1
|
Jiang J, Fan L, Liu J. The knowledge domain of cognitive neuroscience of aging: A Scientometric and bibliometric analysis. Front Aging Neurosci 2023; 15:999594. [PMID: 36845653 PMCID: PMC9947251 DOI: 10.3389/fnagi.2023.999594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Cognitive neuroscience of aging (CNA) is a relatively young field compared with other branches of cognitive aging (CA). From the beginning of this century, scholars in CNA have contributed many valuable research to explain the cognitive ability decline in aging brains in terms of functional changes, neuromechanism, and neurodegenerative diseases. However, very few studies have systematically reviewed the research in the domain of CAN, with regard to its primary research topics, theories, findings, and future development. Therefore, this study used CiteSpace to conduct a bibliometric analysis of 1,462 published articles in CNA from Web of Science (WOS) and investigated the highly influential and potential research topics and theories of CNA, as well as important brain areas involved in CAN during 2000-2021. The results revealed that: (1) the research topics of "memory" and "attention" have been the focus of most studies, progressing into a fMRI-oriented stage; (2) the scaffolding theory and hemispheric asymmetry reduction in older adults model hold a key status in CNA, characterizing aging as a dynamic process and presenting compensatory relationships between different brain areas; and (3) age-related changes always occur in temporal (especially the hippocampus), parietal, and frontal lobes and the cognitive declines establish the compensation relationship between the anterior and posterior regions.
Collapse
Affiliation(s)
- Jiaxing Jiang
- Research Institute of Foreign Language, Beijing Foreign Studies University, Haidian, Beijing, China
| | - Lin Fan
- National Research Center for Foreign Language Education, Beijing Foreign Studies University, Haidian, Beijing, China,*Correspondence: Lin Fan,
| | - Jia Liu
- School of Foreign Studies, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Manzali SB, Yu E, Ravona-Springer R, Livny A, Golan S, Ouyang Y, Lesman-Segev O, Liu L, Ganmore I, Alkelai A, Gan-Or Z, Lin HM, Heymann A, Schnaider Beeri M, Greenbaum L. Alzheimer’s Disease Polygenic Risk Score Is Not Associated With Cognitive Decline Among Older Adults With Type 2 Diabetes. Front Aging Neurosci 2022; 14:853695. [PMID: 36110429 PMCID: PMC9468264 DOI: 10.3389/fnagi.2022.853695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesMultiple risk loci for late-onset Alzheimer’s disease (LOAD) have been identified. Type 2 diabetes (T2D) is a risk factor for cognitive decline, dementia and Alzheimer’s disease (AD). We investigated the association of polygenic risk score (PRS) for LOAD with overall cognitive functioning and longitudinal decline, among older adults with T2D.MethodsThe study included 1046 Jewish participants from the Israel Diabetes and Cognitive Decline (IDCD) study, aged ≥ 65 years, diagnosed with T2D, and cognitively normal at baseline. The PRS included variants from 26 LOAD associated loci (at genome-wide significance level), and was calculated with and without APOE. Outcome measures, assessed in 18 months intervals, were global cognition and the specific domains of episodic memory, attention/working memory, executive functions, and language/semantic categorization. Random coefficient models were used for analysis, adjusting for demographic variables, T2D-related characteristics, and cardiovascular factors. Additionally, in a subsample of 202 individuals, we analyzed the association of PRS with the volumes of total gray matter, frontal lobe, hippocampus, amygdala, and white matter hyperintensities. Last, the association of PRS with amyloid beta (Aβ) burden was examined in 44 participants who underwent an 18F-flutemetamol PET scan.ResultsThe PRS was not significantly associated with overall functioning or decline in global cognition or any of the specific cognitive domains. Similarly, following correction for multiple testing, there was no association with Aβ burden and other brain imaging phenotypes.ConclusionOur results suggest that the cumulative effect of LOAD susceptibility loci is not associated with a greater rate of cognitive decline in older adults with T2D, and other pathways may underlie this link.
