCID: PMC11490733 DOI: 10.1016/j.isci.2024.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a significant causative agent of invasive hepatic abscess syndrome in Asia, presenting substantial clinical challenges due to its intricate pathogenesis. This study revealed the crucial role of the gut microbiota in fortifying the host's defense against hvKp infection by enhancing interleukin-22 (IL-22), probably through regulating downstream antimicrobial peptides such as Reg3β. In antibiotic-treated mice, we observed that gut microbiota disruption impaired the transformation of tryptophan to indole, a key ligand for the aryl hydrocarbon receptor (AhR), consequently affecting the regulatory functions of IL-22. Our experimental findings revealed that administering rIL-22 or indole propionic acid notably diminished the translocation of hvKp from the intestine to the liver. This research not only underscores the pivotal role of the gut microbiome in modulating tryptophan metabolism and the IL-22 pathway but also highlights its critical function in preventing hvKp migration from the colon to the liver.
Collapse
Affiliation(s)
- Xiu You
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liping Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yizheng Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory, Sichuan Orthopedic Hospital, Chengdu, Sichuan 610000, China
| | - Yongzheng Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huizhen Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Ji
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangsong Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Han X, Yao J, He J, Liu H, Jiang Y, Zhao D, Shi Q, Zhou J, Hu H, Lan P, Zhou H, Li X. Clinical and laboratory insights into the threat of hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107275. [PMID: 39002700 DOI: 10.1016/j.ijantimicag.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) typically causes severe invasive infections affecting multiple sites in healthy individuals. In the past, hvKP was characterized by a hypermucoviscosity phenotype, susceptibility to antimicrobial agents, and its tendency to cause invasive infections in healthy individuals within the community. However, there has been an alarming increase in reports of multidrug-resistant hvKP, particularly carbapenem-resistant strains, causing nosocomial infections in critically ill or immunocompromised patients. This presents a significant challenge for clinical treatment. Early identification of hvKP is crucial for timely infection control. Notably, identifying hvKP has become confusing due to its prevalence in nosocomial settings and the limited predictive specificity of the hypermucoviscosity phenotype. Novel virulence predictors for hvKP have been discovered through animal models or machine learning algorithms, while standardization of identification criteria is still necessary. Timely source control and antibiotic therapy have been widely employed for the treatment of hvKP infections. Additionally, phage therapy is a promising alternative approach due to escalating antibiotic resistance. In summary, this narrative review highlights the latest research progress in the development, virulence factors, identification, epidemiology of hvKP, and treatment options available for hvKP infection.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangdu Hu
- Department of Infectious Diseases, Centre for General Practice Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Nguyen Q, Nguyen YTP, Ha TT, Tran DTN, Voong PV, Chau V, Nguyen PLN, Le NTQ, Nguyen LPH, Nguyen TTN, Trinh TV, Carrique-Mas JJ, Baker S, Thwaites G, Rabaa MA, Choisy M, Chung HT, Pham DT. Genomic insights unveil the plasmid transfer mechanism and epidemiology of hypervirulent Klebsiella pneumoniae in Vietnam. Nat Commun 2024; 15:4187. [PMID: 38760381 PMCID: PMC11101633 DOI: 10.1038/s41467-024-48206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a significant cause of severe invasive infections in Vietnam, yet data on its epidemiology, population structure and dynamics are scarce. We screened hvKp isolates from patients with bloodstream infections (BSIs) at a tertiary infectious diseases hospital in Vietnam and healthy individuals, followed by whole genome sequencing and plasmid analysis. Among 700 BSI-causing Kp strains, 100 (14.3%) were hvKp. Thirteen hvKp isolates were identified from 350 rectal swabs of healthy adults; none from 500 rectal swabs of healthy children. The hvKp isolates were genetically diverse, encompassing 17 sequence types (STs), predominantly ST23, ST86 and ST65. Among the 113 hvKp isolates, 14 (12.6%) carried at least one antimicrobial resistance (AMR) gene, largely mediated by IncFII, IncR, and IncA/C plasmids. Notably, the acquisition of AMR conjugative plasmids facilitated horizontal transfer of the non-conjugative virulence plasmid between K. pneumoniae strains. Phylogenetic analysis demonstrated hvKp isolates from BSIs and human carriage clustered together, suggesting a significant role of intestinal carriage in hvKp transmission. Enhanced surveillance is crucial to understand the factors driving intestinal carriage and hvKp transmission dynamics for informing preventive measures. Furthermore, we advocate the clinical use of our molecular assay for diagnosing hvKp infections to guide effective management.
Collapse
Affiliation(s)
- Quynh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Thanh Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Phat Vinh Voong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | | | - Tan Van Trinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Juan J Carrique-Mas
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hao The Chung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Xie J, Ma R, Li M, Li B, Xiong L. [Effect of intestinal nitrate on growth of Klebsiella pneumoniae and its regulatory mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:757-764. [PMID: 38708510 DOI: 10.12122/j.issn.1673-4254.2024.04.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To explore the effect of intestinal nitrates on the growth of Klebsiella pneumoniae and its regulatory mechanisms. METHODS K. pneumoniae strains with nitrate reductase narG and narZ single or double gene knockout or with NarXL gene knockout were constructed and observed for both aerobic and anaerobic growth in the presence of KNO3 using an automated bacterial growth analyzer and a spectrophotometer, respectively. The mRNA expressions of narG and narZ in K. pneumoniae in anaerobic cultures in the presence of KNO3 and the effect of the binary regulatory system NarXL on their expresisons were detected using qRT-PCR. Electrophoretic mobility shift assays (EMSA) and MST analysis were performed to explore the specific regulatory mechanisms of NarXL in sensing and utilizing nitrates. Competitive experiments were conducted to examine anaerobic growth advantages of narG and narZ gene knockout strains of K. pneumoniae in the presence of KNO3. RESULTS The presence of KNO3 in anaerobic conditions, but not in aerobic conditions, promoted bacterial growth more effectively in the wild-type K. pneumoniae strain than in the narXL gene knockout strain. In anaerobic conditions, the narXL gene knockout strain showed significantly lowered mRNA expressions of narG and narZ (P < 0.0001). EMSA and MST experiments demonstrated that the NarXL regulator could directly bind to narG and narZ promoter regions. The wild-type K. pneumoniae strain in anaerobic cultures showed significantly increased expressions of narG and narZ mRNAs in the presence of KNO3 (P < 0.01), and narG gene knockout resulted in significantly attenuated anaerobic growth and competitive growth abilities of K. pneumoniae in the presence of KNO3 (P < 0.01). CONCLUSION The binary regulatory system NarXL of K. pneumoniae can sense changes in intestinal nitrate concentration and directly regulate the expression of nitrate reductase genes narG and narZ to promote bacterial growth.
Collapse
Affiliation(s)
- J Xie
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - R Ma
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - M Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - B Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - L Xiong
- Department of Gastroenterology, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
11
|
Abbas R, Chakkour M, Zein El Dine H, Obaseki EF, Obeid ST, Jezzini A, Ghssein G, Ezzeddine Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. BIOLOGY 2024; 13:78. [PMID: 38392297 PMCID: PMC10886558 DOI: 10.3390/biology13020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic pathogen Klebsiella pneumoniae (K. pneumoniae) can colonize mucosal surfaces and spread from mucosae to other tissues, causing fatal infections. Medical equipment and the healthcare setting can become colonized by Klebsiella species, which are widely distributed in nature and can be found in water, soil, and animals. Moreover, a substantial number of community-acquired illnesses are also caused by this organism worldwide. These infections are characterized by a high rate of morbidity and mortality as well as the capacity to spread metastatically. Hypervirulent Klebsiella strains are thought to be connected to these infections. Four components are critical to this bacterium's pathogenicity-the capsule, lipopolysaccharide, fimbriae, and siderophores. Siderophores are secondary metabolites that allow iron to sequester from the surrounding medium and transport it to the intracellular compartment of the bacteria. A number of variables may lead to K. pneumoniae colonization in a specific area. Risk factors for infection include local healthcare practices, antibiotic use and misuse, infection control procedures, nutrition, gender, and age.
Collapse
Affiliation(s)
- Rim Abbas
- Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Hiba Zein El Dine
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | | | - Soumaya T Obeid
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Aya Jezzini
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
12
|
Wang L, Li G, Hou X, Feng L, Shi Z. Case report: A case of high virulence and multidrug resistant Klebsiella pneumoniae liver abscess in Ningxia, China. Medicine (Baltimore) 2024; 103:e36925. [PMID: 38215129 PMCID: PMC10783326 DOI: 10.1097/md.0000000000036925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
RATIONALE Highly virulent multidrug-resistant Klebsiella pneumoniae (KP) is becoming more and more common in clinical practice, especially the rise of carbapenem-resistant KP in clinical practice, resulting in the emergence of KP liver abscess in Ningxia, China. For the prognosis of liver abscess patients, it is particularly important to identify the types of pathogens and identify antibiotics that are sensitive to the pathogens. PATIENT CONCERNS A 73-year-old man from China presents to our hospital with abdominal pain, jaundice and fever. Patients have no obvious cause of abdominal pain, abdominal distension, and abdominal pain is persistent. Abdominal examination showed hepatomegaly, no tenderness 2 cm from the right costal margin, abdominal distension and other general examinations did not have obvious abnormalities. He had no history of hypertension and diabetes, ERCP was performed for cholangiocarcinoma 1 year before the current visit, and no significant complications occurred. DIAGNOSES His initial diagnosis was obstructive cholangitis, and computed tomographic images and liver drainage fluid bacterial culture and genetic polymerase chain reaction tests later determined that the patient had KP liver abscess. INTERVENTIONS Drainage by liver catheter and antibiotic treatment for 7 weeks. OUTCOMES The patient liver abscess is basically gone. LESSION It is particularly important to optimize the diagnosis of liver abscess pathogens for timely and effective treatment of patients.
