1
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
2
|
Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021; 10:pathogens10111413. [PMID: 34832569 PMCID: PMC8619291 DOI: 10.3390/pathogens10111413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders.
Collapse
|
3
|
Wang Z, Qin K, Camacho MV, Cali I, Yuan J, Shen P, Greenlee J, Kong Q, Mastrianni JA, Zou WQ. Generation of human chronic wasting disease in transgenic mice. Acta Neuropathol Commun 2021; 9:158. [PMID: 34565488 PMCID: PMC8474769 DOI: 10.1186/s40478-021-01262-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.
Collapse
|
4
|
Watson N, Brandel JP, Green A, Hermann P, Ladogana A, Lindsay T, Mackenzie J, Pocchiari M, Smith C, Zerr I, Pal S. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat Rev Neurol 2021; 17:362-379. [PMID: 33972773 PMCID: PMC8109225 DOI: 10.1038/s41582-021-00488-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/04/2023]
Abstract
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, fatal and transmissible neurodegenerative disease associated with the accumulation of misfolded prion protein in the CNS. International CJD surveillance programmes have been active since the emergence, in the mid-1990s, of variant CJD (vCJD), a disease linked to bovine spongiform encephalopathy. Control measures have now successfully contained bovine spongiform encephalopathy and the incidence of vCJD has declined, leading to questions about the requirement for ongoing surveillance. However, several lines of evidence have raised concerns that further cases of vCJD could emerge as a result of prolonged incubation and/or secondary transmission. Emerging evidence from peripheral tissue distribution studies employing high-sensitivity assays suggests that all forms of human prion disease carry a theoretical risk of iatrogenic transmission. Finally, emerging diseases, such as chronic wasting disease and camel prion disease, pose further risks to public health. In this Review, we provide an up-to-date overview of the transmission of prion diseases in human populations and argue that CJD surveillance remains vital both from a public health perspective and to support essential research into disease pathophysiology, enhanced diagnostic tests and much-needed treatments.
Collapse
Affiliation(s)
- Neil Watson
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean-Philippe Brandel
- grid.411439.a0000 0001 2150 9058Cellule Nationale de référence des MCJ, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Alison Green
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Hermann
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Anna Ladogana
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Terri Lindsay
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janet Mackenzie
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maurizio Pocchiari
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Colin Smith
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Inga Zerr
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Suvankar Pal
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Bošnjak M, Zupan A, Fiorini M, Popović KŠ, Popović M. A case of MV2K subtype of sporadic Creutzfeldt-Jakob disease with florid-like plaques: Similarities and differences to variant Creutzfeldt-Jakob disease. Neuropathology 2020; 40:389-398. [PMID: 32249464 DOI: 10.1111/neup.12652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is traditionally regarded as having a distinct clinical course, imaging study findings and neuropathological features, which in combination should allow a clear distinction from the six currently well-defined subtypes of sporadic Creutzfeldt-Jakob disease (sCJD). This is of major importance, especially from the standpoint of epidemiology. As we would like to demonstrate through this case report, the MV2K subtype of sCJD, being rare and heterogeneous in both clinical and neuropathological presentations, might challenge this concept by virtue of partial overlapping, both clinically and neuropathologically, with the characteristic phenotype of vCJD. Chiefly, we observed prolonged isolated psychiatric prodrome, new onset limb pain and late cognitive decline clinically, while florid-like plaques were present on routine histology, albeit in scarce and regionally restricted distribution when compared to vCJD. However, the issue is further complicated by the fact that a case of vCJD in a heterozygous (i.e. methionine - M and valine - V) allelic state with regard to the polymorphic codon 129 of the prion protein gene (PRNP) has recently been described in the UK, which deviated from the otherwise well-defined and constant clinicopathological phenotype that vCJD had thus far demonstrated. Taking both the facts into account, we would like to emphasize the use of complementary diagnostic methods to the established and otherwise reliable histological type-based model, particularly when confronted with a rare or atypical phenotype such as ours.
