1
|
Dezordi FZ, Júnior JVJS, Ruoso TF, Batista AG, Fonseca PM, Bernardo LP, Salvato RS, Gregianini TS, Lopes TRR, Flores EF, Weiblen R, Brites PC, Silva MDM, da Rocha JBT, Barbosa GDL, Machado LC, da Silva AF, Paiva MHS, Bezerra MF, Campos TDL, Gräf T, Graichen DAS, Loreto ELDS, Wallau GDL. Higher frequency of interstate over international transmission chains of SARS-CoV-2 virus at the Rio Grande do Sul - Brazil state borders. Virus Res 2024; 351:199500. [PMID: 39645167 DOI: 10.1016/j.virusres.2024.199500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Brazil's COVID-19 response has faced challenges due to the continuous emergence of variants of concern (VOCs), emphasizing the need for ongoing genomic surveillance and retrospective analyses of past epidemic waves to reassess and fine tune containment protocols. Rio Grande do Sul (RS), Brazil's southernmost state, has international borders and trades with Argentina and Uruguay, along with significant domestic connections within Brazil. The identification of source and sink transmission chains at national and international scales can identify main hubs and pathways to target future interventions. In this study we investigated the RS state role in the national and international SARS-CoV-2 transmission chains, which has not been fully explored. Nasopharyngeal samples from various municipalities in RS were collected between June 2020 and July 2022. SARS-CoV-2 whole genome amplification and sequencing were performed using high-throughput Illumina sequencing. Bioinformatics analysis encompassed the development of scripts and tools to perform subsampling taking into account epidemiological information to reduce sequencing disparities bias among the regions/countries, genome assembly, and large-scale alignment and phylogenetic reconstruction. We sequenced a total of 1,480 SARS-CoV-2 genomes from RS, covering all major regions. Sequences predominantly represented Gamma (April-June 2021) and Omicron (January-July 2022) lineages. Phylogenetic analysis revealed a regional pattern for transmission dynamics, particularly with Southeast Brazil for Gamma, and a range of inter-regional connections for Delta and Omicron within the country. On the other hand, international and cross-border transmission with Argentina and Uruguay was rather limited. We evaluated the three VOCs circulation over two years in RS using a new subsampling strategy based on the number of cases in each state during the circulation of each VOC. In summary, the retrospective analysis of genomic surveillance data demonstrated that virus transmission was less intense between country borders than within the country. These findings suggest that while non-pharmacological interventions were effective to mitigate transmission across international RS land borders, they were insufficient to contain transmission at the domestic level.
Collapse
Affiliation(s)
- Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife Pernambuco, 50670-420, Brazil; Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - José Valter Joaquim Silva Júnior
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Setor de Virologia, Instituto Keizo Asami, Universidade Federal de Pernambuco, Pernambuco, 50670-901, Brazil; Laboratório NB3 de Neuroimunologia, Universidade Federal de Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Terimar Facin Ruoso
- Campus Palmeira das Missões, Universidade Federal de Santa Maria. Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil
| | - Angela Giovana Batista
- Campus Palmeira das Missões, Universidade Federal de Santa Maria. Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil; Life Sciences Institute, Universidade Federal de Juiz de Fora. Governador Valadares, Minas Gerais, 35010-180, Brazil
| | - Pedro Mesquita Fonseca
- Campus Palmeira das Missões, Universidade Federal de Santa Maria. Palmeira das Missões, Rio Grande do Sul, 98300-000, Brazil
| | - Larissa Paim Bernardo
- Departamento de Ciências da Vida - DCVIDA, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Richard Steiner Salvato
- Centro Estadual de Vigilância em Saúde. Secretaria Estadual da Saúde do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Tatiana Schäffer Gregianini
- Centro Estadual de Vigilância em Saúde. Secretaria Estadual da Saúde do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Thaísa Regina Rocha Lopes
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Eduardo Furtado Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Patrícia Chaves Brites
- Hospital Universitário de Santa Maria (HUSM), Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Mônica de Medeiros Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Gustavo de Lima Barbosa
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Lais Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife Pernambuco, 50670-420, Brazil
| | - Alexandre Freitas da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife Pernambuco, 50670-420, Brazil; Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife Pernambuco, 50670-420, Brazil; Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste-Rodovia BR-104, Caruaru, Pernambuco, 55002-970, Brazil
| | - Matheus Filgueira Bezerra
- Departamento de Microbiologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Tulio de Lima Campos
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Daniel Angelo Sganzerla Graichen
- Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, Palmera das Missões, Rio Grande do Sul 98300-000, Brazil
| | - Elgion Lucio da Silva Loreto
- Hospital Universitário de Santa Maria (HUSM), Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife Pernambuco, 50670-420, Brazil; Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research. National Reference Center for Tropical Infectious Diseases. Bernhard-Nocht-Straße 74 20359 Hamburg, Germany.