Collapse
Affiliation(s)
- Sigalit B. Manzali
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Sapir Golan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuxia Ouyang
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Orit Lesman-Segev
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Lang Liu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anthony Heymann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lior Greenbaum
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- *Correspondence: Lior Greenbaum,
| |
Collapse
|
3
|
Stepler KE, Gillyard TR, Reed CB, Avery TM, Davis JS, Robinson RA. ABCA7, a Genetic Risk Factor Associated with Alzheimer's Disease Risk in African Americans. J Alzheimers Dis 2022; 86:5-19. [PMID: 35034901 PMCID: PMC10984370 DOI: 10.3233/jad-215306] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
African American/Black adults are twice as likely to have Alzheimer's disease (AD) compared to non-Hispanic White adults. Genetics partially contributes to this disparity in AD risk, among other factors, as there are several genetic variants associated with AD that are more prevalent in individuals of African or European ancestry. The phospholipid-transporting ATPase ABCA7 (ABCA7) gene has stronger associations with AD risk in individuals with African ancestry than in individuals with European ancestry. In fact, ABCA7 has been shown to have a stronger effect size than the apolipoprotein E (APOE) ɛ4 allele in African American/Black adults. ABCA7 is a transmembrane protein involved in lipid homeostasis and phagocytosis. ABCA7 dysfunction is associated with increased amyloid-beta production, reduced amyloid-beta clearance, impaired microglial response to inflammation, and endoplasmic reticulum stress. This review explores the impact of ABCA7 mutations that increase AD risk in African American/Black adults on ABCA7 structure and function and their contributions to AD pathogenesis. The combination of biochemical/biophysical and 'omics-based studies of these variants needed to elucidate their downstream impact and molecular contributions to AD pathogenesis is highlighted.
Collapse
Affiliation(s)
| | - Taneisha R. Gillyard
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
| | - Calla B. Reed
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
| | - Tyra M. Avery
- Fisk University Department of Life and Physical Sciences, Nashville, TN, USA
| | - Jamaine S. Davis
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renã A.S. Robinson
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
- Vanderbilt University Medical Center Department of Neurology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
| |
Collapse
|
4
|
Hsieh TJ, Lee WJ, Liao YC, Hsu CC, Fang YH, Chen TY, Lin YS, Chang IS, Wang SJ, Hsiung CA, Fuh JL. Association between Alzheimer's disease genes and trajectories of cognitive function decline in Han Chinese in Taiwan. Aging (Albany NY) 2021; 13:17237-17252. [PMID: 34214049 PMCID: PMC8312434 DOI: 10.18632/aging.203204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
Genetic background has been considered one of the important contributors to the rate of cognitive decline among patients with Alzheimer’s disease (AD). We conducted a 4-year longitudinal follow-up study, recruited 255 AD and 44 mild cognitive impairment (MCI) patients, and used a data-driven trajectory analysis to examine the influence of selected AD risk genes on the age for and the rate of cognitive decline in Han Chinese population. Genotyping of selected single-nucleotide polymorphisms in the APOE, ABCA7, SORL1, BIN1, GAB2, and CD33 genes was conducted, and a Bayesian hierarchical model was fitted to analyze the trajectories of cognitive decline among different genotypes. After adjusting for sex and education years, the APOE ε4 allele was associated with an earlier mean change of −2.39 years in the age at midpoint of cognitive decline, the G allele in ABCA7 rs3764650 was associated with an earlier mean change of −1.75 years, and the T allele in SORL1 rs3737529 was associated with a later mean change of 2.6 years. Additionally, the rate of cognitive decline was associated with the APOE ε4 allele and SORL1 rs3737529. In summary, APOE and SORL1 might be the most important genetic factors related to cognitive decline in Han Chinese population.