Collapse
Affiliation(s)
- Matic Bošnjak
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Zupan
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Michele Fiorini
- Department of Neurologic and Movement Sciences, University of Verona, Verona, Italy
| | - Katarina Š Popović
- Clinical Institute of Radiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Mara Popović
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Variant Creutzfeldt-Jakob Disease Presenting as New-onset Psychosis. J Psychiatr Pract 2019; 25:58-62. [PMID: 30633734 DOI: 10.1097/pra.0000000000000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The case of a patient with a first presentation psychotic episode secondary to variant Creutzfeldt-Jakob Disease (vCJD) is presented. While psychiatric symptoms are considered a prominent feature of vCJD, they may precede characteristic neurological symptoms, which can delay diagnosis. The psychotic symptoms in this case differed in quality from typical psychotic presentations, which could have helped with earlier diagnosis. The patient's symptomatology suggested that errors in cognition and perception were largely contributing to his psychiatric symptoms. These errors appeared to be the result of prion destruction of relevant brain structures that may either be directly or secondarily involved in psychiatric disorders. The findings in this case can help elucidate how vCJD symptoms deviate from established guidelines for diagnosing primary psychiatric disorders.
Collapse
|
7
|
Hwang S, Greenlee JJ, Vance NM, Nicholson EM. Source genotype influence on cross species transmission of transmissible spongiform encephalopathies evaluated by RT-QuIC. PLoS One 2018; 13:e0209106. [PMID: 30571737 PMCID: PMC6301698 DOI: 10.1371/journal.pone.0209106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein to pathogenic β-rich conformers (PrPSc) that accumulate in higher order structures of the brain and other tissues. This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions and for strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how PrPSc isolated from sheep of different genotypes after inoculation with the scrapie agent influence the fibril formation in vitro using RT-QuIC. We found that reaction mixtures seeded with PrPSc from genotype VRQ/VRQ sheep brains have better conversion efficiency with 132M elk substrate compared to reactions seeded with PrPSc from the brains of sheep with the ARQ/ARQ genotype no matter which strain of scrapie was used to seed the reactions. We also inoculated transgenic mice expressing 132M elk PRNP (Tg12) with the scrapie agent from different genotypes of sheep to compare with our RT-QuIC results. The bioassays support the data showing a significantly shorter incubation period for inoculum from VRQ/VRQ sheep when compared to inoculum from ARQ/ARQ sheep. Thus, we conclude that the genotype of both source and recipient can strongly influence transmission.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Natalie M. Vance
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Prions diseases are uniformly fatal neurodegenerative diseases that occur in sporadic, genetic, and acquired forms. Acquired prion diseases, caused by infectious transmission, are least common. Most prion diseases are not infectious, but occur spontaneously through misfolding of normal prion proteins or genetic mutations in the prion protein gene. Although most prion diseases are not caused by infection, they can be transmitted accidentally. Certain infection control protocols should be applied when handling central nervous system and other high-risk tissues. New diagnostic methods are improving premortem and earlier diagnosis. Treatment trials have not shown improved survival, but therapies may be available soon.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Zhong Yang Road, Hualien City, Hualien County 97002, Taiwan
| | - Erika Mariana Longoria Ibarrola
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Dementia Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, Ciudad de México. C.P. 14269, Mexico
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Sevillano AM, Fernández-Borges N, Younas N, Wang F, R. Elezgarai S, Bravo S, Vázquez-Fernández E, Rosa I, Eraña H, Gil D, Veiga S, Vidal E, Erickson-Beltran ML, Guitián E, Silva CJ, Nonno R, Ma J, Castilla J, R. Requena J. Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis. PLoS Pathog 2018; 14:e1006797. [PMID: 29385212 PMCID: PMC5809102 DOI: 10.1371/journal.ppat.1006797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 02/12/2018] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
Very solid evidence suggests that the core of full length PrPSc is a 4-rung β-solenoid, and that individual PrPSc subunits stack to form amyloid fibers. We recently used limited proteolysis to map the β-strands and connecting loops that make up the PrPSc solenoid. Using high resolution SDS-PAGE followed by epitope analysis, and mass spectrometry, we identified positions ~116/118, 133-134, 141, 152-153, 162, 169 and 179 (murine numbering) as Proteinase K (PK) cleavage sites in PrPSc. Such sites likely define loops and/or borders of β-strands, helping us to predict the threading of the β-solenoid. We have now extended this approach to recombinant PrPSc (recPrPSc). The term recPrPSc refers to bona fide recombinant prions prepared by PMCA, exhibiting infectivity with attack rates of ~100%. Limited proteolysis of mouse and bank vole recPrPSc species yielded N-terminally truncated PK-resistant fragments similar to those seen in brain-derived PrPSc, albeit with varying relative yields. Along with these fragments, doubly N- and C-terminally truncated fragments, in particular ~89/97-152, were detected in some recPrPSc preparations; similar fragments are characteristic of atypical strains of brain-derived PrPSc. Our results suggest a shared architecture of recPrPSc and brain PrPSc prions. The observed differences, in particular the distinct yields of specific PK-resistant fragments, are likely due to differences in threading which result in the specific biochemical characteristics of recPrPSc. Furthermore, recombinant PrPSc offers exciting opportunities for structural studies unachievable with brain-derived PrPSc.
