1
|
Martini H, Soetens O, Demuyser T, Van Honacker E, Piérard D, Wybo I. Evaluation of the ELITe InGenius and Bordetella ELITe MGB Kit for the detection and identification of B. pertussis, B. parapertussis and B. holmesii. Diagn Microbiol Infect Dis 2024; 109:116348. [PMID: 38759432 DOI: 10.1016/j.diagmicrobio.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Bordetella pertussis is the causative pathogen of whooping cough or pertussis, a contagious respiratory disease. Aside from serodiagnosis, laboratory confirmation of pertussis is done through PCR, as B. pertussis is difficult to culture. The ELITe InGenius instrument (ELITechGroup, France) with accompanying Bordetella ELITe MGB Kit was evaluated against a laboratory-developed assay. Both assays combine two screening (IS481, IS1001) and two confirmation targets (recA, ptxA-Pr or IS1002) for optimal sensitivity and specificity. The company's stated claims on sensitivity and reproducibility were confirmed. Accuracy testing showed full concordance between both assays for the screening targets. Minor discrepancies were seen for the B. pertussis confirmation target. Some cross-reactivity with other Bordetella species was observed for the IS481-target, however, none of these were confirmed in the ptxA-Pr target. These results show the suitability of the Bordetella ELITe MGB Kit for the detection and differentiation of B. pertussis, B. parapertussis and B. holmesii.
Collapse
Affiliation(s)
- Helena Martini
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium.
| | - Oriane Soetens
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium
| | - Thomas Demuyser
- Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Eveline Van Honacker
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium
| | - Denis Piérard
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium
| | - Ingrid Wybo
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium
| |
Collapse
|
2
|
Kang KR, Kim JA, Cho GW, Kang HU, Kang HM, Kang JH, Seong BL, Lee SY. Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines (Basel) 2024; 12:108. [PMID: 38276680 PMCID: PMC10818713 DOI: 10.3390/vaccines12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Since the 2000s, sporadic outbreaks of whooping cough have been reported in advanced countries, where the acellular pertussis vaccination rate is relatively high, and in developing countries. Small-scale whooping cough has also continued in many countries, due in part to the waning of immune protection after childhood vaccination, necessitating the development of an improved pertussis vaccine and vaccination program. Currently, two different production platforms are being actively pursued in Korea; one is based on the aP (acellular pertussis) vaccine purified from B. pertussis containing pertussis toxoid (PT), filamentous hemagglutin (FHA) and pertactin (PRN), and the other is based on the recombinant aP (raP), containing genetically detoxified pertussis toxin ADP-ribosyltransferase subunit 1 (PtxS1), FHA, and PRN domain, expressed and purified from recombinant E. coli. aP components were further combined with diphtheria and tetanus vaccine components as a prototype DTaP vaccine by GC Pharma (GC DTaP vaccine). We evaluated and compared the immunogenicity and the protective efficacy of aP and raP vaccines in an experimental murine challenge model: humoral immunity in serum, IgA secretion in nasal lavage, bacterial clearance after challenge, PTx (pertussis toxin) CHO cell neutralization titer, cytokine secretion in spleen single cell, and tissue resident memory CD4+ T cell (CD4+ TRM cell) in lung tissues. In humoral immunogenicity, GC DTaP vaccines showed high titers for PT and PRN and showed similar patterns in nasal lavage and IL-5 cytokine secretions. The GC DTaP vaccine and the control vaccine showed equivalent results in bacterial clearance after challenge, PTx CHO cell neutralization assay, and CD4+ TRM cell. In contrast, the recombinant raP vaccine exhibited strong antibody responses for FHA and PRN, albeit with low antibody level of PT and low titer in PTx CHO neutralization assay, as compared to control and GC DTaP vaccines. The raP vaccine provided a sterile lung bacterial clearance comparable to a commercial control vaccine after the experimental challenge in murine model. Moreover, raP exhibited a strong cytokine response and CD4+ TRM cell in lung tissue, comparable or superior to the experimental and commercial DTaP vaccinated groups. Contingent on improving the biophysical stability and humoral response to PT, the raP vaccine warrants further development as an effective alternative to aP vaccines for the control of a pertussis outbreak.
Collapse
Affiliation(s)
- Kyu-Ri Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Ji-Ahn Kim
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Gyu-Won Cho
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Han-Ul Kang
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Hyun-Mi Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Han Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Young Lee
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon 14647, Republic of Korea
| |
Collapse
|
3
|
Moosa F, du Plessis M, Weigand MR, Peng Y, Mogale D, de Gouveia L, Nunes MC, Madhi SA, Zar HJ, Reubenson G, Ismail A, Tondella ML, Cohen C, Walaza S, von Gottberg A, Wolter N. Genomic characterization of Bordetella pertussis in South Africa, 2015-2019. Microb Genom 2023; 9:001162. [PMID: 38117675 PMCID: PMC10763497 DOI: 10.1099/mgen.0.001162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023] Open
Abstract
Pertussis remains a public health concern in South Africa, with an increase in reported cases and outbreaks in recent years. Whole genome sequencing was performed on 32 Bordetella pertussis isolates sourced from three different surveillance programmes in South Africa between 2015 and 2019. Genome sequences were characterized using multilocus sequence typing, vaccine antigen genes (ptxP, ptxA, ptxB, prn and fimH) and overall genome structure. All isolates were sequence type 2 and harboured the pertussis toxin promoter allele ptxP3. The dominant genotype was ptxP3-ptxA1-ptxB2-prn2-fimH2 (31/32, 96.9 %), with no pertactin-deficient or other mutations in vaccine antigen genes identified. Amongst 21 isolates yielding closed genome assemblies, eight distinct genome structures were detected, with 61.9 % (13/21) of the isolates exhibiting three predominant structures. Increases in case numbers are probably not due to evolutionary changes in the genome but possibly due to other factors such as the cyclical nature of B. pertussis disease, waning immunity due to the use of acellular vaccines and/or population immunity gaps.
Collapse
Affiliation(s)
- Fahima Moosa
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael R. Weigand
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dineo Mogale
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marta C. Nunes
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather J. Zar
- Department of Pediatrics and Child Health, Red Cross Children’s Hospital, Cape Town, South Africa; MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Gary Reubenson
- Rahima Moosa Mother & Child Hospital, Department of Pediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - M. Lucia Tondella
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Nian X, Liu H, Cai M, Duan K, Yang X. Coping Strategies for Pertussis Resurgence. Vaccines (Basel) 2023; 11:889. [PMID: 37242993 PMCID: PMC10220650 DOI: 10.3390/vaccines11050889] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Pertussis (whooping cough) is a respiratory disease caused primarily by Bordetella pertussis, a Gram-negative bacteria. Pertussis is a relatively contagious infectious disease in people of all ages, mainly affecting newborns and infants under 2 months of age. Pertussis is undergoing a resurgence despite decades of high rates of vaccination. To better cope with the challenge of pertussis resurgence, we evaluated its possible causes and potential countermeasures in the narrative review. Expanded vaccination coverage, optimized vaccination strategies, and the development of a new pertussis vaccine may contribute to the control of pertussis.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Hongbo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Mengyao Cai
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Bejing 100029, China
| |
Collapse
|
5
|
Achi SC, Karimilangi S, Lie D, Sayed IM, Das S. The WxxxE proteins in microbial pathogenesis. Crit Rev Microbiol 2023; 49:197-213. [PMID: 35287539 PMCID: PMC9737147 DOI: 10.1080/1040841x.2022.2046546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Effector proteins secreted by pathogens modulate various host cellular processes and help in bacterial pathogenesis. Some of these proteins, injected by enteric pathogens via Type Three Secretion System (T3SS) were grouped together based on a conserved signature motif (WxxxE) present in them. The presence of WxxxE motif is not limited to effectors released by enteric pathogens or the T3SS but has been detected in non-enteric pathogens, plant pathogens and in association with Type II and Type IV secretion systems. WxxxE effectors are involved in actin organization, inflammation regulation, vacuole or tubule formation, endolysosomal signalling regulation, tight junction disruption, and apoptosis. The WxxxE sequence has also been identified in TIR [Toll/interleukin-1 (IL-1) receptor] domains of bacteria and host. In the present review, we have focussed on the established and predicted functions of WxxxE effectors secreted by several pathogens, including enteric, non-enteric, and plant pathogens.
