1
|
Nankabirwa JI, Gonahasa S, Katureebe A, Mutungi P, Nassali M, Kamya MR, Westercamp N. The Uganda housing modification study - association between housing characteristics and malaria burden in a moderate to high transmission setting in Uganda. Malar J 2024; 23:223. [PMID: 39080697 PMCID: PMC11290271 DOI: 10.1186/s12936-024-05051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Scale up of proven malaria control interventions has not been sufficient to control malaria in Uganda, emphasizing the need to explore innovative new approaches. Improved housing is one such promising strategy. This paper describes housing characteristics and their association with malaria burden in a moderate to high transmission setting in Uganda. METHODS Between October and November 2021, a household survey was conducted in 1500 randomly selected households in Jinja and Luuka districts. Information on demographics, housing characteristics, use of malaria prevention measures, and proxy indicators of wealth were collected for each household. A finger-prick blood sample was obtained for thick blood smears for malaria from all children aged 6 months to 14 years in the surveyed households. Febrile children had a malaria rapid diagnostics test (RDT) done; positive cases were managed according to national treatment guidelines. Haemoglobin was assessed in children aged < 5 years. Households were stratified as having modern houses (defined as having finished materials for roofs, walls, and floors and closed eaves) or traditional houses (those not meeting the definition of modern house). Associations between malaria burden and house type were estimated using mixed effects models and adjusted for age, wealth, and bed net use. RESULTS Most (65.5%) of the households surveyed lived in traditional houses. Most of the houses had closed eaves (85.5%), however, the use of other protective features like window/vent screens and installed ceilings was limited (0.4% had screened windows, 2.8% had screened air vents, and 5.2% had ceiling). Overall, 3,443 children were included in the clinical survey, of which 31.4% had a positive smear. RDT test positivity rate was 56.6% among children with fever. Participants living in modern houses had a significantly lower parasite prevalence by microscopy (adjusted prevalence ratio [aPR = 0.80]; 95% confidence interval [CI] 0.71 - 0.90), RDT test positivity rate (aPR = 0.90, 95%CI 0.81 - 0.99), and anaemia (aPR = 0.80, 95%CI 0.65 - 0.97) compared to those in traditional houses. CONCLUSION The study found that even after adjusting for wealth, higher quality housing had a moderate protective effect against malaria, on top of the protection already afforded by recently distributed nets.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.
- Department of Internal Medicine, Makerere University College of Health Science, Kampala, Uganda.
| | | | | | - Peter Mutungi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martha Nassali
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Internal Medicine, Makerere University College of Health Science, Kampala, Uganda
| | - Nelli Westercamp
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| |
Collapse
|
2
|
Takken W, Charlwood D, Lindsay SW. The behaviour of adult Anopheles gambiae, sub-Saharan Africa's principal malaria vector, and its relevance to malaria control: a review. Malar J 2024; 23:161. [PMID: 38783348 PMCID: PMC11112813 DOI: 10.1186/s12936-024-04982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Derek Charlwood
- Global Health and Tropical Medicine, Instituto de Hygiene e Medicina Tropical, Lisbon, Portugal
| | | |
Collapse
|
3
|
Kathet S, Sudi W, Mwingira V, Tungu P, Aalto M, Hakala T, Honkala M, Malima R, Kisinza W, Meri S, Khattab A. Efficacy of 3D screens for sustainable mosquito control: a semi-field experimental hut evaluation in northeastern Tanzania. Parasit Vectors 2023; 16:417. [PMID: 37964334 PMCID: PMC10647037 DOI: 10.1186/s13071-023-06032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND A three-dimensional window screen (3D-Screen) has been developed to create a window double-screen trap (3D-WDST), effectively capturing and preventing the escape of mosquitoes. A 2015 laboratory study demonstrated the 3D-Screen's efficacy, capturing 92% of mosquitoes in a double-screen setup during wind tunnel assays. To further evaluate its effectiveness, phase II experimental hut trials were conducted in Muheza, Tanzania. METHODS Three experimental hut trials were carried out between 2016 and 2017. Trial I tested two versions of the 3D-WDST in huts with open or closed eaves, with one version using a single 3D-Screen and the other using two 3D-Screens. Trial II examined the 3D-WDST with two 3D-Screens in huts with or without baffles, while Trial III compared handmade and machine-made 3D structures. Mosquito capturing efficacy of the 3D-WDST was measured by comparing the number of mosquitoes collected in the test hut to a control hut with standard exit traps. RESULTS Trial I showed that the 3D-WDST with two 3D-Screens used in huts with open eaves achieved the highest mosquito-capturing efficacy. This treatment captured 33.11% (CI 7.40-58.81) of female anophelines relative to the total collected in this hut (3D-WDST and room collections) and 27.27% (CI 4.23-50.31) of female anophelines relative to the total collected in the control hut (exit traps, room, and verandahs collections). In Trial II, the two 3D-Screens version of the 3D-WDST captured 70.32% (CI 56.87-83.77) and 51.07% (CI 21.72-80.41) of female anophelines in huts with and without baffles, respectively. Compared to the control hut, the capturing efficacy for female anophelines was 138.6% (37.23-239.9) and 42.41% (14.77-70.05) for huts with and without baffles, respectively. Trial III demonstrated similar performance between hand- and machine-made 3D structures. CONCLUSIONS The 3D-WDST proved effective in capturing malaria vectors under semi-field experimental hut conditions. Using 3D-Screens on both sides of the window openings was more effective than using a single-sided 3D-Screen. Additionally, both hand- and machine-made 3D structures exhibited equally effective performance, supporting the production of durable cones on an industrial scale for future large-scale studies evaluating the 3D-WDST at the community level.
Collapse
Affiliation(s)
- Subam Kathet
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Wema Sudi
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Victor Mwingira
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Patrick Tungu
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | | | - Tomi Hakala
- Department of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere, Finland
| | - Markku Honkala
- Department of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere, Finland
| | - Robert Malima
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - William Kisinza
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, 00014, Helsinki, Finland
- HUSLAB Diagnostic Center, Helsinki University Central Hospital, N00029, Helsinki, Finland
| | - Ayman Khattab
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, 00014, Helsinki, Finland.
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
4
|
Kusman IT, Pradini GW, Ma’ruf IF, Fauziah N, Berbudi A, Achadiyani A, Wiraswati HL. The Potentials of Ageratum conyzoides and Other Plants from Asteraceae as an Antiplasmodial and Insecticidal for Malaria Vector: An Article Review. Infect Drug Resist 2023; 16:7109-7138. [PMID: 37954507 PMCID: PMC10638911 DOI: 10.2147/idr.s433328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Background Malaria is a life-threatening disease prevalent in tropical and subtropical regions. Artemisinin combination therapy (ACT) used as an antimalarial treatment has reduced efficacy due to resistance, not only to the parasite but also to the vector. Therefore, it is important to find alternatives to overcome malaria cases through medicinal plants such as Ageratum conyzoides and other related plants within Asteraceae family. Purpose This review summarizes the antimalarial and insecticidal activities of A. conyzoides and other plants belonging to Asteraceae family. Data Source Google Scholar, PubMed, Science Direct, and Springer link. Study Selection Online databases were used to retrieve journals using specific keywords combined with Boolean operators. The inclusion criteria were articles with experimental studies either in vivo or in vitro, in English or Indonesian, published after 1st January 2000, and full text available for inclusion in this review. Data Extraction The antimalarial activity, insecticidal activity, and structure of the isolated compounds were retrieved from the selected studies. Data Synthesis Antimalarial in vitro study showed that the dichloromethane extract was the most widely studied with an IC50 value <10 μg/mL. Among 84 isolated active compounds, 2-hydroxymethyl-non-3-ynoic acid 2-[2,2']-bithiophenyl-5- ethyl ester, a bithienyl compound from the Tagetes erecta plant show the smallest IC50 with value 0.01 and 0.02 µg/mL in Plasmodium falciparum MRC-pf-2 and MRC-pf-56, respectively. In vivo studies showed that the aqueous extract of A. conyzoides showed the best activity, with a 98.8% inhibition percentage using a 100 mg/kg dose of Plasmodium berghei (NK65 Strain). (Z)- γ-Bisabolene from Galinsoga parviflora showed very good insecticidal activity against Anopheles stephensi and Anopheles subpictus with LC50 values of 2.04 μg/mL and 4.05 μg/mL. Conclusion A. conyzoides and other plants of Asteraceae family are promising reservoirs of natural compounds that exert antimalarial or insecticidal activity.