Collapse
Affiliation(s)
- Alejandro M. Sevillano
- CIMUS Biomedical Research Institute and Department of Medical Sciences University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
- * E-mail: (AMS); (JRR)
| | | | - Neelam Younas
- CIMUS Biomedical Research Institute and Department of Medical Sciences University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | | | - Susana Bravo
- Proteomics Lab, IDIS, Santiago de Compostela, Spain
| | | | - Isaac Rosa
- CIMUS Biomedical Research Institute and Department of Medical Sciences University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | | | | | - Sonia Veiga
- CIMUS Biomedical Research Institute and Department of Medical Sciences University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Enric Vidal
- Priocat Laboratory, Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Barcelona, Catalonia, Spain
| | | | - Esteban Guitián
- Mass spectrometry Core Facility, RIAIDT, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Christopher J. Silva
- USDA, ARS Western Regional Research Center, Albany, California, United States of America
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | | | - Jesús R. Requena
- CIMUS Biomedical Research Institute and Department of Medical Sciences University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
- * E-mail: (AMS); (JRR)
| |
Collapse
|
10
|
Abstract
Variant CJD (vCJD) was described first in the United Kingdom in 1996. It is a zoonotic form of human prion disease, originating from dietary contamination of human food with material from bovine spongiform encephalopathy (BSE)-affected cattle. It has important epidemiologic, clinical, and neuropathogic differences from other forms of human prion disease. Cases have occurred in several countries but the United Kingdom and France have been most affected. Following the decline in BSE in cattle and the dietary protective measures adopted, vCJD has become an extremely rare disease. However, important concerns remain about asymptomatic infection in human populations (especially the United Kingdom) and the possibility of human-to-human transmission via medical and surgical interventions. Definitive diagnosis depends on neuropathology, usually undertaken at autopsy, but sometimes on brain biopsy. Clinical diagnosis with a reasonable degree of likelihood is, however, possible based on the clinical features and the finding of the pulvinar sign on cerebral magnetic resonance. There are also emerging tests (including blood tests) that have promising sensitivity and specificity for vCJD. It is a progressive illness, inevitably fatal with no curative treatment.
Collapse
Affiliation(s)
| | - Richard Knight
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
11
|
Concha-Marambio L, Pritzkow S, Moda F, Tagliavini F, Ironside JW, Schulz PE, Soto C. Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Sci Transl Med 2017; 8:370ra183. [PMID: 28003548 DOI: 10.1126/scitranslmed.aaf6188] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/03/2016] [Accepted: 12/02/2016] [Indexed: 12/24/2022]
Abstract
Human prion diseases are infectious and invariably fatal neurodegenerative diseases. They include sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, and variant CJD (vCJD), which is caused by interspecies transmission of prions from cattle infected by bovine spongiform encephalopathy. Development of a biochemical assay for the sensitive, specific, early, and noninvasive detection of prions (PrPSc) in the blood of patients affected by prion disease is a top medical priority to increase the safety of the blood supply. vCJD has already been transmitted from human to human by blood transfusion, and the number of asymptomatic carriers of vCJD in the U.K. alone is estimated to be 1 in 2000 people. We used the protein misfolding cyclic amplification (PMCA) technique to analyze blood samples from 14 cases of vCJD and 153 controls, including patients affected by sCJD and other neurodegenerative or neurological disorders as well as healthy subjects. Our results showed that PrPSc could be detected with 100% sensitivity and specificity in blood samples from vCJD patients. Detection was possible in any of the blood fractions analyzed and could be done with as little as a few microliters of sample volume. The PrPSc concentration in blood was estimated to be ~0.5 pg/ml. Our findings suggest that PMCA may be useful for premortem noninvasive diagnosis of vCJD and to identify prion contamination of the blood supply. Further studies are needed to fully validate the technology.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA.,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Fabio Moda
