1
|
Hsu WC, Lee F, Chen YW, Tu YC, Chang CC, Chiang YL, Hu SC. Detection of Rabies Virus in a Yellow-throated Marten (Martes flavigula chrysospila) in Taiwan. J Wildl Dis 2024; 60:219-222. [PMID: 37972644 DOI: 10.7589/jwd-d-23-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/25/2023] [Indexed: 11/19/2023]
Abstract
In June 2021, a yellow-throated marten (Martes flavigula chrysospila) submitted for postmortem examination was diagnosed as rabid through laboratory testing. The rabies virus detected was closest phylogenetically to viruses of ferret badgers (Melogale moschata subaurantiaca) in Taiwan, indicating spillover infection from the primary reservoir in this area, the ferret badger.
Collapse
Affiliation(s)
- Wei-Cheng Hsu
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Fan Lee
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Yen-Wen Chen
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Yang-Chang Tu
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Chao-Chin Chang
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Yi-Lun Chiang
- WildOne Wildlife Conservation Association, No. 126, Sinsing, Sinsing Village, Chihshang Township, Taitung County 958, Taiwan (R.O.C.)
| | - Shu-Chia Hu
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| |
Collapse
|
2
|
Tai JH, Sun HY, Tseng YC, Li G, Chang SY, Yeh SH, Chen PJ, Chaw SM, Wang HY. Contrasting patterns in the early stage of SARS-CoV-2 evolution between humans and minks. Mol Biol Evol 2022; 39:6658056. [PMID: 35934827 PMCID: PMC9384665 DOI: 10.1093/molbev/msac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor binding domain and receptor binding motif. An excess of high frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies the virus may not be pre-adapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.
Collapse
Affiliation(s)
- Jui Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Hsiao Yu Sun
- Taipei Municipal Zhongshan Girls High School, Taipei 10490, Taiwan
| | - Yi Cheng Tseng
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guanghao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sui Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shiou Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Pei Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shu Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hurng Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
3
|
Novel Bat Lyssaviruses Identified by Nationwide Passive Surveillance in Taiwan, 2018–2021. Viruses 2022; 14:v14071562. [PMID: 35891542 PMCID: PMC9316062 DOI: 10.3390/v14071562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Bat lyssaviruses were identified in Taiwan’s bat population during 2016–2017. The lyssavirus surveillance system was continuously conducted to understand the epidemiology. Through this system, the found dead bats were collected for lyssavirus detection by direct fluorescent antibody test and reverse transcription polymerase chain reaction. Three bats were identified as positive during 2018–2021. A novel lyssavirus, designated as Taiwan bat lyssavirus 2, was detected in a Nyctalus plancyi velutinus. This lyssavirus had less than 80% nucleotide identity in the nucleoprotein (N) gene with other lyssavirus species, forming a separate branch in the phylogenetic analysis. The other two cases were identified in Pipistrellus abramus (Japanese pipistrelles); they were identified to be similar to the former lyssavirus identified in 2016–2017, which was renominated as Taiwan bat lyssavirus 1 (TWBLV-1) in this study. Even though one of the TWBLV-1 isolates showed high genetic diversity in the N gene compared with other TWBLV-1 isolates, it may be a TWBLV-1 variant but not a new species based on its high amino acid identities in the nucleoprotein, same host species, and same geographic location as the other TWBLV-1.
Collapse
|
4
|
Miao F, Zhao J, Li N, Liu Y, Chen T, Mi L, Yang J, Chen Q, Zhang F, Feng J, Li S, Zhang S, Hu R. Genetic Diversity, Evolutionary Dynamics, and Pathogenicity of Ferret Badger Rabies Virus Variants in Mainland China, 2008–2018. Front Microbiol 2022; 13:929202. [PMID: 35910614 PMCID: PMC9330412 DOI: 10.3389/fmicb.2022.929202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
In contrast to dog-associated human rabies cases decline year by year due to the rabies vaccination coverage rates increase in China, ferret badger (FB, Melogale moschata)-associated human rabies cases emerged in the 1990s, and are now an increasingly recognized problem in southeast China. To investigate epidemiology, temporal evolution dynamics, transmission characterization, and pathogenicity of FB-associated rabies viruses (RABVs), from 2008 to 2018, we collected 3,622 FB brain samples in Jiangxi and Zhejiang Province, and detected 112 RABV isolates. Four FB-related lineages were identified by phylogenetic analysis (lineages A–D), the estimated Times to Most Recent Common Ancestor were 1941, 1990, 1937, and 1997 for lineages A–D, respectively. Furthermore, although no FB-associated human rabies case has been reported there apart from Wuyuan area, FB-RABV isolates are mainly distributed in Jiangxi Province. Pathogenicity of FB-RABVs was assessed using peripheral inoculation in mice and in beagles with masseter muscles, mortality-rates ranging from 20 to 100% in mice and 0 to 20% in beagles in the groups infected with the various isolates. Screening of sera from humans with FB bites and no post-exposure prophylaxis to rabies revealed that five of nine were positive for neutralizing antibodies of RABV. All the results above indicated that FB-RABV variants caused a lesser pathogenicity in mice, beagles, and even humans. Vaccination in mice suggests that inactivated vaccine or recombinant subunit vaccine products can be used to control FB-associated rabies, however, oral vaccines for stray dogs and wildlife need to be developed and licensed in China urgently.
Collapse
Affiliation(s)
- Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinghui Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ye Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lijuan Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinjin Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qi Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Feng
- Suzhou Shangfangshan Forest Zoo, Suzhou, China
| | - Shunfei Li
- Department of Innovative Medical Research, Chinese People’s Liberation Army General Hospital, Institute of Hospital Management, Beijing, China
- *Correspondence: Shunfei Li,
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Shoufeng Zhang,
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Rongliang Hu,
| |
Collapse
|
5
|
The Comparison of Full G and N Gene Sequences From Turkish Rabies Virus Field Strains. Virus Res 2022; 315:198790. [PMID: 35487366 DOI: 10.1016/j.virusres.2022.198790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
The rabies infection is a zoonotic viral disease in humans and is spread by both wild and domestic carnivores. This study aimed to molecularly characterize the field strains of the rabies virus circulating in Turkey between 2013 and 2020. Brain samples obtained from 16 infected animals (8 cattle, one donkey, three foxes, three dogs, and one marten) were tested. Full nucleoprotein (N) and glycoprotein (G) gene sequences were used to determine the genetic and antigenic characteristics of the rabies virus field strains. The phylogenetic analyses revealed that the 16 field strains identified in Turkey belonged to the Cosmopolitan lineage.
Collapse
|
6
|
Mapatse M, Sabeta C, Fafetine J, Abernethy D. Knowledge, attitudes, practices (KAP) and control of rabies among community households and health practitioners at the human-wildlife interface in Limpopo National Park, Massingir District, Mozambique. PLoS Negl Trop Dis 2022; 16:e0010202. [PMID: 35255083 PMCID: PMC8929695 DOI: 10.1371/journal.pntd.0010202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/17/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Rabies is a viral zoonotic disease that kills more than 26,000 people each year in Africa. In Mozambique, poverty and inadequate surveillance result in gross underreporting and ineffective control of the disease in animals and people. Little is known of the role of human attitudes and behaviour in prevention or control of rabies, thus this study was undertaken to assess the knowledge, attitudes and practices amongst selected households and health practitioners in one affected area, the Limpopo National Park (LNP), Massingir district. Methodology A cross-sectional study was conducted among 233 households in eight villages in LNP and among 42 health practitioners from eight health facilities in Massingir district between 2016 and 2018. Consenting household representatives aged 18 years or over were purposively selected. A KAP survey was administered to obtain information on dog ownership and knowledge of rabies, host species affected, modes of transmission, symptoms, recommended treatment and preventive methods. Similar to household study participants, health practitioners were purposively selected and completed the questionnaire during the investigators’ visit. The questionnaire sought information on knowledge of rabies, management of bite wounds, vaccination sites and schedules of pre- and post-exposure prophylaxis. Descriptive and inferential data analyses were performed using SPSS software version 18.0. Results Approximately twenty per cent (18.9%; 95% CI: 14.3–24.3) and 13.3% (95% CI: 9.4–18.1) of households had good knowledge and practices of rabies, respectively. For health practitioners, only 16.7% (95% CI: 7.5–31.9) had good knowledge, whilst 33.3% (95% CI: 20.0–49.7) adopted adequate attitudes/practices towards the disease. Conclusions/Significance In conclusion, both households and health practitioners displayed poor levels of knowledge and adopted bad attitudes and practices towards rabies. The former, had more gaps in their attitudes and practices towards the disease. Village location and education level (P < .05) and similarly, sex and occupation, were found to be statistically associated with good knowledge of rabies among households as compared to HPs. Overall, a lack of community-based education and professional retraining courses contribute significantly to poor awareness of rabies in the LNP of Mozambique. Enhancing public health knowledge should consequently reduce dog-mediated human rabies deaths in this country. In Mozambique, rabies is maintained primarily by the domestic dog, the principal vector and host species responsible for the majority of human cases dating back to the early 1900s. Control of animal rabies has historically been undertaken by government veterinary authorities, with limited involvement of the health and environment sectors. In the Massingir District in general, and in Limpopo National Park (LNP) in particular, parenteral dog rabies mass-vaccination campaigns and the provision of post-exposure prophylaxis are inconsistent. Limited resources for dog vaccination campaigns, insufficient veterinary field staff, inefficient disease notification procedures and inadequate training of health practitioners constraint effective rabies control across the country. Awareness of good practices regarding management of bite wounds among local community members and health practitioners is crucial to reducing rabies deaths. The results obtained in this study will inform government policy on practical interventions in the control of dog and human rabies.
