1
|
Alvarez J, Boklund A, Dippel S, Dórea F, Figuerola J, Herskin MS, Michel V, Miranda Chueca MÁ, Nannoni E, Nielsen SS, Nonno R, Riber AB, Stegeman JA, Ståhl K, Thulke H, Tuyttens F, Winckler C, Brugerolles C, Wolff T, Parys A, Lindh E, Latorre‐Margalef N, Rameix Welti M, Dürrwald R, Trebbien R, Van der Werf S, Gisslén M, Monne I, Fusaro A, Guinat C, Bortolami A, Alexakis L, Enkirch T, Svartstrom O, Willgert K, Baldinelli F, Preite L, Grant M, Broglia A, Melidou A. Preparedness, prevention and control related to zoonotic avian influenza. EFSA J 2025; 23:e9191. [PMID: 39882189 PMCID: PMC11775931 DOI: 10.2903/j.efsa.2025.9191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
A risk assessment framework was developed to evaluate the zoonotic potential of avian influenza (AI), focusing on virus mutations linked to phenotypic traits related to mammalian adaptation identified in the literature. Virus sequences were screened for the presence of these mutations and their geographical, temporal and subtype-specific trends. Spillover events to mammals (including humans) and human seroprevalence studies were also reviewed. Thirty-four mutations associated with five phenotypic traits (increased receptor specificity, haemagglutinin stability, neuraminidase specificity, enhanced polymerase activity and evasion of innate immunity) were shortlisted. AI viruses (AIVs) carrying multiple adaptive mutations and traits belonged to both low and highly pathogenic subtypes, mainly to A(H9N2), A(H7N9), A(H5N6) and A(H3N8), were sporadic and primarily detected in Asia. In the EU/EEA, H5Nx viruses of clade 2.3.4.4b, which have increased opportunities for evolution due to widespread circulation in birds and occasional cases/outbreaks in mammals, have acquired the highest number of zoonotic traits. Adaptive traits, such as enhanced polymerase activity and immune evasion, were frequently acquired, while receptor-specific mutations remained rare. Globally, human cases remain rare, with the majority overall due to A(H5N1), A(H5N6), A(H7N9) and A(H9N2) that are among the subtypes that tend to have a higher number of adaptive traits. The main drivers of mammalian adaptation include virus and host characteristics, and external factors increasing AIV exposure of mammals and humans to wild and domestic birds (e.g. human activities and ecological factors). Comprehensive surveillance of AIVs targeting adaptive mutations with whole genome sequencing in animals and humans is essential for early detection of zoonotic AIVs and efficient implementation of control measures. All preparedness, preventive and control measures must be implemented under a One Health framework and tailored to the setting and the epidemiological situation; in particular, enhanced monitoring, biosecurity, genomic surveillance and global collaboration are critical for mitigating the zoonotic risks of AIV.
Collapse
Affiliation(s)
| | | | - Julio Alvarez
- EFSA Panel on Animal Health and Animal Welfare members
| | | | - Sabine Dippel
- EFSA Panel on Animal Health and Animal Welfare members
| | | | | | | | | | | | | | | | - Romolo Nonno
- EFSA Panel on Animal Health and Animal Welfare members
| | - Anja B. Riber
- EFSA Panel on Animal Health and Animal Welfare members
| | | | - Karl Ståhl
- EFSA Panel on Animal Health and Animal Welfare members
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Guan M, DeLiberto TJ, Feng A, Zhang J, Li T, Wang S, Li L, Killian ML, Praena B, Giri E, Deliberto ST, Hang J, Olivier A, Torchetti MK, Tao YJ, Parrish C, Wan XF. Neu5Gc binding loss of subtype H7 influenza A virus facilitates adaptation to gallinaceous poultry following transmission from waterbirds. J Virol 2024; 98:e0011924. [PMID: 39225467 PMCID: PMC11494897 DOI: 10.1128/jvi.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Thomas J. DeLiberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Aijing Feng
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Emily Giri