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA.,IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | | | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Paul E Schulz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA. .,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| |
Collapse
|
12
|
Wall BA, Arnold ME, Radia D, Gilbert W, Ortiz-Pelaez A, Stärk KD, Van Klink E, Guitian J. Evidence for more cost-effective surveillance options for bovine spongiform encephalopathy (BSE) and scrapie in Great Britain. ACTA ACUST UNITED AC 2017; 22:30594. [PMID: 28816650 PMCID: PMC6373614 DOI: 10.2807/1560-7917.es.2017.22.32.30594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/15/2017] [Indexed: 11/20/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are an important public health concern. Since the emergence of bovine spongiform encephalopathy (BSE) during the 1980s and its link with human Creutzfeldt-Jakob disease, active surveillance has been a key element of the European Union's TSE control strategy. Success of this strategy means that now, very few cases are detected compared with the number of animals tested. Refining surveillance strategies would enable resources to be redirected towards other public health priorities. Cost-effectiveness analysis was performed on several alternative strategies involving reducing the number of animals tested for BSE and scrapie in Great Britain and, for scrapie, varying the ratio of sheep sampled in the abattoir to fallen stock (which died on the farm). The most cost-effective strategy modelled for BSE involved reducing the proportion of fallen stock tested from 100% to 75%, producing a cost saving of ca GBP 700,000 per annum. If 50% of fallen stock were tested, a saving of ca GBP 1.4 million per annum could be achieved. However, these reductions are predicted to increase the period before surveillance can detect an outbreak. For scrapie, reducing the proportion of abattoir samples was the most cost-effective strategy modelled, with limited impact on surveillance effectiveness.
Collapse
Affiliation(s)
- Ben A Wall
- Royal Veterinary College, London, United Kingdom
| | - Mark E Arnold
- Animal and Plant Health Agency, Weybridge, United Kingdom
| | | | - Will Gilbert
- Royal Veterinary College, London, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Yang Q, Zhang S, Liu L, Cao X, Lei C, Qi X, Lin F, Qu W, Qi X, Liu J, Wang R, Chen H, Lan X. Application of mathematical expectation (ME) strategy for detecting low frequency mutations: An example for evaluating 14-bp insertion/deletion (indel) within the bovine PRNP gene. Prion 2017; 10:409-419. [PMID: 27580010 DOI: 10.1080/19336896.2016.1211593] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The detection method based on the mathematical expectation (ME) strategy is fast and accuracy for low frequency mutation screening in large samples. Previous studies have found that the 14-bp insertion/deletion (indel) variants of the 3' untranslated region (3' UTR) within bovine PRNP gene have been characterized with low frequency (≤5%) in global breeds outside China, which has not been determined in Chinese cattle breeds yet. Therefore, this study aimed to identify the 14-bp indel within PRNP gene in 5 major Chinese indigenous cattle breeds and to evaluate its associations with phenotypic traits. It was the first time to use ME strategy to detect low frequency indel polymorphisms and found that minor allele frequency was 0.038 (Qinchuan), 0.033 (Xianan), 0.013 (Nanyang), 0.003 (Jiaxian), and zero (Ji'an), respectively. Compared to the traditional detection method by which the sample was screened one by one, the reaction time by using the ME method was decreased 62.5%, 64.9%, 77.6%, 88.9% and 66.4%, respectively. In addition, the 14-bp indel was significantly associated with the growth traits in 2 cattle breeds, with the body length of Qinchuan cattle as well as the body weight and waistline of Xianan cattle. Our results have uncovered that the method based on ME strategy is rapid, reliable, and cost-effective for detecting the low frequency mutation as well as our findings provide a potential valuable theoretical basis for the marker-assisted selection (MAS) in beef cattle.
