1
|
Das T, Sikdar S, Chowdhury MHU, Nyma KJ, Adnan M. SARS-CoV-2 prevalence in domestic and wildlife animals: A genomic and docking based structural comprehensive review. Heliyon 2023; 9:e19345. [PMID: 37662720 PMCID: PMC10474441 DOI: 10.1016/j.heliyon.2023.e19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
The SARS-CoV-2 virus has been identified as the infectious agent that led to the COVID-19 pandemic, which the world has seen very recently. Researchers have linked the SARS-CoV-2 outbreak to bats for the zoonotic spread of the virus to humans. Coronaviruses have a crown-like shape and positive-sense RNA nucleic acid. It attaches its spike glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor. Coronavirus genome comprises 14 ORFs and 27 proteins, spike glycoprotein being one of the most critical proteins for viral pathogenesis. Many mammals and reptiles, including bats, pangolins, ferrets, snakes, and turtles, serve as the principal reservoirs for this virus. But many experimental investigations have shown that certain domestic animals, including pigs, chickens, dogs, cats, and others, may also be able to harbor this virus, whether they exhibit any symptoms. These animals act as reservoirs for SARS-CoV, facilitating its zoonotic cross-species transmission to other species, including humans. In this review, we performed a phylogenetic analysis with multiple sequence alignment and pairwise evolutionary distance analysis, which revealed the similarity of ACE2 receptors in humans, chimpanzees, domestic rabbits, house mice, and golden hamsters. Pairwise RMSD analysis of the spike protein from some commonly reported SARS-CoV revealed that bat and pangolin coronavirus shared the highest structural similarity with human coronavirus. In a further experiment, molecular docking confirmed a higher affinity of pig, bat, and pangolin coronavirus spike proteins' affinity to the human ACE2 receptor. Such comprehensive structural and genomic analysis can help us to forecast the next likely animal source of these coronaviruses that may infect humans. To combat these zoonotic illnesses, we need a one health strategy that considers the well-being of people and animals and the local ecosystem.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | | | - Md. Adnan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, 84112, United States
- Department of Pharmacy, International Islamic University Chittagong, Chattogram, 4318, Bangladesh
| |
Collapse
|
2
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
6
|
Tarbert DK, Bolin LL, Stout AE, Schaefer DMW, Ruby RE, Rodriguez-Ramos Fernandez J, Duhamel GE, Whittaker GR, de Matos R. Persistent infection and pancytopenia associated with ferret systemic coronaviral disease in a domestic ferret. J Vet Diagn Invest 2020; 32:616-620. [PMID: 32589111 DOI: 10.1177/1040638720937105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ferret systemic coronaviral disease (FSCD) is a well-established cause of mortality in domestic ferrets. We describe herein novel findings in a case of FSCD that was diagnosed and medically managed following virus detection by immunohistochemical (IHC) staining of surgical biopsy samples. Hematologic changes in this ferret suggested spread of the virus to the bone marrow, which was confirmed by IHC staining of a postmortem sample. Genotyping of the virus indicated that the virus grouped with alphacoronaviruses and was most closely related to ferret enteric coronavirus (FRECV) MSU-2. Our clinical case demonstrates that a FRECV MSU-2-like ferret coronavirus associated previously with the enteric pathotype may cause systemic disease, including bone marrow involvement causing persistent pancytopenia.
Collapse
Affiliation(s)
- Danielle K Tarbert
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Lisa L Bolin
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Alison E Stout
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Deanna M W Schaefer
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Rebecca E Ruby
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Julia Rodriguez-Ramos Fernandez
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Gerald E Duhamel
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Gary R Whittaker
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| | - Ricardo de Matos
- Companion Exotic Animal Medicine & Surgery Service, College of Veterinary Medicine, University of California-Davis, Davis, CA (Tarbert).,Departments of Clinical Sciences, Section of Zoological Medicine (de Matos), Biomedical Sciences, Section of Anatomic Pathology (Duhamel), and Microbiology and Immunology (Bolin, Stout, Whittaker), College of Veterinary Medicine, Cornell University, Ithaca, NY.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Schaefer).,Veterinary Diagnostic Laboratory, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY (Ruby).,IDEXX Laboratories, Wetherby, West Yorkshire, UK (Rodriguez-Ramos Fernandez)
| |
Collapse
|