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Shelagh T. Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Guan M, Deliberto TJ, Feng A, Zhang J, Li T, Wang S, Li L, Killian ML, Praena B, Giri E, Deliberto ST, Hang J, Olivier A, Torchetti MK, Tao YJ, Parrish C, Wan XF. Neu5Gc binding loss of subtype H7 influenza A virus facilitates adaptation to gallinaceous poultry following transmission from waterbirds but restricts spillback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573990. [PMID: 38260375 PMCID: PMC10802348 DOI: 10.1101/2024.01.02.573990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Migratory waterfowl, gulls, and shorebirds serve as natural reservoirs for influenza A viruses, with potential spillovers to domestic poultry and humans. The intricacies of interspecies adaptation among avian species, particularly from wild birds to domestic poultry, are not fully elucidated. In this study, we investigated the molecular mechanisms underlying avian species barriers in H7 transmission, particularly the factors responsible for the disproportionate distribution of poultry infected with A/Anhui/1/2013 (AH/13)-lineage H7N9 viruses. We hypothesized that the differential expression of N-glycolylneuraminic acid (Neu5Gc) among avian species exerts selective pressure on H7 viruses, shaping their evolution and enabling them to replicate and transmit efficiently among gallinaceous poultry, particularly chickens. Our glycan microarray and biolayer interferometry experiments showed that AH/13-lineage H7N9 viruses exclusively bind to Neu5Ac, in contrast to wild waterbird H7 viruses that bind both Neu5Ac and Neu5Gc. Significantly, reverting the V179 amino acid in AH/13-lineage back to the I179, predominantly found in wild waterbirds, expanded the binding affinity of AH/13-lineage H7 viruses from exclusively Neu5Ac to both Neu5Ac and Neu5Gc. When cultivating H7 viruses in cell lines with varied Neu5Gc levels, we observed that Neu5Gc expression impairs the replication of Neu5Ac-specific H7 viruses and facilitates adaptive mutations. Conversely, Neu5Gc deficiency triggers adaptive changes in H7 viruses capable of binding to both Neu5Ac and Neu5Gc. Additionally, we assessed Neu5Gc expression in the respiratory and gastrointestinal tissues of seven avian species, including chickens, Canada geese, and various dabbling ducks. Neu5Gc was absent in chicken and Canada goose, but its expression varied in the duck species. In summary, our findings reveal the crucial role of Neu5Gc in shaping the host range and interspecies transmission of H7 viruses. This understanding of virus-host interactions is crucial for developing strategies to manage and prevent influenza virus outbreaks in diverse avian populations.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Thomas J. Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Aijing Feng
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, TX, 77030 USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Emily Giri
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Shelagh T Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Regional Distribution of Non-human H7N9 Avian Influenza Virus Detections in China and Construction of a Predictive Model. J Vet Res 2021; 65:253-264. [PMID: 34917836 PMCID: PMC8643092 DOI: 10.2478/jvetres-2021-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction H7N9 avian influenza has broken out in Chinese poultry 10 times since 2013 and impacted the industry severely. Although the epidemic is currently under control, there is still a latent threat. Material and Methods Epidemiological surveillance data for non-human H7N9 avian influenza from April 2013 to April 2020 were used to analyse the regional distribution and spatial correlations of positivity rates in different months and years and before and after comprehensive immunisation. In addition, positivity rate monitoring data were disaggregated into a low-frequency and a high-frequency trend sequence by wavelet packet decomposition (WPD). The particle swarm optimisation algorithm was adopted to optimise the least squares support-vector machine (LS-SVM) model parameters to predict the low-frequency trend sequence, and the autoregressive integrated moving average (ARIMA) model was used to predict the high-frequency one. Ultimately, an LS-SVM-ARIMA combined model based on WPD was constructed. Results The virus positivity rate was the highest in late spring and early summer, and overall it fell significantly after comprehensive immunisation. Except for the year 2015 and the single month of December from 2013 to 2020, there was no significant spatiotemporal clustering in cumulative non-human H7N9 avian influenza virus detections. Compared with the ARIMA and LS-SVM models, the LS-SVM-ARIMA combined model based on WPD had the highest prediction accuracy. The mean absolute and root mean square errors were 2.4% and 2.0%, respectively. Conclusion Low error measures prove the validity of this new prediction method and the combined model could be used for inference of future H7N9 avian influenza virus cases. Live poultry markets should be closed in late spring and early summer, and comprehensive H7N9 immunisation continued.