Collapse
Affiliation(s)
- Qing Yang
- a Innovation Experimental College , Northwest A&F University , Yangling , Shaanxi , P. R. China.,b College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , P. R. China
| | - Sihuan Zhang
- b College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , P. R. China
| | - Liangliang Liu
- c School of Statistics and Information , ShangHai University of International Business and Economics , Shanghai , P. R. China
| | - Xiukai Cao
- b College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , P. R. China
| | - Chuzhao Lei
- b College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , P. R. China
| | - Xinglei Qi
- d Xianan Cattle Technology Development Company , Biyang , Henan , P. R. China.,e Bureau of Animal Husbandry , Biyang , Henan , P. R. China
| | - Fengpeng Lin
- d Xianan Cattle Technology Development Company , Biyang , Henan , P. R. China.,e Bureau of Animal Husbandry , Biyang , Henan , P. R. China
| | - Weidong Qu
- e Bureau of Animal Husbandry , Biyang , Henan , P. R. China
| | - Xingshan Qi
- e Bureau of Animal Husbandry , Biyang , Henan , P. R. China
| | - Jiming Liu
- f Animal Husbandry Technology Promotion Station of Jiangxi , Nanchang , Jiangxi , P. R. China
| | - Rongmin Wang
- f Animal Husbandry Technology Promotion Station of Jiangxi , Nanchang , Jiangxi , P. R. China
| | - Hong Chen
- b College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , P. R. China
| | - Xianyong Lan
- b College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling , Shaanxi , P. R. China
| |
Collapse
|
14
|
Yang H, Huang Y, Gregori L, Asher DM, Bui T, Forshee RA, Anderson SA. Geographic exposure risk of variant Creutzfeldt-Jakob disease in US blood donors: a risk-ranking model to evaluate alternative donor-deferral policies. Transfusion 2017; 57:924-932. [DOI: 10.1111/trf.13971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/18/2016] [Accepted: 11/20/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Hong Yang
- US Food and Drug Administration; Silver Spring Maryland
| | - Yin Huang
- US Food and Drug Administration; Silver Spring Maryland
| | - Luisa Gregori
- US Food and Drug Administration; Silver Spring Maryland
| | | | - Travis Bui
- US Food and Drug Administration; Silver Spring Maryland
| | | | | |
Collapse
|
15
|
Pathogens of Food Animals: Sources, Characteristics, Human Risk, and Methods of Detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:277-365. [PMID: 28427535 DOI: 10.1016/bs.afnr.2016.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogens associated with food production (livestock) animals come in many forms causing a multitude of disease for humans. For the purpose of this review, these infectious agents can be divided into three broad categories: those that are associated with bacterial disease, those that are associated with viruses, and those that are parasitic in nature. The goal of this chapter is to provide the reader with an overview of the most common pathogens that cause disease in humans through exposure via the food chain and the consequence of this exposure as well as risk and detection methods. We have also included a collection of unusual pathogens that although rare have still caused disease, and their recognition is warranted in light of emerging and reemerging diseases. These provide the reader an understanding of where the next big outbreak could occur. The influence of the global economy, the movement of people, and food makes understanding production animal-associated disease paramount to being able to address new diseases as they arise.
Collapse
|
16
|
Paz SA, Vanden-Eijnden E, Abrams CF. Polymorphism at 129 dictates metastable conformations of the human prion protein N-terminal β-sheet. Chem Sci 2017; 8:1225-1232. [PMID: 28451263 PMCID: PMC5369536 DOI: 10.1039/c6sc03275c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/30/2016] [Indexed: 12/16/2022] Open
Abstract
We study the thermodynamic stability of the native state of the human prion protein using a new free-energy method, replica-exchange on-the-fly parameterization. This method is designed to overcome hidden-variable sampling limitations to yield nearly error-free free-energy profiles along a conformational coordinate. We confirm that all four (M129V, D178N) polymorphs have a ground-state conformation with three intact β-sheet hydrogen bonds. Additionally, they are observed to have distinct metastabilities determined by the side-chain at position 129. We rationalize these findings with reference to the prion "strain" hypothesis, which links the variety of transmissible spongiform encephalopathy phenotypes to conformationally distinct infectious prion forms and classifies distinct phenotypes of sporadic Creutzfeldt-Jakob disease based solely on the 129 polymorphism. Because such metastable structures are not easily observed in structural experiments, our approach could potentially provide new insights into the conformational origins of prion diseases and other pathologies arising from protein misfolding and aggregation.