Collapse
Affiliation(s)
- Liangfang Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Medical University, Yinchuan, China
| | - Gang Li
- Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microbiology, Yinchuan, China
| | - Xiaohui Hou
- General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Medical University, Yinchuan, China
| | - Lijun Feng
- General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Medical University, Yinchuan, China
| | - Zhiyun Shi
- Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microbiology, Yinchuan, China
| |
Collapse
|
13
|
Tan YH, Arros P, Berríos-Pastén C, Wijaya I, Chu WHW, Chen Y, Cheam G, Mohamed Naim AN, Marcoleta AE, Ravikrishnan A, Nagarajan N, Lagos R, Gan YH. Hypervirulent Klebsiella pneumoniae employs genomic island encoded toxins against bacterial competitors in the gut. THE ISME JOURNAL 2024; 18:wrae054. [PMID: 38547398 PMCID: PMC11020217 DOI: 10.1093/ismejo/wrae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.
Collapse
Affiliation(s)
- Yi Han Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Indrik Wijaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Wilson H W Chu
- National Public Health Laboratory, National Centre for Infectious Diseases, 16 Jln Tan Tock Seng, Singapore 308442, Republic of Singapore
| | - Yahua Chen
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
| | - Guoxiang Cheam
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Andrés E Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Niranjan Nagarajan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
| |
Collapse
|
14
|
Hillson R. More bacterial infections and diabetes. PRACTICAL DIABETES 2023; 40:3-5. [DOI: 10.1002/pdi.2480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Chu WHW, Tan YH, Tan SY, Chen Y, Yong M, Lye DC, Kalimuddin S, Archuleta S, Gan YH. Acquisition of regulator on virulence plasmid of hypervirulent Klebsiella allows bacterial lifestyle switch in response to iron. mBio 2023; 14:e0129723. [PMID: 37530523 PMCID: PMC10470599 DOI: 10.1128/mbio.01297-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 08/03/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae causes liver abscess and potentially devastating metastatic complications. The majority of Klebsiella-induced liver abscess are caused by the CG23-I sublineage of hypervirulent Klebsiella pneumoniae. This and some other lineages possess a >200-kb virulence plasmid. We discovered a novel protein IroP nestled in the virulence plasmid-encoded salmochelin operon that cross-regulates and suppresses the promoter activity of chromosomal type 3 fimbriae (T3F) gene transcription. IroP is itself repressed by iron through the ferric uptake regulator. Iron-rich conditions increase T3F and suppress capsule mucoviscosity, leading to biofilm formation and cell adhesion. Conversely, iron-poor conditions cause a transcriptional switch to hypermucoid capsule production and T3F repression. The likely acquisition of iroP on mobile genetic elements and successful adaptive integration into the genetic circuitry of a major lineage of hypervirulent K. pneumoniae reveal a powerful example of plasmid chromosomal cross talk that confers an evolutionary advantage. Our discovery also addresses the conundrum of how the hypermucoid capsule that impedes adhesion could be regulated to facilitate biofilm formation and colonization. The acquired ability of the bacteria to alternate between a state favoring dissemination and one that favors colonization in response to iron availability through transcriptional regulation offers novel insights into the evolutionary success of this pathogen. IMPORTANCE Hypervirulent Klebsiella pneumoniae contributes to the majority of monomicrobial-induced liver abscess infections that can lead to several other metastatic complications. The large virulence plasmid is highly stable in major lineages, suggesting that it provides survival benefits. We discovered a protein IroP encoded on the virulence plasmid that suppresses expression of the type 3 fimbriae. IroP itself is regulated by iron, and we showed that iron regulates hypermucoid capsule production while inversely regulating type 3 fimbriae expression through IroP. The acquisition and integration of this inverse transcriptional switch between fimbriae and capsule mucoviscosity shows an evolved sophisticated plasmid-chromosomal cross talk that changes the behavior of hypervirulent K. pneumoniae in response to a key nutrient that could contribute to the evolutionary success of this pathogen.
Collapse
Affiliation(s)
- Wilson H. W. Chu
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Han Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Si Yin Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yahua Chen
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Melvin Yong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C. Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Sophia Archuleta
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V, Lara N, Raangs E, Aracil B, Rossen JWA, Friedrich AW, Navarro Riaza AM, Cañada-García JE, Ramírez de Arellano E, Oteo-Iglesias J, Pérez-Vázquez M, García-Cobos S. Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICE Kp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiol Spectr 2023; 11:e0471622. [PMID: 37310221 PMCID: PMC10434048 DOI: 10.1128/spectrum.04716-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.
Collapse
Affiliation(s)
- Afif P. Jati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
| | - Pedro J. Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thijs Bosch
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo M. Schouls
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alex W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Ana M. Navarro Riaza
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| |
Collapse
|
17
|
Rhoades J, Fotiadou S, Paschalidou G, Papadimitriou T, Ordóñez AÁ, Kormas K, Vardaka E, Likotrafiti E. Microbiota and Cyanotoxin Content of Retail Spirulina Supplements and Spirulina Supplemented Foods. Microorganisms 2023; 11:1175. [PMID: 37317149 DOI: 10.3390/microorganisms11051175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
Cyanobacterial biomass such as spirulina (Arthrospira spp.) is widely available as a food supplement and can also be added to foods as a nutritionally beneficial ingredient. Spirulina is often produced in open ponds, which are vulnerable to contamination by various microorganisms, including some toxin-producing cyanobacteria. This study examined the microbial population of commercially available spirulina products including for the presence of cyanobacterial toxins. Five products (two supplements, three foods) were examined. The microbial populations were determined by culture methods, followed by identification of isolates using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), and by 16S rRNA amplicon sequencing of the products themselves and of the total growth on the enumeration plates. Toxin analysis was carried out by enzyme-linked immunosorbent assay (ELISA). Several potentially pathogenic bacteria were detected in the products, including Bacillus cereus and Klebsiella pneumoniae. Microcystin toxins were detected in all the products at levels that could lead to consumers exceeding their recommended daily limits. Substantial differences were observed in the identifications obtained using amplicon sequencing and MALDI-TOF, particularly between closely related Bacillus spp. The study showed that there are microbiological safety issues associated with commercial spirulina products that should be addressed, and these are most likely associated with the normal means of production in open ponds.
Collapse
Affiliation(s)
- Jonathan Rhoades
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Stamatia Fotiadou
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Georgia Paschalidou
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Theodoti Papadimitriou
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece
| | | | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece
- Agricultural Development Institiute, University Research and Innovation Centre "IASON", Argonafton & Filellinon, 38221 Volos, Greece
| | - Elisabeth Vardaka
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Eleni Likotrafiti
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
18
|
Tran M, Tran P. Giant Klebsiella pneumoniae pyogenic liver abscess in the left liver lobe presenting with dyspepsia and vaginal discharge. BMJ Case Rep 2023; 16:e254474. [PMID: 37185248 PMCID: PMC10151981 DOI: 10.1136/bcr-2022-254474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyogenic liver abscess (PLA) commonly occurs in the right liver lobe, causing the typical symptoms of fever and right upper quadrant pain. Less than one-third of cases occur in the left lobe. We describe an unusual presentation of a giant left-sided PLA that was compressing the stomach and surrounding venous vasculature, causing the respective symptoms of gastro-oesophageal reflux and vaginal discharge from secondary pelvic congestion syndrome. CT revealed a solitary 14 cm×10 cm×10 cm multiloculated lesion, replacing most of the left liver lobe. It was successfully treated with intravenous antibiotics and percutaneous drainage, resulting in complete resolution at 1-year follow-up. This case explores the predisposing risk factor of diabetes in PLA and its association with Klebsiella pneumoniae, which was the offending pathogen in our patient. We also discuss the phenomenon of secondary pelvic venous congestion syndrome and compare similar cases of left-sided PLA, highlighting the different modes of presentation and treatment options.