Collapse
|
5
|
He D, Gu M, Wang X, Wang X, Li G, Yan Y, Gu J, Zhan T, Wu H, Hao X, Wang G, Hu J, Hu S, Liu X, Su S, Ding C, Liu X. Spatiotemporal Associations and Molecular Evolution of Highly Pathogenic Avian Influenza A H7N9 Virus in China from 2017 to 2021. Viruses 2021; 13:2524. [PMID: 34960793 PMCID: PMC8705967 DOI: 10.3390/v13122524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Gairu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chan Ding
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Wang X, Rainey JJ, Goryoka GW, Liang Z, Wu S, Wen L, Duan R, Qin S, Huang H, Kharod G, Rao CY, Salyer SJ, Behravesh CB, Jing H. Using a One Health approach to prioritize zoonotic diseases in China, 2019. PLoS One 2021; 16:e0259706. [PMID: 34797849 PMCID: PMC8604330 DOI: 10.1371/journal.pone.0259706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background China is vulnerable to zoonotic disease transmission due to a large agricultural work force, sizable domestic livestock population, and a highly biodiverse ecology. To better address this threat, representatives from the human, animal, and environmental health sectors in China held a One Health Zoonotic Disease Prioritization (OHZDP) workshop in May 2019 to develop a list of priority zoonotic diseases for multisectoral, One Health collaboration. Methods Representatives used the OHZDP Process, developed by the US Centers for Disease Control and Prevention (US CDC), to prioritize zoonotic diseases for China. Representatives defined the criteria used for prioritization and determined questions and weights for each individual criterion. A review of English and Chinese literature was conducted prior to the workshop to collect disease specific information on prevalence, morbidity, mortality, and Disability-Adjusted Life Years (DALYs) from China and the Western Pacific Region for zoonotic diseases considered for prioritization. Results Thirty zoonotic diseases were evaluated for prioritization. Criteria selected included: 1) disease hazard/severity (case fatality rate) in humans, 2) epidemic scale and intensity (in humans and animals) in China, 3) economic impact, 4) prevention and control, and 5) social impact. Disease specific information was obtained from 792 articles (637 in English and 155 in Chinese) and subject matter experts for the prioritization process. Following discussion of the OHZDP Tool output among disease experts, five priority zoonotic diseases were identified for China: avian influenza, echinococcosis, rabies, plague, and brucellosis. Conclusion Representatives agreed on a list of five priority zoonotic diseases that can serve as a foundation to strengthen One Health collaboration for disease prevention and control in China; this list was developed prior to the emergence of SARS-CoV-2 and the COVID-19 pandemic. Next steps focused on establishing a multisectoral, One Health coordination mechanism, improving multisectoral linkages in laboratory testing and surveillance platforms, creating multisectoral preparedness and response plans, and increasing workforce capacity.