Collapse
Affiliation(s)
- S Alexis Paz
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , PA 19104 , USA .
| | - Eric Vanden-Eijnden
- Courant Institute of Mathematical Sciences , New York University , New York , NY 10012 , USA
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , PA 19104 , USA .
| |
Collapse
|
17
|
The Structure of Mammalian Prions and Their Aggregates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:277-301. [PMID: 28109330 DOI: 10.1016/bs.ircmb.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prion diseases, such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (i.e., deer, elk, moose, and reindeer), and sheep scrapie, are caused by the misfolding of the cellular prion protein (PrPC) into a disease-causing conformer (PrPSc). PrPC is a normal, GPI-anchored protein that is expressed on the surface of neurons and other cell types. The structure of PrPC is well understood, based on studies of recombinant PrP, which closely mimics the structure of native PrPC. In contrast, PrPSc is prone to aggregate into a variety of quaternary structures, such as oligomers, amorphous aggregates, and amyloid fibrils. The propensity of PrPSc to assemble into these diverse forms of aggregates is also responsible for our limited knowledge about its structure. Then again, the repeating nature of certain regular PrPSc aggregates has allowed (lower resolution) insights into the structure of the infectious conformer, establishing a four-rung β-solenoid structure as a key element of its architecture.
Collapse
|
18
|
Coulthart MB, Geschwind MD, Qureshi S, Phielipp N, Demarsh A, Abrams JY, Belay E, Gambetti P, Jansen GH, Lang AE, Schonberger LB. A case cluster of variant Creutzfeldt-Jakob disease linked to the Kingdom of Saudi Arabia. Brain 2016; 139:2609-2616. [PMID: 27671029 PMCID: PMC5082737 DOI: 10.1093/brain/aww206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 11/12/2022] Open
Abstract
As of mid-2016, 231 cases of variant Creutzfeldt-Jakob disease-the human form of a prion disease of cattle, bovine spongiform encephalopathy-have been reported from 12 countries. With few exceptions, the affected individuals had histories of extended residence in the UK or other Western European countries during the period (1980-96) of maximum global risk for human exposure to bovine spongiform encephalopathy. However, the possibility remains that other geographic foci of human infection exist, identification of which may help to foreshadow the future of the epidemic. We report results of a quantitative analysis of country-specific relative risks of infection for three individuals diagnosed with variant Creutzfeldt-Jakob disease in the USA and Canada. All were born and raised in Saudi Arabia, but had histories of residence and travel in other countries. To calculate country-specific relative probabilities of infection, we aligned each patient's life history with published estimates of probability distributions of incubation period and age at infection parameters from a UK cohort of 171 variant Creutzfeldt-Jakob disease cases. The distributions were then partitioned into probability density fractions according to time intervals of the patient's residence and travel history, and the density fractions were combined by country. This calculation was performed for incubation period alone, age at infection alone, and jointly for incubation and age at infection. Country-specific fractions were normalized either to the total density between the individual's dates of birth and symptom onset ('lifetime'), or to that between 1980 and 1996, for a total of six combinations of parameter and interval. The country-specific relative probability of infection for Saudi Arabia clearly ranked highest under each of the six combinations of parameter × interval for Patients 1 and 2, with values ranging from 0.572 to 0.998, respectively, for Patient 2 (age at infection × lifetime) and Patient 1 (joint incubation and age at infection × 1980-96). For Patient 3, relative probabilities for Saudi Arabia were not as distinct from those for other countries using the lifetime interval: 0.394, 0.360 and 0.378, respectively, for incubation period, age at infection and jointly for incubation and age at infection. However, for this patient Saudi Arabia clearly ranked highest within the 1980-96 period: 0.859, 0.871 and 0.865, respectively, for incubation period, age at infection and jointly for incubation and age at infection. These findings support the hypothesis that human infection with bovine spongiform encephalopathy occurred in Saudi Arabia.
Collapse
Affiliation(s)
- Michael B Coulthart
- 1 Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael D Geschwind
- 2 Memory and Aging Center, Box 1207, University of California, San Francisco (UCSF), San Francisco, CA 94143-1207, USA
| | - Shireen Qureshi
- 3 Consultant Neurologist, Dhahran Health Center, Dhahran, Saudi Arabia
| | - Nicolas Phielipp
- 4 Department of Neurology, Parkinson's and Movement Disorders Program, University of California Irvine, Irvine, CA 92697, USA
| | - Alex Demarsh
- 5 Zoonoses Division, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, ON K1A 0K9, Canada
| | - Joseph Y Abrams
- 6 Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Ermias Belay
- 6 Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Pierluigi Gambetti
- 7 Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gerard H Jansen
- 8 Eastern Ontario Regional Laboratory Association, Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Anthony E Lang
- 7 Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lawrence B Schonberger
- 6 Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
19
|
Brandt AL, Kelly AC, Green ML, Shelton P, Novakofski J, Mateus-Pinilla NE. Prion protein gene sequence and chronic wasting disease susceptibility in white-tailed deer (Odocoileus virginianus). Prion 2016; 9:449-62. [PMID: 26634768 PMCID: PMC4964855 DOI: 10.1080/19336896.2015.1115179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection – while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas.