Collapse
Affiliation(s)
- Melanie Tran
- Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Patrick Tran
- Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
19
|
Osama DM, Zaki BM, Khalaf WS, Mohamed MYA, Tawfick MM, Amin HM. Occurrence and Molecular Study of Hypermucoviscous/Hypervirulence Trait in Gut Commensal K. pneumoniae from Healthy Subjects. Microorganisms 2023; 11:microorganisms11030704. [PMID: 36985277 PMCID: PMC10059952 DOI: 10.3390/microorganisms11030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is emerging worldwide. Hypermucoviscousity is the characteristic trait that distinguishes it from classic K. pneumoniae (cKp), which enables Kp to cause severe invasive infections. This research aimed to investigate the hypermucoviscous Kp (hmvKp) phenotype among gut commensal Kp isolated from healthy individuals and attempted to characterize the genes encoding virulence factors that may regulate the hypermucoviscosity trait. Using the string test, 50 identified Kp isolates from healthy individuals’ stool samples were examined for hypermucoviscosity and investigated by transmission electron microscopy (TEM). Antimicrobial susceptibility profiles of Kp isolates were determined using the Kirby Bauer disc method. Kp isolates were tested for genes encoding different virulence factors by PCR. Biofilm formation was assayed by the microtiter plate method. All Kp isolates were multidrug-resistant (MDR). Phenotypically, 42% of isolates were hmvKp. PCR-based genotypic testing revealed the hmvKp isolates belonged to capsular serotype K2. All study Kp isolates harbored more than one virulence gene. The genes magA and rmpA were not detected, while the terW gene was present in all isolates. The siderophores encoding genes entB and irp2 were most prevalent in hmvKp isolates (90.5%) and non-hmvKp (96.6%), respectively. hmvKp isolates harbored the genes wabG and uge with rates of 90.5% and 85.7%, respectively. The outcomes of this research highlight the potential health risk of commensal Kp to cause severe invasive diseases, owing to being hmvKp and MDR, and harboring multiple virulence genes. The absence of essential genes related to hypermucoviscosity such as magA and rmpA in hmvKp phenotypes suggests the multifactorial complexity of the hypermucoviscosity or hypervirulence traits. Thus, further studies are warranted to verify the hypermucoviscosity-related virulence factors among pathogenic and commensal Kp in different colonization niches.
Collapse
Affiliation(s)
- Dina M. Osama
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt; (D.M.O.); (B.M.Z.); (H.M.A.)
| | - Bishoy M. Zaki
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt; (D.M.O.); (B.M.Z.); (H.M.A.)
| | - Wafaa S. Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11751, Egypt;
| | - Marwa Yousry A. Mohamed
- Biology Department, Faculty of Science, Kingdom of Saudi Arabia, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Mahmoud M. Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11751, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Correspondence:
| | - Heba M. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt; (D.M.O.); (B.M.Z.); (H.M.A.)
| |
Collapse
|
20
|
Brennan C, DeLappe N, Cormican M, Tuohy A, Tobin A, Moran L, Doyle M, Fielding C. A geographic cluster of healthcare-associated carbapenemase-producing hypervirulent Klebsiella pneumoniae sequence type 23. Eur J Clin Microbiol Infect Dis 2022:10.1007/s10096-022-04535-z. [PMID: 36454389 DOI: 10.1007/s10096-022-04535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Hypervirulent Klebsiella pneumoniae has typically been associated with invasive, community-associated infections. This study describes the molecular, epidemiological and clinical characteristics of a cluster of carbapenemase-producing hypervirulent K. pneumoniae in the South-East of Ireland. It highlights the increasing risk that hypervirulent K. pneumoniae poses to healthcare and residential care populations. A retrospective analysis of sequences on K. pneumoniae isolates in the K. pneumoniae database of the National Carbapenemase-Producing Enterobacterales Reference Laboratory Service was performed to identify cases of hypervirulent K. pneumoniae from one hospital network. Hypervirulence scores were assigned based on the presence of recognised hypervirulence genes. A retrospective review of patient records was carried out for all confirmed cases of hypervirulent K. pneumoniae identified and clinical, epidemiological and molecular characteristics described. Twenty-eight cases of hypervirulent OXA-48 producing K. pneumoniae were identified over a 2-year period. All isolates were sequence-type 23 with a hypervirulence score of 5. All isolates carried the blaOXA-48 carbapenemase gene. All cases had a record of current or recent hospitalisation or residence in a long-term residential care facility. This study describes extensive dissemination of hypervirulent K. pneumoniae within healthcare facilities and an ongoing outbreak in our region. It shows the convergence of hypervirulence and antibiotic resistance determinants. Healthcare facilities need to consider their infection prevention, control and surveillance strategies to monitor and prevent further dissemination among a vulnerable population. Diagnostic laboratories need to ensure they have the ability and capacity for testing. Readily deployed laboratory methods for detection of hypervirulence are required.
Collapse
Affiliation(s)
- Caoimhe Brennan
- Department of Clinical Microbiology, University Hospital Waterford, Waterford, Ireland.
| | - Niall DeLappe
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Alma Tuohy
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Aideen Tobin
- Department of Clinical Microbiology, University Hospital Waterford, Waterford, Ireland
| | - Laura Moran
- Department of Clinical Microbiology, University Hospital Waterford, Waterford, Ireland
| | - Maeve Doyle
- Department of Clinical Microbiology, University Hospital Waterford, Waterford, Ireland
| | - Caroline Fielding
- Department of Clinical Microbiology, University Hospital Waterford, Waterford, Ireland
| |
Collapse
|
21
|
Correia C, Lopes S, Mendes S, Almeida N, Figueiredo P. Endogenous Endophthalmitis and Liver Abscess: A Metastatic Infection or a Coincidence? GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2022; 29:426-431. [PMID: 36545184 PMCID: PMC9761361 DOI: 10.1159/000518587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022]
Abstract
Klebsiella pneumoniae is a gram-negative pathogen that is a common cause of severe infections, including pyogenic liver abscess. Dissemination of K. pneumoniae to other organs, including the eye, is associated with significant morbidity and mortality. In the particular case of endogenous endophthalmitis (EE) by K. pneumoniae the prognosis is poor. We report the case of a middle-aged female with K. pneumoniae liver abscess. The patient developed metastatic endophthalmitis that was aggressively treated with systemic antibiotics. The liver abscess resolved with antimicrobials and percutaneous transhepatic drainage, but regarding the endophthalmitis she was discharged from our hospital without recovery of her eyesight. Metastatic spread to the eye should be considered in all patients with liver abscesses who experience ocular signs and symptoms in order to establish a timely diagnosis of EE.
Collapse
Affiliation(s)
- Catarina Correia
- Gastroenterology Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Sandra Lopes
- Gastroenterology Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Sofia Mendes
- Gastroenterology Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Nuno Almeida
- Gastroenterology Department, Coimbra University Hospital Center, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Figueiredo
- Gastroenterology Department, Coimbra University Hospital Center, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Effect of Zinc Oxide Nanoparticles on Capsular Gene Expression in Klebsiella pneumoniae Isolated from Clinical Samples. Biomimetics (Basel) 2022; 7:biomimetics7040180. [PMID: 36412708 PMCID: PMC9680528 DOI: 10.3390/biomimetics7040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen with various virulence factors that give it the capability to invade a host. Nevertheless, the treatment of bacterial infection is gradually complicated as the bacteria can develop resistance to antimicrobial agents. As nanotechnology is a prosperous field for researchers, we employed zinc oxide (ZnO) nanoparticles (NPs) on isolates of Klebsiella pneumoniae. Here, we studied the effect of three NP concentrations-0.25, 0.50, and 0.75 mM-on the gene expression of Klebsiella pneumoniae capsules in isolates collected from different samples. After conducting an anti-bacterial test, the highest nine types of bacteria that resisted the antibacterial agent were chosen for further examination. The gene expression of four genes responsible for capsule manufacturing, namely magA, k2A, rmpA, and kfu, were investigated. When the NP concentration was 0.25 mM, the lowest efficiency was obtained. However, when the concentration increased to 0.50 mM, a noticeable effect on gene expression was detected; consequently, at a concentration of 0.75 Mm, the highest impact was achieved and the gene expression was stopped.