Collapse
Affiliation(s)
| | - Gita Widya Pradini
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Ilma Fauziah Ma’ruf
- Research Center for Climate and Atmosphere, National Research and Innovation Agency, Bandung, 40135Indonesia
| | - Nisa Fauziah
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Afiat Berbudi
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Achadiyani Achadiyani
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Hesti Lina Wiraswati
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| |
Collapse
|
5
|
Sagna AB, Zéla L, Ouedraogo COW, Pooda SH, Porciani A, Furnival-Adams J, Lado P, Somé AF, Pennetier C, Chaccour CJ, Dabiré RK, Mouline K. Ivermectin as a novel malaria control tool: Getting ahead of the resistance curse. Acta Trop 2023; 245:106973. [PMID: 37352998 DOI: 10.1016/j.actatropica.2023.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Reduction in malaria clinical cases is strongly dependent on the ability to prevent Anopheles infectious bites. Vector control strategies using long-lasting insecticidal nets and indoor residual spraying with insecticides have contributed to significantly reduce the incidence of malaria in many endemic countries, especially in the Sub-Saharan region. However, global progress in reducing malaria cases has plateaued since 2015 mostly due to the increased insecticide resistance and behavioral changes in Anopheles vectors. Additional control strategies are thus required to further reduce the burden of malaria and contain the spread of resistant and invasive Anopheles vectors. The use of endectocides such as ivermectin as an additional malaria control tool is now receiving increased attention, driven by its different mode of action compared to insecticides used so far and its excellent safety record for humans. In this opinion article, we discuss the advantages and disadvantages of using ivermectin for malaria control with a focus on the risk of selecting ivermectin resistance in malaria vectors. We also highlight the importance of understanding how ivermectin resistance could develop in mosquitoes and what its underlying mechanisms and associated molecular markers are, and propose a research agenda to manage this phenomenon.
Collapse
Affiliation(s)
- André B Sagna
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France.
| | - Lamidi Zéla
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Cheick Oumar W Ouedraogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Centre National de Recherche Scientifique et Technologique, Bobo-Dioulasso, Burkina Faso
| | - Sié H Pooda
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso; Université de Dédougou, Dédougou, Burkina Faso
| | | | | | - Paula Lado
- Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| | - Anyirékun F Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Centre National de Recherche Scientifique et Technologique, Bobo-Dioulasso, Burkina Faso
| | - Cédric Pennetier
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Carlos J Chaccour
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain; Universidad de Navarra, Pamplona, Spain
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Centre National de Recherche Scientifique et Technologique, Bobo-Dioulasso, Burkina Faso
| | - Karine Mouline
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
6
|
Musoke D, Atusingwize E, Namata C, Ndejjo R, Wanyenze RK, Kamya MR. Integrated malaria prevention in low- and middle-income countries: a systematic review. Malar J 2023; 22:79. [PMID: 36879237 PMCID: PMC9987134 DOI: 10.1186/s12936-023-04500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND As many countries aim to eliminate malaria, use of comprehensive approaches targeting the mosquito vector and environment are needed. Integrated malaria prevention advocates the use of several malaria prevention measures holistically at households and in the community. The aim of this systematic review was to collate and summarize the impact of integrated malaria prevention in low- and middle-income countries on malaria burden. METHODS Literature on integrated malaria prevention, defined as the use of two or more malaria prevention methods holistically, was searched from 1st January 2001 to 31st July 2021. The primary outcome variables were malaria incidence and prevalence, while the secondary outcome measures were human biting and entomological inoculation rates, and mosquito mortality. RESULTS A total of 10,931 studies were identified by the search strategy. After screening, 57 articles were included in the review. Studies included cluster randomized controlled trials, longitudinal studies, programme evaluations, experimental hut/houses, and field trials. Various interventions were used, mainly combinations of two or three malaria prevention methods including insecticide-treated nets (ITNs), indoor residual spraying (IRS), topical repellents, insecticide sprays, microbial larvicides, and house improvements including screening, insecticide-treated wall hangings, and screening of eaves. The most common methods used in integrated malaria prevention were ITNs and IRS, followed by ITNs and topical repellents. There was reduced incidence and prevalence of malaria when multiple malaria prevention methods were used compared to single methods. Mosquito human biting and entomological inoculation rates were significantly reduced, and mosquito mortality increased in use of multiple methods compared to single interventions. However, a few studies showed mixed results or no benefits of using multiple methods to prevent malaria. CONCLUSION Use of multiple malaria prevention methods was effective in reducing malaria infection and mosquito density in comparison with single methods. Results from this systematic review can be used to inform future research, practice, policy and programming for malaria control in endemic countries.
Collapse
Affiliation(s)
- David Musoke
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Edwinah Atusingwize
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Carol Namata
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rawlance Ndejjo
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rhoda K Wanyenze
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
7
|
Msoffe R, Hewitt M, Masalu JP, Finda M, Kavishe DR, Okumu FO, Mpolya EA, Kaindoa EW, Killeen GF. Participatory development of practical, affordable, insecticide-treated mosquito proofing for a range of housing designs in rural southern Tanzania. Malar J 2022; 21:318. [PMCID: PMC9636681 DOI: 10.1186/s12936-022-04333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract
Background
Insecticidal mosquito-proof netting screens could combine the best features of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), the two most important front line vector control interventions in Africa today, and also overcome the most important limitations of these methods. This study engaged members of a rural Tanzanian community in developing and evaluating simple, affordable and scalable procedures for installing readily available screening materials on eave gaps and windows of their own houses, and then treating those screens with a widely used IRS formulation of the organophosphate insecticide pirimiphos-methyl (PM).
Methods
A cohort of 54 households recruited upon consent, following which the structural features and occupant demographics of their houses were surveyed. Indoor mosquito densities were surveyed longitudinally, for approximately 3 months before and over 5 months after participatory house modification and screening using locally available materials. Each house was randomly assigned to one of three study arms: (1) No screens installed until the end of the study (negative control), (2) untreated screens installed, and (3) screened installed and then treated with PM, the insecticidal activity of which was subsequently assessed using standard cone assays.
Results
Almost all (52) recruited households participated until the end, at which point all houses had been successfully screened. In most cases, screening was only installed after making enabling structural modifications that were accepted by the enrolled households. Compared to unscreened houses, houses with either treated or untreated screens both almost entirely excluded Anopheles arabiensis (Relative reduction (RR) ≥ 98%, P < < 0.0001), the most abundant local malaria vector. However, screens were far less effective against Culex quinquefasciatus (RR ≤ 46%, P < < 0.0001), a non-malaria vector causing considerable biting nuisance, regardless of their treatment status. While PM did not augment household level protection by screens against either mosquito species (P = 0.676 and 0.831, respectively), 8 months after treatment it still caused 73% and 89% mortality among susceptible insectary-reared Anopheles gambiae following exposures of 3 and 30 min, respectively.
Conclusions
Participatory approaches to mosquito proofing houses may be acceptable and effective, and installed screens may be suitable targets for residual insecticide treatments.
Collapse
|
8
|
Hepnarova V, Hrabinova M, Muckova L, Kucera T, Schmidt M, Dolezal R, Gorecki L, Hrabcova V, Korabecny J, Mezeiova E, Jun D, Pejchal J. Non-covalent acetylcholinesterase inhibitors: In vitro screening and molecular modeling for novel selective insecticides. Toxicol In Vitro 2022; 85:105463. [PMID: 36041654 DOI: 10.1016/j.tiv.2022.105463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Insecticides represent the most crucial element in the integrated management approach to malaria and other vector-borne diseases. The evolution of insect resistance to long-used substances and the toxicity of organophosphates (OPs) and carbamates are the main factors contributing to the development of new, environmentally safe pesticides. In our work, fourteen compounds of 7-methoxytacrine-tacrine heterodimers were tested for their insecticidal effect. Compounds were evaluated in vitro on insect acetylcholinesterase from Anopheles gambiae (AgAChE) and Musca domestica (MdAChE). The evaluation was executed in parallel with testing on human erythrocyte acetylcholinesterase (HssAChE) and human butyrylcholinesterase (HssBChE) using a modified Ellman's method. Compound efficacy was determined as IC50 values for the respective enzymes and selectivity indexes were expressed to compare the interspecies selectivity. Docking studies were performed to predict the binding modes of selected compounds. K1328 and K1329 provided high HssAChE/AgAChE selectivity outperforming standard pesticides (carbofuran and bendiocarb), and thus can be considered as suitable lead structure for novel anticholinesterase insecticides.
Collapse
Affiliation(s)
- Vendula Hepnarova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Lubica Muckova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- University of Defence, Faculty of Military Health Sciences, Department of Military Medical Service Organization and Management, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Monika Schmidt
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Veronika Hrabcova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Daniel Jun
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Kahamba NF, Finda M, Ngowo HS, Msugupakulya BJ, Baldini F, Koekemoer LL, Ferguson HM, Okumu FO. Using ecological observations to improve malaria control in areas where Anopheles funestus is the dominant vector. Malar J 2022; 21:158. [PMID: 35655190 PMCID: PMC9161514 DOI: 10.1186/s12936-022-04198-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
The most important malaria vectors in sub-Saharan Africa are Anopheles gambiae, Anopheles arabiensis, Anopheles funestus, and Anopheles coluzzii. Of these, An. funestus presently dominates in many settings in east and southern Africa. While research on this vector species has been impeded by difficulties in creating laboratory colonies, available evidence suggests it has certain ecological vulnerabilities that could be strategically exploited to greatly reduce malaria transmission in areas where it dominates. This paper examines the major life-history traits of An. funestus, its aquatic and adult ecologies, and its responsiveness to key interventions. It then outlines a plausible strategy for reducing malaria transmission by the vector and sustaining the gains over the medium to long term. To illustrate the propositions, the article uses data from south-eastern Tanzania where An. funestus mediates over 85% of malaria transmission events and is highly resistant to key public health insecticides, notably pyrethroids. Both male and female An. funestus rest indoors and the females frequently feed on humans indoors, although moderate to high degrees of zoophagy can occur in areas with large livestock populations. There are also a few reports of outdoor-biting by the species, highlighting a broader range of behavioural phenotypes that can be considered when designing new interventions to improve vector control. In comparison to other African malaria vectors, An. funestus distinctively prefers permanent and semi-permanent aquatic habitats, including river streams, ponds, swamps, and spring-fed pools. The species is therefore well-adapted to sustain its populations even during dry months and can support year-round malaria transmission. These ecological features suggest that highly effective control of An. funestus could be achieved primarily through strategic combinations of species-targeted larval source management and high quality insecticide-based methods targeting adult mosquitoes in shelters. If done consistently, such an integrated strategy has the potential to drastically reduce local populations of An. funestus and significantly reduce malaria transmission in areas where this vector species dominates. To sustain the gains, the programmes should be complemented with gradual environmental improvements such as house modification to maintain biting exposure at a bare minimum, as well as continuous engagements of the resident communities and other stakeholders.