| |
Collapse
|
2
|
Gräf T, Martinez AA, Bello G, Dellicour S, Lemey P, Colizza V, Mazzoli M, Poletto C, Cardoso VLO, da Silva AF, Motta FC, Resende PC, Siqueira MM, Franco L, Gresh L, Gabastou JM, Rodriguez A, Vicari A, Aldighieri S, Mendez-Rico J, Leite JA. Dispersion patterns of SARS-CoV-2 variants Gamma, Lambda and Mu in Latin America and the Caribbean. Nat Commun 2024; 15:1837. [PMID: 38418815 PMCID: PMC10902334 DOI: 10.1038/s41467-024-46143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.
Collapse
Affiliation(s)
- Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil.
| | - Alexander A Martinez
- Gorgas Memorial Institute for Health Studies, Panama City, Panama
- National Research System (SNI), National Secretary of Research, Technology and Innovation (SENACYT), Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Mattia Mazzoli
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Vanessa Leiko Oikawa Cardoso
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ-Bahia, Salvador, Brazil
| | | | - Fernando Couto Motta
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leticia Franco
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Lionel Gresh
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jean-Marc Gabastou
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Angel Rodriguez
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Andrea Vicari
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Sylvain Aldighieri
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jairo Mendez-Rico
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Juliana Almeida Leite
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA.
| |
Collapse
|
3
|
Aldunate F, Fajardo A, Ibañez N, Rammauro F, Daghero H, Arce R, Ferla D, Pereira-Gomez M, Salazar C, Iraola G, Pritsch O, Hurtado J, Tenzi J, Bollati-Fogolín M, Bianchi S, Nin N, Moratorio G, Moreno P. What have we learned from a case of convalescent plasma treatment in a two-time kidney transplant recipient COVID-19 patient? A case report from the perspective of viral load evolution and immune response. FRONTIERS IN NEPHROLOGY 2023; 3:1132763. [PMID: 37675346 PMCID: PMC10479756 DOI: 10.3389/fneph.2023.1132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, can have a wide range of clinical manifestations, ranging from asymptomatic disease to potentially life-threatening complications. Convalescent plasma therapy has been proposed as an effective alternative for the treatment of severe cases. The aim of this study was to follow a two-time renal transplant patient with severe COVID-19 treated with convalescent plasma over time from an immunologic and virologic perspective. A 42-year-old female patient, who was a two-time kidney transplant recipient, was hospitalized with COVID-19. Due to worsening respiratory symptoms, she was admitted to the intensive care unit, where she received two doses of convalescent plasma. We analyzed the dynamics of viral load in nasopharyngeal swab, saliva, and tracheal aspirate samples, before and after convalescent plasma transfusion. The levels of pro-inflammatory cytokines and antibody titers were also measured in serum samples. A significant decrease in viral load was observed after treatment in the saliva and nasopharyngeal swab samples, and a slight decrease was observed in tracheal aspirate samples. In addition, we found evidence of an increase in antibody titers after transfusion, accompanied by a decrease in the levels of several cytokines responsible for cytokine storm.
Collapse
Affiliation(s)
- Fabian Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Natalia Ibañez
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Rammauro
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hellen Daghero
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rodrigo Arce
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Diego Ferla
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Marianoel Pereira-Gomez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Otto Pritsch
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Jordan Tenzi
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | | | - Sergio Bianchi
- Laboratorio de Biomarcadores Moleculares, Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
4
|
Ong'era EM, Mohammed KS, Makori TO, Bejon P, Ocholla-Oyier LI, Nokes DJ, Agoti CN, Githinji G. High-throughput sequencing approaches applied to SARS-CoV-2. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18701.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
High-throughput sequencing is crucial for surveillance and control of viral outbreaks. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, advances in the high-throughput sequencing technology resources have enhanced diagnosis, surveillance, and vaccine discovery. From the onset of the pandemic in December 2019, several genome-sequencing approaches have been developed and supported across the major sequencing platforms such as Illumina, Oxford Nanopore, PacBio, MGI DNBSEQTM and Ion Torrent. Here, we share insights from the sequencing approaches developed for sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between December 2019 and October 2022.