Collapse
Affiliation(s)
| | - Sareh Karimilangi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Dominique Lie
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ibrahim M. Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Guiso N, Soubeyrand B, Macina D. Can vaccines control bacterial virulence and pathogenicity? Bordetella pertussis: the advantage of fitness over virulence. Evol Med Public Health 2022; 10:363-370. [PMID: 36032328 PMCID: PMC9400806 DOI: 10.1093/emph/eoac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Some vaccines, such as diphtheria toxoid and acellular pertussis vaccines (aPVs), may favor the emergence of less pathogenic strains of the respective bacteria they target. This review discusses the impact of the wide use of aPV on Bordetella pertussis phenotype evolutions and their beneficial consequences in the light of the diphtheria toxoid immunization program experience and structuring evidence review in a causal analysis following Bradford Hill's causality criteria. All aPVs contain the pertussis toxin (PT), the main virulence factor of B.pertussis, alone or with one adhesin (filamentous hemagglutinin (FHA)), two adhesins (FHA and pertactin (PRN)) or four adhesins (FHA, PRN and two fimbriae (Fim 2/3)). In countries where the coverage of aPVs containing PRN is high, PRN negative B.pertussis isolates are increasing in prevalence, but isolates nonproducing the other antigens are rarely reported. We hypothesize that the selective pressure at play with PRN should exist against all aVP antigens, although detection biases may hinder its detection for other antigens, especially PT. PT being responsible for clinically frank cases of the disease, the opportunity to collect PT negative isolates is far lower than to collect PRN negative isolates which have a limited clinical impact. The replacement of the current B.pertussis by far less pathogenic isolates no longer producing the factors contained in aPVs should be expected as a consequence of the wide aPV use.
Collapse
|
7
|
DeJong MA, Wolf MA, Bitzer GJ, Hall JM, Sen-Kilic E, Blake JM, Petty JE, Wong TY, Barbier M, Campbell JD, Bevere JR, Damron FH. CpG 1018® adjuvant enhances Tdap immune responses against Bordetella pertussis in mice. Vaccine 2022; 40:5229-5240. [PMID: 35927132 DOI: 10.1016/j.vaccine.2022.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Bordetella pertussis is the causative agent of whooping cough (pertussis), a severe respiratory disease that can be fatal, particularly in infants. Despite high vaccine coverage, pertussis remains a problem because the currently used DTaP and Tdap vaccines do not completely prevent infection or transmission. It is well established that the alum adjuvant is a potential weakness of the acellular vaccines because the immunity provided by it is short-term. We aimed to evaluate the potential of CpG 1018® adjuvant to improve antibody responses and enhance protection against B. pertussis challenge in a murine model. A titrated range of Tdap vaccine doses were evaluated in order to best identify the adjuvant capability of CpG 1018. Antibody responses to pertussis toxin (PT), filamentous hemagglutinin (FHA), or the whole bacterium were increased due to the inclusion of CpG 1018. In B. pertussis intranasal challenge studies, we observed improved protection and bacterial clearance from the lower respiratory tract due to adding CpG 1018 to 1/20th the human dose of Tdap. Further, we determined that Tdap and Tdap + CpG 1018 were both capable of facilitating clearance of strains that do not express pertactin (PRN-), which are rising in prevalence. Functional phenotyping of antibodies revealed that the inclusion of CpG 1018 induced more bacterial opsonization and antibodies of the Th1 phenotype (IgG2a and IgG2b). This study demonstrates the potential of adding CpG 1018 to Tdap to improve immunogenicity and protection against B. pertussis compared to the conventional, alum-only adjuvanted Tdap vaccine.
Collapse
Affiliation(s)
- Megan A DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - M Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Graham J Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jesse M Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jeanna M Blake
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jonathan E Petty
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | | | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
8
|
Lefrancq N, Bouchez V, Fernandes N, Barkoff AM, Bosch T, Dalby T, Åkerlund T, Darenberg J, Fabianova K, Vestrheim DF, Fry NK, González-López JJ, Gullsby K, Habington A, He Q, Litt D, Martini H, Piérard D, Stefanelli P, Stegger M, Zavadilova J, Armatys N, Landier A, Guillot S, Hong SL, Lemey P, Parkhill J, Toubiana J, Cauchemez S, Salje H, Brisse S. Global spatial dynamics and vaccine-induced fitness changes of Bordetella pertussis. Sci Transl Med 2022; 14:eabn3253. [PMID: 35476597 DOI: 10.1126/scitranslmed.abn3253] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As with other pathogens, competitive interactions between Bordetella pertussis strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures; however, this has rarely been measured because of inadequate data and analytical tools. We used 3344 sequences from 23 countries to show that, on average, there are 28.1 transmission chains circulating within a subnational region, with the number of chains strongly associated with host population size. It took 5 to 10 years for B. pertussis to be homogeneously distributed throughout Europe, with the same time frame required for the United States. Increased fitness of pertactin-deficient strains after implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of vaccine policy in shifting local diversity of a pathogen that is responsible for 160,000 deaths annually.
Collapse
Affiliation(s)
- Noémie Lefrancq
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Nadia Fernandes
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France
| | - Alex-Mikael Barkoff
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, Netherlands
| | - Tine Dalby
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Thomas Åkerlund
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Jessica Darenberg
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Katerina Fabianova
- National Institute of Public Health, Department of Infectious Diseases Epidemiology, CZ-10000 Prague, Czech Republic
| | - Didrik F Vestrheim
- Norwegian Institute of Public Health, Department of Infectious Disease Control and Vaccine, N-0213 Oslo, Norway
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK.,Immunisation and Countermeasures Division, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Juan José González-López
- University Hospital Vall d'Hebron, Microbiology Department, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, 08193 Barcelona, Spain
| | - Karolina Gullsby
- Centre for Research and Development, Uppsala University/Region Gävleborg, 80187 Gävle, Sweden
| | - Adele Habington
- Molecular Microbiology Laboratory, Children's Health Ireland, Crumlin, D12 N512 Dublin, Ireland
| | - Qiushui He
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Helena Martini
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, IT-00161 Rome, Italy
| | - Marc Stegger
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Jana Zavadilova
- National Institute of Public Health, National Reference Laboratory for Pertussis and Diphtheria, 100 00 Prague, Czech Republic
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France.,Université Paris Cité, Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Simon Cauchemez
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France
| | - Henrik Salje
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| |
Collapse
|
9
|
Modulation of Inflammatory Signaling Molecules in Bordetella pertussis Antigen-Challenged Human Monocytes in Presence of Adrenergic Agonists. Vaccines (Basel) 2022; 10:vaccines10020321. [PMID: 35214778 PMCID: PMC8879854 DOI: 10.3390/vaccines10020321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
BscF is a type III secretion system (T3SS) needle protein from Bordetella pertussis and has previously been shown to induce a sufficient Th1 and Th17 response in human monocytes and mice as a prerequisite for long-lasting protective immunity against pertussis infection. In our current study, we aim to compare the modulation of inflammatory signaling molecules as a direct measure of the immune response to the B. pertussis antigens BscF and Tdap in the presence or absence of the adrenergic receptor agonists phenylephrine (PE) or isoproterenol (ISO) to observe differences that may contribute to the diminished protective immunity of the current acellular pertussis (aP) vaccine, Tdap. Stimulation of human monocyte THP-1 cells with LPS, BscF, and Tdap induced a robust elevation of CCL20, CXCL10, PGE2, and PGF2α among most chemokine and prostanoid members when compared with the control treatment. Treatment with the adrenergic agonist PE or ISO significantly enhanced the BscF- and Tdap-stimulated modulation of CCL20 and CXCL10 but not PGE2 and PGF2α, suggesting that adrenergic modulation of pertussis antigen responses might be a new therapeutic strategy to improve the longevity of pertussis immunity. Stimulation of THP-1 cells with BscF alone initiated significant expression of CXCL10 and PGF2α but not when Tdap was used, suggesting that BscF might be an important pertussis antigen for next-generation pertussis vaccines or when combined with the current aP vaccine. Our data offer opportunities for designing new therapeutic approaches against pertussis infection.
Collapse
|
10
|
Weaver KL, Blackwood CB, Horspool AM, Pyles GM, Sen-Kilic E, Grayson EM, Huckaby AB, Witt WT, DeJong MA, Wolf MA, Damron FH, Barbier M. Long-Term Analysis of Pertussis Vaccine Immunity to Identify Potential Markers of Vaccine-Induced Memory Associated With Whole Cell But Not Acellular Pertussis Immunization in Mice. Front Immunol 2022; 13:838504. [PMID: 35211125 PMCID: PMC8861382 DOI: 10.3389/fimmu.2022.838504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emily M. Grayson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Megan A. DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - M. Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States,*Correspondence: Mariette Barbier,
| |
Collapse
|
11
|
Hall JM, Kang J, Kenney SM, Wong TY, Bitzer GJ, Kelly CO, Kisamore CA, Boehm DT, DeJong MA, Wolf MA, Sen-Kilic E, Horspool AM, Bevere JR, Barbier M, Damron FH. Reinvestigating the Coughing Rat Model of Pertussis To Understand Bordetella pertussis Pathogenesis. Infect Immun 2021; 89:e0030421. [PMID: 34125597 PMCID: PMC8594615 DOI: 10.1128/iai.00304-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 108 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti-B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.