Collapse
|
23
|
Yang J, Li Y, Tang N, Li J, Zhou J, Lu S, Zhang G, Song Y, Wang C, Zhong J, Xu J, Feng J. The human gut serves as a reservoir of hypervirulent Klebsiella pneumoniae. Gut Microbes 2022; 14:2114739. [PMID: 36001493 PMCID: PMC9415575 DOI: 10.1080/19490976.2022.2114739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can cause serious infections and has been increasingly reported clinically. However, we still lack the knowledge to what degree hvKp colonize the community. In this study, we investigated colonization of hvKp in healthy human gut and the relationship between gut hvKp and clinically important invasive strains. We compile global genomes of gut K. pneumoniae for in-depth genetic analysis and found most hvKp genomes originated from Chinese datasets; therefore, we collected gut K. pneumoniae isolates from healthy people around China. The results revealed a moderate carriage rate of hvKp in the healthy population (4%-5.19%). Phylogenetic analysis indicated a close relationship between gut hvKp and fatal clinical strains. These results demonstrate that the human gut may serve as a reservoir of hvKp and that gut hvKp can play a role in infection of other body parts.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Na Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Institute of Public Health, Nankai University, Tianjin, China,CONTACT Jianguo Xu State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Institute of Public Health, Nankai University, Tianjin300350, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Jie Feng State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
24
|
Sohrabi M, Alizade Naini M, Rasekhi A, Oloomi M, Moradhaseli F, Ayoub A, Bazargani A, Hashemizadeh Z, Shahcheraghi F, Badmasti F. Emergence of K1 ST23 and K2 ST65 hypervirulent klebsiella pneumoniae as true pathogens with specific virulence genes in cryptogenic pyogenic liver abscesses Shiraz Iran. Front Cell Infect Microbiol 2022; 12:964290. [PMID: 36017366 PMCID: PMC9396702 DOI: 10.3389/fcimb.2022.964290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) pathotype is emerging worldwide in pyogenic liver abscesses (PLAs). However, the role of virulence factors in pathogenicity remains unclear. On the other hand, the epidemiology of PLAs in Iran is unknown. From July 2020 to April 2022, bacterial species were isolated and identified from the drainage samples of 54 patients with PLAs. K. pneumoniae as the most common pathogen of pyogenic liver abscesses was identified in 20 (37%) of the 54 patients. We analyzed the clinical and microbiological characteristics of K. pneumoniae-related pyogenic liver abscesses. Antibiotic susceptibility testes and string test were performed. 16S rRNA, antibiotic resistance, and virulence genes were determined by polymerase chain reaction amplification. Clonal relatedness of isolates was identified by multilocus sequence typing. Virulence levels were assessed in the Galleria mellonella larval infection model. Four hvKp isolates (K1/K2) were found to be responsible for cryptogenic PLAs, and 16 classical K. pneumoniae isolates (non-K1/K2) were associated with non-cryptogenic PLAs. Three capsular serotype K1 strains belonged to sequence type 23 (ST23) and one K2 strain to ST65. Meanwhile, the non-K1/K2 strains belonged to other STs. ST231 was the most common strain among the classical K. pneumoniae strains. Compared with the non-K1/K2 strains, capsular serotypes K1/K2 strains were less resistant to antibiotics, had positive string test results, and had more virulence genes. In Galleria mellonella, a concentration of 106 colony-forming units of the K1 hvKp strain resulted in 100% death at 24 hours, confirming the higher virulence of the hvKp strain compared with cKp. K. pneumoniae isolates represented that the acquisition of any plasmid or chromosomal virulence genes contributes to pathogenicity and high prevalence in PLAs. Meanwhile, hvKp isolates with a specific genetic background were detected in cryptogenic PLAs.
Collapse
Affiliation(s)
- Maryam Sohrabi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahvash Alizade Naini
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rasekhi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Moradhaseli
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ayoub
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Bazargani
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Farzad Badmasti, ; Fereshteh Shahcheraghi,
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Farzad Badmasti, ; Fereshteh Shahcheraghi,
| |
Collapse
|
25
|
Aishwarya S, Gunasekaran K. Meta-analysis of the microbial biomarkers in the gut - lung crosstalk in COVID-19, community acquired pneumonia and Clostridium difficile infections. Lett Appl Microbiol 2022; 75:1293-1306. [PMID: 35920823 PMCID: PMC9539240 DOI: 10.1111/lam.13798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Respiratory infections are the leading causes of mortality and the current pandemic COVID-19 is one such trauma that imposed catastrophic devastation to the health and economy of the world. Unraveling the correlations and interplay of the human microbiota in the gut- lung axis would offer incredible solutions to the underlying mystery of the disease progression. The study compared the microbiota profiles of six samples namely healthy gut, healthy lung, COVID-19 infected gut, COVID-19 infected lungs, Clostridium difficile infected gut and community acquired pneumonia infected lungs. The metagenome datasets were processed, normalized, classified and the rarefaction curves were plotted. The microbial biomarkers for COVID-19 infections were identified as the abundance of Candida and Escherichia in lungs with Ruminococcus in the gut. Candida and Staphylococcus could play a vital role as putative prognostic biomarkers of community acquired pneumonia whereas abundance of Faecalibacterium and Clostridium are associated with the Clostridium difficile infections in gut. A machine learning random forest classifier applied to the datasets efficiently classified the biomarkers. The study offers an extensive and incredible understanding of the existence of gut lung axis during dysbiosis of two anatomically different organs.
Collapse
Affiliation(s)
- S Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai -600086, India.,Centre for Advanced studies in Crystallography and Biophysics, University of Madras, Chennai - 600025, India
| | - K Gunasekaran
- Centre for Advanced studies in Crystallography and Biophysics, University of Madras, Chennai - 600025, India
| |
Collapse
|
26
|
Zhang Z, Wang H, Guo Y, Liu Z, Chang Z. Metagenome Analysis of the Bacterial Characteristics in Invasive Klebsiella Pneumoniae Liver Abscesses. Front Cell Infect Microbiol 2022; 12:812542. [PMID: 35909970 PMCID: PMC9334793 DOI: 10.3389/fcimb.2022.812542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Klebsiella pneumoniae liver abscess (KPLA) combined with extrahepatic migratory infection (EMI) is defined as invasive KPLA (IKPLA) and is associated with a poor prognosis. The mechanism of IKPLA formation is yet to be elucidated. In this study, metagenomic sequencing was used to compare the bacterial characteristics between IKPLA and KPLA to explore the underlying mechanism of invasiveness. Methods Clinical details, imaging, and microbial features were retrospectively evaluated by medical record review. Metagenomic sequencing was performed on the pus samples of liver abscesses whose culture results were indicative of monomicrobial Klebsiella pneumoniae (K. pneumoniae). Bacterial diversity and composition in IKPLA and KPLA were comparatively analyzed, and the key pathways and genes that may affect invasiveness were further explored. Results Sixteen patients were included in this study. Five patients with EMI were included in the IKPLA group, and the other eleven patients without EMI were assigned to the KPLA group. There was no statistical difference in the hypermucoviscous phenotype and serotype of K. pneumoniae between the two groups. The bacterial diversity of IKPLA was lower than that of KPLA. The abundant taxa in the IKPLA group were primarily species of unclassified Enterobacteriaceae and K. pneumoniae. The KPLA group had a high abundance of the genera Tetrasphaera and Leuconostoc. Metabolic pathway genes represented most of the enriched genes in IKPLA. Fourteen pathogenic genes with significant differences in abundance were identified between the two groups, including ybtS, fepC, phoQ, acrB, fimK, magA, entC, arnT, iucA, fepG, oqxB, entA, tonB, and entF (p < 0.001). Conclusion The diversity and bacterial composition of IKPLA were significantly different from those of KPLA. Microbiological changes in the abscess, activation of the related metabolic pathways, and the pathogenic gene expression may constitute a novel mechanism that regulates the invasiveness of KPLA.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yawen Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhihui Chang,
| |
Collapse
|
27
|
Kamau E, Ranson EL, Zakhour M, Mayo MS, Sakona AN, Allyn PR, Yang S. Disguised as Ovarian Tumor: A Rare Case of Uterine Abscess due to Hypervirulent Klebsiella pneumoniae Infection. Open Forum Infect Dis 2022; 9:ofac321. [PMID: 35899277 PMCID: PMC9310266 DOI: 10.1093/ofid/ofac321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) causes invasive infections in the community setting. We report a rare case of uterine abscess due to hvKp, which appeared as a large-sized ovarian tumor-like pelvic mass. A timely laboratory warning of possible hvKp prompted correct diagnosis and helped guide perioperative decision making, contributing to successful treatment.
Collapse
Affiliation(s)
- Edwin Kamau
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine , Los Angeles, CA , USA
| | - Elizabeth L Ranson
- Division of Infectious Diseases, UCLA David Geffen School of Medicine , Los Angeles, CA , USA
| | - Mae Zakhour
- Obstetrics & Gynecology, Gynecologic Oncology UCLA David Geffen School of Medicine , Los Angeles, CA , USA
| | - Mark S Mayo
- Division of Infectious Diseases, UCLA David Geffen School of Medicine , Los Angeles, CA , USA
| | - Ashlyn N Sakona
- Division of Infectious Diseases, UCLA David Geffen School of Medicine , Los Angeles, CA , USA
| | - Paul R Allyn
- Division of Infectious Diseases, UCLA David Geffen School of Medicine , Los Angeles, CA , USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine , Los Angeles, CA , USA
| |
Collapse
|
28
|
Clinical and Molecular Analysis of ST11-K47 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae: A Strain Causing Liver Abscess. Pathogens 2022; 11:pathogens11060657. [PMID: 35745510 PMCID: PMC9227846 DOI: 10.3390/pathogens11060657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae has been the predominant pathogen of liver abscess, but ST11-K47 carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has rarely been studied as the causative organism. We identified an ST11-K47 CR-hvKP (HvKp-su1) from the drainage fluid of a liver abscess in a Chinese man who was diagnosed with liver abscess combined with diabetes, pneumonia, pleural infection, abdominal abscess, and splenic abscess. HvKp-su1 was non-hypermucoviscous and lacked the magA and rmpA genes and pLVPK plasmid but exhibited high virulence, with a high mortality rate (90%) to wax moth larvae (G. mellonella), similar to the hypervirulent Klebsiella pneumoniae ATCC43816 (91.67%). Whole-genome sequencing and bioinformatics analysis indicated that HvKp-su1 possesses a plasmid similar to a type of pLVPK-like plasmid (JX-CR-hvKP-2-P2), which is an uncommon plasmid in CR-hvKP. HvKp-su1 carried multiple resistance genes, including blaKPC-2. blaTEM-1, blaSHV-55, and blaCTX-M-65; hypervirulence genes such as aerobactin (iutA), salmochelin (iroEN), and yersiniabactin (ybtAEPQSTUX); and the type 3 fimbriae-encoding system (mrkACDF). Moreover, v_5377 and v_5429 (cofT, CFA/III (CS8)) located on plasmid 1 were simultaneously predicted to be virulence genes. After the long-term combination use of antibiotics, the patient successfully recovered. In summary, our study clarified the clinical and molecular characteristics of a rare ST11-K47 CR-hvKP (HvKp-su1), raising great concerns about the emergence of ST11-K47 CR-hvKP with multidrug resistance and hypervirulence, and providing insights into the control and treatment of liver abscess caused by ST11-K47 CR-hvKP.