Collapse
Affiliation(s)
- Milton Mapatse
- Veterinary Faculty, University Eduardo Mondlane, Maputo, Mozambique
- * E-mail:
| | - Claude Sabeta
- Agricultural Research Council-Onderstepoort Veterinary Institute, OIE Rabies Reference Laboratory, Pretoria, South Africa
| | - José Fafetine
- Veterinary Faculty, University Eduardo Mondlane, Maputo, Mozambique
- Centre of Biotechnology (CB-UEM), Maputo, Mozambique
| | - Darrell Abernethy
- Centre for Veterinary Wildlife Studies, University of Pretoria, Pretoria, South Africa
- Aberystwyth School of Veterinary Science, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
7
|
Faye M, Faye O, Paola ND, Ndione MHD, Diagne MM, Diagne CT, Bob NS, Fall G, Heraud J, Sall AA, Faye O. Rabies surveillance in Senegal 2001 to 2015 uncovers first infection of a honey‐badger. Transbound Emerg Dis 2022; 69:e1350-e1364. [DOI: 10.1111/tbed.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Faye
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Oumar Faye
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Nicholas Di Paola
- Center for Genome Sciences United States Army Medical Research Institute of Infectious Diseases Fort Detrick Frederick Maryland 21702 USA
| | | | - Moussa Moise Diagne
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | | | - Ndeye Sakha Bob
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Gamou Fall
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Jean‐Michel Heraud
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Amadou Alpha Sall
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Ousmane Faye
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| |
Collapse
|
8
|
Feng Y, Ma J, Sun S, Chi L, Kou Z, Tu C. Epidemiology of Animal Rabies - China, 2010-2020. China CDC Wkly 2021; 3:815-818. [PMID: 34594998 PMCID: PMC8477053 DOI: 10.46234/ccdcw2021.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Introduction Rabies is a fatal zoonotic infectious disease that poses a serious threat to public health in China. Since 2005, a National Animal Rabies Surveillance System has been operating to understand the rabies situation in animals in China with a view to control and eventually eliminate dog-mediated human rabies. Methods From 2010, the brain tissues of dogs, livestock, and wild animals showing rabies-like clinical signs were collected and tested by the National Reference Laboratory (NRL) for Animal Rabies to analyze the epidemiological characteristics of rabies, including animal species, geographic distribution, and transmission sources. Over the same period, clinically suspected animal rabies cases were collected by Animal Disease Control Centers through the National Animal Disease Monitoring Information Platform (NADMIP) and then reported in the Veterinary Bulletin. Results During 2010-2020, 170 of 212 suspected animal rabies cases were submitted to and confirmed by NRL as rabies virus-positive. Of these confirmed cases dogs, especially free-roaming and ownerless dogs in rural areas, were major transmission hosts (71/170). A total of 51 infected dogs attacked humans with 45 biting more than one person. The dog cases were reported all year round, but with significantly more in spring and summer. The majority of livestock rabies cases (70/80) being caused by rabid wild foxes in Xinjiang and Inner Mongolia revealed that foxes play a pivotal role in animal rabies epizootics in the north and northwest of the country. Conclusion Dogs were the main transmission sources of rabies in China, and along with the recent increase of rabies in foxes and other wildlife, presented an increasing threat to livestock and public health.
Collapse
Affiliation(s)
- Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, Jilin, China
| | - Jihong Ma
- China Animal Disease Control Center, Beijing, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, Jilin, China
| | - Lijuan Chi
- China Animal Disease Control Center, Beijing, China
| | - Zhanying Kou
- China Animal Disease Control Center, Beijing, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, Jilin, China
| |
Collapse
|
9
|
Use of partial N-gene sequences as a tool to monitor progress on rabies control and elimination efforts in Ethiopia. Acta Trop 2021; 221:106022. [PMID: 34161816 PMCID: PMC8652542 DOI: 10.1016/j.actatropica.2021.106022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022]
Abstract
Ethiopia is one of the African countries most affected by rabies. A coarse catalog of rabies viruses (RABV) was created as a benchmark to assess the impact of control and elimination activities. We evaluated a 726 bp amplicon at the end of the N-gene to infer viral lineages in circulation using maximum likelihood and Bayesian methods for phylogenetic reconstruction. We sequenced 228 brain samples from wild and domestic animals collected in five Ethiopian regions during 2010-2017. Results identified co-circulating RABV lineages that are causing recurrent spillover infections into wildlife and domestic animals. We found no evidence of importation of RABVs from other African countries or vaccine-induced cases in the area studied. A divergent RABV lineage might be involved in an independent rabies cycle in jackals. This investigation provides a feasible approach to assess rabies control and elimination efforts in resource-limited countries.
Collapse
|
10
|
Miao F, Li N, Yang J, Chen T, Liu Y, Zhang S, Hu R. Neglected challenges in the control of animal rabies in China. One Health 2021; 12:100212. [PMID: 33553562 PMCID: PMC7843516 DOI: 10.1016/j.onehlt.2021.100212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 01/16/2023] Open
Abstract
Complex rabies transmission dynamics, including in dogs, wildlife livestock, and human-acquired rabies, can be observed in China. A temporary decrease in human rabies deaths with a simultaneous increase in animal rabies transmission is a typical example of "sectoral management separation" but not of the recommended "one-health" concept. In contrast to reliance on mass dog vaccination, reliance on postexposure prophylaxis to reduce human rabies burden is costly and ineffective in the prevention of rabies transmission from dogs to humans and other susceptible animal species. To answer the WHO call for the "elimination of dog-mediated human rabies by 2030," China faces the challenge of a lack of a strong political commitment and a workable plan and must act now before the rabies transmission dynamics become increasingly complicated by spreading to other species, such as ferret badgers in the Southeast and raccoon dogs and foxes in the North.
Collapse
Affiliation(s)
| | | | - Jinjin Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Teng Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Ye Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Shoufeng Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Rongliang Hu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| |
Collapse
|
11
|
Feng Y, Wang Y, Xu W, Tu Z, Liu T, Huo M, Liu Y, Gong W, Zeng Z, Wang W, Wei Y, Tu C. Animal Rabies Surveillance, China, 2004-2018. Emerg Infect Dis 2021; 26:2825-2834. [PMID: 33219645 PMCID: PMC7706947 DOI: 10.3201/eid2612.200303] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rabies is a severe zoonotic disease in China, but the circulation and distribution of rabies virus (RABV) within animal reservoirs is not well understood. We report the results of 15 years of surveillance of the first Chinese Rabies Surveillance Plan in animal populations, in which animal brain tissues collected during 2004–2018 were tested for RABV and phylogenetic and spatial–temporal evolutionary analyses performed using obtained RABV sequences. The results have provided the most comprehensive dataset to date on the infected animal species, geographic distribution, transmission sources, and genetic diversity of RABVs in China. In particular, the transboundary transmission of emerging RABV subclades between China and neighboring countries was confirmed. The study highlights the importance of continuous animal rabies surveillance in monitoring the transmission dynamics, and provides updated information for improving current control and prevention strategies at the source.