Collapse
Affiliation(s)
- Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jeanette J. Rainey
- Division of Global Health Protection, United States Centers for Disease Control and Prevention, Beijing, China
| | - Grace W. Goryoka
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Zuoru Liang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuyu Wu
- Division of Global Health Protection, United States Centers for Disease Control and Prevention, Beijing, China
| | - Liming Wen
- Yinchuan Animal Center for Disease Control and Prevention, Yinchuan, Ningxia, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haodi Huang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Grishma Kharod
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Carol Y. Rao
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Stephanie J. Salyer
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Casey Barton Behravesh
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
8
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
9
|
Abstract
This report covers the topics of pandemics, epidemics and partnerships, including regulatory convergence initiatives, new technologies and novel vaccines, discussed by leading public and private sector stakeholders at the 18th Annual General Meeting (AGM) of the Developing Countries Vaccine Manufacturers' Network (DCVMN). Contributions of Gavi and the vaccine industry from emerging countries to the growing global vaccine market, by improving the supply base from manufacturers in developing countries and contributing to 58% of doses, were highlighted. The Coalition for Epidemic Preparedness Innovations (CEPI), the International Vaccine Institute (IVI) and others reported on new strategies to ensure speedy progress in preclinical and clinical development of innovative vaccines for future MERS, Zika or other outbreak response. Priorities for vaccine stockpiling, to assure readiness during emergencies and to prevent outbreaks due to re-emerging diseases such as yellow fever, cholera and poliomyelitis, were outlined. The role of partnerships in improving global vaccine access, procurement and immunization coverage, and shared concerns were reviewed. The World Health Organization (WHO) and other international collaborating partners provided updates on the Product, Price and Procurement database, the prequalification of vaccines, the control of neglected tropical diseases, particularly the new rabies elimination initiative, and regulatory convergence proposals to accelerate vaccine registration in developing countries. Updates on supply chain innovations and novel vaccine platforms were presented. The discussions enabled members and partners to reflect on efficiency of research & development, supply chain tools and trends in packaging technologies improving delivery of existing vaccines, and allowing a deeper understanding of the current public-health objectives, industry financing, and global policies, required to ensure optimal investments, alignment and stability of vaccine supply in developing countries.
Collapse
Affiliation(s)
- Sonia Pagliusi
- DCVMN International, Route de Crassier 7, 1262 Nyon, Switzerland.
| | - Maureen Dennehy
- DCVMN International, Route de Crassier 7, 1262 Nyon, Switzerland.
| | - Hun Kim
- Vaccine Business Group, SK Chemicals, SK Chemicals Complex, 332, Pangyo-ro, Bundang-gu, Seongnam-si, 13493 Gyeonggi-do, South Korea.
| |
Collapse
|
10
|
Gun L, Haixian P, Yumiao R, Han T, Jingqi L, Liguang Z. Codon usage characteristics of PB2 gene in influenza A H7N9 virus from different host species. INFECTION GENETICS AND EVOLUTION 2018; 65:430-435. [PMID: 30179716 DOI: 10.1016/j.meegid.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
The influenza A H7N9 virus is a highly contagious virus which can only infect poultry before early 2013. But after that time, it widely caused human infections in China and brought Southeast Asia great threaten in the public health area. The coding gene for polymerase basic protein 2 (PB2) in influenza A H7N9 virus encodes the PB2 protein, which is a part of the RNA polymerase. The enzyme lacks a correction function during its own replication process, so the mutation frequency of the influenza A H7N9 virus gene is high and the PB2 gene is also included. To investigate the codon usages characteristics of PB2 gene, gene sequences of 12 kinds of poultry are downloaded form the gene bank (NCBI) and their codon usage characteristics such as the effective number of codons (ENC), the evolutionary relationship of the sequences, the codon adaptation index (CAI), the correspondence analysis (COA), the relative synonymous codon usage (RSCU) and their PR2-bias are compared and studied. The value of these reults showed that there is a low codon usage bias in the PB2 gene. Then, the differences between the codon usages of PB2 gene from 12 kinds of poultry are compared and their potential applications are discussed. These results could lay a foundation for other further study on the evolution of H7N9.
Collapse
Affiliation(s)
- Li Gun
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China.