Collapse
|
5
|
Paz M, Moreno P, Moratorio G. Perspective Chapter: Real-Time Genomic Surveillance for SARS-CoV-2 on Center Stage. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The course of the COVID-19 pandemic depends not only on how the SARS-CoV-2 virus mutates but on the actions taken to respond to it. Important public health decisions can only be taken if we know viral dynamics, viral variants distribution, and whether new variants are emerging that may be more transmissible or/and more virulent, displaying evasion to vaccines or antiviral treatments. This situation has put the use of different approaches, such as molecular techniques and real-time genomic sequencing, to support public health decision-making on center stage. To achieve this, robust programs based on: (i) diagnostic capacity; (ii) high-throughput sequencing technologies; and (iii) high-performance bioinformatic resources, need to be established. This chapter focuses on how SARS-CoV-2 evolved since its discovery and it summarizes the scientific efforts to obtain genomic data as the virus spread throughout the globe.
Collapse
|
6
|
LaRotta J, Escobar O, Ávila-Aguero ML, Torres JP, Sini de Almeida R, Morales GDC, Srivastava A. COVID-19 in Latin America: A Snapshot in Time and the Road Ahead. Infect Dis Ther 2023; 12:389-410. [PMID: 36633818 PMCID: PMC9835740 DOI: 10.1007/s40121-022-00748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Since its initial detection in Brazil in February 2020, SARS-CoV-2 and the associated COVID-19 pandemic have continued to devastate Latin America. Specific comorbidities, as well as sociodemographic and lifestyle factors that may be more prevalent in underserved areas, have been identified as risk factors for COVID-19 infection or associated adverse outcomes. Dynamics of infections and deaths in Latin America have varied by country and temporally, as has SARS-CoV-2 variant prevalence; however, more recently, the Delta and subsequent Omicron variants have become ubiquitous. Successful pandemic responses have involved robust infection mitigation measures, testing, and smart deployment of healthcare resourcing. While in some Latin American countries up to 90% of the population is fully vaccinated (i.e., 2 doses) against COVID-19, other countries have failed to reach the World Health Organization's 70% target. Continued focus on comprehensive surveillance, strategies to maximize vaccine availability and uptake, and mitigation of collateral damage on other aspects of public health and social services are critical for managing the COVID-19 pandemic. This review summarizes the COVID-19 experience in Latin America, including epidemiology and vaccination. Key learnings and future considerations for the ongoing pandemic response are also discussed.
Collapse
Affiliation(s)
- Jorge LaRotta
- Vaccines Medical and Scientific Affairs, Pfizer SAS, AV Suba 95-66, Bogotá, Colombia.
| | - Omar Escobar
- Vaccines Medical and Scientific Affairs, Pfizer SAS, AV Suba 95-66, Bogotá, Colombia
| | - María L Ávila-Aguero
- Pediatric Infectious Diseases, Hospital Nacional de Niños, San José, Costa Rica
- Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, CT, USA
| | - Juan Pablo Torres
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | - Amit Srivastava
- Vaccines, Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Cambridge, MA, USA
| |
Collapse
|
7
|
Cancela F, Ramos N, Smyth DS, Etchebehere C, Berois M, Rodríguez J, Rufo C, Alemán A, Borzacconi L, López J, González E, Botto G, Thornhill SG, Mirazo S, Trujillo M. Wastewater surveillance of SARS-CoV-2 genomic populations on a country-wide scale through targeted sequencing. PLoS One 2023; 18:e0284483. [PMID: 37083889 PMCID: PMC10121012 DOI: 10.1371/journal.pone.0284483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
SARS-CoV-2 surveillance of viral populations in wastewater samples is recognized as a useful tool for monitoring epidemic waves and boosting health preparedness. Next generation sequencing of viral RNA isolated from wastewater is a convenient and cost-effective strategy to understand the molecular epidemiology of SARS-CoV-2 and provide insights on the population dynamics of viral variants at the community level. However, in low- and middle-income countries, isolated groups have performed wastewater monitoring and data has not been extensively shared in the scientific community. Here we report the results of monitoring the co-circulation and abundance of variants of concern (VOCs) of SARS-CoV-2 in Uruguay, a small country in Latin America, between November 2020-July 2021 using wastewater surveillance. RNA isolated from wastewater was characterized by targeted sequencing of the Receptor Binding Domain region within the spike gene. Two computational approaches were used to track the viral variants. The results of the wastewater analysis showed the transition in the overall predominance of viral variants in wastewater from No-VOCs to successive VOCs, in agreement with clinical surveillance from sequencing of nasal swabs. The mutations K417T, E484K and N501Y, that characterize the Gamma VOC, were detected as early as December 2020, several weeks before the first clinical case was reported. Interestingly, a non-synonymous mutation described in the Delta VOC, L452R, was detected at a very low frequency since April 2021 when using a recently described sequence analysis tool (SAM Refiner). Wastewater NGS-based surveillance of SARS-CoV-2 is a reliable and complementary tool for monitoring the introduction and prevalence of VOCs at a community level allowing early public health decisions. This approach allows the tracking of symptomatic and asymptomatic individuals, who are generally under-reported in countries with limited clinical testing capacity. Our results suggests that wastewater-based epidemiology can contribute to improving public health responses in low- and middle-income countries.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Davida S Smyth