Collapse
|
12
|
Chang YC, Lin ZY, Lin YX, Lin KH, Chan FT, Hsiao ST, Liao JW, Chiou HY. Canine Parvovirus Infections in Taiwanese Pangolins ( Manis pentadactyla pentadactyla). Vet Pathol 2021; 58:743-750. [PMID: 33866880 DOI: 10.1177/03009858211002198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canine parvovirus type 2 (CPV-2) is among the most important and highly contagious pathogens that cause enteric or systemic infections in domestic and nondomestic carnivores. However, the spillover of CPV-2 to noncarnivores is rarely mentioned. Taiwanese pangolins (Manis pentadactyla pentadactyla) are threatened due to habitat fragmentation and prevalent animal trafficking. Interactions between Taiwanese pangolins, humans, and domestic animals have become more frequent in recent years. However, information about the susceptibility of pangolins to common infectious agents of domestic animals has been lacking. From October 2017 to June 2019, 4 pangolins that were rescued and treated in wildlife rescue centers in central and northern Taiwan presented with gastrointestinal signs. Gross and histopathological examination revealed the main pathologic changes to be necrotic enteritis with involvement of the crypts in all intestinal segments in 2 pangolins. By immunohistochemistry for CPV-2, there was positive labeling of cryptal epithelium throughout the intestine, and immunolabeling was also present in epidermal cells adjacent to a surgical amputation site, and in mononuclear cells in lymphoid tissue. The other 2 pangolins had mild enteritis without crypt involvement, and no immunolabeling was detected. The nucleic acid sequences of polymerase chain reaction (PCR) amplicons from these 4 pangolins were identical to a Chinese CPV-2c strain from domestic dogs. Quantitative PCR revealed a higher ratio of CPV-2 nucleic acid to internal control gene in the 2 pangolins with severe intestinal lesions and positive immunoreactivity. Herein, we present evidence of CPV-2 infections in pangolins.
Collapse
Affiliation(s)
| | - Zhi Yi Lin
- 34916National Chung Hsing University, Taichung
| | - Yan Xiu Lin
- 34916National Chung Hsing University, Taichung
| | - Kuei Hsien Lin
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | - Fang Tse Chan
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | - Shun Ting Hsiao
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | | | | |
Collapse
|
13
|
Huang I, Lin HY, Weng GJ. Can Ferret Badgers (Melogale moschata) Cross the Rabies Epidemic Boundary in Western Taiwan? MAMMAL STUDY 2020. [DOI: 10.3106/ms2019-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Iang Huang
- Institute of Wildlife Conservation, College of Veterinarian Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Han-Yu Lin
- Institute of Wildlife Conservation, College of Veterinarian Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Guo-Jing Weng
- Institute of Wildlife Conservation, College of Veterinarian Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
14
|
Ferret badger rabies in Zhejiang, Jiangxi and Taiwan, China. Arch Virol 2018; 164:579-584. [PMID: 30417198 DOI: 10.1007/s00705-018-4082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
Abstract
Ferret badger (FB, Melogale moschata) rabies is an increasing public health threat to humans, with FBs being a major reservoir and vector of rabies in China. Based on 152 published nucleotide sequences of the FB rabies virus (RABV) nucleoprotein, phylogenetic analysis revealed them to be clustered into six FB-related lineages, FB-I to FB-VI. The genetic features of members of lineage FB-VI suggest that cross-species transmission occurs between FBs and dogs. Here, we describe the phylogenetic relationships between FB-RABVs, their geographic segregation, and their evolutionary dynamics in epizootic regions.
Collapse
|
15
|
Doysabas KCC, Oba M, Furuta M, Iida K, Omatsu T, Furuya T, Okada T, Sutummaporn K, Shimoda H, Wong ML, Wu CH, Ohmori Y, Kobayashi R, Hengjan Y, Yonemitsu K, Kuwata R, Kim YK, Han SH, Sohn JH, Han SH, Suzuki K, Kimura J, Maeda K, Oh HS, Endoh D, Mizutani T, Hondo E. Encephalomyocarditis virus is potentially derived from eastern bent-wing bats living in East Asian countries. Virus Res 2018; 259:62-67. [PMID: 30391400 PMCID: PMC7114854 DOI: 10.1016/j.virusres.2018.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
EMCV genome was widely found in fecal guanos in Taiwanese, Korean, and Japanese caves. Miniopterus fuliginosus is the main source of the fecal guano. It is possible that Miniopterus fuliginosus is one of the natural hosts of EMCV in East Asia.
Bats are reservoir hosts of many zoonotic viruses and identification of viruses that they carry is important. This study aimed to use high throughput screening to identify the viruses in fecal guano of Taiwanese insectivorous bats caves in order to obtain more information on bat-derived pathogenic viruses in East Asia. Guano samples were collected from two caves in Taiwan, pooled, and then subjected to Multiplex PCR-based next generation sequencing for viral identification. Subsequently, encephalomyocarditis virus (EMCV) sequence was detected and confirmed by reverse transcription PCR. EMCV is considered as rodent virus and thus, animal species identification through cytochrome oxidase I (COI) barcoding was further done to identify the viral source. Finally, determination of distribution and verification of the presence of EMCV in guano obtained from Japanese and South Korean caves was also done. We concluded that the guano collected was not contaminated with the excrement of rodents which were reported and presumed to live in Taiwan. Also, EMCV genome fragments were found in guanos of Japanese and South Korean caves. It is possible that the eastern bent-wing bat (Miniopterus fuliginosus) is one of the natural hosts of EMCV in East Asia.
Collapse
Affiliation(s)
- Karla Cristine C Doysabas
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mami Oba
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Masaya Furuta
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Keisuke Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsutomu Omatsu
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Takashi Okada
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kripitch Sutummaporn
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | - Yasushige Ohmori
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke Kobayashi
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yupadee Hengjan
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Yoo-Kyung Kim
- Institute of Science Education, Jeju National University, Jeju, South Korea
| | - Sang-Hyun Han
- Institute of Science Education, Jeju National University, Jeju, South Korea
| | - Joon-Hyuk Sohn
- Laboratory of Veterinary Anatomy and Cell Biology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Sang-Hoon Han
- Natural Institute of Biological Resources, South Korea
| | | | - Junpei Kimura
- Laboratory of Veterinary Anatomy and Cell Biology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ken Maeda
- Yamaguchi University, Yamaguchi, Japan
| | - Hong-Shik Oh
- Institute of Science Education, Jeju National University, Jeju, South Korea
| | - Daiji Endoh
- Department of Veterinary Radiology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu-shi 069-8501, Japan
| | - Tetsuya Mizutani
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
16
|
Beard R, Wentz E, Scotch M. A systematic review of spatial decision support systems in public health informatics supporting the identification of high risk areas for zoonotic disease outbreaks. Int J Health Geogr 2018; 17:38. [PMID: 30376842 PMCID: PMC6208014 DOI: 10.1186/s12942-018-0157-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Zoonotic diseases account for a substantial portion of infectious disease outbreaks and burden on public health programs to maintain surveillance and preventative measures. Taking advantage of new modeling approaches and data sources have become necessary in an interconnected global community. To facilitate data collection, analysis, and decision-making, the number of spatial decision support systems reported in the last 10 years has increased. This systematic review aims to describe characteristics of spatial decision support systems developed to assist public health officials in the management of zoonotic disease outbreaks. METHODS A systematic search of the Google Scholar database was undertaken for published articles written between 2008 and 2018, with no language restriction. A manual search of titles and abstracts using Boolean logic and keyword search terms was undertaken using predefined inclusion and exclusion criteria. Data extraction included items such as spatial database management, visualizations, and report generation. RESULTS For this review we screened 34 full text articles. Design and reporting quality were assessed, resulting in a final set of 12 articles which were evaluated on proposed interventions and identifying characteristics were described. Multisource data integration, and user centered design were inconsistently applied, though indicated diverse utilization of modeling techniques. CONCLUSIONS The characteristics, data sources, development and modeling techniques implemented in the design of recent SDSS that target zoonotic disease outbreak were described. There are still many challenges to address during the design process to effectively utilize the value of emerging data sources and modeling methods. In the future, development should adhere to comparable standards for functionality and system development such as user input for system requirements, and flexible interfaces to visualize data that exist on different scales. PROSPERO registration number: CRD42018110466.