Collapse
|
29
|
Lin TL, Yang FL, Ren CT, Pan YJ, Liao KS, Tu IF, Chang YP, Cheng YY, Wu CY, Wu SH, Wang JT. Development of Klebsiella pneumoniae Capsule Polysaccharide-Conjugated Vaccine Candidates Using Phage Depolymerases. Front Immunol 2022; 13:843183. [PMID: 35386691 PMCID: PMC8978995 DOI: 10.3389/fimmu.2022.843183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogen associated with nosocomial infection and has developed increasing resistance to antibiotics such as extended-spectrum β-lactams and carbapenem. In recent years, K. pneumoniae isolates have emerged as a major cause of global community-acquired infections such as pneumonia and pyogenic liver abscess. Although serotypes K1 and K2 have been identified as the predominant capsular types associated with invasive infections, no K. pneumoniae vaccine is commercially available, probably due to immunogenicity loss in the traditional depolymerization method to obtain capsule polysaccharide (CPS) for the preparation of conjugated vaccine. In this study, we successfully retained immunogenicity by using K1 (K1-ORF34) and K2 (K2-ORF16) CPS depolymerases that were identified from phages to cleave K1 and K2 CPSs into intact structural units of oligosaccharides with intact modifications. The obtained K1 and K2 oligosaccharides were separately conjugated with CRM197 carrier protein to generate CPS-conjugated vaccines. Immunization experiments of mice showed both K1 and K2 CPS-conjugated vaccines induced anti-CPS antibodies with 128-fold and 64-fold increases of bactericidal activities, respectively, compare to mice without vaccinations. Challenge tests indicated that K1 or K2 CPS-conjugated vaccine and divalent vaccine (a mixture of K1 and K2 CPS-conjugated vaccines) protected mice from subsequent infection of K. pneumoniae by the respective capsular type. Thus, we demonstrated K1 and K2 CPS-conjugated vaccines prepared by CPS depolymerases is a promising candidate for developing vaccines against human K. pneumoniae infections.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
| | | | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Pei Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Kim H, Jang JH, Jung IY, Cho JH. A Novel Peptide as a Specific and Selective Probe for Klebsiella pneumoniae Detection. BIOSENSORS 2022; 12:bios12030153. [PMID: 35323423 PMCID: PMC8946155 DOI: 10.3390/bios12030153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Klebsiella pneumoniae is infamous for generating hospital-acquired infections, many of which are difficult to treat due to the bacterium’s multidrug resistance. A sensitive and robust detection method of K. pneumoniae can help prevent a disease outbreak. Herein, we used K. pneumoniae cells as bait to screen a commercially available phage-displayed random peptide library for peptides that could be used to detect K. pneumoniae. The biopanning-derived peptide TSATKFMMNLSP, named KP peptide, displayed a high selectivity for the K. pneumoniae with low cross-reactivity to related Gram-negative bacteria. The specific interaction between KP peptide and K. pneumoniae lipopolysaccharide resulted in the peptide’s selectivity against K. pneumoniae. Quantitative analysis of this interaction by enzyme-linked immunosorbent assay revealed that the KP peptide possessed higher specificity and sensitivity toward K. pneumoniae than commercially available anti-Klebsiella spp. antibodies and could detect K. pneumoniae at a detection limit of 104 CFU/mL. These results suggest that KP peptide can be a promising alternative to antibodies in developing a biosensor system for K. pneumoniae detection.
Collapse
Affiliation(s)
- Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
| | - Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1347; Fax: +82-55-772-1349
| |
Collapse
|
31
|
High Prevalence of Klebsiella pneumoniae in Greek Meat Products: Detection of Virulence and Antimicrobial Resistance Genes by Molecular Techniques. Foods 2022; 11:foods11050708. [PMID: 35267341 PMCID: PMC8909372 DOI: 10.3390/foods11050708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The presence of antimicrobial-resistant pathogens such as Klebsiella pneumoniae strains in the food supply is dangerous. The aim of this study was to assess the prevalence of Klebsiella pneumonia strains in Greek meat products and evaluate their phenotypes and genotypes. Methods: One hundred and ten meat specimens were cultured for the isolation of K. pneumoniae. In positive specimens, PCR (Polymerase Chain Reaction) analysis was performed to confirm the presence of K. pneumoniae. Genotypic and phenotypic evaluation of the isolated strains included multiplex immunoassay for the detection of carbapenemases, and PCR screening for the detection of resistance and virulence genes. Results:K. pneumoniae strains were recovered in 90 (81.8%) meat samples. The ecpA gene was identified in 30 (33.3%) isolates, while the fimH-1 and mrkA genes were present in 15 (16.7%) and 65 (72.2%) isolates, respectively. Sixty-five K. pneumoniae isolates (72.2%) were found to carry at least one resistance gene; of these, the blaNDM-like was the most commonly identified gene in 40 (61.5%) isolates, followed by the blaOXA-48 like gene in 20 isolates (30.8%). Conclusions: A high frequency of foodborne K. pneumoniae in Greece was found. Our results indicate that most strains carried resistance and virulence genes, indicating a high pathogenic potential and a significant risk to human health.
Collapse
|
32
|
Nicolò S, Mattiuz G, Antonelli A, Arena F, Di Pilato V, Giani T, Baccani I, Clemente AM, Castronovo G, Tanturli M, Cozzolino F, Rossolini GM, Torcia MG. Hypervirulent Klebsiella pneumoniae Strains Modulate Human Dendritic Cell Functions and Affect TH1/TH17 Response. Microorganisms 2022; 10:microorganisms10020384. [PMID: 35208839 PMCID: PMC8877041 DOI: 10.3390/microorganisms10020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (Hv-Kp) strains have emerged as pathogens causing life-threatening, invasive disease even in immunocompetent hosts. Systemic dissemination usually occurs following perturbations of the gut microbiota and is facilitated by Hv-Kp resistance to phagocytosis and complement activity. Hv-Kp are usually associated with K1 or K2 capsular types, produce several iron uptake systems (e.g., aerobactin and salmochelin) and are often but not invariably, capsular material hyper-producers (hypermucoviscous phenotype: HMV). Whether Hv-Kp escape the immune response at mucosal site is unknown. In this work, we studied the effects of Hv-Kp on human dendritic cells (DCs), central players of the IL-23/IL-17 and IL-12/IFN-γ axis at mucosal sites, essential for pathogen clearance. Four Hv-Kp and HMV strains were selected and their activity on DC maturation and cytokine production was compared to that of non-virulent Kp strains with classic or HMV phenotypes. While the maturation process was equally induced by all Kp strains, significant differences between virulent and non-virulent strains were found in the expression of genes for cytokines involved in T-cell activation and differentiation. The non-virulent KP04C62 and the classic Kp, KPC157 induced high expression of TH1 (IL-12p70 and TNFα) and TH17 cytokines (IL-23, IL-1β and IL-6), while Hv-Kp poorly activated these cytokine genes. Moreover, conditioned media from DCs cultured with non-virulent Kp, either classical or hypercapsulated, induced the activation of IL-17 and IFN-γ genes in preactivated CD4+-cells suggesting their TH17/TH1 differentiation. Conditioned media from Hv-Kp poorly activated IL-17 and IFN-γ genes. In summary, our data indicate that Hv-Kp interfere with DC functions and T-cell differentiation and suggest that the escape from the IL-23/IL-17 and IL-12/IFN-γ axes may contribute to pathogen dissemination in immunocompetent hosts.
Collapse
Affiliation(s)
- Sabrina Nicolò
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
| | - Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy
| | - Vincenzo Di Pilato
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Ilaria Baccani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Ann Maria Clemente
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
| | - Giuseppe Castronovo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (M.T.); (F.C.)
| | - Michele Tanturli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (M.T.); (F.C.)
| | - Federico Cozzolino
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (M.T.); (F.C.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Correspondence:
| |
Collapse
|
33
|
Chen D, Zhang Y, Wu J, Li J, Chen H, Zhang X, Hu X, Chen F, Yu R. Analysis of hypervirulent
Klebsiella pneumoniae
and classic
Klebsiella pneumoniae
infections in a Chinese hospital. J Appl Microbiol 2022; 132:3883-3890. [PMID: 35129244 PMCID: PMC9305427 DOI: 10.1111/jam.15476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Aims To evaluate the clinical and genetic virulence characteristics of critically ill patients with hypervirulent Klebsiella pneumoniae (hvKP) and classic KP (cKP) infection. Methods and Results The patients included in this retrospective study (n = 225) were grouped according to their hvKP (n = 114) or cKP (n = 111) status, and their clinical characteristics were analysed and compared. Cox multivariate analysis was conducted to determine the risk factors for hvKP infection. Length of hospital stay, length of intensive care unit stay, duration of mechanical ventilation and 28‐day survival rate were similar between the groups. However, the incidence of septic shock was higher in the hvKP group (16.7%) than in the cKP group (8.1%). Conclusions There was a high rate of hvKP infection in this population. Compared to patients with cKP infection, those with hvKP infection showed a higher probability of having septic shock; nevertheless, survival and length of hospital stay were similar between the groups. Risk factors for hvKP infection included hospital‐acquired infection and renal insufficiency. Significance and Impact of the Study This study presents relevant information on the characteristics of hvKP infection in a Chinese population, and this promotes early diagnosis and supports the view that the prevalence of hvKP is high in China.