| | - Pan Haixian
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Ren Yumiao
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Tian Han
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Lu Jingqi
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Zhang Liguang
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| |
Collapse
|
11
|
Hamid S, Arima Y, Dueger E, Konings F, Bell L, Lee CK, Luo D, Otsu S, Olowokure B, Li A. From H5N1 to HxNy: An epidemiologic overview of human infections with avian influenza in the Western Pacific Region, 2003-2017. Western Pac Surveill Response J 2018; 9:53-67. [PMID: 31832254 PMCID: PMC6902648 DOI: 10.3565/wpsar.2018.9.2.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Yuzo Arima
- National Institute of Infectious Diseases, Japan
| | - Erica Dueger
- WHO Regional Office for the Western Pacific
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Leila Bell
- WHO Regional Office for the Western Pacific
| | | | - Dapeng Luo
- WHO Country Office Lao People’s Democratic Republic
| | | | | | - Ailan Li
- WHO Regional Office for the Western Pacific
| | - WPRO Health Emergencies Programme Teama
- WHO Regional Office for the Western Pacific
- National Institute of Infectious Diseases, Japan
- WHO Country Office China
- WHO Country Office Lao People’s Democratic Republic
- WHO Country Office Viet Nam
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
12
|
Song JY, Noh JY, Lee J, Woo HJ, Lee JS, Wie SH, Kim YK, Jeong HW, Kim SW, Lee SH, Park KH, Kang SH, Kee SY, Kim TH, Choo EJ, Lee HS, Choi WS, Cheong HJ, Kim WJ. Hospital-based Influenza Morbidity and Mortality (HIMM) Surveillance for A/H7N9 Influenza Virus Infection in Returning Travelers. J Korean Med Sci 2018; 33:e49. [PMID: 29359537 PMCID: PMC5785625 DOI: 10.3346/jkms.2018.33.e49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
Since 2013, the Hospital-based Influenza Morbidity and Mortality (HIMM) surveillance system began a H7N9 influenza surveillance scheme for returning travelers in addition to pre-existing emergency room (ER)-based influenza-like illness (ILI) surveillance and severe acute respiratory infection (SARI) surveillance. Although limited to eastern China, avian A/H7N9 influenza virus is considered to have the highest pandemic potential among currently circulating influenza viruses. During the study period between October 1st, 2013 and April 30th, 2016, 11 cases presented with ILI within seven days of travel return. These patients visited China, Hong Kong, or neighboring Southeast Asian countries, but none of them visited a livestock market. Seasonal influenza virus (54.5%, 6 among 11) was the most common cause of ILI among returning travelers, and avian A/H7N9 influenza virus was not detected during the study period.
Collapse
Affiliation(s)
- Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Asian Pacific Influenza Institute (APII), Seoul, Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Asian Pacific Influenza Institute (APII), Seoul, Korea
| | - Jacob Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Heung Jeong Woo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Soo Lee
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Seong Heon Wie
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea College of Medicine, St. Vincent's Hospital, Suwon, Korea
| | - Young Keun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Hye Won Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Shin Woo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sun Hee Lee
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Kyung Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Hui Kang
- Division of Infectious Diseases, Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Sae Yoon Kee
- Division of Infectious Diseases, Department of Internal Medicine, Konkuk University Chungju Hospital, Chungju, Korea
| | - Tae Hyong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Eun Ju Choo
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Han Sol Lee
- BK21 Plus Graduate Program Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Asian Pacific Influenza Institute (APII), Seoul, Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Asian Pacific Influenza Institute (APII), Seoul, Korea.
| |
Collapse
|
13
|
Abstract
OBJECTIVES Despite being the epicenter of recent pandemics, little is known about critical care in Asia. Our objective was to describe the structure, organization, and delivery in Asian ICUs. DESIGN A web-based survey with the following domains: hospital organizational characteristics, ICU organizational characteristics, staffing, procedures and therapies available in the ICU and written protocols and policies. SETTING ICUs from 20 Asian countries from April 2013 to January 2014. Countries were divided into low-, middle-, and high-income based on the 2011 World Bank Classification. SUBJECTS ICU directors or representatives. MEASUREMENTS AND MAIN RESULTS Of 672 representatives, 335 (50%) responded. The average number of hospital beds was 973 (SE of the mean [SEM], 271) with 9% (SEM, 3%) being ICU beds. In the index ICUs, the average number of beds was 21 (SEM, 3), of single rooms 8 (SEM, 2), of negative-pressure rooms 3 (SEM, 1), and of board-certified intensivists 7 (SEM, 3). Most ICUs (65%) functioned as closed units. The nurse-to-patient ratio was 1:1 or 1:2 in most ICUs (84%). On multivariable analysis, single rooms were less likely in low-income countries (p = 0.01) and nonreferral hospitals (p = 0.01); negative-pressure rooms were less likely in private hospitals (p = 0.03) and low-income countries (p = 0.005); 1:1 nurse-to-patient ratio was lower in private hospitals (p = 0.005); board-certified intensivists were less common in low-income countries (p < 0.0001) and closed ICUs were less likely in private (p = 0.02) and smaller hospitals (p < 0.001). CONCLUSIONS This survey highlights considerable variation in critical care structure, organization, and delivery in Asia, which was related to hospital funding source and size, and country income. The lack of single and negative-pressure rooms in many Asian ICUs should be addressed before any future pandemic of severe respiratory illness.