Collapse
Affiliation(s)
- Rachel Beard
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Elizabeth Wentz
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ USA
| | - Matthew Scotch
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ USA
| |
Collapse
|
17
|
Hsu AP, Tseng CH, Lu YT, Shih YH, Chou CH, Chen RS, Tsai KJ, Tu WJ, Cliquet F, Tsai HJ. Development of a quantitative real-time RT-PCR assay for detecting Taiwan ferret badger rabies virus in ear tissue of ferret badgers and mice. J Vet Med Sci 2018; 80:1012-1019. [PMID: 29709902 PMCID: PMC6021896 DOI: 10.1292/jvms.17-0539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In 2013, the first case of Taiwan ferret badger rabies virus (RABV-TWFB) infection was
reported in Formosan ferret badgers, and two genetic groups of the virus were
distinguished through phylogenetic analysis. To detect RABV-TWFB using a sensitive nucleic
acid-based method, a quantitative real-time reverse transcription polymerase chain
reaction targeting the conserved region of both genetic groups of RABV-TWFB was developed.
This method had a limit of detection (LOD) of 40 RNA copies/reaction and detected viral
RNA in brain and ear tissue specimens of infected and dead Formosan ferret badgers and
mice with 100% sensitivity and specificity. The mean viral RNA load detected in the ear
tissue specimens of ferret badgers ranged from 3.89 × 108 to 9.73 ×
108 RNA copies/g-organ, which was 111-fold to 2,220-fold lower than the
concentration detected in the brain specimens, but 2,000-fold to 5,000-fold higher than
the LOD of the assay. This highly sensitive technique does not require facilities or
instruments complying with strict biosafety criteria. Furthermore, it is efficient, safe,
and labor-saving as only ear specimens need be sampled. Therefore, it is a promising
technique for epidemiological screening of Taiwan ferret badger rabies.
Collapse
Affiliation(s)
- Ai-Ping Hsu
- Animal Health Research Institute, Council of Agriculture, No.376, Zhong zheng Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.).,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (R.O.C.)
| | - Chun-Hsien Tseng
- Animal Health Research Institute, Council of Agriculture, No.376, Zhong zheng Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.)
| | - Yi-Ta Lu
- Animal Health Research Institute, Council of Agriculture, No.376, Zhong zheng Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.)
| | - Yu-Hua Shih
- Animal Health Research Institute, Council of Agriculture, No.376, Zhong zheng Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.).,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (R.O.C.)
| | - Chung-Hsi Chou
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (R.O.C.).,Zoonoses Research Center, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (R.O.C.)
| | - Re-Shang Chen
- Animal Health Research Institute, Council of Agriculture, No.376, Zhong zheng Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.).,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (R.O.C.)
| | - Kuo-Jung Tsai
- Animal Health Research Institute, Council of Agriculture, No.376, Zhong zheng Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.)
| | - Wen-Jane Tu
- Animal Health Research Institute, Council of Agriculture, No.376, Zhong zheng Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.)
| | - Florence Cliquet
- Nancy OIE/WHO/EU Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health &Safety, Technopole Agricole et Vétérinaire de Pixérécourt, Bâtiment H, CS 40009, 54220 MALZEVILLE, France
| | - Hsiang-Jung Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (R.O.C.).,Zoonoses Research Center, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (R.O.C.)
| |
Collapse
|
18
|
Shih TH, Chiang JT, Wu HY, Inoue S, Tsai CT, Kuo SC, Yang CY, Fei CY. Human Exposure to Ferret Badger Rabies in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071347. [PMID: 29954098 PMCID: PMC6068547 DOI: 10.3390/ijerph15071347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
On 17 July 2013, Taiwan confirmed multiple cases of the rabies virus (RABV) in the wild Taiwan Ferret badger (TFB) (Melogale moschata) member of the family Mustelidae. This study aims at investigating the risk factors for human exposure to rabid TFBs. Statistical inference based on Pearson correlation showed that there was a strong positive correlation between the total number of positive TFB rabies cases and the number of rabid TFBs involved with human activities in 81 enzootic townships (r = 0.91; p < 0.001). A logistic regression analysis indicated that the risk probability of a human being bitten by rabid TFBs was significantly higher when there were no dogs around (35.55% versus 6.17% (indoors, n = 171, p = 0.0001), and 52.00% versus 5.26% (outdoors, n = 44, p = 0.021)), and whether or not there was a dog around was the only crucial covariate that was statistically significantly related to the risk of a human being bitten. In conclusion, this study showed the value of having vaccinated pets as a deterrent to TFB encounters and as a buffer to prevent human exposure to rabid TFBs. The presence of unvaccinated pets could become a significant risk factor in the longer term if rabies isn’t controlled in TFBs because of the spillover between the sylvatic and urban cycles of rabies. Consequently, raising dogs, as well as keeping rabies vaccinations up-to-date for them, can be considered an effective preventive strategy to reduce the risk for human exposure to rabid TFBs.
Collapse
Affiliation(s)
- Tai-Hwa Shih
- Bureau of Animal and Plant Health Inspection and Quarantine, Taipei 10070, Taiwan.
| | - Jeng-Tung Chiang
- Department of Statistics, National Chengchi University, Taipei 11605, Taiwan.
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung 40227, Taiwan.
| | - Satoshi Inoue
- National Institute of Infectious Disease, Tokyo 162-8640, Japan.
| | - Cheng-Ta Tsai
- Bureau of Animal and Plant Health Inspection and Quarantine, Taipei 10070, Taiwan.
| | - Shih-Chiang Kuo
- Bureau of Animal and Plant Health Inspection and Quarantine, Taipei 10070, Taiwan.
| | - Cheng-Yao Yang
- Agricultural Technology Research Institute, Hsinchu 30093, Taiwan.
| | - Chang-Young Fei
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
19
|
Chen J, Liu G, Jin T, Zhang R, Ou X, Zhang H, Lin P, Yao D, Chen S, Luo M, Yang F, Huang D, Sun B, Zhang R. Epidemiological and Genetic Characteristics of Rabies Virus Transmitted Through Organ Transplantation. Front Cell Infect Microbiol 2018; 8:86. [PMID: 29637047 PMCID: PMC5880885 DOI: 10.3389/fcimb.2018.00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/02/2018] [Indexed: 11/26/2022] Open
Abstract
In January 2016, two patients died of rabies after receiving kidney transplants from a common organ donor at a hospital in Changsha, Hunan, China. The medical records, epidemiological data of the organ donor, two kidney and a liver recipients were reviewed. Intravitam saliva samples of the two kidney recipients were tested for rabies virus (RABV) using real-time RT-PCR, and the nucleoprotein (N) gene was amplified and sequenced by Sanger sequencing. Whole genome sequences were analyzed using next-generation sequencing. The N genes of the two kidney recipients showed 100% nucleic acid identity. Phylogenetic analysis of the complete genome, N and glycoprotein (G) genes indicated that the RABV was homologous with dog isolates from the Hunan province and belong to the China I lineage, which is widespread in China. The organ donor was a 22-month-old boy who died from unknown acute progressive encephalitis. After undergoing sub-hypothermia hibernation therapy, rabies-associated symptoms were atypical, and rabies was neglected because serum RABV-specific antibodies were negative. An unknown wound on the forehead of the donor was found 2 months before the onset of symptoms. Based on the clinical, epidemiological, and molecular findings, we speculated that the RABV initially originated in the donor from a dog bite, and was then transmitted to the recipients by organ transplantation. An uncertain exposure history and misdiagnosis played important roles in the spread of the RABV. Rabies should be considered in patients with acute progressive encephalitis of unexplained etiology, especially in potential organ donors.