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Claudia Etchebehere
- Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Mabel Berois
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jesica Rodríguez
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Caterina Rufo
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alicia Alemán
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Liliana Borzacconi
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julieta López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Elizabeth González
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Germán Botto
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Starla G Thornhill
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Santiago Mirazo
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, New York, United States of America
| |
Collapse
|
8
|
Feng Y, Zhao X, Chen Z, Nie K, Yin Z, Xia Y, Wang J, Niu P, A R, Li L, Wang D, Tan W, Ma X, Wang S, Wang H, Gao GF, Chen C, Xu W. Genomic Surveillance for SARS-CoV-2 Variants of Concern from Imported COVID-19 Cases - the Mainland of China, 2021. China CDC Wkly 2022; 4:680-684. [PMID: 36059791 PMCID: PMC9433767 DOI: 10.46234/ccdcw2022.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction After the epidemic in Wuhan City was brought under control in 2020, local outbreaks of coronavirus disease 2019 (COVID-19) in the mainland of China were mainly due to imported COVID-19 cases. The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to generate new variants. Some have been designated as variants of concern (VOCs) by the World Health Organization (WHO). To better assess the role of imported SARS-CoV-2 surveillance and the prevalence of VOCs in 2021, the genomic surveillance data of SARS-CoV-2 from imported COVID-19 cases of 2021 in the mainland of China were analyzed. Methods The analyses included the number of sequence submissions, time of sequence deposition, and time of detection of the VOCs in order to determine the timeliness and sensitivity of the surveillance. The proportions of VOCs were analyzed and compared with data from the Global Initiative of Sharing All Influenza Data (GISAID). Results A total of 3,355 sequences of imported cases were submitted from 29 provincial-level administrative divisions, with differences in the number of sequence submissions and median time of sequence deposition. A total of 2,388 sequences with more than 90% genomic coverage were used for lineage analysis. The epidemic trend from Alpha to Delta to Omicron in imported cases was consistent with that in the GISAID. In addition, VOCs from imported cases were usually identified after WHO designation and before causing local outbreaks. Conclusions The global distribution of SARS-CoV-2 VOCs changed rapidly in 2021. Robust genomic surveillance of the imported SARS-CoV-2 in the mainland of China is of great significance.
Collapse
Affiliation(s)
- Yenan Feng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Zhixiao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Nie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Zeyuan Yin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Xia
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Peihua Niu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Ruhan A
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuejun Ma
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Shiwen Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Huanyu Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F. Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Cao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China,Cao Chen,
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China,Wenbo Xu,
| |
Collapse
|
9
|
Fiori M, Bello G, Wschebor N, Lecumberry F, Ferragut A, Mordecki E. Decoupling between SARS-CoV-2 transmissibility and population mobility associated with increasing immunity from vaccination and infection in South America. Sci Rep 2022; 12:6874. [PMID: 35478213 PMCID: PMC9044384 DOI: 10.1038/s41598-022-10896-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
All South American countries from the Southern cone (Argentina, Brazil, Chile, Paraguay and Uruguay) experienced severe COVID-19 epidemic waves during early 2021 driven by the expansion of variants Gamma and Lambda, however, there was an improvement in different epidemic indicators since June 2021. To investigate the impact of national vaccination programs and natural infection on viral transmission in those South American countries, we analyzed the coupling between population mobility and the viral effective reproduction number [Formula: see text]. Our analyses reveal that population mobility was highly correlated with viral [Formula: see text] from January to May 2021 in all countries analyzed; but a clear decoupling occurred since May-June 2021, when the rate of viral spread started to be lower than expected from the levels of social interactions. These findings support that populations from the South American Southern cone probably achieved the conditional herd immunity threshold to contain the spread of regional SARS-CoV-2 variants circulating at that time.