Collapse
Affiliation(s)
- Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK.
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Francesco Baldini
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather M Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK.
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| |
Collapse
|
10
|
Asale A, Kassie M, Abro Z, Enchalew B, Belay A, Sangoro PO, Tchouassi DP, Mutero CM. The combined impact of LLINs, house screening, and pull-push technology for improved malaria control and livelihoods in rural Ethiopia: study protocol for household randomised controlled trial. BMC Public Health 2022; 22:930. [PMID: 35538444 PMCID: PMC9088127 DOI: 10.1186/s12889-022-12919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background The combined application of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used malaria interventions that target indoor Anopheles vectors. Recent studies on the effects of house screening (HS) and LLINs have demonstrated a reduction in indoor vector densities and malaria when the interventions are combined. In addition, complementary interventions are needed to curb co-occurring pest populations which pose menace to agricultural crop productivity and food security. However, interventions that impact malaria mainly centre on public health strategies, overlooking subtle but important component of agricultural measures. Addressing the coexisting risks of malaria and crop pests could contribute to improved livelihood of communities. Methods A four-armed household, cluster-randomized, controlled study will be conducted to assess the combined impact of HS, LLINs and push-pull agricultural technology (PPT) against clinical malaria in children in Ethiopia. The unit of randomization will be the household, which includes a house and its occupants. A total of 838 households will be enrolled in this study. In this trial 246 households will receive LLINs and HS, 250 will receive LLINs, HS and PPT, 175 households will receive LLINs and PPT. The remaining 167 houses which receive LLINs only will be used as control. One child aged ≤14 years will be enrolled per household in each treatment and followed for clinical malaria using active case detection to estimate malaria incidence for two malaria transmission seasons. Discussion Episodes of clinical malaria, density of indoor biting malaria vectors, sporozoite infection rate, improved crop infestation rate, crop yield gain, livestock productivity and cost effectiveness analysis will be the end points of this study. Socio-economic, social demographic, cost-effectiveness analysis will be conducted using qualitative and participatory methods to explore the acceptability of HS and PPT. Documenting the combined impact of LLINs, HS and PPT on the prevalence of clinical malaria and crop pest damage will be the first of its kind. Trial registration Pan African Clinical Trials Registry, PACTR202006878245287. 24/06/2020. https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=11101. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-12919-1.
Collapse
Affiliation(s)
- Abebe Asale
- International Centre of Insect Physiology and Ecology, Addis Ababa, Ethiopia.
| | - Menale Kassie
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Zewdu Abro
- International Centre of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Bayu Enchalew
- International Centre of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Aklilu Belay
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Peter O Sangoro
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Asale A, Abro Z, Enchalew B, Teshager A, Belay A, Kassie M, Mutero CM. Community knowledge, perceptions, and practices regarding malaria and its control in Jabi Tehnan district, Amhara Region, Northwest Ethiopia. Malar J 2021; 20:459. [PMID: 34886848 PMCID: PMC8656029 DOI: 10.1186/s12936-021-03996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background Use of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), community-based malaria education, prompt diagnosis and treatment are key programme components of malaria prevention and control in Ethiopia. However, the effectiveness of these interventions is often undermined by various challenges, including insecticide and drug resistance, the plasticity of malaria vectors feeding and biting behaviour, and certain household factors that lead to misuse and poor utilization of LLINs. The primary objective of this study was to document households’ perceptions towards malaria and assess the prevalence of the disease and the constraints related to the ongoing interventions in Ethiopia (LLINs, IRS, community mobilization house screening). Methods The study was conducted in Jabi Tehnan district, Northwestern Ethiopia, from November 2019 to March 2020. A total of 3010 households from 38 villages were randomly selected for socio-economic and demographic survey. Focus group discussions (FGDs) were conducted in 11 different health clusters considering agro-ecological differences. A total of 1256 children under 10 years of age were screened for malaria parasites using microscopy to determine malaria prevalence. Furthermore, 5-year malaria trend analysis was undertaken based on data obtained from the district health office to understand the disease dynamics. Results Malaria knowledge in the area was high as all FGD participants correctly identified mosquito bites during the night as sources of malaria transmission. Delayed health-seeking behaviour remains a key behavioural challenge in malaria control as it took patients on average 4 days before reporting the case at the nearby health facility. On average, households lost 2.53 working days per person-per malaria episode and they spent US$ 18 per person per episode. Out of the 1256 randomly selected under 10 children tested for malaria parasites, 11 (0.89%) were found to be positive. Malaria disproportionately affected the adult segment of the population more, with 50% of the total cases reported from households being from among individuals who were 15 years or older. The second most affected group was the age group between 5 and 14 years followed by children aged under 5, with 31% and 14% burden, respectively. Conclusion Despite the achievement of universal coverage in terms of LLINs access, utilization of vector control interventions in the area remained low. Using bed nets for unintended purposes remained a major challenge. Therefore, continued community education and communication work should be prioritized in the study area to bring about the desired behavioural changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03996-5.
Collapse
Affiliation(s)
- Abebe Asale
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia.
| | - Zewdu Abro
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Bayu Enchalew
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Alayu Teshager
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Aklilu Belay
- International Center of Insect Physiology and Ecology, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Menale Kassie
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Clifford Maina Mutero
- International Center of Insect Physiology and Ecology, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Kaindoa EW, Mmbando AS, Shirima R, Hape EE, Okumu FO. Insecticide-treated eave ribbons for malaria vector control in low-income communities. Malar J 2021; 20:415. [PMID: 34688285 PMCID: PMC8542300 DOI: 10.1186/s12936-021-03945-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
Supplementary tools are required to address the limitations of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), which are currently the core vector control methods against malaria in Africa. The eave ribbons technology exploits the natural house-entry behaviours of major malaria vectors to deliver mosquitocidal or repellent actives around eave spaces through which the Anopheles mosquitoes usually enter human dwellings. They confer protection by preventing biting indoors and in the peri-domestic outdoor spaces, and also killing a significant proportion of the mosquitoes. Current versions of eave ribbons are made of low-cost hessian fabric infused with candidate insecticides and can be easily fitted onto multiple house types without any additional modifications. This article reviews the evidence for efficacy of the technology, and discusses its potential as affordable and versatile supplementary approach for targeted and efficient control of mosquito-borne diseases, particularly malaria. Given their simplicity and demonstrated potential in previous studies, future research should investigate ways to optimize scalability and effectiveness of the ribbons. It is also important to assess whether the ribbons may constitute a less-cumbersome, but more affordable substitute for other interventions, such as IRS, by judiciously using lower quantities of selected insecticides targeted around eave spaces to deliver equivalent or greater suppression of malaria transmission.
Collapse
Affiliation(s)
- Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania. .,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| | - Arnold S Mmbando
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Department of Biosciences, Durham University, DH13LE, Durham, UK
| | - Ruth Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Emmanuel E Hape
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK.,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
13
|
Andreazza F, Valbon WR, Wang Q, Liu F, Xu P, Bandason E, Chen M, Wu S, Smith LB, Scott JG, Jiang Y, Jiang D, Zhang A, Oliveira EE, Dong K. Sodium channel activation underlies transfluthrin repellency in Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009546. [PMID: 34237076 PMCID: PMC8266078 DOI: 10.1371/journal.pntd.0009546] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Volatile pyrethroid insecticides, such as transfluthrin, have received increasing attention for their potent repellent activities in recent years for controlling human disease vectors. It has been long understood that pyrethroids kill insects by promoting activation and inhibiting inactivation of voltage-gated sodium channels. However, the mechanism of pyrethroid repellency remains poorly understood and controversial. Methodology/Principal findings Here, we show that transfluthrin repels Aedes aegypti in a hand-in-cage assay at nonlethal concentrations as low as 1 ppm. Contrary to a previous report, transfluthrin does not elicit any electroantennogram (EAG) responses, indicating that it does not activate olfactory receptor neurons (ORNs). The 1S-cis isomer of transfluthrin, which does not activate sodium channels, does not elicit repellency. Mutations in the sodium channel gene that reduce the potency of transfluthrin on sodium channels decrease transfluthrin repellency but do not affect repellency by DEET. Furthermore, transfluthrin enhances DEET repellency. Conclusions/Significance These results provide a surprising example that sodium channel activation alone is sufficient to potently repel mosquitoes. Our findings of sodium channel activation as the principal mechanism of transfluthrin repellency and potentiation of DEET repellency have broad implications in future development of a new generation of dual-target repellent formulations to more effectively repel a variety of human disease vectors. Vector-transmitted human diseases, such as dengue fever, represent serious global health burdens. Pyrethroids, including transfluthrin, are widely used as insecticides and repellents due to their low mammalian toxicity and relatively benign environmental impact. Pyrethroids target voltage-gated sodium channels for their insecticidal action. However, the mechanism of pyrethroid repellency remains unclear and controversial. Insect repellency is traditionally thought to be mediated by olfactory receptors. We made two important discoveries in this study, showing that transfluthrin repellency is via activation of sodium channels and transfluthrin enhances DEET repellency. Discovery of sodium channel activation as a major mechanism of pyrethroid repellency has broad significance in insect olfaction study, repellents development, and control of human disease vectors.