Collapse
Affiliation(s)
- Jingfang Chen
- Changsha Center for Disease Control and Prevention, Changsha, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Guang Liu
- China National Genebank-Shenzhen, Shenzhen, China.,Infection Omics Research Institute, BGI-Shenzhen, Shenzhen, China
| | - Tao Jin
- China National Genebank-Shenzhen, Shenzhen, China.,Infection Omics Research Institute, BGI-Shenzhen, Shenzhen, China
| | - Rusheng Zhang
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Xinhua Ou
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Heng Zhang
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Peng Lin
- China National Genebank-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Dong Yao
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Shuilian Chen
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Meiling Luo
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Biancheng Sun
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
20
|
Fisher CR, Streicker DG, Schnell MJ. The spread and evolution of rabies virus: conquering new frontiers. Nat Rev Microbiol 2018; 16:241-255. [PMID: 29479072 PMCID: PMC6899062 DOI: 10.1038/nrmicro.2018.11] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rabies is a lethal zoonotic disease that is caused by lyssaviruses, most often rabies virus. Despite control efforts, sporadic outbreaks in wildlife populations are largely unpredictable, underscoring our incomplete knowledge of what governs viral transmission and spread in reservoir hosts. Furthermore, the evolutionary history of rabies virus and related lyssaviruses remains largely unclear. Robust surveillance efforts combined with diagnostics and disease modelling are now providing insights into the epidemiology and evolution of rabies virus. The immune status of the host, the nature of exposure and strain differences all clearly influence infection and transmission dynamics. In this Review, we focus on rabies virus infections in the wildlife and synthesize current knowledge in the rapidly advancing fields of rabies virus epidemiology and evolution, and advocate for multidisciplinary approaches to advance our understanding of this disease.
Collapse
Affiliation(s)
- Christine R. Fisher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Vaccine Center at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Wallace RM, Lai Y, Doty JB, Chen CC, Vora NM, Blanton JD, Chang SS, Cleaton JM, Pei KJC. Initial pen and field assessment of baits to use in oral rabies vaccination of Formosan ferret-badgers in response to the re-emergence of rabies in Taiwan. PLoS One 2018; 13:e0189998. [PMID: 29293591 PMCID: PMC5749709 DOI: 10.1371/journal.pone.0189998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/06/2017] [Indexed: 11/19/2022] Open
Abstract
Background Taiwan had been considered rabies free since 1961, until a newly established wildlife disease surveillance program identified rabies virus transmission within the Formosan ferret-badger (Melogale moschata subaurantiaca) in 2013. Ferret-badgers occur throughout southern China and Southeast Asia, but their ecological niche is not well described. Methodology/Principle findings As an initial feasibility assessment for potential rabies control measures, field camera trapping and pen assessment of 6 oral rabies vaccine (ORV) baits were conducted in Taiwan in 2013. 46 camera nights were recorded; 6 Formosan ferret-badgers and 14 non-target mammals were sighted. No baits were consumed by ferret-badgers and 8 were consumed by non-target mammals. Penned ferret-badgers ingested 5 of the 18 offered baits. When pen and field trials were combined, and analyzed for palatability, ferret-badgers consumed 1 of 9 marshmallow baits (11.1%), 1 of 21 fishmeal baits (4.8%), 0 of 3 liver baits, and 3 of 3 fruit-flavored baits. It took an average of 261 minutes before ferret-badgers made oral contact with the non-fruit flavored baits, and 34 minutes for first contact with the fruit-based bait. Overall, ferret-badgers sought out the fruit baits 8 times faster, spent a greater proportion of time eating fruit baits, and were 7.5 times more likely to have ruptured the vaccine container of the fruit-based bait. Conclusions/Significance Ferret-badgers are now recognized as rabies reservoir species in China and Taiwan, through two independent ‘dog to ferret-badger’ host-shift events. Species of ferret-badgers can be found throughout Indochina, where they may be an unrecognized rabies reservoir. Findings from this initial study underscore the need for further captive and field investigations of fruit-based attractants or baits developed for small meso-carnivores. Non-target mammals’ competition for baits, ants, bait design, and dense tropical landscape represent potential challenges to effective ORV programs that will need to be considered in future studies.
Collapse
Affiliation(s)
- Ryan M. Wallace
- United States Centers for Disease Control and Prevention. Atlanta, GA, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention (CDC), Atlanta, United States of America
- * E-mail: , ,
| | - Yuching Lai
- Department of Environmental and Hazards-Resistant Design, Huafan University, Shiding, New Taipei, Taiwan
| | - Jeffrey B. Doty
- United States Centers for Disease Control and Prevention. Atlanta, GA, United States of America
| | - Chen-Chih Chen
- Institute of Wildlife Conservation, National Pingtung University of Science & Technology, Neipu, Pingtung, Taiwan
| | - Neil M. Vora
- United States Centers for Disease Control and Prevention. Atlanta, GA, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention (CDC), Atlanta, United States of America
| | - Jesse D. Blanton
- United States Centers for Disease Control and Prevention. Atlanta, GA, United States of America
| | - Susan S. Chang
- Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture. Taipei, Taiwan
| | - Julie M. Cleaton
- United States Centers for Disease Control and Prevention. Atlanta, GA, United States of America
- Oak Ridge Institute for Science and Education. Oak Ridge, TN, United States of America
| | - Kurtis J. C. Pei
- Institute of Wildlife Conservation, National Pingtung University of Science & Technology, Neipu, Pingtung, Taiwan
| |
Collapse
|
22
|
Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. Rabies. Nat Rev Dis Primers 2017; 3:17091. [PMID: 29188797 DOI: 10.1038/nrdp.2017.91] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rabies is a life-threatening neglected tropical disease: tens of thousands of cases are reported annually in endemic countries (mainly in Africa and Asia), although the actual numbers are most likely underestimated. Rabies is a zoonotic disease that is caused by infection with viruses of the Lyssavirus genus, which are transmitted via the saliva of an infected animal. Dogs are the most important reservoir for rabies viruses, and dog bites account for >99% of human cases. The virus first infects peripheral motor neurons, and symptoms occur after the virus reaches the central nervous system. Once clinical disease develops, it is almost certainly fatal. Primary prevention involves dog vaccination campaigns to reduce the virus reservoir. If exposure occurs, timely post-exposure prophylaxis can prevent the progression to clinical disease and involves appropriate wound care, the administration of rabies immunoglobulin and vaccination. A multifaceted approach for human rabies eradication that involves government support, disease awareness, vaccination of at-risk human populations and, most importantly, dog rabies control is necessary to achieve the WHO goal of reducing the number of cases of dog-mediated human rabies to zero by 2030.
Collapse
Affiliation(s)
- Anthony R Fooks
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.,Institute of Infection &Global Health, University of Liverpool, Liverpool, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thiravat Hemachudha
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Thai Red Cross Emerging Infectious Disease-Health Science Centre, Thai Red Cross Society, Bangkok, Thailand
| | - Reeta S Mani
- Department of Neurovirology (WHO Collaborating Centre for Reference and Research in Rabies), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Susan Nadin-Davis
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency (WHO Collaborating Centre for Control, Pathogenesis and Epidemiology of Rabies in Carnivores), Ottawa, Ontario, Canada
| | - Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Henry Wilde
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
23
|
Huang WH, Liao AT, Chu PY, Zhai SH, Yen IF, Liu CH. A 3-year surveillance on causes of death or reasons for euthanasia of domesticated dogs in Taiwan. Prev Vet Med 2017; 147:1-10. [PMID: 29254705 DOI: 10.1016/j.prevetmed.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
Over the last 2 decades, there has been growing interest in research on the mortality of domesticated pets. These studies relied on an effective data-collecting system. During 2012-2014, a real-time reporting system was designed for mortality data in owned dogs and cats. The present retrospective study aimed to report on the causes of death (CODs) or reasons for euthanasia (RFEs) in domesticated dogs in Taiwan, and to investigate CODs/RFEs segregated by demographic variables. Data from 2306 domesticated dogs were acquired during the 3-year period in the present study. The median age at death of the study population was 10.2 years (median interquartile range 7.0-14.0; range 0.0-25.0). Crossbred, female, and neutered dogs showed greater ages at death than other groups. The most common COD/RFE was neoplasia, followed by multiple organ involvement (MOI) and cardiovascular diseases. Segregated by cut-off ages, the most common COD/RFE was infection among dogs younger than 3 years or 1year, and neoplasia among dogs at or older than 3 years or 1year of age; the most common COD/RFE was neoplasia among dogs younger than median age, and MOI among dogs at or older than median age. Segregated by geographic variables, the ranking and frequency of CODs/RFEs displayed different patterns between the capital city/non-capital areas, and among areas stratified by human population densities. The study provides various insights into age at death and CODs/RFEs in owned-dog population in Taiwan, and provides new directions for future research.