Collapse
Affiliation(s)
- Jesse M. Hall
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason Kang
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Sophia M. Kenney
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Claire O. Kelly
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Caleb A. Kisamore
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Megan A. DeJong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - M. Allison Wolf
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Alexander M. Horspool
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
12
|
Evaluation of Outer Membrane Vesicles Obtained from Predominant Local Isolate of Boredetella pertussis as a Vaccine Candidate. IRANIAN BIOMEDICAL JOURNAL 2021; 25:399-407. [PMID: 34719226 PMCID: PMC8744696 DOI: 10.52547/ibj.25.6.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Pertussis is a current contagious bacterial disease caused by Bp. Given the prevalence of pertussis, development of new vaccines is important. This study was attempted to evaluate the expression of main virulence factors (PTX, PRN, and FHA) from Bp predominant strains and also compare the expression of these factors in the OMVs obtained from predominant circulating Bp isolate. Methods: The physicochemical features of the prepared OMVs were analyzed by electron microscopy and SDS-PAGE. The presence of the mentioned virulence factors was confirmed by Western blotting. BALB/c mice (n = 21) immunized with characterized OMVs were challenged intranasally with sublethal doses of Bp, to examine their protective capacity. Results: Electron microscopic examination of the OMVs indicated vesicles within the range of 40 to 200 nm. SDS-PAGE and Western blotting demonstrated the expression of all three main protective immunogens (PTX, PRN, and FHA), prevalent in the predominant, challenge, and vaccine strains, and OMVs of the predominant IR37 strain and BP134 vaccine strain. Significant differences were observed in lung bacterial counts between the immunized mice with OMV (30 CFU/lung) compared to the negative control group ((6 104 CFU/lung; p < 0.001). In mice immunized with OMVs (3 µg), the number of lungs recovered colonies after five days dropped at least five orders of magnitude compared to the control group. Conclusion: OMVs obtained from circulating isolates with the predominant profile may constitute a highly promising vaccine quality. They also can be proposed as a potential basic material for the development of new pertussis vaccine candidate.
Collapse
|
13
|
A Unique Reverse Adaptation Mechanism Assists Bordetella pertussis in Resistance to Both Scarcity and Toxicity of Manganese. mBio 2021; 12:e0190221. [PMID: 34700381 PMCID: PMC8546581 DOI: 10.1128/mbio.01902-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ability of bacterial pathogens to acquire essential micronutrients is critical for their survival in the host environment. Manganese plays a complex role in the virulence of a variety of pathogens due to its function as an antioxidant and enzymatic cofactor. Therefore, host cells deprive pathogens of manganese to prevent or attenuate infection. Here, we show that evolution of the human-restricted pathogen Bordetella pertussis has selected for an inhibitory duplication within a manganese exporter of the calcium:cation antiporter superfamily. Intriguingly, upon exposure to toxic levels of manganese, the nonfunctional exporter becomes operative in resister cells due to a unique reverse adaptation mechanism. However, compared with wild-type (wt) cells, the resisters carrying a functional copy of the exporter displayed strongly reduced intracellular levels of manganese and impaired growth under oxidative stress. Apparently, inactivation of the manganese exporter and the resulting accumulation of manganese in the cytosol benefited the pathogen by improving its survival under stress conditions. The inhibitory duplication within the exporter gene is highly conserved among B. pertussis strains, absent from all other Bordetella species and from a vast majority of organisms across all kingdoms of life. Therefore, we conclude that inactivation of the exporter gene represents an exceptional example of a flexible genome decay strategy employed by a human pathogen to adapt to its exclusive host.
Collapse
|
14
|
Zerbo O, Fireman B, Klein NP. Lessons from a mature acellular pertussis vaccination program and strategies to overcome suboptimal vaccine effectiveness. Expert Rev Vaccines 2021; 21:899-907. [PMID: 34555994 DOI: 10.1080/14760584.2021.1984891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Despite high vaccination coverage among children and adolescents, pertussis remains a public health problem, with large outbreaks occurring periodically in the US and other developed countries. AREAS COVERED We examine lessons learned more than 20 years after implementation of programs which use only acellular pertussis vaccines and propose avenues for possible effective use of acellular pertussis vaccine to prevent large outbreaks. EXPERT OPINION Acellular pertussis vaccines were introduced more than 20 years ago, yet the incidence of pertussis has been increasing over the past decade, with periodic large outbreaks marked by notable shifts in disease burden from infants and young children toward fully vaccinated adolescents and young adults. This age shift is mainly driven by the waning of vaccine immunity. To better protect adolescents against pertussis, modification of the current acellular pertussis vaccination schedule or adoption of new vaccination strategies should be considered. For infants not yet eligible to be vaccinated, maternal vaccination against pertussis during pregnancy is an effective way to protect infants from infection, severe disease and death. Implementation of maternal vaccination programs should be encouraged in countries without one or efforts to improve coverage should be supported in countries with existing program.
Collapse
Affiliation(s)
- Ousseny Zerbo
- Division of Research, Kaiser Permanente Vaccine Study Center, Oakland, CA, USA
| | - Bruce Fireman
- Division of Research, Kaiser Permanente Vaccine Study Center, Oakland, CA, USA
| | - Nicola P Klein
- Division of Research, Kaiser Permanente Vaccine Study Center, Oakland, CA, USA
| |
Collapse
|
15
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
16
|
Bouchez V, Guillot S, Landier A, Armatys N, Matczak S, Toubiana J, Brisse S. Evolution of Bordetella pertussis over a 23-year period in France, 1996 to 2018. ACTA ACUST UNITED AC 2021; 26. [PMID: 34533118 PMCID: PMC8447829 DOI: 10.2807/1560-7917.es.2021.26.37.2001213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundBordetella pertussis is the main agent of whooping cough. Vaccination with acellular pertussis vaccines has been largely implemented in high-income countries. These vaccines contain 1 to 5 antigens: pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN) and/or fimbrial proteins (FIM2 and FIM3). Monitoring the emergence of B. pertussis isolates that might partially escape vaccine-induced immunity is an essential component of public health strategies to control whooping cough.AimWe aimed to investigate temporal trends of fimbriae serotypes and vaccine antigen-expression in B. pertussis over a 23-year period in France (1996-2018).MethodsIsolates (n = 2,280) were collected through hospital surveillance, capturing one third of hospitalised paediatric pertussis cases. We assayed PT, FHA and PRN production by Western blot (n = 1,428) and fimbriae production by serotyping (n = 1,058). Molecular events underlying antigen deficiency were investigated by genomic sequencing.ResultsThe proportion of PRN-deficient B. pertussis isolates has increased steadily from 0% (0/38) in 2003 to 48.4% (31/64) in 2018 (chi-squared test for trend, p < 0.0001), whereas only 5 PT-, 5 FHA- and 9 FIM-deficient isolates were found. Impairment of PRN production was predominantly due to IS481 insertion within the prn gene or a 22 kb genomic inversion involving the prn promoter sequence, indicative of convergent evolution. FIM2-expressing isolates have emerged since 2011 at the expense of FIM3.ConclusionsB. pertussis is evolving through the rapid increase of PRN-deficient isolates and a recent shift from FIM3 to FIM2 expression. Excluding PRN, the loss of vaccine antigen expression by circulating B. pertussis isolates is epidemiologically insignificant.
Collapse
Affiliation(s)
- Valérie Bouchez
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Annie Landier
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Nathalie Armatys
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Soraya Matczak
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | -
- The members of the group are listed under Investigators
| | - Julie Toubiana
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France.,Université de Paris, Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| |
Collapse
|
17
|
Dhillon A, Deme JC, Furlong E, Roem D, Jongerius I, Johnson S, Lea SM. Molecular Basis for Bordetella pertussis Interference with Complement, Coagulation, Fibrinolytic, and Contact Activation Systems: the Cryo-EM Structure of the Vag8-C1 Inhibitor Complex. mBio 2021; 12:e02823-20. [PMID: 33758081 PMCID: PMC8092270 DOI: 10.1128/mbio.02823-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
Complement, contact activation, coagulation, and fibrinolysis are serum protein cascades that need strict regulation to maintain human health. Serum glycoprotein, a C1 inhibitor (C1-INH), is a key regulator (inhibitor) of serine proteases of all the above-mentioned pathways. Recently, an autotransporter protein, virulence-associated gene 8 (Vag8), produced by the whooping cough pathogen, Bordetella pertussis, was shown to bind to C1-INH and interfere with its function. Here, we present the structure of the Vag8-C1-INH complex determined using cryo-electron microscopy at a 3.6-Å resolution. The structure shows a unique mechanism of C1-INH inhibition not employed by other pathogens, where Vag8 sequesters the reactive center loop of C1-INH, preventing its interaction with the target proteases.IMPORTANCE The structure of a 10-kDa protein complex is one of the smallest to be determined using cryo-electron microscopy at high resolution. The structure reveals that C1-INH is sequestered in an inactivated state by burial of the reactive center loop in Vag8. By so doing, the bacterium is able to simultaneously perturb the many pathways regulated by C1-INH. Virulence mechanisms such as the one described here assume more importance given the emerging evidence about dysregulation of contact activation, coagulation, and fibrinolysis leading to COVID-19 pneumonia.