Collapse
Affiliation(s)
- Dongjie Chen
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Clinical Microbiology Laboratory Fujian Fuzhou China
| | - Yingrui Zhang
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Jiafang Wu
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Jun Li
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Han Chen
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Xiaoguang Zhang
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| | - Xinlan Hu
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Clinical Microbiology Laboratory Fujian Fuzhou China
| | - Falin Chen
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Clinical Microbiology Laboratory Fujian Fuzhou China
| | - Rongguo Yu
- Shengli Clinical Medical College of Fujian Medical University Fuzhou China
- Department of Surgical Critical Care Medicine Fujian Fuzhou China
| |
Collapse
|
34
|
Liver Abscesses in Tropics. Indian J Surg 2021. [DOI: 10.1007/s12262-021-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Iriflophenone-3-C-β-d Glucopyranoside from Dryopteris ramosa (Hope) C. Chr. with Promising Future as Natural Antibiotic for Gastrointestinal Tract Infections. Antibiotics (Basel) 2021; 10:antibiotics10091128. [PMID: 34572710 PMCID: PMC8466121 DOI: 10.3390/antibiotics10091128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Ethnopharmacological approaches provide clues for the search of bioactive compounds. Dryopteris ramosa (Hope) C. Chr. (plant family: Dryopteridaceae) is an ethnomedicinal plant of the Galliyat region of Pakistan. The aqueous fraction (AqF) of D. ramosa is being used by inhabitants of the Galliyat region of Pakistan to treat their gastrointestinal tract ailments, especially those caused by bacteria. The aims of the present study were as follows: (i) to justify the ethnomedicinal uses of the AqF of D. ramosa; (ii) to isolate a bioactive compound from the AqF of D. ramosa; and (iii) to evaluate the antibacterial and cytotoxic potential of the isolated compound. Column chromatography (CC) techniques were used for the isolation studies. Spectroscopic techniques (UV–Vis, MS, 1&2D NMR) were used for structural elucidation. The agar-well diffusion method was used to evaluate the antibacterial potential of “i3CβDGP” against five bacterial strains, and compare it with the known antibiotic “Cefixime”. The brine shrimp lethality test (BSLT) was used for cytotoxic studies. The AqF of D. ramosa afforded “iriflophenone-3-C-β-D glucopyranoside (i3CβDGP)” when subjected to LH20 Sephadex, followed by MPLC silica gel60, and purified by preparative TLC. The “i3CβDGP” showed a strong potential (MIC = 31.1 ± 7.2, 62.5 ± 7.2, and 62.5 ± 7.2 µg/mL) against Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli, respectively. On the other hand, the least antibacterial potential was shown by “i3CβDGP” (MIC = 125 ± 7.2 µg/mL), against Bacillus subtilis, in comparison to Cefixime (MIC = 62.5 ± 7.2 µg/mL). The cytotoxicity of “i3CβDGP” was significantly low (LD50 = 10.037 ± 2.8 µg/mL) against Artemia salina nauplii. This study not only justified the ethnomedicinal use of D. ramosa, but also highlighted the importance of ethnomedicinal knowledge. Further studies on AqF and other fractions of D. ramosa are in progress.
Collapse
|
36
|
From Klebsiella pneumoniae Colonization to Dissemination: An Overview of Studies Implementing Murine Models. Microorganisms 2021; 9:microorganisms9061282. [PMID: 34204632 PMCID: PMC8231111 DOI: 10.3390/microorganisms9061282] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for community-acquired and nosocomial infections. The strains of this species belong to the opportunistic group, which is comprised of the multidrug-resistant strains, or the hypervirulent group, depending on their accessory genome, which determines bacterial pathogenicity and the host immune response. The aim of this survey is to present an overview of the murine models mimicking K. pneumoniae infectious processes (i.e., gastrointestinal colonization, urinary, pulmonary, and systemic infections), and the bacterial functions deployed to colonize and disseminate into the host. These in vivo approaches are pivotal to develop new therapeutics to limit K. pneumoniae infections via a modulation of the immune responses and/or microbiota.
Collapse
|
37
|
Komatsu T, Yoshida E, Shigenaga A, Yasuie N, Uchiyama S, Takamura Y, Sugie K, Kimura K, Haritani M, Shibahara T. Fatal suppurative meningoencephalitis caused by Klebsiella pneumoniae in two calves. J Vet Med Sci 2021; 83:1113-1119. [PMID: 34024871 PMCID: PMC8349807 DOI: 10.1292/jvms.21-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
One calf died (No. 1) and another was euthanized following astasia (No. 2). Histopathological examination revealed suppurative meningoencephalitis in these
calves. Klebsiella pneumoniae antigens were detected in lesions. Thymocytes were decreased in the thymus cortex in both cases. 16S rRNA gene
sequencing of the No. 1 isolate and bacterial extracts from formalin fixed paraffin embedded sections of No. 2 revealed that both samples were K.
pneumoniae. The No. 1 isolate showed multidrug resistance against penicillin antibiotics, fosfomycin, streptomycin, macrolide antibiotics,
tetracycline antibiotics, and clindamycin. Immunosuppression is a significant septicemic K. pneumoniae infection risk factor. Our study
provides new aspects regarding K. pneumoniae infections in cattle, bacterial meningoencephalitis differentiation, and K.
pneumoniae and bacterial meningoencephalitis treatments.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Erina Yoshida
- Miyazaki Prefectural Livestock Hygiene Service Center, 3151-1 Shimonaka, Sadowaracho, Miyazaki, Miyazaki 880-0212, Japan
| | - Ayumi Shigenaga
- Miyazaki Prefectural Livestock Hygiene Service Center, 3151-1 Shimonaka, Sadowaracho, Miyazaki, Miyazaki 880-0212, Japan
| | - Nozomi Yasuie
- Hinode Animal Clinic, 4-1 Owaki, Heijimacho, Yatomi, Aichi 498-0031, Japan
| | - Shintaro Uchiyama
- Aichi Prefectural Tobu Livestock Hygiene Service Center, 51-1 Konami, Nishimiyukicho, Toyohashi, Aichi 441-8113, Japan
| | - Yuji Takamura
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kennosuke Sugie
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kumiko Kimura
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Makoto Haritani
- Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
38
|
Strakova N, Korena K, Karpiskova R. Klebsiella pneumoniae producing bacterial toxin colibactin as a risk of colorectal cancer development - A systematic review. Toxicon 2021; 197:126-135. [PMID: 33901549 DOI: 10.1016/j.toxicon.2021.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Microbiota can significantly contribute to colorectal cancer initiation and development. It was described that E. coli harbouring polyketide synthase (pks) genes can synthetize bacterial toxin colibactin, which was first described by Nougayrede's group in 2006. E. coli positive for pks genes were overrepresented in colorectal cancer biopsies and, therefore, prevalence and the effect of pks positive bacteria as a risk factor in colorectal cancer development is in our interest. Interestingly, pks gene cluster in E. coli shares a striking 100% sequence identity with K. pneumoniae, suggesting that their function and regulation are conserved. Moreover, K. pneumoniae can express a variety of virulence factors, including capsules, siderophores, iron-scavenging systems, adhesins and endotoxins. It was reported that pks cluster and thereby colibactin is also related to the hypervirulence of K. pneumoniae. Acquisition of the pks locus is associated with K. pneumoniae gut colonisation and mucosal invasion. Colibactin also increases the likelihood of serious complications of bacterial infections, such as development of meningitis and potentially tumorigenesis. Even though K. pneumoniae is undoubtedly a gut colonizer, the role of pks positive K. pneumoniae in GIT has not yet been investigated. It seems that CRC-distinctive microbiota is already present in the early stages of cancer development and, therefore, microbiome analysis could help to discover the early stages of cancer, which are crucial for effectiveness of anticancer therapy. We hypothesize, that pks positive K. pneumoniae can be a potential biomarker of tumour prevalence and anticancer therapy response.