Collapse
Affiliation(s)
- Felipe Andreazza
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Wilson R. Valbon
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qiang Wang
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Feng Liu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Peng Xu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizabeth Bandason
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shaoying Wu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Leticia B. Smith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Jiangsu, China
| | - Dingxin Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, Maryland, United States of America
| | - Eugenio E. Oliveira
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
McCann RS, Kabaghe AN, Moraga P, Gowelo S, Mburu MM, Tizifa T, Chipeta MG, Nkhono W, Di Pasquale A, Maire N, Manda-Taylor L, Mzilahowa T, van den Berg H, Diggle PJ, Terlouw DJ, Takken W, van Vugt M, Phiri KS. The effect of community-driven larval source management and house improvement on malaria transmission when added to the standard malaria control strategies in Malawi: a cluster-randomized controlled trial. Malar J 2021; 20:232. [PMID: 34022912 PMCID: PMC8140568 DOI: 10.1186/s12936-021-03769-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Current standard interventions are not universally sufficient for malaria elimination. The effects of community-based house improvement (HI) and larval source management (LSM) as supplementary interventions to the Malawi National Malaria Control Programme (NMCP) interventions were assessed in the context of an intensive community engagement programme. METHODS The study was a two-by-two factorial, cluster-randomized controlled trial in Malawi. Village clusters were randomly assigned to four arms: a control arm; HI; LSM; and HI + LSM. Malawi NMCP interventions and community engagement were used in all arms. Household-level, cross-sectional surveys were conducted on a rolling, 2-monthly basis to measure parasitological and entomological outcomes over 3 years, beginning with one baseline year. The primary outcome was the entomological inoculation rate (EIR). Secondary outcomes included mosquito density, Plasmodium falciparum prevalence, and haemoglobin levels. All outcomes were assessed based on intention to treat, and comparisons between trial arms were conducted at both cluster and household level. RESULTS Eighteen clusters derived from 53 villages with 4558 households and 20,013 people were randomly assigned to the four trial arms. The mean nightly EIR fell from 0.010 infectious bites per person (95% CI 0.006-0.015) in the baseline year to 0.001 (0.000, 0.003) in the last year of the trial. Over the full trial period, the EIR did not differ between the four trial arms (p = 0.33). Similar results were observed for the other outcomes: mosquito density and P. falciparum prevalence decreased over 3 years of sampling, while haemoglobin levels increased; and there were minimal differences between the trial arms during the trial period. CONCLUSIONS In the context of high insecticide-treated bed net use, neither community-based HI, LSM, nor HI + LSM contributed to further reductions in malaria transmission or prevalence beyond the reductions observed over two years across all four trial arms. This was the first trial, as far as the authors are aware, to test the potential complementary impact of LSM and/or HI beyond levels achieved by standard interventions. The unexpectedly low EIR values following intervention implementation indicated a promising reduction in malaria transmission for the area, but also limited the usefulness of this outcome for measuring differences in malaria transmission among the trial arms. Trial registration PACTR, PACTR201604001501493, Registered 3 March 2016, https://pactr.samrc.ac.za/ .
Collapse
Affiliation(s)
- Robert S McCann
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - Alinune N Kabaghe
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Paula Moraga
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Steven Gowelo
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Monicah M Mburu
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Tinashe Tizifa
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael G Chipeta
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Malawi-Liverpool Wellcome Trust Clinical Research Program, Blantyre, Malawi
| | - William Nkhono
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Aurelio Di Pasquale
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicolas Maire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucinda Manda-Taylor
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Themba Mzilahowa
- MAC Communicable Diseases Action Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J Diggle
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Dianne J Terlouw
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Malawi-Liverpool Wellcome Trust Clinical Research Program, Blantyre, Malawi
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Michèle van Vugt
- Center for Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Kamija S Phiri
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi.
| |
Collapse
|
15
|
Okumu F, Finda M. Key Characteristics of Residual Malaria Transmission in Two Districts in South-Eastern Tanzania-Implications for Improved Control. J Infect Dis 2021; 223:S143-S154. [PMID: 33906218 PMCID: PMC8079133 DOI: 10.1093/infdis/jiaa653] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
After 2 decades of using insecticide-treated nets (ITNs) and improved case management, malaria burden in the historically-holoendemic Kilombero valley in Tanzania has significantly declined. We review key characteristics of the residual transmission and recommend options for improvement. Transmission has declined by >10-fold since 2000 but remains heterogeneous over small distances. Following the crash of Anopheles gambiae, which coincided with ITN scale-up around 2005-2012, Anopheles funestus now dominates malaria transmission. While most infections still occur indoors, substantial biting happens outdoors and before bed-time. There is widespread resistance to pyrethroids and carbamates; An. funestus being particularly strongly-resistant. In short and medium-term, these challenges could be addressed using high-quality indoor residual spraying with nonpyrethroids, or ITNs incorporating synergists. Supplementary tools, eg, spatial-repellents may expand protection outdoors. However, sustainable control requires resilience-building approaches, particularly improved housing and larval-source management to suppress mosquitoes, stronger health systems guaranteeing case-detection and treatment, greater community-engagement and expanded health education.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Marceline Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
16
|
Pinder M, Bradley J, Jawara M, Affara M, Conteh L, Correa S, Jeffries D, Jones C, Kandeh B, Knudsen J, Olatunji Y, Sicuri E, D'Alessandro U, Lindsay SW. Improved housing versus usual practice for additional protection against clinical malaria in The Gambia (RooPfs): a household-randomised controlled trial. Lancet Planet Health 2021; 5:e220-e229. [PMID: 33838737 PMCID: PMC8051018 DOI: 10.1016/s2542-5196(21)00002-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND In malaria-endemic areas, residents of modern houses have less malaria than those living in traditional houses. We aimed to assess whether children in The Gambia received an incremental benefit from improved housing, where current best practice of insecticide-treated nets, indoor residual spraying, seasonal malaria chemoprevention in children younger than 5 years, and prompt treatment against clinical malaria was in place. METHODS In this randomised controlled study, 800 households with traditional thatched-roofed houses were randomly selected from 91 villages in the Upper River Region of The Gambia. Within each village, equal numbers of houses were randomly allocated to the control and intervention groups using a sampling frame. Houses in the intervention group were modified with metal roofs and screened doors and windows, whereas houses in the control group received no modifications. In each group, clinical malaria in children aged 6 months to 13 years was monitored by active case detection over 2 years (2016-17). We did monthly collections from indoor light traps to estimate vector densities. Primary endpoints were the incidence of clinical malaria in study children with more than 50% of observations each year and household vector density. The trial is registered at ISRCTN02622179. FINDINGS In June, 2016, 785 houses had one child each recruited into the study (398 in unmodified houses and 402 in modified houses). 26 children in unmodified houses and 28 children in modified houses did not have at least 50% of visits in a year and so were excluded from analysis. 38 children in unmodified houses were recruited after study commencement, as were 21 children in modified houses, meaning 410 children in unmodified houses and 395 in modified houses were included in the parasitological analyses. At the end of the study, 659 (94%) of 702 children were reported to have slept under an insecticide-treated net; 662 (88%) of 755 children lived in houses that received indoor residual spraying; and 151 (90%) of 168 children younger than 5 years had seasonal malaria chemoprevention. Incidence of clinical malaria was 0·12 episodes per child-year in children in the unmodified houses and 0·20 episodes per child-year in the modified houses (unadjusted incidence rate ratio [RR] 1·68 [95% CI 1·11-2·55], p=0·014). Household vector density was 3·30 Anopheles gambiae per house per night in the unmodified houses compared with 3·60 in modified houses (unadjusted RR 1·28 [0·87-1·89], p=0·21). INTERPRETATION Improved housing did not provide protection against clinical malaria in this area of low seasonal transmission with high coverage of insecticide-treated nets, indoor residual spraying, and seasonal malaria chemoprevention. FUNDING Global Health Trials funded by Medical Research Council, UK Department for International Development, and Wellcome Trust.