Collapse
Affiliation(s)
- Arun Dhillon
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Justin C Deme
- Sir William Dunn School of Pathology, Oxford, United Kingdom
- Central Oxford Structural Molecular Imaging Centre, Oxford, United Kingdom
| | - Emily Furlong
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Dorina Roem
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Steven Johnson
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, Oxford, United Kingdom
- Central Oxford Structural Molecular Imaging Centre, Oxford, United Kingdom
| |
Collapse
|
18
|
Lin A, Apostolovic D, Jahnmatz M, Liang F, Ols S, Tecleab T, Wu C, van Hage M, Solovay K, Rubin K, Locht C, Thorstensson R, Thalen M, Loré K. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J Clin Invest 2021; 130:2332-2346. [PMID: 31945015 DOI: 10.1172/jci135020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDThe live attenuated BPZE1 vaccine candidate induces protection against B. pertussis and prevents nasal colonization in animal models. Here we report on the responses in humans receiving a single intranasal administration of BPZE1.METHODSWe performed multiple assays to dissect the immune responses induced in humans (n = 12) receiving BPZE1, with particular emphasis on the magnitude and characteristics of the antibody responses. Such responses were benchmarked to adolescents (n = 12) receiving the complete vaccination program of the currently used acellular pertussis vaccine (aPV). Using immunoproteomics analysis, potentially novel immunogenic B. pertussis antigens were identified.RESULTSAll BPZE1 vaccinees showed robust B. pertussis-specific antibody responses with regard to significant increase in 1 or more of the following parameters: IgG, IgA, and memory B cells to B. pertussis antigens. BPZE1-specific T cells showed a Th1 phenotype, and the IgG exclusively consisted of IgG1 and IgG3. In contrast, all aPV vaccines showed a Th2-biased response. Immunoproteomics profiling revealed that BPZE1 elicited broader and different antibody specificities to B. pertussis antigens as compared with the aPV that primarily induced antibodies to the vaccine antigens. Moreover, BPZE1 was superior at inducing opsonizing antibodies that stimulated ROS production in neutrophils and enhanced bactericidal function, which was in line with the finding that antibodies against adenylate cyclase toxin were only elicited by BPZE1.CONCLUSIONThe breadth of the antibodies, the Th1-type cellular response, and killing mechanisms elicited by BPZE1 may hold prospects of improving vaccine efficacy and protection against B. pertussis transmission.TRIAL REGISTRATIONClinicalTrials.gov NCT02453048, NCT00870350.FUNDINGILiAD Biotechnologies, Swedish Research Council (Vetenskapsrådet), Swedish Heart-Lung Foundation.
Collapse
Affiliation(s)
- Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Maja Jahnmatz
- The Public Health Agency of Sweden, Stockholm, Sweden
| | - Frank Liang
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Chenyan Wu
- Division of Immunology and Allergy, Department of Medicine Solna, and
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, and
| | - Ken Solovay
- ILiAD Biotechnologies, New York, New York, USA
| | - Keith Rubin
- ILiAD Biotechnologies, New York, New York, USA
| | - Camille Locht
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | | | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Yougbare I, McTague A, He L, Choy CH, Su J, Gajewska B, Azizi A. Anti-FIM and Anti-FHA Antibodies Inhibit Bordetella pertussis Growth and Reduce Epithelial Cell Inflammation Through Bacterial Aggregation. Front Immunol 2021; 11:605273. [PMID: 33384692 PMCID: PMC7770163 DOI: 10.3389/fimmu.2020.605273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022] Open
Abstract
The pertussis vaccination is highly recommended for infants, children, and pregnant women. Despite a high coverage of vaccination, pertussis continues to be of public health concern as a re-emerging infectious disease. The mechanism by which vaccine-elicited anti-pertussis antibodies mediate direct bactericidal effects is poorly understood. In this study, we showed that the interaction of B. pertussis with A549 epithelial cells induce release of biological factors which enhance bacteria growth. Complement-depleted antisera from vaccine-immunized guinea pigs or monoclonal antibodies targeting FHA and FIM mediate bacteria aggregation and elicit bactericidal effects. Our in vitro results indicated that aggregation of bacteria through anti-FIM and anti-FHA specific antibodies is one of the major biological mechanisms to clear bacterial infections and restore epithelial cell survival in vitro. Our data also indicates that the anti-pertussis antibodies reduce secretion of proinflammatory chemokines and cytokines by preventing interaction of B. pertussis with host cells. The results of this study not only demonstrate mechanism of action of anti-FIM and anti-FHA antibodies, but also opens translational applications for potential therapeutic approaches or development of analytical assays such as in vitro potency assays.
Collapse
Affiliation(s)
- Issaka Yougbare
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, Toronto, ON, Canada
| | - Adam McTague
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, Toronto, ON, Canada
| | - Liwei He
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, Toronto, ON, Canada
| | - Christopher H Choy
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, Toronto, ON, Canada
| | - Jin Su
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, Toronto, ON, Canada
| | - Beata Gajewska
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, Toronto, ON, Canada
| | - Ali Azizi
- Immunology platform, Analytical Sciences North America, Sanofi Pasteur, Toronto, ON, Canada
| |
Collapse
|
20
|
Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice. Vaccines (Basel) 2020; 8:vaccines8040695. [PMID: 33228165 PMCID: PMC7711433 DOI: 10.3390/vaccines8040695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Bordetella pertussis whole-cell vaccines (wP) caused a spectacular drop of global pertussis incidence, but since the replacement of wP with acellular pertussis vaccines (aP), pertussis has resurged in developed countries within 7 to 12 years of the change from wP to aP. In the mouse infection model, we examined whether addition of further protective antigens into the aP vaccine, such as type 2 and type 3 fimbriae (FIM2/3) with outer membrane lipooligosaccharide (LOS) and/or of the adenylate cyclase toxoid (dACT), which elicits antibodies neutralizing the CyaA toxin, could enhance the capacity of the aP vaccine to prevent colonization of the nasal mucosa by B. pertussis. The addition of the toxoid and of the opsonizing antibody-inducing agglutinogens modestly enhanced the already high capacity of intraperitoneally-administered aP vaccine to elicit sterilizing immunity, protecting mouse lungs from B. pertussis infection. At the same time, irrespective of FIM2/3 with LOS and dACT addition, the aP vaccination ablated the natural capacity of BALB/c mice to clear B. pertussis infection from the nasal cavity. While wP or sham-vaccinated animals cleared the nasal infection with similar kinetics within 7 weeks, administration of the aP vaccine promoted persistent colonization of mouse nasal mucosa by B. pertussis.
Collapse
|
21
|
Chasaide CN, Mills KH. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 2020; 8:E621. [PMID: 33096737 PMCID: PMC7711671 DOI: 10.3390/vaccines8040621] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Immunization with current acellular pertussis (aP) vaccines protects against severe pertussis, but immunity wanes rapidly after vaccination and these vaccines do not prevent nasal colonization with Bordetella pertussis. Studies in mouse and baboon models have demonstrated that Th1 and Th17 responses are integral to protective immunity induced by previous infection with B. pertussis and immunization with whole cell pertussis (wP) vaccines. Mucosal Th17 cells, IL-17 and secretory IgA (sIgA) are particularly important in generating sustained sterilizing immunity in the nasal cavity. Current aP vaccines induce potent IgG and Th2-skewed T cell responses but are less effective at generating Th1 and Th17 responses and fail to prime respiratory tissue-resident memory T (TRM) cells, that maintain long-term immunity at mucosal sites. In contrast, a live attenuated pertussis vaccine, pertussis outer membrane vesicle (OMV) vaccines or aP vaccines formulated with novel adjuvants do induce cellular immune responses in the respiratory tract, especially when delivered by the intranasal route. An increased understanding of the mechanisms of sustained protective immunity, especially the role of respiratory TRM cells, will facilitate the development of next generation pertussis vaccines that not only protect against pertussis disease, but prevent nasal colonization and transmission of B. pertussis.
Collapse
Affiliation(s)
| | - Kingston H.G. Mills
- School of Biochemistry and Immunology, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| |
Collapse
|
22
|
Forbes JD. Clinically Important Toxins in Bacterial Infection: Utility of Laboratory Detection. CLINICAL MICROBIOLOGY NEWSLETTER 2020; 42:163-170. [PMID: 33046946 PMCID: PMC7541054 DOI: 10.1016/j.clinmicnews.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elaboration of proteins that damage host cells is fundamental to the pathogenesis of many bacterial pathogens. The clinical significance of many bacterial toxins is well recognized, and routine detection is necessary to confirm definitive diagnosis for some types of infectious diseases. Determining the clinical significance of a toxin involves many factors, including the toxin's prevalence, virulence, and role in disease pathogenesis. While essential from a diagnostic perspective, toxin detection has the potential to be important for patient management decision making, as well as infection prevention and control measures. This review focuses on the history, epidemiology, pathogenesis, clinical presentation, and management of infections associated with well-defined, clinically important toxins (such as Shiga toxin-producing Escherichia coli), as well as those that are less well defined (such as Staphylococcus aureus' Panton-Valentine leukocidin) where detection may yield clinically important information.