Collapse
Affiliation(s)
- Tsung-Jen Hsieh
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Ju Lee
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chu Liao
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yao-Hwei Fang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yung-Shuan Lin
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | |
Collapse
|
5
|
Anstey KJ, Butterworth P, Christensen H, Easteal S, Cherbuin N, Leach L, Burns R, Kiely KM, Mortby ME, Eramudugolla R, Gad I. Cohort Profile Update: The PATH Through Life Project. Int J Epidemiol 2021; 50:35-36. [PMID: 33232442 DOI: 10.1093/ije/dyaa179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Peter Butterworth
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,Melbourne Institute of Applied Economic and Social Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Helen Christensen
- Black Dog Institute, University of South Wales, Sydney, NSW, Australia
| | - Simon Easteal
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Liana Leach
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Richard Burns
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Kim M Kiely
- School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Moyra E Mortby
- School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Ranmalee Eramudugolla
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Imogen Gad
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
6
|
Dib S, Pahnke J, Gosselet F. Role of ABCA7 in Human Health and in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094603. [PMID: 33925691 PMCID: PMC8124837 DOI: 10.3390/ijms22094603] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies, including genome wide association studies (GWAS), have strongly suggested a central role for the ATP-binding cassette transporter subfamily A member 7 (ABCA7) in Alzheimer’s disease (AD). This ABC transporter is now considered as an important genetic determinant for late onset Alzheimer disease (LOAD) by regulating several molecular processes such as cholesterol metabolism and amyloid processing and clearance. In this review we shed light on these new functions and their cross-talk, explaining its implication in brain functioning, and therefore in AD onset and development.
Collapse
Affiliation(s)
- Shiraz Dib
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Fabien Gosselet
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
- Correspondence: ; Tel.: +33-(0)3-21791733
| |
Collapse
|
7
|
Latimer CS, Lucot KL, Keene CD, Cholerton B, Montine TJ. Genetic Insights into Alzheimer's Disease. ANNUAL REVIEW OF PATHOLOGY 2021; 16:351-376. [PMID: 33497263 PMCID: PMC8664069 DOI: 10.1146/annurev-pathmechdis-012419-032551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a pervasive, relentlessly progressive neurodegenerative disorder that includes both hereditary and sporadic forms linked by common underlying neuropathologic changes and neuropsychological manifestations. While a clinical diagnosis is often made on the basis of initial memory dysfunction that progresses to involve multiple cognitive domains, definitive diagnosis requires autopsy examination of the brain to identify amyloid plaques and neurofibrillary degeneration. Over the past 100 years, there has been remarkable progress in our understanding of the underlying pathophysiologic processes, pathologic changes, and clinical phenotypes of AD, largely because genetic pathways that include but expand beyond amyloid processing have been uncovered. This review discusses the current state of understanding of the genetics of AD with a focus on how these advances are both shaping our understanding of the disease and informing novel avenues and approaches for development of potential therapeutic targets.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98104, USA
| | - Katherine L Lucot
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98104, USA
| | - Brenna Cholerton
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| |
Collapse
|
8
|
Andrews SJ, McFall GP, Booth A, Dixon RA, Anstey KJ. Association of Alzheimer's Disease Genetic Risk Loci with Cognitive Performance and Decline: A Systematic Review. J Alzheimers Dis 2020; 69:1109-1136. [PMID: 31156182 DOI: 10.3233/jad-190342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The association of Apolipoprotein E (APOE) with late-onset Alzheimer's disease (LOAD) and cognitive endophenotypes of aging has been widely investigated. There is increasing interest in evaluating the association of other LOAD risk loci with cognitive performance and decline. The results of these studies have been inconsistent and inconclusive. We conducted a systematic review of studies investigating the association of non-APOE LOAD risk loci with cognitive performance in older adults. Studies published from January 2009 to April 2018 were identified through a PubMed database search using keywords and by scanning reference lists. Studies were included if they were either cross-sectional or longitudinal in design, included at least one genome-wide significant LOAD risk loci or a genetic risk score, and had one objective measure of cognition. Quality assessment of the studies was conducted using the quality of genetic studies (Q-Genie) tool. Of 2,466 studies reviewed, 49 met inclusion criteria. Fifteen percent of the associations between non-APOE LOAD risk loci and cognition were significant. However, these associations were not replicated across studies, and the majority were rendered non-significant when adjusting for multiple testing. One-third of the studies included genetic risk scores, and these were typically significant only when APOE was included. The findings of this systematic review do not support a consistent association between individual non-APOE LOAD risk and cognitive performance or decline. However, evidence suggests that aggregate LOAD genetic risk exerts deleterious effects on decline in episodic memory and global cognition.