Collapse
Affiliation(s)
- Margaret Pinder
- Department of Biosciences, Durham University, Durham, UK; Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Musa Jawara
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Muna Affara
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lesong Conteh
- London School of Economics and Political Science, London, UK
| | - Simon Correa
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - David Jeffries
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Caroline Jones
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya and Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Balla Kandeh
- National Malaria Control Programme, Banjul, The Gambia
| | - Jakob Knudsen
- Royal Danish Academy - Architecture, Design, Conservation, Copenhagen, Denmark
| | - Yekini Olatunji
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Elisa Sicuri
- School of Public Health, Imperial College London, London, UK; ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Steve W Lindsay
- Department of Biosciences, Durham University, Durham, UK; Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
17
|
Wang L, Yin J, Zheng C, Smith SJ, Ngegba E, Huang X, Kamara A, Chen X, Wang X, Luo W, Kan B. A Household-Based Cross-Sectional Survey of Knowledge, Awareness and Practice Regarding Malaria in Western Area Rural District, Sierra Leone. Front Public Health 2021; 9:664971. [PMID: 33816430 PMCID: PMC8012796 DOI: 10.3389/fpubh.2021.664971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Sierra Leone is a highly endemic area for malaria, and the implementation of the National Malaria Strategic Plan (2016-2020) has reached its midpoint in 2018. To provide more specific guidance for interventions in the future, a household-based cross-sectional survey was conducted to elucidate the knowledge, awareness and practices regarding malaria and malarial control measures among the general public. Three communities (Grafton, Jui, and Kossoh) in the Western Area Rural District that were in close proximity to Sierra Leone's capital city of Freetown were included. Households were randomly selected and interviewed with a structured questionnaire covering malaria infection, diagnosis, treatment and prevention, as well as knowledge of malaria prevention. As a result, a total of 262 qualified questionnaires were included. The average cost for meals per day is ~30,000 Leones in each household. The rate of awareness, indicated by reporting having heard of malaria, was 98.1% (257/262), and 86.6% (227/262) of the respondents knew that mosquito bites are the main route of transmission. In addition, 80.9% (212/262) of the respondents sought health advice or treatment for the illness, and a similar percentage of respondents had been tested for malaria, mostly with rapid diagnostic tests (RDTs). A high demand for long-lasting insecticidal nets (72.1%) matched the serious shortage (61.8%, 162/262), and of the households that reported a lack of nets, 66 had children younger than 5 years old. In conclusion, public awareness of malaria prevention is high, based on this survey, although there was a limited use of preventive measures in these three communities and the malaria burden was still high. Therefore, the public's knowledge of malaria should be sustained and reinforced, and the distribution and use of malaria prevention measures should be promoted to supprt the achievement of the planned objectives.
Collapse
Affiliation(s)
- Lili Wang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
| | - Canjun Zheng
- Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Samuel Juana Smith
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Esther Ngegba
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Anitta Kamara
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Xia Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xu Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
| | - Wei Luo
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
18
|
Sternberg ED, Cook J, Alou LPA, Assi SB, Koffi AA, Doudou DT, Aoura CJ, Wolie RZ, Oumbouke WA, Worrall E, Kleinschmidt I, N'Guessan R, Thomas MB. Impact and cost-effectiveness of a lethal house lure against malaria transmission in central Côte d'Ivoire: a two-arm, cluster-randomised controlled trial. Lancet 2021; 397:805-815. [PMID: 33640067 PMCID: PMC7910282 DOI: 10.1016/s0140-6736(21)00250-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/15/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND New vector control tools are required to sustain the fight against malaria. Lethal house lures, which target mosquitoes as they attempt to enter houses to blood feed, are one approach. Here we evaluated lethal house lures consisting of In2Care (Wageningen, Netherlands) Eave Tubes, which provide point-source insecticide treatments against host-seeking mosquitoes, in combination with house screening, which aims to reduce mosquito entry. METHODS We did a two-arm, cluster-randomised controlled trial with 40 village-level clusters in central Côte d'Ivoire between Sept 26, 2016, and April 10, 2019. All households received new insecticide-treated nets at universal coverage (one bednet per two people). Suitable households within the clusters assigned to the treatment group were offered screening plus Eave Tubes, with Eave Tubes treated using a 10% wettable powder formulation of the pyrethroid β-cyfluthrin. Because of the nature of the intervention, treatment could not be masked for households and field teams, but all analyses were blinded. The primary endpoint was clinical malaria incidence recorded by active case detection over 2 years in cohorts of children aged 6 months to 10 years. This trial is registered with ISRCTN, ISRCTN18145556. FINDINGS 3022 houses received screening plus Eave Tubes, with an average coverage of 70% across the intervention clusters. 1300 eligible children were recruited for active case detection in the control group and 1260 in the intervention group. During the 2-year follow-up period, malaria case incidence was 2·29 per child-year (95% CI 1·97-2·61) in the control group and 1·43 per child-year (1·21-1·65) in the intervention group (hazard ratio 0·62, 95% CI 0·51-0·76; p<0·0001). Cost-effectiveness simulations suggested that screening plus Eave Tubes has a 74·0% chance of representing a cost-effective intervention, compared with existing healthcare activities in Côte d'Ivoire, and is similarly cost-effective to other core vector control interventions across sub-Saharan Africa. No serious adverse events associated with the intervention were reported during follow-up. INTERPRETATION Screening plus Eave Tubes can provide protection against malaria in addition to the effects of insecticide-treated nets, offering potential for a new, cost-effective strategy to supplement existing vector control tools. Additional trials are needed to confirm these initial results and further optimise Eave Tubes and the lethal house lure concept to facilitate adoption. FUNDING The Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Eleanore D Sternberg
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Jackie Cook
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Serge Brice Assi
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Dimi T Doudou
- Laboratoire de Santé, Nutrition et Hygiène, Centre de Recherche pour le Développement, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Carine J Aoura
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Rosine Z Wolie
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire; Laboratoire de genetique, Unité de Formation et de Recherche en Biosciences, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Eve Worrall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Raphael N'Guessan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; York Environmental Sustainability Institute and Department of Biology, University of York, York, UK
| |
Collapse
|
19
|
Barreaux AMG, Oumbouke WA, Brou N, Tia IZ, Ahoua Alou LP, Doudou DT, Koffi AA, N'Guessan R, Sternberg ED, Thomas MB. The role of human and mosquito behaviour in the efficacy of a house-based intervention. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190815. [PMID: 33357057 PMCID: PMC7776932 DOI: 10.1098/rstb.2019.0815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Housing improvement such as blocking eaves and screening windows can help in reducing exposure to indoor biting mosquitoes. The impacts of physical barriers could potentially be boosted by the addition of a mechanism that kills mosquitoes as they attempt to enter the house. One example is to combine household screening with EaveTubes, which are insecticide-treated tubes inserted into closed eaves that attract and kill host-searching mosquitoes. The epidemiological impact of screening + EaveTubes is being evaluated in a large cluster randomized trial in Cote d'Ivoire. The study presented here is designed as a complement to this trial to help better understand the functional roles of screening and EaveTubes. We began by evaluating householder behaviour and household condition in the study villages. This work revealed that doors (and to some extent windows) were left open for large parts of the evening and morning, and that even houses modified to make them more ‘mosquito proof’ often had possible entry points for mosquitoes. We next built two realistic experimental houses in a village to enable us to explore how these aspects of behaviour and household quality affected the impact of screening and EaveTubes. We found that screening could have a substantial impact on indoor mosquito densities, even with realistic household condition and behaviour. By contrast, EaveTubes had no significant impact on indoor mosquito density, either as a stand-alone intervention or in combination with screening. However, there was evidence that mosquitoes recruited to the EaveTubes, and the resulting mortality could create a community benefit. These complementary modes of action of screening and EaveTubes support the rationale of combining the technologies to create a ‘Lethal House Lure’. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.