Collapse
Affiliation(s)
- Jessica D Forbes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Lesne E, Cavell BE, Freire-Martin I, Persaud R, Alexander F, Taylor S, Matheson M, van Els CACM, Gorringe A. Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Front Microbiol 2020; 11:2108. [PMID: 32983069 PMCID: PMC7481377 DOI: 10.3389/fmicb.2020.02108] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Despite high vaccination coverage, Bordetella pertussis the causative agent of whooping cough is still a health concern worldwide. A resurgence of pertussis cases has been reported, particularly in countries using acellular vaccines with waning immunity and pathogen adaptation thought to be responsible. A better understanding of protective immune responses is needed for the development of improved vaccines. In our study, B. pertussis strain B1917 variants presenting a single gene deletion were generated to analyze the role of vaccine components or candidate vaccine antigens as targets for bactericidal antibodies generated after acellular vaccination or natural infection. Our results show that acellular vaccination generates bactericidal antibodies that are only directed against pertactin. Serum bactericidal assay performed with convalescent samples show that disease induces bactericidal antibodies against Prn but against other antigen(s) as well. Four candidate vaccine antigens (CyaA, Vag8, BrkA, and TcfA) have been studied but were not targets for complement-mediated bactericidal antibodies after natural infection. We confirm that Vag8 and BrkA are involved in complement resistance and would be targeted by blocking antibodies. Our study suggests that the emergence and the widespread circulation of Prn-deficient strains is driven by acellular vaccination and the generation of bactericidal antibodies targeting Prn.
Collapse
Affiliation(s)
- Elodie Lesne
- Public Health England, Porton Down, United Kingdom
| | | | | | - Ruby Persaud
- Public Health England, Porton Down, United Kingdom
| | | | | | | | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | |
Collapse
|
24
|
Barkoff AM, Mertsola J, Pierard D, Dalby T, Hoegh SV, Guillot S, Stefanelli P, van Gent M, Berbers G, Vestrheim D, Greve-Isdahl M, Wehlin L, Ljungman M, Fry NK, Markey K, He Q. Pertactin-deficient Bordetella pertussis isolates: evidence of increased circulation in Europe, 1998 to 2015. ACTA ACUST UNITED AC 2020; 24. [PMID: 30782265 PMCID: PMC6381657 DOI: 10.2807/1560-7917.es.2019.24.7.1700832] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Pertussis outbreaks have occurred in several industrialised countries using acellular pertussis vaccines (ACVs) since the 1990s. High prevalence of pertactin (PRN)-deficient Bordetella pertussis isolates has been found in these countries. Aims To evaluate in Europe: (i) whether proportions of PRN-deficient strains increased in consecutive collections of B. pertussis clinical isolates; (ii) if the frequency of PRN-deficient strains in countries correlated with the time since ACV introduction; (iii) the presence of pertussis toxin (PT)-, filamentous haemagglutinin (FHA)- or fimbriae (Fim)-deficient isolates. Methods B. pertussis clinical isolates were obtained from different European countries during four periods (EUpert I–IV studies): 1998 to 2001 (n = 102), 2004 to 2005 (n = 154), 2007 to 2009 (n = 140) and 2012 to 2015 (n = 265). The isolates’ selection criteria remained unchanged in all periods. PRN, PT, FHA and Fim2 and Fim3 expression were assessed by ELISA. Results In each period 1.0% (1/102), 1.9% (3/154), 6.4% (9/140) and 24.9% (66/265) of isolates were PRN-deficient. In EUpert IV, PRN-deficient isolates occurred in all countries sampled and in six countries their frequency was higher than in EUpert III (for Sweden and the United Kingdom, p < 0.0001 and p = 0.0155, respectively). Sweden and Italy which used ACVs since the mid 1990s had the highest frequencies (69%; 20/29 and 55%; 11/20, respectively) while Finland, where primary immunisations with ACV containing PRN dated from 2009 had the lowest (3.6%). Throughout the study, no PT- or FHA-deficient isolate and one Fim2/3-deficient was detected. Conclusion Results suggest that the longer the period since the introduction of ACVs containing PRN, the higher the frequency of circulating PRN-deficient isolates.
Collapse
Affiliation(s)
- Alex-Mikael Barkoff
- Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku, Turku, Finland
| | - Jussi Mertsola
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Denis Pierard
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Tine Dalby
- Statens Serum Institut, Infectious Disease Preparedness - Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Silje Vermedal Hoegh
- Department of Clinical Microbiology, Odense, University Hospital, Odense, Denmark
| | - Sophie Guillot
- Institut Pasteur, Centre National de Référence de la Coqueluche et autres Bordetelloses, Paris, France
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marjolein van Gent
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Guy Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Didrik Vestrheim
- Department of Vaccine Preventable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Margrethe Greve-Isdahl
- Department of Vaccine Preventable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Lena Wehlin
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | | | - Norman K Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England - National Infection Service, London, United Kingdom
| | - Kevin Markey
- National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Fong W, Rockett R, Timms V, Sintchenko V. Optimization of sample preparation for culture-independent sequencing of Bordetella pertussis. Microb Genom 2020; 6:e000332. [PMID: 32108565 PMCID: PMC7200065 DOI: 10.1099/mgen.0.000332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bordetella pertussis, the aetiological agent of whooping cough, is re-emerging globally despite widespread vaccination. B. pertussis is highly infectious and, prior to vaccination programmes, was the leading cause of infant mortality. The WHO estimated that over 600 000 deaths are prevented annually by pertussis vaccination, but B. pertussis infection was still responsible for over 63 000 deaths globally in 2013. The re-emergence of B. pertussis has been linked to strains with inactive or absent major virulence factors included in vaccines such as pertactin, pertussis toxin and filamentous haemagglutinin. Thus, the molecular surveillance of currently circulating strains is critical in understanding and controlling B. pertussis. Such information provides data on strains to inform control measures and the identification of future vaccine antigens. Current surveillance and typing methods for B. pertussis rely on the availability of clinical isolates. However, since the 1990s, the majority of pertussis cases have been diagnosed by PCR, where an isolate is not needed. The rapid decline in the availability of B. pertussis isolates impacts our ability to monitor this infection. The growing uptake of next-generation sequencing (NGS) has offered the opportunity for culture-independent genome sequencing and typing of this fastidious pathogen. Therefore, the objective of the study was to optimize respiratory sample preparation, independent of culture, in order to type B. pertussis using NGS. The study compared commercial depletion kits and specimen-processing methods using selective lysis detergents. The goal was to deplete human DNA, the major obstacle for sequencing a pathogen directly from a clinical sample. Samples spiked with a clinically relevant amount of B. pertussis were used to provide comparison between the different methods. Commercial depletion kits including the MolYsis, Qiagen Microbiome and NEBNext Kits were tested. Previously published methods, for Saponin and TritonX-100, were also trialled as a depletion. The ratio of B. pertussis to human DNA was determined by real-time PCR for ERV3 and IS481 (as markers of human and B. pertussis DNA, respectively), then samples were sequenced using the Illumina NextSeq 500 platform. The number of human and B. pertussis sequenced reads were then compared between treatments. The results showed that commercial kits reduced the human DNA present, but also reduced the concentration of target B. pertussis. However, selective lysis with Saponin treatment resulted in almost undetectable levels of human DNA, with minimal loss of target B. pertussis DNA. Sequencing read depth improved five-fold in reads to B. pertussis. Our investigation delivered a potential protocol that will enable the public health laboratory surveillance of B. pertussis in the era of culture-independent testing.
Collapse
Affiliation(s)
- Winkie Fong
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Rebecca Rockett
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Verlaine Timms
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
26
|
Nikbin VS, Keramati M, Noofeli M, Tayebzadeh F, Kahali B, Shahcheraghi F. Engineering of an Iranian Bordetella pertussis strain producing inactive pertussis toxin. J Med Microbiol 2019; 69:111-119. [PMID: 31778110 DOI: 10.1099/jmm.0.001114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Differences between the genomic and virulence profile of Bordetella pertussis circulating strains and vaccine strains are considered as one of the important reasons for the resurgence of whooping cough (pertussis) in the world. Genetically inactivated B. pertussis is one of the new strategies to generate live-attenuated vaccines against whooping cough.Aim. The aim of this study was to construct a B. pertussis strain based on a predominant profile of circulating Iranian isolates that produces inactivated pertussis toxin (PTX).Methodology. The B. pertussis strain BPIP91 with predominant genomic and virulence pattern was selected from the biobank of the Pasteur Institute of Iran. A BPIP91 derivative with R9K and E129G alterations in the S1 subunit of PTX (S1mBPIP91) was constructed by the site-directed mutagenesis and homologous recombination. Genetic stability and antigen expression of S1mBPIP91 were tested by serially in vitro passages and immunoblot analyses, respectively. The reduction in toxicity of S1mBPIP91 was determined by Chinese hamster ovary (CHO) cell clustering.Results. All constructs and S1mBPIP91 were confirmed via restriction enzyme analysis and DNA sequencing. The engineered mutations in S1mBPIP91 were stable after 20 serial in vitro passages. The production of virulence factors was also confirmed in S1mBPIP91. The CHO cell-clustering test demonstrated the reduction in PTX toxicity in S1mBPIP91.Conclusion. A B. pertussis of the predominant genomic and virulence lineage in Iran was successfully engineered to produce inactive PTX. This attenuated strain will be useful to further studies to develop both whole cell and acellular pertussis vaccines.