Collapse
Affiliation(s)
- Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Roger A Dixon
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kaarin J Anstey
- UNSW Ageing Futures Institute, University of New South Wales, Australia.,School of Psychology, University of New South Wales, Australia.,Neuroscience Research Australia, Australia
| |
Collapse
|
9
|
Sherva R, Gross A, Mukherjee S, Koesterer R, Amouyel P, Bellenguez C, Dufouil C, Bennett DA, Chibnik L, Cruchaga C, del-Aguila J, Farrer LA, Mayeux R, Munsie L, Winslow A, Newhouse S, Saykin AJ, Kauwe JS, Crane PK, Green RC. Genome-wide association study of rate of cognitive decline in Alzheimer's disease patients identifies novel genes and pathways. Alzheimers Dement 2020; 16:1134-1145. [PMID: 32573913 PMCID: PMC7924136 DOI: 10.1002/alz.12106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/18/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Variability exists in the disease trajectories of Alzheimer's disease (AD) patients. We performed a genome-wide association study to examine rate of cognitive decline (ROD) in patients with AD. METHODS We tested for interactions between genetic variants and time since diagnosis to predict the ROD of a composite cognitive score in 3946 AD cases and performed pathway analysis on the top genes. RESULTS Suggestive associations (P < 1.0 × 10-6 ) were observed on chromosome 15 in DNA polymerase-γ (rs3176205, P = 1.11 × 10-7 ), chromosome 7 (rs60465337,P = 4.06 × 10-7 ) in contactin-associated protein-2, in RP11-384F7.1 on chromosome 3 (rs28853947, P = 5.93 × 10-7 ), family with sequence similarity 214 member-A on chromosome 15 (rs2899492, P = 5.94 × 10-7 ), and intergenic regions on chromosomes 16 (rs4949142, P = 4.02 × 10-7 ) and 4 (rs1304013, P = 7.73 × 10-7 ). Significant pathways involving neuronal development and function, apoptosis, memory, and inflammation were identified. DISCUSSION Pathways related to AD, intelligence, and neurological function determine AD progression, while previously identified AD risk variants, including the apolipoprotein (APOE) ε4 and ε2 variants, do not have a major impact.