Collapse
Affiliation(s)
- Antoine M G Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.,School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Welbeck A Oumbouke
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire.,London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - N'Guessan Brou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Innocent Zran Tia
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Dimi Théodore Doudou
- Centre de recherche pour le Développement (CRD)/Laboratoire de Santé, Nutrition et Hygiène, Université Alassane Ouattara, Bouaké BP V 18 01, Cote d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Raphaël N'Guessan
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire.,London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Eleanore D Sternberg
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
Lindsay SW, Davies M, Alabaster G, Altamirano H, Jatta E, Jawara M, Carrasco-Tenezaca M, von Seidlein L, Shenton FC, Tusting LS, Wilson AL, Knudsen J. Recommendations for building out mosquito-transmitted diseases in sub-Saharan Africa: the DELIVER mnemonic. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190814. [PMID: 33357059 DOI: 10.1098/rstb.2019.0814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In sub-Saharan Africa, most transmission of mosquito-transmitted diseases, such as malaria or dengue, occurs within or around houses. Preventing mosquito house entry and reducing mosquito production around the home would help reduce the transmission of these diseases. Based on recent research, we make key recommendations for reducing the threat of mosquito-transmitted diseases through changes to the built environment. The mnemonic, DELIVER, recommends the following best practices: (i) Doors should be screened, self-closing and without surrounding gaps; (ii) Eaves, the space between the wall and roof, should be closed or screened; (iii) houses should be Lifted above the ground; (iv) Insecticide-treated nets should be used when sleeping in houses at night; (v) houses should be Ventilated, with at least two large-screened windows to facilitate airflow; (vi) Environmental management should be conducted regularly inside and around the home; and (vii) Roofs should be solid, rather than thatch. DELIVER is a package of interventions to be used in combination for maximum impact. Simple changes to the built environment will reduce exposure to mosquito-transmitted diseases and help keep regions free from these diseases after elimination. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Steven W Lindsay
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Michael Davies
- Bartlett School Environment, Energy & Resources, Faculty of the Built Environment, University College London, London WC1H 0NN, UK
| | | | - Hector Altamirano
- Bartlett School Environment, Energy & Resources, Faculty of the Built Environment, University College London, London WC1H 0NN, UK
| | - Ebrima Jatta
- National Malaria Control Programme, Banjul, The Gambia
| | - Musa Jawara
- Medical Research Council Unit Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Fiona C Shenton
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Lucy S Tusting
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anne L Wilson
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jakob Knudsen
- The Royal Danish Academy of Fine Arts, School of Architecture, Design and Conservation, The School of Architecture, Copenhagen, Denmark
| |
Collapse
|
21
|
Biting patterns of malaria vectors of the lower Shire valley, southern Malawi. Acta Trop 2019; 197:105059. [PMID: 31194960 DOI: 10.1016/j.actatropica.2019.105059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Assessing the biting behaviour of malaria vectors plays an integral role in understanding the dynamics of malaria transmission in a region. Biting times and preference for biting indoors or outdoors varies among mosquito species and across regions. These behaviours may also change over time in response to vector control measures such as long-lasting insecticidal nets (LLINs). Data on these parameters can provide the sites and times at which different interventions would be effective for vector control. This study assessed the biting patterns of malaria vectors in Chikwawa district, southern Malawi. The study was conducted during the dry and wet seasons in 2016 and 2017, respectively. In each season, mosquitoes were collected indoors and outdoors for 24 nights in six houses per night using the human landing catch. Volunteers were organized into six teams of two individuals, whereby three teams collected mosquitoes indoors and the other three collected mosquitoes outdoors each night, and the teams were rotated among twelve houses. All data were analyzed using Poisson log-linear models. The most abundant species were Anopheles gambiae sensu lato (primarily An. arabiensis) and An. funestus s.l. (exclusively An. funestus s.s.). During the dry season, the biting activity of An. gambiaes.l. was constant outdoors across the categorized hours (18:00 h to 08:45 h), but highest in the late evening hours (21:00 h to 23:45 h) during the wet season. The biting activity of An. funestus s.l. was highest in the late evening hours (21:00 h to 23:45 h) during the dry season and in the late night hours (03:00 h to 05:45 h) during the wet season. Whereas the number of An. funestuss.l. biting was constant (P = 0.662) in both seasons, that of An. gambiaes.l. was higher during the wet season than in the dry season (P = 0.001). Anopheles gambiae s.l. was more likely to bite outdoors than indoors in both seasons. During the wet season, An. funestus s.l. was more likely to bite indoors than outdoors but during the dry season, the bites were similar both indoors and outdoors. The biting activity that occurred in the early and late evening hours, both indoors and outdoors coincides with the times at which individuals may still be awake and physically active, and therefore unprotected by LLINs. Additionally, a substantial number of anopheline bites occurred outdoors. These findings imply that LLINs would only provide partial protection from malaria vectors, which would affect malaria transmission in this area. Therefore, protection against bites by malaria mosquitoes in the early and late evening hours is essential and can be achieved by designing interventions that reduce vector-host contacts during this period.
Collapse
|
22
|
Barreaux AMG, Oumbouke WA, Tia IZ, Brou N, Koffi AA, N'guessan R, Thomas MB. Semi-field evaluation of the cumulative effects of a "Lethal House Lure" on malaria mosquito mortality. Malar J 2019; 18:298. [PMID: 31470873 PMCID: PMC6716835 DOI: 10.1186/s12936-019-2936-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is growing interest in the potential to modify houses to target mosquitoes with insecticides or repellents as they search for human hosts. One version of this 'Lethal House Lure' approach is the In2Care® EaveTube, which consists of a section of polyvinyl chloride (PVC) pipe fitted into a closed eave, with an insert comprising electrostatic netting treated with insecticide powder placed inside the tube. Preliminary evidence suggests that when combined with screening of doors and windows, there is a reduction in entry of mosquitoes and an increase in mortality. However, the rate of overnight mortality remains unclear. The current study used a field enclosure built around experimental huts to investigate the mortality of cohorts of mosquitoes over multiple nights. METHODS Anopheles gambiae sensu lato mosquitoes were collected from the field as larvae and reared through to adult. Three-to-five days old adult females were released inside an enclosure housing two modified West African style experimental huts at a field site in M'be, Côte d'Ivoire. Huts were either equipped with insecticide-treated tubes at eave height and had closed windows (treatment) or had open windows and open tubes (controls). The number of host-seeking mosquitoes entering the huts and cumulative mortality were monitored over 2 or 4 days. RESULTS Very few (0-0.4%) mosquitoes were able to enter huts fitted with insecticide-treated tubes and closed windows. In contrast, mosquitoes continually entered the control huts, with a cumulative mean of 50-80% over 2 to 4 days. Baseline mortality with control huts was approximately 2-4% per day, but the addition of insecticide-treated tubes increased mortality to around 25% per day. Overall cumulative mortality was estimated to be up to 87% over 4 days when huts were fitted with tubes. CONCLUSION Only 20-25% of mosquitoes contacted insecticide-treated tubes or entered control huts in a given night. However, mosquitoes continue to host search over sequential nights, and this can lead to high cumulative mortality over 2 to 4 days. This mortality should contribute to community-level reduction in transmission assuming sufficient coverage of the intervention.
Collapse
Affiliation(s)
- Antoine M G Barreaux
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA.
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Welbeck A Oumbouke
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Innocent Zran Tia
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - N'guessan Brou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Raphaël N'guessan
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
23
|
Killeen GF, Govella NJ, Mlacha YP, Chaki PP. Suppression of malaria vector densities and human infection prevalence associated with scale-up of mosquito-proofed housing in Dar es Salaam, Tanzania: re-analysis of an observational series of parasitological and entomological surveys. Lancet Planet Health 2019; 3:e132-e143. [PMID: 30904112 DOI: 10.1016/s2542-5196(19)30035-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In the city of Dar es Salaam, Tanzania, rapid and spontaneous scale-up of window screening occurred through purely horizontal commercial distribution systems without any public subsidies or promotion. Scale-up of window screening coincided with a planned evaluation of programmatic, vertically managed scale-up of regular larvicide application as an intervention against malaria vectors and transmission. We aimed to establish whether scale-up of window screening was associated with suppression of mosquito populations, especially for malaria vectors that strongly prefer humans as their source of blood. METHODS This study was a re-analysis of a previous observational series of epidemiological data plus new analyses of previously partly reported complementary entomological data, from Dar es Salaam. Between 2004 and 2008, six rounds of cluster-sampled, rolling, cross-sectional parasitological and questionnaire surveys were done in urban Dar es Salaam to assess the effect of larviciding and other determinants of malaria risk, such as use of bed nets and antimalarial drugs, socioeconomic status, age, sex, travel history, mosquito-proofed housing, and spending time outdoors. The effects of scaled-up larvicide application and window screening were estimated by fitting generalised linear mixed models that allowed for both spatial variation between survey locations and temporal autocorrelation within locations. We also conducted continuous longitudinal entomological surveys of outdoor human biting rates by mosquitoes and experimental measurements of mosquito host preferences. FINDINGS Best-fit models of Plasmodium falciparum malaria infection prevalence among humans were largely consistent with the results of the previous analyses. Re-analysis of previously reported epidemiological data revealed that most of the empirically fitted downward time trend in P falciparum malaria prevalence over the course of the study (odds ratio [OR] 0·04; 95% CI 0·03-0·06; p<0·0001), which was not previously reported numerically or attributed to any explanatory factor, could be plausibly explained by association with an upward trend in city-wide window screening coverage (OR 0·07; 0·05-0·09; p<0·0001) and progressive rollout of larviciding (OR 0·50; 0·41-0·60; p<0·0001). Increasing coverage of complete window screening was also associated with reduced biting densities of all taxonomic groups of mosquitoes (all p<0·0001), especially the Anopheles gambiae complex (relative rate [RR] 0·23; 95% CI 0·16-0·33) and Anopheles funestus group (RR 0·08; 0·04-0·16), which were confirmed as the most efficient vectors of malaria with strong preferences for humans over cattle. Larviciding was also associated with reduced biting densities of all mosquito taxa (p<0·0001), to an extent that varied consistently with the larvicide targeting scheme and known larval ecology of each taxon. INTERPRETATION Community-wide mosquito proofing of houses might deliver greater impacts on vector populations and malaria transmission than previously thought. The spontaneous nature of the scale-up observed here is also encouraging with regards to practicality, acceptability, and affordability in low-income settings. FUNDING United States Agency for International Development, Bill & Melinda Gates Foundation, Wellcome Trust, and Valent BioSciences LLC.