Collapse
Affiliation(s)
- Wei-Hsiang Huang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 10617, Taiwan, ROC
| | - Albert Taiching Liao
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 10617, Taiwan, ROC
| | - Pei-Yi Chu
- Show Chwan Memorial Hospital, No. 542, Sec. 1, Chung-shan Rd., Changhua 50008, Taiwan, ROC
| | - Shao-Hua Zhai
- Collage of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - I-Feng Yen
- Taipei City Animal Protection Office, No.109, Ln. 600, Wuxing St., Xinyi Dist., Taipei City 11048, Taiwan, ROC
| | - Chen-Hsuan Liu
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 10617, Taiwan, ROC; Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 10617, Taiwan, ROC; National Taiwan University Veterinary Hospital, No.153, Sec. 3, Keelung Rd., Da'an Dist., Taipei City 10672, Taiwan, ROC.
| |
Collapse
|
24
|
Velasco-Villa A, Mauldin MR, Shi M, Escobar LE, Gallardo-Romero NF, Damon I, Olson VA, Streicker DG, Emerson G. The history of rabies in the Western Hemisphere. Antiviral Res 2017. [PMID: 28365457 DOI: 10.1016/j.anti-viral.2017.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Before the introduction of control programs in the 20th century, rabies in domestic dogs occurred throughout the Western Hemisphere. However, historical records and phylogenetic analysis of multiple virus isolates indicate that, before the arrival of the first European colonizers, rabies virus was likely present only in bats and skunks. Canine rabies was either rare or absent among domestic dogs of Native Americans, and first arrived when many new dog breeds were imported during the period of European colonization. The introduction of the cosmopolitan dog rabies lyssavirus variant and the marked expansion of the dog population provided ideal conditions for the flourishing of enzootic canine rabies. The shift of dog-maintained viruses into gray foxes, coyotes, skunks and other wild mesocarnivores throughout the Americas and to mongooses in the Caribbean has augmented the risk of human rabies exposures and has complicated control efforts. At the same time, the continued presence of bat rabies poses novel challenges in the absolute elimination of canine and human rabies. This article compiles existing historical and phylogenetic evidence of the origins and subsequent dynamics of rabies in the Western Hemisphere, from the era preceding the arrival of the first European colonizers through the present day. A companion article reviews the current status of canine rabies control throughout the Western Hemisphere and steps that will be required to achieve and maintain its complete elimination (Velasco-Villa et al., 2017).
Collapse
Affiliation(s)
- Andres Velasco-Villa
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA.
| | - Matthew R Mauldin
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA; Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, TN, USA
| | - Mang Shi
- Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luis E Escobar
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nadia F Gallardo-Romero
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Victoria A Olson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Sir Henry Wellcome Building, Glasgow, G61 1QH, Scotland, UK
| | - Ginny Emerson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| |
Collapse
|
25
|
Pepin KM, Davis AJ, Streicker DG, Fischer JW, VerCauteren KC, Gilbert AT. Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public. PLoS Negl Trop Dis 2017; 11:e0005822. [PMID: 28759576 PMCID: PMC5552346 DOI: 10.1371/journal.pntd.0005822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Background Prevention and control of wildlife disease invasions relies on the ability to predict spatio-temporal dynamics and understand the role of factors driving spread rates, such as seasonality and transmission distance. Passive disease surveillance (i.e., case reports by public) is a common method of monitoring emergence of wildlife diseases, but can be challenging to interpret due to spatial biases and limitations in data quantity and quality. Methodology/Principal findings We obtained passive rabies surveillance data from dead striped skunks (Mephitis mephitis) in an epizootic in northern Colorado, USA. We developed a dynamic patch-occupancy model which predicts spatio-temporal spreading while accounting for heterogeneous sampling. We estimated the distance travelled per transmission event, direction of invasion, rate of spatial spread, and effects of infection density and season. We also estimated mean transmission distance and rates of spatial spread using a phylogeographic approach on a subsample of viral sequences from the same epizootic. Both the occupancy and phylogeographic approaches predicted similar rates of spatio-temporal spread. Estimated mean transmission distances were 2.3 km (95% Highest Posterior Density (HPD95): 0.02, 11.9; phylogeographic) and 3.9 km (95% credible intervals (CI95): 1.4, 11.3; occupancy). Estimated rates of spatial spread in km/year were: 29.8 (HPD95: 20.8, 39.8; phylogeographic, branch velocity, homogenous model), 22.6 (HPD95: 15.3, 29.7; phylogeographic, diffusion rate, homogenous model) and 21.1 (CI95: 16.7, 25.5; occupancy). Initial colonization probability was twice as high in spring relative to fall. Conclusions/Significance Skunk-to-skunk transmission was primarily local (< 4 km) suggesting that if interventions were needed, they could be applied at the wave front. Slower viral invasions of skunk rabies in western USA compared to a similar epizootic in raccoons in the eastern USA implies host species or landscape factors underlie the dynamics of rabies invasions. Our framework provides a straightforward method for estimating rates of spatial spread of wildlife diseases. Rabies is a deadly zoonotic infection with a global distribution. In 2012, an epizootic of skunk rabies established in northern Colorado, USA and spread rapidly through three counties. The epizootic was documented through reports of dead skunks by the public. We examined the reports to determine how rapidly rabies was moving and which factors could explain the patterns of spread. We compared these estimates of spatial movement of rabies to those obtained from analyzing rabies genetic sequences that we obtained from some of the dead skunks reported by the public. By both methods, we found the virus was moving south at a little over 20 km/year and that most transmission between skunks occurred at short distances (< 4 km). Rabies was most likely to spread to new areas during the first half of the year, when skunk populations were producing new offspring. Our genetic model suggested that roads and rivers in the study landscape did not affect movement speed of rabies. We developed a framework that used the spatial data in the public reports to predict where and when skunk rabies would occur next. This framework could be used on public health surveillance data for other diseases or countries.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research Center, United States Department of Agriculture, Wildlife Services, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Amy J. Davis
- National Wildlife Research Center, United States Department of Agriculture, Wildlife Services, Fort Collins, Colorado, United States of America
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Justin W. Fischer
- National Wildlife Research Center, United States Department of Agriculture, Wildlife Services, Fort Collins, Colorado, United States of America
| | - Kurt C. VerCauteren
- National Wildlife Research Center, United States Department of Agriculture, Wildlife Services, Fort Collins, Colorado, United States of America
| | - Amy T. Gilbert
- National Wildlife Research Center, United States Department of Agriculture, Wildlife Services, Fort Collins, Colorado, United States of America
| |
Collapse
|
26
|
Indigenous Wildlife Rabies in Taiwan: Ferret Badgers, a Long Term Terrestrial Reservoir. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5491640. [PMID: 28497055 PMCID: PMC5405374 DOI: 10.1155/2017/5491640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The emerging disease of rabies was confirmed in Taiwan ferret badgers (FBs) and reported to the World Organization for Animal Health (OIE) on July 17, 2013. The spread of wildlife rabies can be related to neighborhood countries in Asia. The phylogenetic analysis was conducted by maximum likelihood (ML) methods and the Bayesian coalescent approach based on the glycoprotein (G) and nucleoprotein (N) genes. The phylogeographic and spatial temporal dynamics of viral transmission were determined by using SPREAD, QGIS. Therefore, the origin and the change with time of the viruses can be identified. Results showed the rabies virus of FB strains in Taiwan is a unique clade among other strains in Asia. According to the phylogeographic coalescent tree, three major genotypes of the FB rabies virus have circulated in three different geographical areas in Taiwan. Two genotypes have distributed into central and southern Taiwan between two ecological river barriers. The third genotype has been limited in southeastern Taiwan by the natural mountain barrier. The diversity of FB rabies viruses indicates that the biological profile of FBs could vary in different geographical areas in Taiwan. An enhanced surveillance system needs to be established near the currently identified natural barriers for early warnings of the rabies virus outbreak in Taiwan.