Collapse
Affiliation(s)
- Marcelo Fiori
- Instituto de Matemática y Estadística "Rafael Laguardia", Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay.
| | - Gonzalo Bello
- Laboratorio de AIDS e Imunologia Molecular. Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Nicolás Wschebor
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Federico Lecumberry
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Andrés Ferragut
- Facultad de Ingeniería, Universidad ORT, Montevideo, Uruguay
| | - Ernesto Mordecki
- Centro de Matemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Rego N, Salazar C, Paz M, Costábile A, Fajardo A, Ferrés I, Perbolianachis P, Fernández-Calero T, Noya V, Machado MR, Brandes M, Arce R, Arleo M, Possi T, Reyes N, Bentancor MN, Lizasoain A, Bortagaray V, Moller A, Chappos O, Nin N, Hurtado J, Duquía M, González MB, Griffero L, Méndez M, Techera MP, Zanetti J, Pereira E, Rivera B, Maidana M, Alonso M, Smircich P, Arantes I, Mir D, Alonso C, Medina J, Albornoz H, Colina R, Bello G, Moreno P, Moratorio G, Iraola G, Spangenberg L. Emergence and Spread of a B.1.1.28-Derived P.6 Lineage with Q675H and Q677H Spike Mutations in Uruguay. Viruses 2021; 13:1801. [PMID: 34578382 PMCID: PMC8473254 DOI: 10.3390/v13091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.
Collapse
Affiliation(s)
- Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Mercedes Paz
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Alicia Costábile
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ignacio Ferrés
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Tamara Fernández-Calero
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
- Department of Exact and Natural Sciences, Universidad Católica del Uruguay, Montevideo 11600, Uruguay
| | - Veronica Noya
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Matias R. Machado
- Protein Engineering, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
| | - Mariana Brandes
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
| | - Rodrigo Arce
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Mailen Arleo
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Tania Possi
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Natalia Reyes
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - María Noel Bentancor
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Andrés Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Viviana Bortagaray
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Ana Moller
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Odhille Chappos
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español “Juan J. Crottogini”, Montevideo 11800, Uruguay; (N.N.); (J.H.)
| | - Javier Hurtado
- Unidad de Cuidados Intensivos, Hospital Español “Juan J. Crottogini”, Montevideo 11800, Uruguay; (N.N.); (J.H.)
| | - Melissa Duquía
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Maria Belén González
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Luciana Griffero
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Mauricio Méndez
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Maria Pía Techera
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Juan Zanetti
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Emiliano Pereira
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Bernardina Rivera
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Matías Maidana
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Martina Alonso
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Pablo Smircich
- Bioinformatics Laboratory, Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo 11600, Uruguay;
- Laboratory of Molecular Interactions, Facultad de Ciencias, UdelaR, Montevideo 11400, Uruguay
| | - Ighor Arantes
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.A.); (G.B.)
| | - Daiana Mir
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto 50000, Uruguay;
| | - Cecilia Alonso
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Julio Medina
- Cátedra de Enfermedades Infecciosas, Facultad de Medicina, Universidad de la República, Montevideo 11300, Uruguay; (J.M.); (H.A.)
- Dirección General de Salud, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Henry Albornoz
- Cátedra de Enfermedades Infecciosas, Facultad de Medicina, Universidad de la República, Montevideo 11300, Uruguay; (J.M.); (H.A.)
- Dirección General de Salud, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Gonzalo Bello
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.A.); (G.B.)
| | - Pilar Moreno
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gonzalo Moratorio
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile 8580745, Chile
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
- Department of Informatics and Computer Science, Universidad Católica del Uruguay, Montevideo 11600, Uruguay
| |
Collapse
|