Collapse
Affiliation(s)
- Nicol Strakova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic.
| | - Kristyna Korena
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic
| | - Renata Karpiskova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic
| |
Collapse
|
39
|
The KbvR Regulator Contributes to Capsule Production, Outer Membrane Protein Biosynthesis, Antiphagocytosis, and Virulence in Klebsiella pneumoniae. Infect Immun 2021; 89:IAI.00016-21. [PMID: 33593891 DOI: 10.1128/iai.00016-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that mostly affects patients with weakened immune systems, but a few serotypes (especially K1 and K2) are highly invasive and result in systemic infection in healthy persons. The ability to evade and survive the components of the innate immune system is critical in infection. To investigate the role and mechanism of transcription regulator KP1_RS12260 (KbvR) in virulence and defense against the innate immune response, kbvR deletion mutant and complement strains were constructed. The in vivo animal infection assay and in vitro antiphagocytosis assay demonstrate K. pneumoniae KbvR is an important regulator that contributes to virulence and the defense against phagocytosis of macrophages. The transcriptome analysis and phenotype experiments demonstrated that deletion of kbvR decreased production of capsular polysaccharide (CPS) and biosynthesis of partly outer membrane proteins (OMPs). The findings suggest that KbvR is a global regulator that confers pathoadaptive phenotypes, which provide several implications for improving our understanding of the pathogenesis of K. pneumoniae.
Collapse
|
40
|
Stool metagenome analysis of patients with Klebsiella pneumoniae liver abscess and their domestic partners. Int J Infect Dis 2021; 107:1-4. [PMID: 33862216 DOI: 10.1016/j.ijid.2021.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Hypermucoviscous Klebsiella pneumoniae is an emerging cause of community-acquired liver abscess. The aim of this study was to investigate whether hypermucoviscous strains could be shared among households. METHODS The clinical K. pneumoniae isolates from a cohort of 24 patients with Klebsiella liver abscess were genotyped, and the stool metagenomes of the index patients and their cohabiting domestic partners were analyzed. RESULTS K. pneumoniae was identified in 33% of index patient stools, and one index patient's clinical isolate was identified in their domestic partner's stool. CONCLUSIONS This could represent a transmission event or could represent exposure to a common environmental source.
Collapse
|
41
|
Zhu J, Wang T, Chen L, Du H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front Microbiol 2021; 12:642484. [PMID: 33897652 PMCID: PMC8060575 DOI: 10.3389/fmicb.2021.642484] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) has spread globally since first described in the Asian Pacific Rim. It is an invasive variant that differs from the classical K. pneumoniae (cKP), with hypermucoviscosity and hypervirulence, causing community-acquired infections, including pyogenic liver abscess, pneumonia, meningitis, and endophthalmitis. It utilizes a battery of virulence factors for survival and pathogenesis, such as capsule, siderophores, lipopolysaccharide, fimbriae, outer membrane proteins, and type 6 secretion system, of which the former two are dominant. This review summarizes these hvKP-associated virulence factors in order to understand its molecular pathogenesis and shed light on new strategies to improve the prevention, diagnosis, and treatment of hvKP-causing infection.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Lau MY, Teng FE, Chua KH, Ponnampalavanar S, Chong CW, Abdul Jabar K, Teh CSJ. Molecular Characterization of Carbapenem Resistant Klebsiella pneumoniae in Malaysia Hospital. Pathogens 2021; 10:pathogens10030279. [PMID: 33801250 PMCID: PMC8001961 DOI: 10.3390/pathogens10030279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great concern, as carbapenems are the last-line therapy for multidrug-resistant Gram-negative bacteria infections. This study aims to report the epidemiology of CRKP in a teaching hospital in Malaysia based on the molecular genotypic and clinical characteristics of the isolates. Sixty-three CRKP strains were isolated from a tertiary teaching hospital from January 2016 until August 2017. Carbapenemase genes were detected in 55 isolates, with blaOXA-48 (63.5%) as the predominant carbapenemase gene, followed by blaNDM (36.5%). At least one porin loss was detected in nine isolates. Overall, 63 isolates were divided into 30 clusters at similarity of 80% with PFGE analysis. Statistical analysis showed that in-hospital mortality was significantly associated with the usage of central venous catheter, infection or colonization by CRKP, particularly NDM-producers. In comparison, survival analysis using Cox proportional hazards regression identified a higher hazard ratio for patients with a stoma and patients treated with imipenem but a lower hazard ratio for patients with NDM-producing CRKP. OXA-48 carbapenemase gene was the predominant carbapenemase gene in this study. As CRKP infection could lead to a high rate of in-hospital mortality, early detection of the isolates was important to reduce their dissemination.
Collapse
Affiliation(s)
- Min Yi Lau
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
| | - Fui Enn Teng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sasheela Ponnampalavanar
- Department of Infectious Diseases, University Malaya Medical Centre, Kuala Lumpur 50603, Malaysia;
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- Centre for Translational Research, Institute of Research, Development and Innovation, Kuala Lumpur 57000, Malaysia
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
- Correspondence: (K.A.J.); (C.S.J.T.); Tel.: +603-79676674 (C.S.J.T.)
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
- Correspondence: (K.A.J.); (C.S.J.T.); Tel.: +603-79676674 (C.S.J.T.)
| |
Collapse
|
43
|
Chao J, Cheng HY, Chang ML, Huang SS, Liao JW, Cheng YC, Peng WH, Pao LH. Gallic Acid Ameliorated Impaired Lipid Homeostasis in a Mouse Model of High-Fat Diet-and Streptozotocin-Induced NAFLD and Diabetes through Improvement of β-oxidation and Ketogenesis. Front Pharmacol 2021; 11:606759. [PMID: 33643038 PMCID: PMC7907449 DOI: 10.3389/fphar.2020.606759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022] Open
Abstract
Gallic acid (GA) is a simple polyphenol found in food and traditional Chinese medicine. Here, we determined the effects of GA administration in a combined mouse model of high-fat diet (HFD)-induced obesity and low-dose streptozotocin (STZ)-induced hyperglycemia, which mimics the concurrent non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes pathological condition. By combining the results of physiological assessments, pathological examinations, metabolomic studies of blood, urine, liver, and muscle, and measurements of gene expression, we attempted to elucidate the efficacy of GA and the underlying mechanism of action of GA in hyperglycemic and dyslipidemic mice. HFD and STZ induced severe diabetes, NAFLD, and other metabolic disorders in mice. However, the results of liver histopathology and serum biochemical examinations indicated that daily GA treatment alleviated the high blood glucose levels in the mice and decelerated the progression of NAFLD. In addition, our results show that the hepatoprotective effect of GA in diabetic mice occurs in part through a partially preventing disordered metabolic pathway related to glucose, lipids, amino acids, purines, and pyrimidines. Specifically, the mechanism responsible for alleviation of lipid accumulation is related to the upregulation of β-oxidation and ketogenesis. These findings indicate that GA alleviates metabolic diseases through novel mechanisms.
Collapse
Affiliation(s)
- Jung Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Hao-Yuan Cheng
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi, Taiwan
| | - Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Liver Research Center, Chang Gung Memorial Hospital, Linko, Taiwan
| | | | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linko, Taiwan
| |
Collapse
|
44
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
45
|
Animal Model To Study Klebsiella pneumoniae Gastrointestinal Colonization and Host-to-Host Transmission. Infect Immun 2020; 88:IAI.00071-20. [PMID: 32839189 PMCID: PMC7573435 DOI: 10.1128/iai.00071-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
An important yet poorly understood facet of the life cycle of a successful pathogen is host-to-host transmission. Hospital-acquired infections (HAI) resulting from the transmission of drug-resistant pathogens affect hundreds of millions of patients worldwide. Klebsiella pneumoniae, a Gram-negative bacterium, is notorious for causing HAI, with many of these infections difficult to treat, as K. pneumoniae has become multidrug resistant. Epidemiological studies suggest that K. pneumoniae host-to-host transmission requires close contact and generally occurs through the fecal-oral route. An important yet poorly understood facet of the life cycle of a successful pathogen is host-to-host transmission. Hospital-acquired infections (HAI) resulting from the transmission of drug-resistant pathogens affect hundreds of millions of patients worldwide. Klebsiella pneumoniae, a Gram-negative bacterium, is notorious for causing HAI, with many of these infections difficult to treat, as K. pneumoniae has become multidrug resistant. Epidemiological studies suggest that K. pneumoniae host-to-host transmission requires close contact and generally occurs through the fecal-oral route. Here, we describe a murine model that can be utilized to study mucosal (oropharynx and gastrointestinal [GI]) colonization, shedding within feces, and transmission of K. pneumoniae through the fecal-oral route. Using an oral route of inoculation, and fecal shedding as a marker for GI colonization, we showed that K. pneumoniae can asymptomatically colonize the GI tract in immunocompetent mice and modifies the host GI microbiota. Colonization density within the GI tract and levels of shedding in the feces differed among the clinical isolates tested. A hypervirulent K. pneumoniae isolate was able to translocate from the GI tract and cause hepatic infection that mimicked the route of human infection. Expression of the capsule was required for colonization and, in turn, robust shedding. Furthermore, K. pneumoniae carrier mice were able to transmit to uninfected cohabitating mice. Lastly, treatment with antibiotics led to changes in the host microbiota and development of a transient supershedder phenotype, which enhanced transmission efficiency. Thus, this model can be used to determine the contribution of host and bacterial factors toward K. pneumoniae dissemination.