Collapse
|
27
|
Velasco-Villa A, Mauldin MR, Shi M, Escobar LE, Gallardo-Romero NF, Damon I, Olson VA, Streicker DG, Emerson G. The history of rabies in the Western Hemisphere. Antiviral Res 2017; 146:221-232. [PMID: 28365457 PMCID: PMC5620125 DOI: 10.1016/j.antiviral.2017.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
Before the introduction of control programs in the 20th century, rabies in domestic dogs occurred throughout the Western Hemisphere. However, historical records and phylogenetic analysis of multiple virus isolates indicate that, before the arrival of the first European colonizers, rabies virus was likely present only in bats and skunks. Canine rabies was either rare or absent among domestic dogs of Native Americans, and first arrived when many new dog breeds were imported during the period of European colonization. The introduction of the cosmopolitan dog rabies lyssavirus variant and the marked expansion of the dog population provided ideal conditions for the flourishing of enzootic canine rabies. The shift of dog-maintained viruses into gray foxes, coyotes, skunks and other wild mesocarnivores throughout the Americas and to mongooses in the Caribbean has augmented the risk of human rabies exposures and has complicated control efforts. At the same time, the continued presence of bat rabies poses novel challenges in the absolute elimination of canine and human rabies. This article compiles existing historical and phylogenetic evidence of the origins and subsequent dynamics of rabies in the Western Hemisphere, from the era preceding the arrival of the first European colonizers through the present day. A companion article reviews the current status of canine rabies control throughout the Western Hemisphere and steps that will be required to achieve and maintain its complete elimination (Velasco-Villa et al., 2017).
Collapse
Affiliation(s)
- Andres Velasco-Villa
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA.
| | - Matthew R Mauldin
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA; Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, TN, USA
| | - Mang Shi
- Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luis E Escobar
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nadia F Gallardo-Romero
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Victoria A Olson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Sir Henry Wellcome Building, Glasgow, G61 1QH, Scotland, UK
| | - Ginny Emerson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| |
Collapse
|
28
|
Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, Vignuzzi M, Duchene S, Holmes EC, Bourhy H. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts. PLoS Pathog 2016; 12:e1006041. [PMID: 27977811 PMCID: PMC5158080 DOI: 10.1371/journal.ppat.1006041] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. Zoonoses account for most recently emerged infectious diseases of humans, although little is known about the evolutionary mechanisms involved in cross-species virus transmission. Understanding the evolutionary patterns and processes that underpin such cross-species transmission is of importance for predicting the spread of zoonotic infections, and hence to their ultimate control. We present a large-scale and detailed reconstruction of the evolutionary history of rabies virus (RABV) in domestic and wildlife animal species. RABV is of particular interest as it is capable of infecting many mammals but, paradoxically, is only maintained in distinct epidemiological cycles associated with animal species from the orders Carnivora and Chiroptera. We show that bat-related RABV and dog-related RABV have experienced very different evolutionary dynamics, and that host jumps are sometimes characterized by significant increases in evolutionary rate. Among Carnivora, the association between RABV and particular host species most likely arose from a combination of the historical human-mediated spread of the virus and jumps into new primary host species. In addition, we show that changes in host species are associated with multiple evolutionary pathways including the occurrence of host-specific parallel evolution. Overall, our data indicate that the establishment of dog-related RABV in new carnivore hosts may only require subtle adaptive evolution.
Collapse
Affiliation(s)
- Cécile Troupin
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Marion Tanguy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- Institut Pasteur, Genomics Platform, Paris, France
| | - Claude Sabeta
- Agricultural Research Council, Onderstepoort Veterinary Institute, OIE Rabies Reference Laboratory, Pretoria, South Africa
| | - Hervé Blanc
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | | | - Marco Vignuzzi
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | - Sebastián Duchene
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Lin YC, Chu PY, Chang MY, Hsiao KL, Lin JH, Liu HF. Spatial Temporal Dynamics and Molecular Evolution of Re-Emerging Rabies Virus in Taiwan. Int J Mol Sci 2016; 17:392. [PMID: 26999115 PMCID: PMC4813248 DOI: 10.3390/ijms17030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/26/2022] Open
Abstract
Taiwan has been recognized by the World Organization for Animal Health as rabies-free since 1961. Surprisingly, rabies virus (RABV) was identified in a dead Formosan ferret badger in July 2013. Later, more infected ferret badgers were reported from different geographic regions of Taiwan. In order to know its evolutionary history and spatial temporal dynamics of this virus, phylogeny was reconstructed by maximum likelihood and Bayesian methods based on the full-length of glycoprotein (G), matrix protein (M), and nucleoprotein (N) genes. The evolutionary rates and phylogeographic were determined using Beast and SPREAD software. Phylogenetic trees showed a monophyletic group containing all of RABV isolates from Taiwan and it further separated into three sub-groups. The estimated nucleotide substitution rates of G, M, and N genes were between 2.49 × 10−4–4.75 × 10−4 substitutions/site/year, and the mean ratio of dN/dS was significantly low. The time of the most recent common ancestor was estimated around 75, 89, and 170 years, respectively. Phylogeographic analysis suggested the origin of the epidemic could be in Eastern Taiwan, then the Formosan ferret badger moved across the Central Range of Taiwan to western regions and separated into two branches. In this study, we illustrated the evolution history and phylogeographic of RABV in Formosan ferret badgers.
Collapse
Affiliation(s)
- Yung-Cheng Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Yin Chang
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Kuang-Liang Hsiao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jih-Hui Lin
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei 11561, Taiwan.
| | - Hsin-Fu Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
- Department of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| |
Collapse
|
30
|
Benjathummarak S, Fa-ngoen C, Pipattanaboon C, Boonha K, Ramasoota P, Pitaksajjakul P. Molecular genetic characterization of rabies virus glycoprotein gene sequences from rabid dogs in Bangkok and neighboring provinces in Thailand, 2013–2014. Arch Virol 2016; 161:1261-71. [DOI: 10.1007/s00705-016-2789-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
|
31
|
PATHOLOGY AND MOLECULAR DETECTION OF RABIES VIRUS IN FERRET BADGERS ASSOCIATED WITH A RABIES OUTBREAK IN TAIWAN. J Wildl Dis 2015; 52:57-69. [PMID: 26560756 DOI: 10.7589/2015-01-007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Until Rabies virus (RABV) infection in Taiwan ferret badgers (TWFB; Melogale moschata subaurantiaca) was diagnosed in mid-June 2013, Taiwan had been considered rabies free for >50 yr. Although rabies has also been reported in ferret badgers in China, the pathologic changes and distribution of viral antigens of ferret badger-associated rabies have not been described. We performed a comprehensive pathologic study and molecular detection of rabies virus in three necropsied rabid TWFBs and evaluated archival paraffin-embedded tissue blocks of six other TWFBs necropsied during 2004 and 2012. As in other RABV-infected species, the characteristic pathologic changes in TWFBs were nonsuppurative meningoencephalomyelitis, ganglionitis, and the formation of typical intracytoplasmic Negri bodies, with the brain stem most affected. There was also variable spongiform degeneration, primarily in the perikaryon of neurons and neuropil, in the cerebral cortex, thalamus, and brain stem. In nonnervous system tissues, representative lesions included adrenal necrosis and lymphocytic interstitial sialadenitis. Immunohistochemical staining and fluorescent antibody test demonstrated viral antigens in the perikaryon of the neurons and axonal or dendritic processes throughout the nervous tissue and in the macrophages in various tissues. Similar to raccoons (Procyon lotor) and skunks (Mephitidae), the nervous tissue of rabid TWFBs displayed widely dispersed lesions, RABV antigens, and large numbers of Negri bodies. We traced the earliest rabid TWFB case back to 2004.
Collapse
|
32
|
Chang SS, Tsai HJ, Chang FY, Lee TS, Huang KC, Fang KY, Wallace RM, Inoue S, Fei CY. Government Response to the Discovery of a Rabies Virus Reservoir Species on a Previously Designated Rabies-Free Island, Taiwan, 1999-2014. Zoonoses Public Health 2015; 63:396-402. [PMID: 26542085 DOI: 10.1111/zph.12240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/28/2022]
Abstract
Taiwan had been considered rabies free since 1961. In 2013, Taiwan confirmed the detection of rabies virus in wild Taiwan ferret-badgers. Up to December 2014, there have been 423 rabies-confirmed ferret-badgers and three cases of spillover infection into non-reservoir hosts. Genetic analysis indicates that TFBV is distinct from all other known rabies virus variants. To date, ferret-badger rabies is known to occur only in China and Taiwan. The temporal dynamics of rabid ferret-badgers in Taiwan suggests that the epizootic appears to have subsided to enzootic levels as of December 2014. According to the current epidemiologic data, there is only one TFBV strain in Taiwan. TFBV is still sequestered to the mountainous regions. Humans are at risk mainly through exposure to the virus from infected domestic meso-carnivores, mainly dogs and cats. Dogs and cats should be vaccinated to establish an immunological barrier to stop the spread of the disease from mountainous regions to domestic meso-carnivores.