Collapse
Affiliation(s)
- Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord St., E-200, Boston, MA 02118, USA
| | - Alden Gross
- Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St, Johns Hopkins Center on Aging and Health, Suite 2-700, Baltimore, MD 21205, USA
| | - Shubhabrata Mukherjee
- Department of Medicine, University of Washington, Box 359780, 325 Ninth Avenue, Seattle, WA 98104, USA
| | - Ryan Koesterer
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Inserm UMR-1167, Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 245 - 59019 LILLE cedex, FRANCE
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Celine Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Inserm UMR-1167, Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 245 - 59019 LILLE cedex, FRANCE
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Carole Dufouil
- Inserm Unit 1219 Bordeaux Population Health, CIC 1401-EC (Clinical Epidemiology), University of Bordeaux, ISPED (Bordeaux School of Public Health), Bordeaux University Hospital, Bordeaux, France
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lori Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Carlos Cruchaga
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 425 S. Euclid Ave, Office 9607, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics. Washington University School of Medicine, Saint Louis, USA
| | - Jorge del-Aguila
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 425 S. Euclid Ave, Office 9607, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics. Washington University School of Medicine, Saint Louis, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord St., E-200, Boston, MA 02118, USA
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Leanne Munsie
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ashley Winslow
- Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Pennsylvania, PA 19104, USA
| | - Stephen Newhouse
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Health Data Research UK London, University College London, London, UK
- dd Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Andrew J. Saykin
- Indiana Alzheimer Disease Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IU Health Neuroscience Center, Suite 4100, 355 West 16th Street, Indianapolis, IN 46202, USA
| | - John S.K. Kauwe
- Department of Biology, Brigham Young University, 105 FPH, Provo, UT 84602, USA
| | | | - Paul K. Crane
- Department of Medicine, University of Washington, Box 359780, 325 Ninth Avenue, Seattle, WA 98104, USA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, EC Alumnae Building, Suite 301, 41 Avenue Louis Pasteur, Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Partners HealthCare Personalized Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Segerstrom SC. Personality and Incident Alzheimer's Disease: Theory, Evidence, and Future Directions. J Gerontol B Psychol Sci Soc Sci 2020; 75:513-521. [PMID: 29846724 PMCID: PMC7768711 DOI: 10.1093/geronb/gby063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 01/12/2023] Open
Abstract
Personality, especially the dimensions of neuroticism and conscientiousness, has prospectively predicted the risk of incident Alzheimer's disease (AD). Such a relationship could be explained by personality and AD risk having a common cause such as a gene; by personality creating a predisposition for AD through health behavior or inflammation; by personality exerting a pathoplastic effect on the cognitive consequences of neuropathology; or by AD and personality change existing on a disease spectrum that begins up to decades before diagnosis. Using the 5-dimensional taxonomy of personality, the present review describes how these models might arise, the evidence for each, and how they might be distinguished from one another empirically. At present, the evidence is sparse but tends to suggest predisposition and/or pathoplastic relationships. Future studies using noninvasive assessment of neuropathology are needed to distinguish these 2 possibilities.
Collapse
|
11
|
Harrison JR, Mistry S, Muskett N, Escott-Price V. From Polygenic Scores to Precision Medicine in Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2020; 74:1271-1283. [PMID: 32250305 PMCID: PMC7242840 DOI: 10.3233/jad-191233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is highly heritable. The effect of many common genetic variants, single nucleotide polymorphisms (SNPs), confer risk. Variants are clustered in areas of biology, notably immunity and inflammation, cholesterol metabolism, endocytosis, and ubiquitination. Polygenic scores (PRS), which weight the sum of an individual's risk alleles, have been used to draw inferences about the pathological processes underpinning AD. OBJECTIVE This paper aims to systematically review how AD PRS are being used to study a range of outcomes and phenotypes related to neurodegeneration. METHODS We searched the literature from July 2008-July 2018 following PRISMA guidelines. RESULTS 57 studies met criteria. The AD PRS can distinguish AD cases from controls. The ability of AD PRS to predict conversion from mild cognitive impairment (MCI) to AD was less clear. There was strong evidence of association between AD PRS and cognitive impairment. AD PRS were correlated with a number of biological phenotypes associated with AD pathology, such as neuroimaging changes and amyloid and tau measures. Pathway-specific polygenic scores were also associated with AD-related biologically relevant phenotypes. CONCLUSION PRS can predict AD effectively and are associated with cognitive impairment. There is also evidence of association between AD PRS and other phenotypes relevant to neurodegeneration. The associations between pathway specific polygenic scores and phenotypic changes may allow us to define the biology of the disease in individuals and indicate who may benefit from specific treatments. Longitudinal cohort studies are required to test the ability of PGS to delineate pathway-specific disease activity.