Collapse
Affiliation(s)
- Gerry F Killeen
- Ifakara Health Institute, Department of Environmental Health and Ecological Sciences, Dar es Salaam, Tanzania; Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, UK.
| | - Nicodem J Govella
- Ifakara Health Institute, Department of Environmental Health and Ecological Sciences, Dar es Salaam, Tanzania
| | - Yeromin P Mlacha
- Ifakara Health Institute, Department of Environmental Health and Ecological Sciences, Dar es Salaam, Tanzania
| | - Prosper P Chaki
- Ifakara Health Institute, Department of Environmental Health and Ecological Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
24
|
Chanda E. Exploring the effect of house screening: are we making gains? Lancet Planet Health 2019; 3:e105-e106. [PMID: 30904101 DOI: 10.1016/s2542-5196(19)30042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Emmanuel Chanda
- Communicable Diseases Cluster, Protection of the Human Environment, Regional Office for Africa, World Health Organization, Cite du Djoue, Brazzaville, PO Box 06, Republic of the Congo.
| |
Collapse
|
25
|
Mmbando AS, Ngowo H, Limwagu A, Kilalangongono M, Kifungo K, Okumu FO. Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes. Malar J 2018; 17:368. [PMID: 30333015 PMCID: PMC6192339 DOI: 10.1186/s12936-018-2520-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Background Long-lasting insecticide-treated nets and indoor residual spraying protect against indoor-biting and indoor-resting mosquitoes but are largely ineffective for early-biting and outdoor-biting malaria vectors. Complementary tools are, therefore, needed to accelerate control efforts. This paper describes simple hessian ribbons treated with spatial repellents and wrapped around eaves of houses to prevent outdoor-biting and indoor-biting mosquitoes over long periods of time. Methods The eave ribbons are 15 cm-wide triple-layered hessian fabrics, in lengths starting 1 m. They can be fitted onto houses using nails, adhesives or Velcro, without completely closing eave-spaces. In 75 experimental nights, untreated ribbons and ribbons treated with 0.02%, 0.2%, 1.5% or 5% transfluthrin emulsion (spatial repellent) were evaluated against blank controls using two experimental huts inside a 202 m2 semi-field chamber where 500 laboratory-reared Anopheles arabiensis were released nightly. Two volunteers sat outdoors (one/hut) and collected mosquitoes attempting to bite them from 6 p.m. to 10 p.m. (outdoor-biting), then went indoors and slept under bed nets, beside which CDC-light traps collected mosquitoes from 10 p.m. to 6.30 a.m. (indoor-biting). To assess survival, 200 caged mosquitoes were suspended near the huts nightly and monitored for 24 h thereafter. Additionally, field tests were done in experimental huts in a rural Tanzanian village to evaluate treated ribbons (1.5% transfluthrin). Here, indoor-biting was assessed using window traps and Prokopack® aspirators, and outdoor-biting assessed using volunteer-occupied double-net traps. Results Indoor-biting and outdoor-biting decreased > 99% in huts fitted with eave ribbons having ≥ 0.2% transfluthrin. Even 0.02% transfluthrin-treated ribbons provided 79% protection indoors and 60% outdoors. Untreated ribbons however reduced indoor-biting by only 27% and increased outdoor-biting by 18%, though these were non-significant (P > 0.05). Of all caged mosquitoes exposed near treated huts, 99.5% died within 24 h. In field tests, the ribbons provided 96% protection indoors and 84% outdoors against An. arabiensis, plus 42% protection indoors and 40% outdoors against Anopheles funestus. Current prototypes cost ~ 7USD/hut, are made of widely-available hessian and require no specialized expertise. Conclusion Transfluthrin-treated eave ribbons significantly prevented outdoor-biting and indoor-biting malaria vectors and could potentially complement current tools. The technique is simple, low-cost, highly-scalable and easy-to-use; making it suitable even for poorly-constructed houses and low-income groups.
Collapse
Affiliation(s)
- Arnold S Mmbando
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.
| | - Halfan Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Alex Limwagu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Masoud Kilalangongono
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Khamis Kifungo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Ng'habi K, Viana M, Matthiopoulos J, Lyimo I, Killeen G, Ferguson HM. Mesocosm experiments reveal the impact of mosquito control measures on malaria vector life history and population dynamics. Sci Rep 2018; 8:13949. [PMID: 30224714 PMCID: PMC6141522 DOI: 10.1038/s41598-018-31805-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/24/2018] [Indexed: 11/29/2022] Open
Abstract
The impact of control measures on mosquito vector fitness and demography is usually estimated from bioassays or indirect variables in the field. Whilst indicative, neither approach is sufficient to quantify the potentially complex response of mosquito populations to combined interventions. Here, large replicated mesocosms were used to measure the population-level response of the malaria vector Anopheles arabiensis to long-lasting insecticidal nets (LLINs) when used in isolation, or combined with insecticidal eave louvers (EL), or treatment of cattle with the endectocide Ivermectin (IM). State-space models (SSM) were fit to these experimental data, revealing that LLIN introduction reduced adult mosquito survival by 91% but allowed population persistence. ELs provided no additional benefit, but IM reduced mosquito fecundity by 59% and nearly eliminated all populations when combined with LLINs. This highlights the value of IM for integrated vector control, and mesocosm population experiments combined with SSM for identifying optimal combinations for vector population elimination.
Collapse
Affiliation(s)
- Kija Ng'habi
- Ifakara Health Institute, Environmental Health and Ecological Sciences, Ifakara, United Republic of Tanzania
- School of Health Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Issa Lyimo
- Ifakara Health Institute, Environmental Health and Ecological Sciences, Ifakara, United Republic of Tanzania
| | - Gerry Killeen
- Ifakara Health Institute, Environmental Health and Ecological Sciences, Ifakara, United Republic of Tanzania
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, United Kingdom
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
27
|
Charlwood JD, Kessy E, Yohannes K, Protopopoff N, Rowland M, LeClair C. Studies on the resting behaviour and host choice of Anopheles gambiae and An. arabiensis from Muleba, Tanzania. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:263-270. [PMID: 29479733 DOI: 10.1111/mve.12299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
The relative efficacy of a mechanical (Prokopack) collection method vs. manual aspiration in the collection of resting mosquitoes was evaluated in northern Tanzania before and after an intervention using indoor residual spraying and longlasting insecticide-treated nets. In smoke-free houses mosquitoes were collected from the roof and walls, but in smoky houses mosquitoes were found predominantly on the walls. Anopheles gambiae (Diptera: Culicidae) constituted 97.7% of the 312 An. gambiae complex specimens identified before but only 19.3% of the 183 identified after the intervention. A single sampling with the Prokopack collected a third of the available insects. Anopheles gambiae completed its gonotrophic development indoors, whereas Anopheles arabiensis did so outdoors. In both species gonotrophic development took 2 days. Most unfed resting An. arabiensis collected outdoors were virgins, whereas the majority of engorged insects were parous (with well-contracted sacs). Daily survival was estimated to be 80.0%. Only 9.4% of the engorged An. arabiensis collected outdoors and 47.1% of those collected indoors had fed on humans. Using the Prokopack sampler is more efficient than manual methods for the collection of resting mosquitoes. Malaria transmission may have been affected by a change in vector composition resulting from a change in feeding, rather than reduced survival. Monitoring the proportions of members of the An. gambiae complex may provide signals of an impending breakdown in control.
Collapse
Affiliation(s)
- J D Charlwood
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, U.K
| | - E Kessy
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - K Yohannes
- Pan African Malaria Vector Research Consortium, Muleba, Tanzania
| | - N Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, U.K
| | - M Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, U.K
| | - C LeClair
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, U.K
| |
Collapse
|
28
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
29
|
Mburu MM, Juurlink M, Spitzen J, Moraga P, Hiscox A, Mzilahowa T, Takken W, McCann RS. Impact of partially and fully closed eaves on house entry rates by mosquitoes. Parasit Vectors 2018; 11:383. [PMID: 29970153 PMCID: PMC6029021 DOI: 10.1186/s13071-018-2977-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/25/2018] [Indexed: 12/02/2022] Open
Abstract
Background Most people infected with malaria acquire the infection indoors from mosquito vectors that entered the house through open eaves, windows and doors. Structural house improvement (e.g. closed eaves and screened windows) is an established method of reducing mosquito entry. It could be complementary to other interventions such as insecticide-treated bed nets (ITNs) for malaria control because it covers and protects all individuals in a house equally. However, when implemented at a large scale, house improvement may not be employed optimally. It is therefore critical to assess whether partial house improvement will have any effect on mosquito house entry. We investigated the effect of partial and complete eave closure on the house-entry rates of malaria vectors and other mosquitoes in southern Malawi. Methods The study was conducted for 25 nights in May-June 2016. Twenty-five traditional houses were modified according to five treatments: fully closed eaves, three different levels of partially closed eaves, and open eaves. All houses had fully screened windows and closed doors. Host-seeking mosquitoes were sampled inside these houses using Centers for Disease Control and Prevention (CDC) light traps. The effect of open eaves versus partial or complete eave closure on the number of mosquitoes trapped inside the house was estimated using a generalized linear mixed model fitted with Poisson distribution and a log-link function. Results House entry by malaria vectors was 14-times higher in houses with fully open eaves compared to houses with fully closed eaves adjusting for wall-type, number of people that slept in the house the previous night, cooking locations and presence of livestock. Houses with four small openings had 9 times more malaria vectors compared to houses with fully closed eaves. The catches of culicine mosquitoes caught in houses with fully closed eaves were not different from those caught in houses with the other treatments. Conclusions Closed eaves resulted in fewer malaria vectors in houses, with differences depending on the degree of eave closure. The ability of malaria vectors to locate any remaining entry points on improved houses, as demonstrated here, suggests that quality control must be an important component of implementing house improvement as an intervention.The lack of effect on culicine mosquitoes in this study could reduce acceptance of house improvement, as implemented here, by household residents due to continued nuisance biting. This limitation could be addressed through community engagement (e.g. encouraging people to close their doors early in the evenings) or improved designs.