Collapse
Affiliation(s)
- Adam L Brandt
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Amy C Kelly
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Michelle L Green
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA ;,b Department of Animal Sciences ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Paul Shelton
- c Illinois Department of Natural Resources ; Division of Wildlife Resources ; Springfield , IL USA
| | - Jan Novakofski
- b Department of Animal Sciences ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Nohra E Mateus-Pinilla
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA ;,b Department of Animal Sciences ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This article presents an update on the clinical aspects of human prion disease, including the wide spectrum of their presentations. RECENT FINDINGS Prion diseases, a group of disorders caused by abnormally shaped proteins called prions, occur in sporadic (Jakob-Creutzfeldt disease), genetic (genetic Jakob-Creutzfeldt disease, Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia), and acquired (kuru, variant Jakob-Creutzfeldt disease, and iatrogenic Jakob-Creutzfeldt disease) forms. This article presents updated information on the clinical features and diagnostic methods for human prion diseases. New antemortem potential diagnostic tests based on amplifying prions in order to detect them are showing very high specificity. Understanding of the diversity of possible presentations of human prion diseases continues to evolve, with some genetic forms progressing slowly over decades, beginning with dysautonomia and neuropathy and progressing to a frontal-executive dementia with pathology of combined prionopathy and tauopathy. Unfortunately, to date, all human prion disease clinical trials have failed to show survival benefit. A very rare polymorphism in the prion protein gene recently has been identified that appears to protect against prion disease; this finding, in addition to providing greater understanding of the prionlike mechanisms of neurodegenerative disorders, might lead to potential treatments. SUMMARY Sporadic Jakob-Creutzfeldt disease is the most common form of human prion disease. Genetic prion diseases, resulting from mutations in the prion-related protein gene (PRNP), are classified based on the mutation, clinical phenotype, and neuropathologic features and can be difficult to diagnose because of their varied presentations. Perhaps most relevant to this Continuum issue on neuroinfectious diseases, acquired prion diseases are caused by accidental transmission to humans, but fortunately, they are the least common form and are becoming rarer as awareness of transmission risk has led to implementation of measures to prevent such occurrences.
Collapse
|
21
|
Prions efficiently cross the intestinal barrier after oral administration: Study of the bioavailability, and cellular and tissue distribution in vivo. Sci Rep 2016; 6:32338. [PMID: 27573341 PMCID: PMC5004172 DOI: 10.1038/srep32338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/04/2016] [Indexed: 11/21/2022] Open
Abstract
Natural forms of prion diseases frequently originate by oral (p.o.) infection. However, quantitative information on the gastro-intestinal (GI) absorption of prions (i.e. the bioavailability and subsequent biodistribution) is mostly unknown. The main goal of this study was to evaluate the fate of prions after oral administration, using highly purified radiolabeled PrP(Sc). The results showed a bi-phasic reduction of PrP(Sc) with time in the GI, except for the ileum and colon which showed sustained increases peaking at 3-6 hr, respectively. Plasma and whole blood (125)I-PrP(Sc) reached maximal levels by 30 min and 3 hr, respectively, and blood levels were constantly higher than plasma. Upon crossing the GI-tract (125)I-PrP(Sc) became associated to blood cells, suggesting that binding to cells decreased the biological clearance of the agent. Size-exclusion chromatography revealed that oligomeric (125)I-PrP(Sc) were transported from the intestinal tract, and protein misfolding cyclic amplification showed that PrP(Sc) in organs and blood retained the typical prion self-replicating ability. Pharmacokinetic analysis found the oral bioavailability of (125)I-PrP(Sc) to be 33.6%. Interestingly, (125)I-PrP(Sc) reached the brain in a quantity equivalent to the minimum amount needed to initiate prion disease. Our findings provide a comprehensive and quantitative study of the fate of prions upon oral infection.