Collapse
Affiliation(s)
- Judith R. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Sumit Mistry
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Natalie Muskett
- Cardiff University Medical School, University Hospital of Wales, Cardiff, UK
| | - Valentina Escott-Price
- Dementia Research Institute & the MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| |
Collapse
|
12
|
Berg CN, Sinha N, Gluck MA. The Effects of APOE and ABCA7 on Cognitive Function and Alzheimer's Disease Risk in African Americans: A Focused Mini Review. Front Hum Neurosci 2019; 13:387. [PMID: 31749691 PMCID: PMC6848225 DOI: 10.3389/fnhum.2019.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
African Americans have double the prevalence of Alzheimer's disease (AD), as compared to European Americans. However, the underlying causes of this health disparity are due to a multitude of environmental, lifestyle, and genetic factors that are not yet fully understood. Here, we review the effects of the two largest genetic risk factors for AD in African Americans: Apolipoprotein E (APOE) and ABCA7. We will describe the direct effects of genetic variation on neural correlates of cognitive function and report the indirect modulating effects of genetic variation on modifiable AD risk factors, such as aerobic fitness. As a means of integrating previous findings, we present a novel schematic diagram to illustrate the many factors that contribute to AD risk and impaired cognitive function in older African Americans. Finally, we discuss areas that require further inquiry, and stress the importance of racially diverse and representative study populations.
Collapse
Affiliation(s)
- Chelsie N. Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| | | | - Mark A. Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
13
|
De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer's disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol 2019; 138:201-220. [PMID: 30903345 PMCID: PMC6660495 DOI: 10.1007/s00401-019-01994-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) originally identified ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer’s disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large effect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common premature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is significantly associated with AD. Furthermore, ABCA7 contains many different isoforms and ABCA7 splicing has been shown to associate with AD. Besides associations with disease status, these genetic and epigenetic ABCA7 markers also showed significant correlations with AD endophenotypes; in particular amyloid deposition and brain morphology. In conclusion, human-based –omics studies provide converging evidence of (partial) ABCA7 loss as an AD pathomechanism, and future studies should make clear if interventions on ABCA7 expression can serve as a valuable therapeutic target for AD.
Collapse
Affiliation(s)
- Arne De Roeck
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
Alzheimer’s Environmental and Genetic Risk Scores are Differentially Associated With General Cognitive Ability and Dementia Severity. Alzheimer Dis Assoc Disord 2019; 33:95-103. [DOI: 10.1097/wad.0000000000000292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Liu G, Zhang Y, Wang L, Xu J, Chen X, Bao Y, Hu Y, Jin S, Tian R, Bai W, Zhou W, Wang T, Han Z, Zong J, Jiang Q. Alzheimer's Disease rs11767557 Variant Regulates EPHA1 Gene Expression Specifically in Human Whole Blood. J Alzheimers Dis 2019; 61:1077-1088. [PMID: 29332039 DOI: 10.3233/jad-170468] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large-scale genome-wide association studies have reported EPHA1 rs11767557 variant to be associated with Alzheimer's disease (AD) risk in the European population. However, it is still unclear how this variant functionally contributes to the underlying disease pathogenesis. The rs11767557 variant is located approximately 3 kb upstream of EPHA1 gene. We think that rs11767557 may modify the expression of nearby genes such as EPHA1 and further cause AD risk. Until now, the potential association between rs11767557 and the expression of nearby genes has not been reported in previous studies. Here, we evaluate the potential expression association between rs11767557 and EPHA1 using multiple large-scale eQTLs datasets in human brain tissues and the whole blood. The results show that rs11767557 variant could significantly regulate EPHA1 gene expression specifically in human whole blood. These findings may further provide important supplementary information about the regulating mechanisms of rs11767557 variant in AD risk.