Collapse
|
46
|
Ren Y, Wang H, Chang Z, Liu Z. Clinical and computed tomography features of extended-spectrum β-lactamase-producing Klebsiella pneumoniae liver abscess. BMC Infect Dis 2020; 20:416. [PMID: 32539687 PMCID: PMC7296744 DOI: 10.1186/s12879-020-05142-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Background Klebsiella pneumoniae (KP) is the primary pathogen associated with pyogenic liver abscesses (PLAs). Moreover, there has been an increase in the proportion of extended-spectrum beta-lactamase (ESBL)-producing KP. However, the clinical and computed tomography (CT) features of liver abscesses caused by ESBL-producing KP have not been separately described. We aimed to compare the clinical and CT features present in patients with ESBL-producing and non-ESBL-producing KP as well as to determine the risk factors for ESBL-producing KP liver abscesses (KPLAs). Methods We performed a retrospective analysis of data obtained from the medical records of patients with a first episode of KPLA admitted to Shengjing Hospital of China Medical University between May 2015 and May 2019. We compared the clinical and CT features between patients with ESBL-producing and non-ESBL-producing KPLA. Results We enrolled 100 patients with KPLA (14 and 86 in the ESBL-producing and non-ESBL-producing groups, respectively). There was no significant between-group difference in the proportion of patients with comorbid diabetes (71.43% vs. 66.2%, p = 0.086). The ESBL-producing KPLA group had a greater proportion of patients with a history of biliary disease (78.57% vs. 26.74%, p < 0.001) and gastrointestinal malignancy (50% vs. 6.98%, p < 0.001). Multivariate regression analysis showed that a history of biliary disease was an independent risk factor for ESBL-producing KPLA. Compared with the non-ESBL-producing KPLA group, the ESBL-producing KPLA group had a significantly higher intensive care unit (ICU) admission rate (28.57% vs. 2.33%, p < 0.001). All ESBL-producing KP isolates were susceptible to carbapenems and amikacin. Only the presence of multiloculation on CT was found to be significantly different between the groups (50% vs. 82.56%, p = 0.012). Conclusions The presence of biliary disease was an independent risk factor for ESBL-producing KPLA. Patients with ESBL-producing KPLA had a higher ICU admission rate, with only half of patients having evidence of multiloculation on CT.
Collapse
Affiliation(s)
- Yue Ren
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|
47
|
Twentyman J, Morffy Smith C, Nims JS, Dahler AA, Rosen DA. A murine model demonstrates capsule-independent adaptive immune protection in survivors of Klebsiella pneumoniae respiratory tract infection. Dis Model Mech 2020; 13:13/3/dmm043240. [PMID: 32298236 PMCID: PMC7104859 DOI: 10.1242/dmm.043240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae represents a growing clinical threat, given its rapid development of antibiotic resistance, necessitating new therapeutic strategies. Existing live-infection models feature high mortality rates, limiting their utility in the study of natural adaptive immune response to this pathogen. We developed a preclinical model of pneumonia with low overall mortality, in which previously exposed mice are protected from subsequent respiratory tract challenge with K. pneumoniae Histologic analyses of infected murine lungs demonstrate lymphocytic aggregates surrounding vasculature and larger airways. Initial exposure in RAG1 knockout mice (lacking functional B and T cells) failed to confer protection against subsequent K. pneumoniae challenge. While administration of isolated K. pneumoniae capsule was sufficient to provide protection, we also found that initial inoculation with K. pneumoniae mutants lacking capsule (Δcps), O-antigen (ΔwecA) or both conferred protection from subsequent wild-type infection and elicited K. pneumoniae-specific antibody responses, indicating that non-capsular antigens may also elicit protective immunity. Experiments in this model will inform future development of multivalent vaccines to prevent invasive K. pneumoniae infections.
Collapse
Affiliation(s)
- Joy Twentyman
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Catherine Morffy Smith
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Julia S Nims
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Aubree A Dahler
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David A Rosen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
48
|
Aghamohammad S, Badmasti F, Solgi H, Aminzadeh Z, Khodabandelo Z, Shahcheraghi F. First Report of Extended-Spectrum Betalactamase-Producing Klebsiella pneumoniae Among Fecal Carriage in Iran: High Diversity of Clonal Relatedness and Virulence Factor Profiles. Microb Drug Resist 2020; 26:261-269. [PMID: 30277830 DOI: 10.1089/mdr.2018.0181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasing rate of silent intestinal carriers with extended-spectrum betalactamase (ESBL)-producing Klebsiella pneumonia (ESBL-KP) has given rise to a serious healthcare problem in clinical settings. Various epidemiological studies are being conducted to determine clonal relatedness among carriers. In this study, we investigated the intestinal carriage of ESBL-KP and clonal relatedness among ESBL-KP isolated from fecal carriage in Iran for the first time. A total of 120 rectal swabs (RSs) were collected including 61 from inpatients of intensive care unit and 59 from outpatients. ESBL-KP screening was performed using MacConkey agar supplemented with cefotaxime. PCR was done for detection of ESBL, carbapenemase, and virulence factor genes. Conjugation experiments and PCR-based replicon typing were performed. Clonal relatedness was investigated by multilocus sequence typing (MLST) and multiple locus variable number tandem repeat analysis (MLVA). Out of a total of 120 RSs, 18.3% (22/120) ESBL-KP were isolated. The rate of blaCTXM-15 was 81%. ompk35 was the most prevalent virulence gene detected in 86.3% of the isolates. In conjugation experiments, three out of five tested isolates had conjugative plasmids. The most prevalent plasmid types belonged to IncL/M, IncA/C, and Inc FII. The MLST analysis showed that the main sequence types (STs) identified among ESBL-KP isolates were ST147, ST15, and ST16. The isolates were characterized into 4 miniclusters and 11 singletons using MLVA. High heterogeneity among ESBL-KP isolates indicated that this bacterium could be colonized in different sites and easily transferred. Screening of carriers in hospitals and community could help in controlling of infection in the healthcare and community settings.
Collapse
Affiliation(s)
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Solgi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Zohreh Aminzadeh
- Infectious Disease and Tropical Medicine Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
49
|
Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives. J Intern Med 2020; 287:283-300. [PMID: 31677303 PMCID: PMC7057273 DOI: 10.1111/joim.13007] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) has emerged as a concerning global pathogen. hvKp is more virulent than classical K. pneumoniae (cKp) and capable of causing community-acquired infections, often in healthy individuals. hvKp is carried in the gastrointestinal tract, which contributes to its spread in the community and healthcare settings. First recognized in Asia, hvKp arose as a leading cause of pyogenic liver abscesses. In the decades since, hvKp has spread globally and causes a variety of infections. In addition to liver abscesses, hvKp is distinct from cKp in its ability to metastasize to distant sites, including most commonly the eye, lung and central nervous system (CNS). hvKp has also been implicated in primary extrahepatic infections including bacteremia, pneumonia and soft tissue infections. The genetic determinants of hypervirulence are often found on large virulence plasmids as well as chromosomal mobile genetic elements which can be used as biomarkers to distinguish hvKp from cKp clinical isolates. These distinct virulence determinants of hvKp include up to four siderophore systems for iron acquisition, increased capsule production, K1 and K2 capsule types, and the colibactin toxin. Additionally, hvKp strains demonstrate hypermucoviscosity, a phenotypic description of hvKp in laboratory conditions that has become a distinguishing feature of many hypervirulent isolates. Alarmingly, multidrug-resistant hypervirulent strains have emerged, creating a new challenge in combating this already dangerous pathogen.
Collapse
Affiliation(s)
- J E Choby
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - J Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - D S Weiss
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Research Service, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
50
|
Tan YH, Chen Y, Chu WHW, Sham LT, Gan YH. Cell envelope defects of different capsule-null mutants in K1 hypervirulent Klebsiella pneumoniae can affect bacterial pathogenesis. Mol Microbiol 2020; 113:889-905. [PMID: 31912541 PMCID: PMC7317392 DOI: 10.1111/mmi.14447] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 01/08/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) causes Klebsiella‐induced liver abscess. Capsule is important for the pathogenesis of Klebsiella in systemic infection, but its role in gut colonisation is not well understood. By generating ΔwcaJ, Δwza and Δwzy capsule‐null mutants in a prototypical K1 hypervirulent isolate, we show that inactivation of wza (capsule exportase) and wzy (capsule polymerase) confer cell envelope defects in addition to capsule loss, making them susceptible to bile salts and detergent stress. Bile salt resistance is restored when the initial glycosyltransferase wcaJ was inactivated together with wzy, indicating that build‐up of capsule intermediates contribute to cell envelope defects. Mouse gut colonisation competition assays show that the capsule and its regulator RmpA were not required for hvKP to persist in the gut, although initial colonisation was decreased in the mutants. Both ΔrmpA and ΔwcaJ mutants gradually outcompeted the wild type in the gut, whereas Δwza and Δwzy mutants were less fit than wild type. Together, our results advise caution in using the right capsule‐null mutant for determination of capsule's role in bacterial pathogenesis. With the use of ΔwcaJ mutant, we found that although the capsule is important for bacterial survival outside the gut environment, it imposes a fitness cost in the gut.
Collapse
Affiliation(s)
- Yi Han Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yahua Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wilson H W Chu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lok-To Sham
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|