Collapse
|
22
|
Requena JR, Kristensson K, Korth C, Zurzolo C, Simmons M, Aguilar-Calvo P, Aguzzi A, Andreoletti O, Benestad SL, Böhm R, Brown K, Calgua B, del Río JA, Espinosa JC, Girones R, Godsave S, Hoelzle LE, Knittler MR, Kuhn F, Legname G, Laeven P, Mabbott N, Mitrova E, Müller-Schiffmann A, Nuvolone M, Peters PJ, Raeber A, Roth K, Schmitz M, Schroeder B, Sonati T, Stitz L, Taraboulos A, Torres JM, Yan ZX, Zerr I. The Priority position paper: Protecting Europe's food chain from prions. Prion 2016; 10:165-81. [PMID: 27220820 PMCID: PMC4981192 DOI: 10.1080/19336896.2016.1175801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sue Godsave
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Paul Laeven
- University of Maastricht, Maastricht, The Netherlands
| | | | - Eva Mitrova
- Medical University of Slovakia, Bratislava, Slovakia
| | | | | | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | - Lothar Stitz
- Friedrich Löffler Institut, Insel Reims, Germany
| | | | | | | | - Inga Zerr
- Universitätmedizin Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
23
|
Kim Y, Rodriguez AE, Nowzari H. The Risk of Prion Infection through Bovine Grafting Materials. Clin Implant Dent Relat Res 2016; 18:1095-1102. [PMID: 26856530 DOI: 10.1111/cid.12391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bovine-derived grafting materials are frequently used in a variety of bone augmentation techniques. The aim of this paper is to assess the unique safety issue of bovine-derived grafting materials that is rarely addressed in dental literature: risk of bovine spongiform encephalopathy (BSE). METHODS The validity of the current BSE diagnostic methods, surveillance and epidemiological trends in affected countries, and BSE infectivity in bovine bone before and after manufacturing processing were reviewed and analyzed. RESULTS Prion screening has significant limits. Humans are not safe from the infection of prion disease of other species. Prions can and do break the species barrier. There is evidence there may be tens of thousands of infectious carriers in the western countries alone. This raises concern about the potential for perpetuation of infection via medical procedures. CONCLUSION The limited ability to screen prions within the animal genome, along with a long latency period to manifestation of the disease (1 to over 50 years) in infected patients, provides a framework for discussing posible long-term risks of the xenografts that are used so extensively in dentistry. We suggest abolishing the use of bovine bone.
Collapse
Affiliation(s)
- Yeoungsug Kim
- Private practice, K-205, Banpodong 929, Sechogu, Seoul, Korea
| | - Angel Emmanuel Rodriguez
- Resident, Periodontology and Oral Biology Program, Henry M. Goldman School of Dental Medicine, Boston University
| | - Hessam Nowzari
- Private practice, 120 South Spalding Drive, Suite 201, Beverly Hills, CA, 90212, USA
| |
Collapse
|
24
|
Zhang B, Zhu D, Wang W, Gong G, Du W. Influence of oxodiperoxovanadate complexes on prion neuropeptide fibril formation. RSC Adv 2016. [DOI: 10.1039/c5ra25849a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different oxodiperoxovanadate complexes inhibit the fibril formation of prion neuropeptides by different action modes.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Chemistry
- Renmin University of China
- Beijing
- China
- College of Materials Science and Engineering
| | - Dengsen Zhu
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Wenji Wang
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Gehui Gong
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Weihong Du
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| |
Collapse
|
25
|
Manix M, Kalakoti P, Henry M, Thakur J, Menger R, Guthikonda B, Nanda A. Creutzfeldt-Jakob disease: updated diagnostic criteria, treatment algorithm, and the utility of brain biopsy. Neurosurg Focus 2015; 39:E2. [DOI: 10.3171/2015.8.focus15328] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is a rare neurodegenerative condition with a rapid disease course and a mortality rate of 100%. Several forms of the disease have been described, and the most common is the sporadic type. The most challenging aspect of this disease is its diagnosis—the gold standard for definitive diagnosis is considered to be histopatho-logical confirmation—but newer tests are providing means for an antemortem diagnosis in ways less invasive than brain biopsy. Imaging studies, electroencephalography, and biomarkers are used in conjunction with the clinical picture to try to make the diagnosis of CJD without brain tissue samples, and all of these are reviewed in this article. The current diagnostic criteria are limited; test sensitivity and specificity varies with the genetics of the disease as well as the clinical stage. Physicians may be unsure of all diagnostic testing available, and may order outdated tests or prematurely request a brain biopsy when the diagnostic workup is incomplete. The authors review CJD, discuss the role of brain biopsy in this patient population, provide a diagnostic pathway for the patient presenting with rapidly progressive dementia, and propose newer diagnostic criteria.
Collapse
|