Collapse
Affiliation(s)
- Monicah M Mburu
- Wageningen University and Research, Wageningen, The Netherlands. .,College of Medicine, University of Malawi, Zomba, Malawi.
| | - Malou Juurlink
- Wageningen University and Research, Wageningen, The Netherlands
| | - Jeroen Spitzen
- Wageningen University and Research, Wageningen, The Netherlands
| | - Paula Moraga
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, UK
| | | | - Themba Mzilahowa
- College of Medicine, University of Malawi, Zomba, Malawi.,MAC Communicable Diseases Action Centre, College of Medicine, Blantyre, Malawi
| | - Willem Takken
- Wageningen University and Research, Wageningen, The Netherlands
| | - Robert S McCann
- Wageningen University and Research, Wageningen, The Netherlands.,College of Medicine, University of Malawi, Zomba, Malawi
| |
Collapse
|
30
|
Revealing Details in Light and Shadows. Emerg Infect Dis 2018. [PMCID: PMC5938768 DOI: 10.3201/eid2405.ac2405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Chinula D, Sikaala CH, Chanda-Kapata P, Hamainza B, Zulu R, Reimer L, Chizema E, Kiware S, Okumu FO, Killeen G. Wash-resistance of pirimiphos-methyl insecticide treatments of window screens and eave baffles for killing indoor-feeding malaria vector mosquitoes: an experimental hut trial, South East of Zambia. Malar J 2018; 17:164. [PMID: 29653593 PMCID: PMC5899344 DOI: 10.1186/s12936-018-2309-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/04/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The effectiveness of long-lasting insecticidal-treated nets (LLINs) and indoor residual spraying (IRS) for malaria control is threatened by resistance to commonly used pyrethroid insecticides. Rotations, mosaics, combinations, or mixtures of insecticides from different complementary classes are recommended by the World Health Organization (WHO) for mitigating against resistance, but many of the alternatives to pyrethroids are prohibitively expensive to apply in large national IRS campaigns. Recent evaluations of window screens and eave baffles (WSEBs) treated with pirimiphos-methyl (PM), to selectively target insecticides inside houses, demonstrated malaria vector mortality rates equivalent or superior to IRS. However, the durability of efficacy when co-applied with polyacrylate-binding agents (BA) remains to be established. This study evaluated whether WSEBs, co-treated with PM and BA have comparable wash resistance to LLINs and might therefore remain insecticidal for years rather than months. METHODS WHO-recommended wire ball assays of insecticidal efficacy were applied to polyester netting treated with or without BA plus 1 or 2 g/sq m PM. They were then tested for insecticidal efficacy using fully susceptible insectary-reared Anopheles gambiae mosquitoes, following 0, 5, 10, 15, then 20 washes as per WHO-recommended protocols for accelerated ageing of LLINs. This was followed by a small-scale field trial in experimental huts to measure malaria vector mortality achieved by polyester netting WSEBs treated with BA and 2 g/sq m PM after 0, 10 and then 20 standardized washes, alongside recently applied IRS using PM. RESULTS Co-treatment with BA and either dosage of PM remained insecticidal over 20 washes in the laboratory. In experimental huts, WSEBs treated with PM plus BA consistently killed similar proportions of Anopheles arabiensis mosquitoes to PM-IRS (both consistently ≥ 94%), even after 20 washes. CONCLUSION Co-treating WSEBs with both PM and BA results in wash-resistant insecticidal activity comparable with LLINs. Insecticide treatments for WSEBs may potentially last for years rather than months, therefore, reducing insecticide consumption by an order of magnitude relative to IRS. However, durability of WSEBs will still have to be assessed in real houses under representative field conditions of exposure to wear and tear, sunlight and rain.
Collapse
Affiliation(s)
- Dingani Chinula
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
| | - Chadwick H Sikaala
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | | | - Busiku Hamainza
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Reuben Zulu
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Lisa Reimer
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Elizabeth Chizema
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, PO Box 53, Ifakara, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, PO Box 53, Ifakara, United Republic of Tanzania
- School of Public Health, University of the Witwatersrand, Parktown, Johannesburg, South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gerry Killeen
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, PO Box 53, Ifakara, United Republic of Tanzania
| |
Collapse
|
32
|
Barreaux P, Barreaux AMG, Sternberg ED, Suh E, Waite JL, Whitehead SA, Thomas MB. Priorities for Broadening the Malaria Vector Control Tool Kit. Trends Parasitol 2017; 33:763-774. [PMID: 28668377 PMCID: PMC5623623 DOI: 10.1016/j.pt.2017.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have contributed substantially to reductions in the burden of malaria in the past 15 years. Building on this foundation, the goal is now to drive malaria towards elimination. Vector control remains central to this goal, but there are limitations to what is achievable with the current tools. Here we highlight how a broader appreciation of adult mosquito behavior is yielding a number of supplementary approaches to bolster the vector-control tool kit. We emphasize tools that offer new modes of control and could realistically contribute to operational control in the next 5 years. Promoting complementary tools that are close to field-ready is a priority for achieving the global malaria-control targets.
Collapse
Affiliation(s)
- Priscille Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Laboratory of Ecology and Epidemiology of Parasites, Université de Neuchatel, Avenue du 1er-Mars 26, 2000, Neuchatel, Switzerland
| | - Antoine M G Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eleanore D Sternberg
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eunho Suh
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jessica L Waite
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shelley A Whitehead
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
33
|
Okumu F. The paradigm of eave tubes: scaling up house improvement and optimizing insecticide delivery against disease-transmitting mosquitoes. Malar J 2017; 16:207. [PMID: 28526047 PMCID: PMC5438516 DOI: 10.1186/s12936-017-1859-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
Control of mosquito-borne diseases is greatly compromised by spread of insecticide resistance, high implementation costs and sub-optimal compliance among users. Improved housing has potential to reduce malaria transmission nearly as much as long-lasting insecticide-treated nets (LLINs), while also preventing other arthropod-borne diseases and improving overall well-being. Yet, it is hardly promoted as mainstream intervention, partly because of high costs, minimal communal benefits to people in non-improved houses, and low scalability. By exploiting biological observations of mosquito behaviours around dwellings, scientists have developed a new approach that integrates effective vector control into housing developments. The technique involves blocking eave spaces in local houses, leaving a few cylindrical holes into which plastic tubes with insecticide-laden electrostatic nettings are inserted. Where houses already have blocked eaves, these cylindrical holes are drilled and the tubes inserted. The eave tube technology, as it is called, is an innovative new approach for implementing housing improvements, by creating a new scalable product that can be integrated in houses during or after construction. It takes away insecticides from proximity of users, and instead puts them where mosquitoes are most likely to enter houses, thereby reducing insecticidal exposure among household occupants, while maximizing exposure of mosquitoes. This way, lower quantities of insecticides are used, better house ventilation achieved, intervention costs reduced, and mass communal benefits achieved even were vectors are resistant to similar insecticides when delivered conventionally. There are however still some critical pieces missing, notably epidemiological, social and economic evidence that the above assertions are true and sustainable. Besides, there also some technical limitations to be considered, namely: (1) need for extensive house modifications before eave tubes are inserted, (2) ineligibility of poorest and highest-risk households living in housing structures not amenable to eave tubes, and (3) poor synergies when eave tubes are combined with LLINs or IRS in same households. Overall, this paradigm significantly improves delivery of insecticides against disease-transmitting mosquitoes, and provides opportunities for scaling-up the long-neglected concept of house improvement as a malaria intervention.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.
- School of Public Health, University of the Witwatersrand, Parktown, Republic of South Africa.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
34
|
Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, Govella NJ. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob Health 2017; 2:e000212. [PMID: 28589023 PMCID: PMC5444085 DOI: 10.1136/bmjgh-2016-000212] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/04/2022] Open
Abstract
Residual malaria transmission can persist despite high coverage with effective long-lasting insecticidal nets (LLINs) and/or indoor residual spraying (IRS), because many vector mosquitoes evade them by feeding on animals, feeding outdoors, resting outdoors or rapidly exiting from houses after entering them. However, many of these behaviours that render vectors resilient to control with IRS and LLINs also make them vulnerable to some emerging new alternative interventions. Furthermore, vector control measures targeting preferred behaviours of mosquitoes often force them to express previously rare alternative behaviours, which can then be targeted with these complementary new interventions. For example, deployment of LLINs against vectors that historically fed predominantly indoors on humans typically results in persisting transmission by residual populations that survive by feeding outdoors on humans and animals, where they may then be targeted with vapour-phase insecticides and veterinary insecticides, respectively. So while the ability of mosquitoes to express alternative behaviours limits the impact of LLINs and IRS, it also creates measurable and unprecedented opportunities for deploying complementary additional approaches that would otherwise be ineffective. Now that more diverse vector control methods are finally becoming available, well-established entomological field techniques for surveying adult mosquito behaviours should be fully exploited by national malaria control programmes, to rationally and adaptively map out new opportunities for their effective deployment.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Samson S Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | | | - Lucy S Tusting
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Prosper P Chaki
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| |
Collapse
|
35
|
Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, Brunner S, Newby G, Williams YA, Malone D, Tusting LS, Gosling RD. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Health 2017; 2:e000211. [PMID: 28589022 PMCID: PMC5444090 DOI: 10.1136/bmjgh-2016-000211] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/30/2016] [Accepted: 12/11/2016] [Indexed: 11/21/2022] Open
Abstract
Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, United Republic of Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Allison Tatarsky
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, California, USA
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Carlos J Chaccour
- Instituto de Salud Global, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, United Republic of Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Shannon Brunner
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, California, USA
| | - Gretchen Newby
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, California, USA
| | - Yasmin A Williams
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, California, USA
| | - David Malone
- Innovative Vector Control Consortium, Liverpool, UK
| | - Lucy S Tusting
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Roland D Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, California, USA
| |
Collapse
|