Collapse
|
14
|
Nakamura K, Shirakura M, Suzuki Y, Naito T, Fujisaki S, Tashiro M, Nobusawa E. Development of a high-yield reassortant influenza vaccine virus derived from the A/Anhui/1/2013 (H7N9) strain. Vaccine 2015; 34:328-33. [PMID: 26657023 DOI: 10.1016/j.vaccine.2015.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
In April 2013, the first three fatal cases of human infection with an avian influenza A virus (H7N9) were reported in China. Because of a pandemic threat by this virus, we have commenced to develop candidate vaccine viruses (CVVs). Three 6:2 genetic reassortant viruses with different hemagglutinin (HA) sequences, NIIDRG-10, -10.1 and -10.2, were generated by a reverse genetics technique between the high egg-growth master virus, A/Puerto Rico/8/34 (H1N1) and A/Anhui/1/2013 (H7N9), kindly provided by the Chinese Center for Disease Control and Prevention. The different HA gene sequences of the three CVVs were derived from the original virus stock. NIIDRG-10 possesses HA, whose sequence is identical to that of the original A/Anhui/1/2013 (H7N9) in the Global Initiative on Sharing Avian Influenza Data (EPI439507), while NIIDRG-10.1 and -10.2 possess amino acid differences, A125T and N123D/N149D, respectively, compared with NIIDRG-10. NIIDRG-10 replicated in embryonated chicken eggs with low hemagglutination titer 128, whereas NIIDRG-10.1 and -10.2 grew well with hemagglutination titer 1024. These viruses reacted well with a ferret antiserum raised against the original A/Anhui/1/2013 virus. Ferret antiserum against NIIDRG-10.1 reacted well with A/Anhui/1/2013 similar to the homologous virus NIIDRG-10.1. These results indicated that NIIDRG-10.1 passed the two-way test of antigenic identity. In contrast, the ferret antiserum against NIIDRG-10.2 reacted with A/Anhui/1/2013 at an 8-fold lower hemagglutination inhibition titer than with the homologous virus NIIDRG-10.2, indicating an antigenic change. The total and HA protein yields of NIIDRG-10.1 were 14.7 and 6.9 μg/ml, respectively, similar to those levels of high-yield seed viruses of seasonal influenza vaccines. NIIDRG-10.1 was approved as one of the CVVs for H7N9 viruses by the WHO in 2013. The candidate vaccine derived from NIIDRG-10.1 is currently being evaluated in a phase II clinical study in Japan.
Collapse
Affiliation(s)
- Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yasushi Suzuki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Tadasuke Naito
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Eri Nobusawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
15
|
Zhou P, Ma J, Lai A, Gray GC, Su S, Li S. Avian influenza A(H7N9) virus and mixed live poultry-animal markets in Guangdong province: a perfect storm in the making? Emerg Microbes Infect 2015; 4:e63. [PMID: 26576340 PMCID: PMC4631930 DOI: 10.1038/emi.2015.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/02/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China ; Key Laboratory of Zoonosis Prevention and Control of Guangdong , Guangzhou 510642, Guangdong Province, China
| | - Jun Ma
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China ; Key Laboratory of Zoonosis Prevention and Control of Guangdong , Guangzhou 510642, Guangdong Province, China
| | - Alexander Lai
- College of Arts and Sciences, Kentucky State University , Frankfort, KY 40601, USA
| | - Gregory C Gray
- Division of Infectious Diseases, Global Health Institute, Nicholas School of the Environment, Duke University , Durham, NC 27710 USA
| | - Shuo Su
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China ; Key Laboratory of Zoonosis Prevention and Control of Guangdong , Guangzhou 510642, Guangdong Province, China
| |
Collapse
|