Collapse
Affiliation(s)
- S-S Chang
- Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Taipei, Taiwan
| | - H-J Tsai
- Animal Health Research Institute, Council of Agriculture, Taipei, Taiwan
| | - F-Y Chang
- Taiwan Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - T-S Lee
- Forestry Bureau, Council of Agriculture, Taipei, Taiwan
| | - K-C Huang
- Department of Animal Industry, Council of Agriculture, Taipei, Taiwan
| | - K-Y Fang
- Endemic Species Research Institute, Council of Agriculture, Taipei, Taiwan
| | - R M Wallace
- United States Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| | - S Inoue
- National Institute of Infectious Diseases, Tokyo, Japan
| | - C-Y Fei
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Tsai KJ, Hsu WC, Chuang WC, Chang JC, Tu YC, Tsai HJ, Liu HF, Wang FI, Lee SH. Emergence of a sylvatic enzootic formosan ferret badger-associated rabies in Taiwan and the geographical separation of two phylogenetic groups of rabies viruses. Vet Microbiol 2015; 182:28-34. [PMID: 26711025 DOI: 10.1016/j.vetmic.2015.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/17/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
Taiwan had been declared rabies-free in humans and domestic animals for five decades until July 2013, when surprisingly, three Formosan ferret badgers (FB) were diagnosed with rabies. Since then, a variety of wild carnivores and other wildlife species have been found dead, neurologically ill, or exhibiting aggressive behaviors around the island. To determine the affected animal species, geographic areas, and environments, animal bodies were examined for rabies by direct fluorescent antibody test (FAT). The viral genomes from the brains of selected rabid animals were sequenced for the phylogeny of rabies viruses (RABV). Out of a total of 1016 wild carnivores, 276/831 (33.2%) Formosan FBs were FAT positive, with occasional biting incidents in 1 dog and suspected spillover in 1 house shrew. All other animals tested, including dogs, cats, bats, mice, house shrews, and squirrels, were rabies-negative. The rabies was badger-associated and confined to nine counties/cities in sylvatic environments. Phylogeny of nucleoprotein and glycoprotein genes from 59 Formosan FB-associated RABV revealed them to be clustered in two distinct groups, TWI and TWII, consistent with the geographic segregation into western and eastern Taiwan provided by the Central Mountain Range and into northern rabies-free and central-southern rabies-affected regions by a river bisecting western Taiwan. The unique features of geographic and genetic segregation, sylvatic enzooticity, and FB-association of RABV suggest a logical strategy for the control of rabies in this nation.
Collapse
Affiliation(s)
- K J Tsai
- Animal Health Research Institute, No.376, Chung-Cheng Rd., Tamsui District, New Taipei City 25158, Taiwan
| | - W C Hsu
- Animal Health Research Institute, No.376, Chung-Cheng Rd., Tamsui District, New Taipei City 25158, Taiwan
| | - W C Chuang
- Animal Health Research Institute, No.376, Chung-Cheng Rd., Tamsui District, New Taipei City 25158, Taiwan
| | - J C Chang
- Animal Health Research Institute, No.376, Chung-Cheng Rd., Tamsui District, New Taipei City 25158, Taiwan
| | - Y C Tu
- Animal Health Research Institute, No.376, Chung-Cheng Rd., Tamsui District, New Taipei City 25158, Taiwan
| | - H J Tsai
- Animal Health Research Institute, No.376, Chung-Cheng Rd., Tamsui District, New Taipei City 25158, Taiwan; School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei City, 10617, Taiwan
| | - H F Liu
- Department of Medical Research, Mackay Memorial Hospital, No.45, Minsheng Rd., Tamsui District, New Taipei City 25160, Taiwan
| | - F I Wang
- School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei City, 10617, Taiwan
| | - S H Lee
- Animal Drugs Inspection Branch, Animal Health Research Institute, No.21, Qiding, Zhunan Township, Miaoli County 35054, Taiwan.
| |
Collapse
|
34
|
Rabies Virus Infection in Ferret Badgers (Melogale moschata subaurantiaca) in Taiwan: A Retrospective Study. J Wildl Dis 2015; 51:923-8. [PMID: 26267459 DOI: 10.7589/2015-04-090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fifteen ferret badgers (Melogale moschata subaurantiaca), collected 2010-13 and stored frozen, were submitted for rabies diagnosis by direct fluorescent antibody test and reverse transcription PCR. We detected seven positive animal samples, including some from 2010, which indicated that the ferret badger population in Taiwan had been affected by rabies prior to 2010.
Collapse
|
35
|
Huang ASE, Chen WC, Huang WT, Huang ST, Lo YC, Wei SH, Kuo HW, Chan PC, Hung MN, Liu YL, Mu JJ, Yang JY, Liu DP, Chou JH, Chuang JH, Chang FY. Public Health Responses to Reemergence of Animal Rabies, Taiwan, July 16-December 28, 2013. PLoS One 2015; 10:e0132160. [PMID: 26162074 PMCID: PMC4498755 DOI: 10.1371/journal.pone.0132160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/10/2015] [Indexed: 12/25/2022] Open
Abstract
Taiwan had been free of indigenous human and animal rabies case since canine rabies was eliminated in 1961. In July 2013, rabies was confirmed among three wild ferret-badgers, prompting public health response to prevent human rabies cases. This descriptive study reports the immediate response to the reemergence of rabies in Taiwan. Response included enhanced surveillance for human rabies cases by testing stored cerebrospinal fluids (CSF) from patients with encephalitides of unknown cause by RT-PCR, prioritizing vaccine use for postexposure prophylaxis (PEP) during periods of vaccine shortage and subsequent expansion of PEP, surveillance of animal bites using information obtained from vaccine application, roll out of preexposure prophylaxis (PrEP) with vaccine stock restoration, surveillance for adverse events following immunization (AEFI), and ensuring surge capacity to respond to general public inquiries by phone and training for healthcare professionals. Enhanced surveillance for human rabies found no cases after testing 205 stored CSF specimens collected during January 2010-July 2013. During July 16 to December 28, 2013, we received 8,241 rabies PEP application; 6,634 (80.5%) were consistent with recommendations. Among the 6,501 persons who received at least one dose of rabies vaccine postexposure, 4,953 (76.2%) persons who were bitten by dogs; only 59 (0.9%) persons were bitten by ferret-badgers. During the study period, 6,247 persons received preexposure prophylaxis. There were 23 reports of AEFI; but no anaphylaxis, Guillain-Barré syndrome, or acute disseminated encephalomyelitis were found. During the study period, there were 40,312 calls to the Taiwan Centers for Disease Control hotline, of which, 8,692 (22%) were related to rabies. Recent identification of rabies among ferret-badgers in a previously rabies-free country prompted rapid response. To date, no human rabies has been identified. Continued multifaceted surveillance and interministerial collaboration are crucial to achieve the goal of rabies-free status in Taiwan.
Collapse
Affiliation(s)
| | - Wan-Chin Chen
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Wan-Ting Huang
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Shih-Tse Huang
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Yi-Chun Lo
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Sung-Hsi Wei
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Hung-Wei Kuo
- Epidemic Intelligence Center, Centers for Disease Control, Taipei, Taiwan
| | - Pei-Chun Chan
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Min-Nan Hung
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Yu-Lun Liu
- Office of Preventive Medicine, Centers for Disease Control, Taipei, Taiwan
| | - Jung-Jung Mu
- Center for Research and Diagnostics, Centers for Disease Control, Taipei, Taiwan
| | - Jyh-Yuan Yang
- Center for Research and Diagnostics, Centers for Disease Control, Taipei, Taiwan
| | - Ding-Ping Liu
- Epidemic Intelligence Center, Centers for Disease Control, Taipei, Taiwan
| | - Jih-Haw Chou
- Office of Deputy Director, Centers for Disease Control, Taipei, Taiwan
| | - Jen-Hsiang Chuang
- Office of Deputy Director, Centers for Disease Control, Taipei, Taiwan
| | - Feng-Yee Chang
- National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|