Collapse
Affiliation(s)
- Vajihe Sadat Nikbin
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Noofeli
- Razi Vaccines and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Faranak Tayebzadeh
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Bahram Kahali
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
27
|
Weigand MR, Peng Y, Batra D, Burroughs M, Davis JK, Knipe K, Loparev VN, Johnson T, Juieng P, Rowe LA, Sheth M, Tang K, Unoarumhi Y, Williams MM, Tondella ML. Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens. mSystems 2019; 4:e00702-19. [PMID: 31744907 PMCID: PMC6867878 DOI: 10.1128/msystems.00702-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species.
Collapse
Affiliation(s)
- Michael R Weigand
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark Burroughs
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jamie K Davis
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vladimir N Loparev
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taccara Johnson
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Phalasy Juieng
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yvette Unoarumhi
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M Williams
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M Lucia Tondella
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. NPJ Vaccines 2019; 4:40. [PMID: 31602318 PMCID: PMC6776550 DOI: 10.1038/s41541-019-0136-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation.
Collapse
|
29
|
Pertussis Toxin: A Key Component in Pertussis Vaccines? Toxins (Basel) 2019; 11:toxins11100557. [PMID: 31546599 PMCID: PMC6832755 DOI: 10.3390/toxins11100557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
B. pertussis is a human-specific pathogen and the causative agent of whooping cough. The ongoing resurgence in pertussis incidence in high income countries is likely due to faster waning of immunity and increased asymptomatic colonization in individuals vaccinated with acellular pertussis (aP) vaccine relative whole-cell pertussis (wP)-vaccinated individuals. This has renewed interest in developing more effective vaccines and treatments and, in support of these efforts, defining pertussis vaccine correlates of protection and the role of vaccine antigens and toxins in disease. Pertussis and its toxins have been investigated by scientists for over a century, yet we still do not have a clear understanding of how pertussis toxin (PT) contributes to disease symptomology or how anti-PT immune responses confer protection. This review covers PT's role in disease and evidence for its protective role in vaccines. Clinical data suggest that PT is a defining and essential toxin for B. pertussis pathogenesis and, when formulated into a vaccine, can prevent disease. Additional studies are required to further elucidate the role of PT in disease and vaccine-mediated protection, to inform the development of more effective treatments and vaccines.
Collapse
|
30
|
Markey K, Asokanathan C, Feavers I. Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines. Toxins (Basel) 2019; 11:toxins11070417. [PMID: 31319496 PMCID: PMC6669641 DOI: 10.3390/toxins11070417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/29/2022] Open
Abstract
Whooping cough is caused by the bacterium Bordetella pertussis. There are currently two types of vaccines that can prevent the disease; whole cell vaccines (WCV) and acellular vaccines (ACV). The main virulence factor produced by the organism is pertussis toxin (PTx). This toxin is responsible for many physiological effects on the host, but it is also immunogenic and in its detoxified form is the main component of all ACVs. In producing toxoid for vaccines, it is vital to achieve a balance between sufficiently detoxifying PTx to render it safe while maintaining enough molecular structure that it retains its protective immunogenicity. To ensure that the first part of this balancing act has been successfully achieved, assays are required to accurately measure residual PTx activity in ACV products accurately. Quality control assays are also required to ensure that the detoxification procedures are robust and stable. This manuscript reviews the methods that have been used to achieve this aim, or may have the potential to replace them, and highlights their continuing requirement as vaccines that induce a longer lasting immunity are developed to prevent the re-occurrence of outbreaks that have been observed recently.
Collapse
Affiliation(s)
- Kevin Markey
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Catpagavalli Asokanathan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ian Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
31
|
Scanlon K, Skerry C, Carbonetti N. Association of Pertussis Toxin with Severe Pertussis Disease. Toxins (Basel) 2019; 11:toxins11070373. [PMID: 31252532 PMCID: PMC6669598 DOI: 10.3390/toxins11070373] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Pertussis, caused by respiratory tract infection with the bacterial pathogen Bordetella pertussis, has long been considered to be a toxin-mediated disease. Bacteria adhere and multiply extracellularly in the airways and release several toxins, which have a variety of effects on the host, both local and systemic. Predominant among these toxins is pertussis toxin (PT), a multi-subunit protein toxin that inhibits signaling through a subset of G protein-coupled receptors in mammalian cells. PT activity has been linked with severe and lethal pertussis disease in young infants and a detoxified version of PT is a common component of all licensed acellular pertussis vaccines. The role of PT in typical pertussis disease in other individuals is less clear, but significant evidence supporting its contribution to pathogenesis has been accumulated from animal model studies. In this review we discuss the evidence indicating a role for PT in pertussis disease, focusing on its contribution to severe pertussis in infants, modulation of immune and inflammatory responses to infection, and the characteristic paroxysmal cough of pertussis.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Nakayama T, Suzuki E, Noda A. Vaccine acquired pertussis immunity was weakened at 4 years of age and asymptomatic pertussis infection was suspected based on serological surveillance. J Infect Chemother 2019; 25:643-645. [PMID: 31053536 DOI: 10.1016/j.jiac.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 10/26/2022]
Abstract
Serological surveillance of pertussis antibodies was performed in 118 children aged 1-12 years. The positivity of pertussis toxin (PT) antibodies was low at 4-6 years and significantly higher at 8-9 years, compared with those at 6 years. Fimbriae 2 (Fim2) antibody showed similar response to the PT antibody. Higher antibody titers against Fim3 were observed among subjects ≥5 years and highest at 8 years. Data demonstrated that the vaccine-induced antibodies decayed by 4-5 years and subclinical pertussis infection was suspected thereafter, suggesting the need for additional dose at around 4-5 years.
Collapse
Affiliation(s)
- Tetsuo Nakayama
- Kitasato Institute for Life Sciences, Laboratory of Viral Infection, Tokyo, 108-8641, Japan.
| | - Eitaro Suzuki
- Suzuki Pediatric Clinic, Ube, Yamaguchi Prefecture, 755-0155, Japan.
| | - Atsuya Noda
- Kitasato-Otsuka BioMedical Assay Laboratories, Co. Ltd, Sagamihara, Kanagawa Prefecture, 252-0329, Japan.
| |
Collapse
|
33
|
Role of Evolutionary Selection Acting on Vaccine Antigens in the Re-Emergence of Bordetella Pertussis. Diseases 2019; 7:diseases7020035. [PMID: 30995764 PMCID: PMC6630436 DOI: 10.3390/diseases7020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pertussis (“whooping cough”) is a re-emerging disease with increasing incidence among fully vaccinated individuals. We explored the genetic diversity of five Bordetella pertussis proteins used to generate the subunit vaccine across ancestral and newly emergent strains using immunoinformatics and evolutionary selection measurements. The five subunits of pertussis toxin (Ptx1–Ptx5) were highly conserved with regard to sequence, predicted structure, predicted antigenicity, and were under purifying selection. In contrast, the adhesin proteins pertactin (Prn) and filamentous hemagglutinin (FHA) were under statistically significant (p < 0.01) diversifying selection. Most heavily diversified sites of each protein fell within antigenic epitopes, and the functional adhesin motifs were conserved. Protein secondary structure was conserved despite sequence diversity for FHA but was changeable in Prn. These findings suggest that subunit vaccine-derived immunity does not impact Ptx1–Ptx5 but may apply evolutionary pressure to Prn and FHA to undergo diversifying selection. These findings offer further insight into the emergence of vaccine-resistant strains of B. pertussis.