Collapse
Affiliation(s)
- Guiyou Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jianyong Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Xiaoyun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Yunjuan Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Yang Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuilin Jin
- Department of Mathematics, Harbin Institute of Technology, Harbin, China
| | - Rui Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weiyang Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhifa Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jian Zong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
16
|
Sinha N, Reagh ZM, Tustison NJ, Berg CN, Shaw A, Myers CE, Hill D, Yassa MA, Gluck MA. ABCA7 risk variant in healthy older African Americans is associated with a functionally isolated entorhinal cortex mediating deficient generalization of prior discrimination training. Hippocampus 2018; 29:527-538. [PMID: 30318785 DOI: 10.1002/hipo.23042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022]
Abstract
Using high-resolution resting state functional magnetic resonance imaging (fMRI), the present study tested the hypothesis that ABCA7 genetic risk differentially affects intra-medial temporal lobe (MTL) functional connectivity between MTL subfields, versus internetwork connectivity of the MTL with the medial prefrontal cortex (mPFC), in nondemented older African Americans. Although the association of ABCA7 risk variants with Alzheimer's disease (AD) has been confirmed worldwide, its effect size on the relative odds of being diagnosed with AD is significantly higher in African Americans. However, little is known about the neural correlates of cognitive function in older African Americans and how they relate to AD risk conferred by ABCA7. In a case-control fMRI study of 36 healthy African Americans, we observed ABCA7 related impairments in behavioral generalization that was mediated by dissociation in entorhinal cortex (EC) resting state functional connectivity. Specifically, ABCA7 risk variant was associated with EC-hippocampus hyper-synchronization and EC-mPFC hypo-synchronization. Carriers of the risk genotype also had a significantly smaller anterolateral EC, despite our finding no group differences on standardized neuropsychological tests. Our findings suggest a model where impaired cortical connectivity leads to a more functionally isolated EC at rest, which translates into aberrant EC-hippocampus hyper-synchronization resulting in generalization deficits. While we cannot identify the exact mechanism underlying the observed alterations in EC structure and network function, considering the relevance of Aβ in ABCA7 related AD pathogenesis, the results of our study may reflect the synergistic reinforcement between amyloid and tau pathology in the EC, which significantly increases tau-induced neuronal loss and accelerates synaptic alterations. Finally, our results add to a growing literature suggesting that generalization of learning may be a useful tool for assessing the mild cognitive deficits seen in the earliest phases of prodromal AD, even before the more commonly reported deficits in episodic memory arise.
Collapse
Affiliation(s)
- Neha Sinha
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Zachariah M Reagh
- Department of Neurology, Center for Neuroscience, University of California, Davis, California
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.,Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Psychiatry and Neurology, University of California, Irvine, California
| | - Chelsie N Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Ashlee Shaw
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Catherine E Myers
- Neurobiology Research Laboratory VA New Jersey Health Care System East Orange, NJ.,Pharmacology Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Diane Hill
- Office of University-Community Partnerships, Rutgers University-Newark, Newark, New Jersey
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Psychiatry and Neurology, University of California, Irvine, California
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
17
|
Andrews SJ, Ismail Z, Anstey KJ, Mortby M. Association of Alzheimer's genetic loci with mild behavioral impairment. Am J Med Genet B Neuropsychiatr Genet 2018; 177:727-735. [PMID: 30378268 DOI: 10.1002/ajmg.b.32684] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/10/2022]
Abstract
Mild behavioral impairment (MBI) describes the emergence of later-life neuropsychiatric symptoms (NPS) as an at-risk state for incident cognitive decline and dementia, and for some as a potential manifestation of prodromal dementia. How NPS mechanistically link to the development of mild cognitive impairment and Alzheimer's disease (AD) is not fully understood, with potential mechanisms including shared risk factors related to both NPS and cognitive impairment, or AD pathology promoting NPS. This is the first exploratory study to examine whether AD genetic loci as a genetic risk score (GRS), or individually, are a shared risk factor with MBI. Participants were 1,226 older adults (aged 72-79; 738 males; 763 normal cognition) from the Personality and Total Health Through Life project. MBI was approximated in accordance with Criterion 1 of the ISTAART-AA diagnostic criteria using a transformation algorithm for the neuropsychiatric inventory. A GRS was constructed from 25 AD risk loci. Binomial logistic regression adjusting for age, gender, and education examined the association between GRS and MBI. A higher GRS and APOE*ε4 were associated with increased likelihood of affective dysregulation. Nominally significant associations were observed between MS4A4A-rs4938933*C and MS4A6A-rs610932*G with a reduced likelihood of affective dysregulation; ZCWPW1-rs1476679*C with a reduced likelihood of social inappropriateness and abnormal perception/thought content; BIN1-rs744373*G and EPHA1-rs11767557*C with higher likelihood of abnormal perception/thought content; NME8-rs2718058*G with a reduced likelihood of decreased motivation. These preliminary findings suggest a common genetic etiology between MBI and traditionally recognized cognitive problems observed in AD and improve our understanding of the pathophysiological features underlying MBI.