Collapse
|
34
|
Di Mattia G, Nicolai A, Frassanito A, Petrarca L, Nenna R, Midulla F. Pertussis: New preventive strategies for an old disease. Paediatr Respir Rev 2019; 29:68-73. [PMID: 29914744 DOI: 10.1016/j.prrv.2018.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022]
Abstract
In the last twenty years, despite high vaccination coverage, epidemics of pertussis are occurring in both developing and developed countries. Many reasons could explain the pertussis resurgence: the increasing awareness of the disease, the availability of new diagnostic tests with higher sensitivity, the emergence of new Bordetella pertussis (B. pertussis) strains different from those contained in the current vaccines, the asymptomatic transmission of B. pertussis in adolescents and adults and the shorter duration of protection given by the acellular pertussis (aP) vaccine. New preventive strategies have already been implemented, such as booster doses of aP vaccine in adolescents and adults, maternal immunisation during pregnancy and the "cocooning" strategy, but more are still needed. Knowing what is new about this old disease is necessary to reduce its incidence and to protect infants too young to be vaccinated, which have the highest risk of complications and death.
Collapse
Affiliation(s)
- Greta Di Mattia
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Ambra Nicolai
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Antonella Frassanito
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Laura Petrarca
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Raffaella Nenna
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Fabio Midulla
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
35
|
How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:1-17. [PMID: 31321755 DOI: 10.1007/5584_2019_401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level.
Collapse
|
36
|
Molecular Epidemiology of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:19-33. [PMID: 31342459 DOI: 10.1007/5584_2019_402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although vaccination has been effective, Bordetella pertussis is increasingly causing epidemics, especially in industrialized countries using acellular vaccines (aPs). One factor behind the increased circulation is the molecular changes on the pathogen level. After pertussis vaccinations were introduced, changes in the fimbrial (Fim) serotype of the circulating strains was observed. When bacterial typing methods improved, further changes between the vaccine and circulating strains, especially among the common virulence genes including pertussis toxin (PT) and pertactin (PRN) were noticed. Moreover, development of genome based techniques including pulsed-field gel electrophoresis (PFGE), multiple-locus variable number tandem repeat analysis (MLVA) and whole-genome sequencing (WGS) have offered a better resolution to monitor B. pertussis strains. After the introduction of aP vaccines, B. pertussis strains that are deficient to vaccine antigens, especially PRN, have appeared widely. On the other hand, antimicrobial resistance to first line drugs (macrolides) against B. pertussis is still low in many countries and therefore no globally evaluated antimicrobial susceptibility test values have been recommended. In this review, we focus on the molecular changes in the bacteria, which have or may have affected the past and current epidemiology of pertussis.
Collapse
|
37
|
Pertactin-deficient Bordetella pertussis isolates in Poland-a country with whole-cell pertussis primary vaccination. Microbes Infect 2018; 21:170-175. [PMID: 30580013 DOI: 10.1016/j.micinf.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022]
Abstract
The introduction of pertussis vaccination in the 1950s resulted in a significant decrease in the incidence of disease. However, since the 1990s many highly vaccinated countries have observed the re-emergence of the disease. One of the causes of this phenomenon might be related to the adaptation of Bordetella pertussis to vaccination. The purpose of the presented study was an investigation of the emergence and spread of vaccine antigen-deficient B. pertussis isolates in Poland and genomic characterization of the currently circulating pathogen population using PFGE, MLVA and MAST. The results revealed that all tested isolates expressed Ptx, FHA and ACT antigens but 15.4% (4/26) of isolates from 2010 to 2016 were Prn-deficient. Moreover, one TcfA-deficient isolate was collected in 2015. The genotyping showed a genetic distinction between the isolates circulating in 2010-2016 and isolates from previous periods. The majority of currently circulating isolates belonged to PFGE group IV (96.2%), type MT27 (73.1%), and carried ptxA1-ptxC2-ptxP3-prn2-tcfA2-fim2-1-fim3-1 alleles (61.5%). The unique genetic structure of the B. pertussis population in Poland has changed since 2010 and became similar to that observed in countries with aP vaccination. This could be a result of increasing use of aP vaccines (60% of primary vaccination in 2013) over wP vaccines, which have been broadly used for primary vaccination in Poland for decades.
Collapse
|
38
|
Cauchi S, Locht C. Non-specific Effects of Live Attenuated Pertussis Vaccine Against Heterologous Infectious and Inflammatory Diseases. Front Immunol 2018; 9:2872. [PMID: 30581436 PMCID: PMC6292865 DOI: 10.3389/fimmu.2018.02872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a disease that remains an important public health issue. Vaccine-induced immunity to pertussis wanes over time. In industrialized countries, high vaccine coverage has not prevented infection and transmission of B. pertussis, leading to periodic outbreaks in people of all ages. The consequence is the formation of a large source for transmission to children, who show the highest susceptibility of developing severe whooping cough and mortality. With the aim of providing protection against both disease and infection, a live attenuated pertussis vaccine, in which three toxins have been genetically inactivated or removed, is now in clinical development. This vaccine, named BPZE1, offers strong protection in mice and non-human primates. It has completed a phase I clinical trial in which safety, transient colonization of the human airway and immunogenicity could be demonstrated. In mice, BPZE1 was also found to protect against inflammation resulting from heterologous airway infections, including those caused by other Bordetella species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous protection conferred by BPZE1 was also observed for non-infectious inflammatory diseases, such as allergic asthma, as well as for inflammatory disorders outside of the respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms underlying the anti-inflammatory effects associated with nasal BPZE1 administration. Given the increasing importance of inflammatory disorders, novel preventive and therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1, may offer attractive solutions. It is now essential to understand the cellular and molecular mechanisms of action before translating these biological findings into new healthcare solutions.
Collapse
Affiliation(s)
- Stéphane Cauchi
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
39
|
Boehm DT, Hall JM, Wong TY, DiVenere AM, Sen-Kilic E, Bevere JR, Bradford SD, Blackwood CB, Elkins CM, DeRoos KA, Gray MC, Cooper CG, Varney ME, Maynard JA, Hewlett EL, Barbier M, Damron FH. Evaluation of Adenylate Cyclase Toxoid Antigen in Acellular Pertussis Vaccines by Using a Bordetella pertussis Challenge Model in Mice. Infect Immun 2018; 86:e00857-17. [PMID: 30012638 PMCID: PMC6204743 DOI: 10.1128/iai.00857-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Bordetella pertussis is the primary causative agent of pertussis (whooping cough), which is a respiratory infection that leads to a violent cough and can be fatal in infants. There is a need to develop more effective vaccines because of the resurgence of cases of pertussis in the United States since the switch from the whole-cell pertussis vaccines (wP) to the acellular pertussis vaccines (aP; diphtheria-tetanus-acellular-pertussis vaccine/tetanus-diphtheria-pertussis vaccine). Adenylate cyclase toxin (ACT) is a major virulence factor of B. pertussis that is (i) required for establishment of infection, (ii) an effective immunogen, and (iii) a protective antigen. The C-terminal repeats-in-toxin domain (RTX) of ACT is sufficient to induce production of toxin-neutralizing antibodies. In this study, we characterized the effectiveness of vaccines containing the RTX antigen against experimental murine infection with B. pertussis RTX was not protective as a single-antigen vaccine against B. pertussis challenge, and adding RTX to 1/5 human dose of aP did not enhance protection. Since the doses of aP used in murine studies are not proportionate to mouse/human body masses, we titrated the aP from 1/20 to 1/160 of the human dose. Mice receiving 1/80 human aP dose had bacterial burden comparable to those of naive controls. Adding RTX antigen to the 1/80 aP base resulted in enhanced bacterial clearance. Inclusion of RTX induced production of antibodies recognizing RTX, enhanced production of anti-pertussis toxin, decreased secretion of proinflammatory cytokines, such as interleukin-6, and decreased recruitment of total macrophages in the lung. This study shows that adding RTX antigen to an appropriate dose of aP can enhance protection against B. pertussis challenge in mice.
Collapse
Affiliation(s)
- Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jesse M Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Andrea M DiVenere
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Shelby D Bradford
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Catherine B Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Cody M Elkins
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Katherine A DeRoos
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mary C Gray
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - C Garret Cooper
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Medicine, Section of Infectious Diseases, West Virginia University, Morgantown, West Virginia, USA
| | - Melinda E Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Erik L Hewlett
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
40
|
Amman F, D'Halluin A, Antoine R, Huot L, Bibova I, Keidel K, Slupek S, Bouquet P, Coutte L, Caboche S, Locht C, Vecerek B, Hot D. Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of Bordetella pertussis. RNA Biol 2018; 15:967-975. [PMID: 29683387 PMCID: PMC6161684 DOI: 10.1080/15476286.2018.1462655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a respiratory disease still considered as a major public health threat and for which recent re-emergence has been observed. Constant reshuffling of Bordetella pertussis genome organization was observed during evolution. These rearrangements are essentially mediated by Insertion Sequences (IS), a mobile genetic elements present in more than 230 copies in the genome, which are supposed to be one of the driving forces enabling the pathogen to escape from vaccine-induced immunity. Here we use high-throughput sequencing approaches (RNA-seq and differential RNA-seq), to decipher Bordetella pertussis transcriptome characteristics and to evaluate the impact of IS elements on transcriptome architecture. Transcriptional organization was determined by identification of transcription start sites and revealed also a large variety of non-coding RNAs including sRNAs, leaderless mRNAs or long 3' and 5'UTR including seven riboswitches. Unusual topological organizations, such as overlapping 5'- or 3'-extremities between oppositely orientated mRNA were also unveiled. The pivotal role of IS elements in the transcriptome architecture and their effect on the transcription of neighboring genes was examined. This effect is mediated by the introduction of IS harbored promoters or by emergence of hybrid promoters. This study revealed that in addition to their impact on genome rearrangements, most of the IS also impact on the expression of their flanking genes. Furthermore, the transcripts produced by IS are strain-specific due to the strain to strain variation in IS copy number and genomic context.
Collapse
Affiliation(s)
- Fabian Amman
- University of Vienna, Theoretical Biochemistry Group, Institute for Theoretical Chemistry, Vienna, Austria
| | - Alexandre D'Halluin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ludovic Huot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ilona Bibova
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - Kristina Keidel
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - Stéphanie Slupek
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Branislav Vecerek
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
41
|
School-age children and adolescents suspected of having been to be infected with pertussis in Japan. Vaccine 2018; 36:2910-2915. [DOI: 10.1016/j.vaccine.2018.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 11/21/2022]
|
42
|
Screening and Genomic Characterization of Filamentous Hemagglutinin-Deficient Bordetella pertussis. Infect Immun 2018; 86:IAI.00869-17. [PMID: 29358336 DOI: 10.1128/iai.00869-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure.
Collapse
|
43
|
Bordetella pertussis pertactin knock-out strains reveal immunomodulatory properties of this virulence factor. Emerg Microbes Infect 2018; 7:39. [PMID: 29559630 PMCID: PMC5861065 DOI: 10.1038/s41426-018-0039-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/05/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Whooping cough, caused by Bordetella pertussis, has resurged and presents a global health burden worldwide. B. pertussis strains unable to produce the acellular pertussis vaccine component pertactin (Prn), have been emerging and in some countries represent up to 95% of recent clinical isolates. Knowledge on the effect that Prn deficiency has on infection and immunity to B. pertussis is crucial for the development of new strategies to control this disease. Here, we characterized the effect of Prn production by B. pertussis on human and murine dendritic cell (DC) maturation as well as in a murine model for pertussis infection. We incubated human monocyte-derived DCs (moDCs) with multiple isogenic Prn knockout (Prn-KO) and corresponding parental B. pertussis strains constructed either in laboratory reference strains with a Tohama I background or in a recently circulating clinical isolate. Results indicate that, compared to the parental strains, Prn-KO strains induced an increased production of pro-inflammatory cytokines by moDCs. This pro-inflammatory phenotype was also observed upon stimulation of murine bone marrow-derived DCs. Moreover, RNA sequencing analysis of lungs from mice infected with B. pertussis Prn-KO revealed increased expression of genes involved in cell death. These in vitro and in vivo findings indicate that B. pertussis strains which do not produce Prn induce a stronger pro-inflammatory response and increased cell death upon infection, suggesting immunomodulatory properties for Prn.
Collapse
|
44
|
Hiramatsu Y, Yoshino S, Yamamura Y, Otsuka N, Shibayama K, Watanabe M, Kamachi K. The proline residue at position 319 of BvgS is essential for BvgAS activation in Bordetella pertussis. Pathog Dis 2017; 75:2966470. [PMID: 28158456 DOI: 10.1093/femspd/ftx011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/30/2017] [Indexed: 11/14/2022] Open
Abstract
Bordetella pertussis is the etiological agent of pertussis and produces various virulence factors, including pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (PRN), most of which are positively regulated by the BvgAS two-component sensory transduction system. Here, we describe a B. pertussis isolate not expressing PT, FHA and PRN recovered from a pertussis patient. Sequencing revealed that the bvgS gene of this isolate contains a spontaneous mutation (C>A at position 955) causing the proline residue at position 319 of the BvgS protein to be substituted by threonine. Moreover, loss of PT, FHA and PRN expression was completely restored by complementation with a wild-type bvgAS locus, indicating that this non-synonymous substitution in bvgS leads to impaired BvgS function. Our findings indicate that the proline residue at position 319 in this protein plays an essential role in activation of the BvgAS system and, therefore, subsequent expression of Bvg-regulated virulence factors in B. pertussis.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shuji Yoshino
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 880-0017, Japan
| | - Yoshiko Yamamura
- Department of Pediatrics, Miyazaki Prefectural Miyazaki Hospital, Miyazaki 880-0017, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Mineo Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
45
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2017; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
46
|
Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Infect Immun 2017; 85:IAI.00373-17. [PMID: 28893915 DOI: 10.1128/iai.00373-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize and discuss recent findings and selected topics of interest in Bordetella pertussis virulence and pathogenesis and treatment of pertussis. It is not intended to cover issues on immune responses to B. pertussis infection or problems with currently used pertussis vaccines. RECENT FINDINGS Studies on the activities of various B. pertussis virulence factors include the immunomodulatory activities of filamentous hemagglutinin, fimbriae, and adenylate cyclase toxin. Recently emerging B. pertussis strains show evidence of genetic selection for vaccine escape mutants, with changes in vaccine antigen-expressing genes, some of which may have increased the virulence of this pathogen. Severe and fatal pertussis in young infants continues to be a problem, with several studies highlighting predictors of fatality, including the extreme leukocytosis associated with this infection. Treatments for pertussis are extremely limited, though early antibiotic intervention may be beneficial. Neutralizing pertussis toxin activity may be an effective strategy, as well as targeting two host proteins, pendrin and sphingosine-1-phosphate receptors, as novel potential therapeutic interventions. SUMMARY Pertussis is reemerging as a major public health problem and continued basic research is revealing information on bacterial virulence and disease pathogenesis, as well as potential novel strategies for vaccination and targets for therapeutic intervention.
Collapse
|
48
|
Development of a qualitative assay for screening of Bordetella pertussis isolates for pertussis toxin production. PLoS One 2017; 12:e0175326. [PMID: 28394915 PMCID: PMC5386250 DOI: 10.1371/journal.pone.0175326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/23/2017] [Indexed: 01/28/2023] Open
Abstract
Bordetella pertussis infection has been increasing in the US, with reported cases reaching over 50,000 in 2012, a number last observed in the 1950s. Concurrently, B. pertussis lacking the pertactin protein, one of the immunogens included in the acellular vaccine formulations, has rapidly emerged since 2010, and has become the predominant circulating phenotype. Monitoring the production of the remaining acellular vaccine immunogens, such as pertussis toxin (Pt), is a critical next step. To date, methods for screening Pt have been either through genomic sequencing means or by conventional ELISAs. However, sequencing limits detection to the DNA level, missing potential disruptions in transcription or translation. Conventional ELISAs are beneficial for detecting the protein; however, they can often suffer from poor sensitivity and specificity. Here we describe a rapid, highly sensitive and specific electrochemiluminescent capture ELISA that can detect Pt production in prepared inactivated bacterial suspensions. Over 340 isolates were analyzed and analytical validation parameters, such as precision, reproducibility, and stability, were rigorously tested. Intra-plate and inter-plate variability measured at 9.8% and 11.5%, respectively. Refrigerated samples remained stable for two months and variability was unaffected (coefficient of variation was 12%). Interestingly, despite the intention of being a qualitative method, the assay was sensitive enough to detect a small, but statistically significant, difference in protein production between different pertussis promoter allelic groups of strains, ptxP1 and ptxP3. This technology has the ability to perform screening of multiple antigens at one time, thus, improving testing characteristics while minimizing costs, specimen volume, and testing time.
Collapse
|
49
|
Short-Read Whole-Genome Sequencing for Laboratory-Based Surveillance of Bordetella pertussis. J Clin Microbiol 2017; 55:1446-1453. [PMID: 28228490 DOI: 10.1128/jcm.02436-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis is a Gram-negative bacterium that causes respiratory infections in humans. Ongoing molecular surveillance of B. pertussis acellular vaccine (aP) antigens is critical for understanding the interaction between evolutionary pressures, disease pathogenesis, and vaccine effectiveness. Methods currently used to characterize aP components are relatively labor-intensive and low throughput. To address this challenge, we sought to derive aP antigen genotypes from minimally processed short-read whole-genome sequencing data generated from 40 clinical B. pertussis isolates and analyzed using the SRST2 bioinformatic package. SRST2 was able to identify aP antigen genotypes for all antigens with the exception of pertactin, possibly due to low read coverage in GC-rich low-complexity regions of variation. Two main genotypes were observed in addition to a singular third genotype that contained an 84-bp deletion that was identified by SRST2 despite the issues in allele calling. This method has the potential to generate large pools of B. pertussis molecular data that can be linked to clinical and epidemiological information to facilitate research of vaccine effectiveness and disease severity in the context of emerging vaccine antigen-deficient strains.
Collapse
|
50
|
Abstract
The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.
Collapse
|