Collapse
Affiliation(s)
- Shea J Andrews
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zahinoor Ismail
- Department of Psychiatry, Mathison Centre for Mental Health Research & Education, Ron and Rene Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Ron and Rene Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Mathison Centre for Mental Health Research & Education, Ron and Rene Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kaarin J Anstey
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia.,Lifecourse Ageing Research Centre, Neuroscience Research Australia, Sydney, New South Wales, Australia.,Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Moyra Mortby
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia.,Lifecourse Ageing Research Centre, Neuroscience Research Australia, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
19
|
Marioni RE, McRae AF, Bressler J, Colicino E, Hannon E, Li S, Prada D, Smith JA, Trevisi L, Tsai PC, Vojinovic D, Simino J, Levy D, Liu C, Mendelson M, Satizabal CL, Yang Q, Jhun MA, Kardia SLR, Zhao W, Bandinelli S, Ferrucci L, Hernandez DG, Singleton AB, Harris SE, Starr JM, Kiel DP, McLean RR, Just AC, Schwartz J, Spiro A, Vokonas P, Amin N, Ikram MA, Uitterlinden AG, van Meurs JBJ, Spector TD, Steves C, Baccarelli AA, Bell JT, van Duijn CM, Fornage M, Hsu YH, Mill J, Mosley TH, Seshadri S, Deary IJ. Meta-analysis of epigenome-wide association studies of cognitive abilities. Mol Psychiatry 2018; 23:2133-2144. [PMID: 29311653 PMCID: PMC6035894 DOI: 10.1038/s41380-017-0008-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Cognitive functions are important correlates of health outcomes across the life-course. Individual differences in cognitive functions are partly heritable. Epigenetic modifications, such as DNA methylation, are susceptible to both genetic and environmental factors and may provide insights into individual differences in cognitive functions. Epigenome-wide meta-analyses for blood-based DNA methylation levels at ~420,000 CpG sites were performed for seven measures of cognitive functioning using data from 11 cohorts. CpGs that passed a Bonferroni correction, adjusting for the number of CpGs and cognitive tests, were assessed for: longitudinal change; being under genetic control (methylation QTLs); and associations with brain health (structural MRI), brain methylation and Alzheimer's disease pathology. Across the seven measures of cognitive functioning (meta-analysis n range: 2557-6809), there were epigenome-wide significant (P < 1.7 × 10-8) associations for global cognitive function (cg21450381, P = 1.6 × 10-8), and phonemic verbal fluency (cg12507869, P = 2.5 × 10-9). The CpGs are located in an intergenic region on chromosome 12 and the INPP5A gene on chromosome 10, respectively. Both probes have moderate correlations (~0.4) with brain methylation in Brodmann area 20 (ventral temporal cortex). Neither probe showed evidence of longitudinal change in late-life or associations with white matter brain MRI measures in one cohort with these data. A methylation QTL analysis suggested that rs113565688 was a cis methylation QTL for cg12507869 (P = 5 × 10-5 and 4 × 10-13 in two lookup cohorts). We demonstrate a link between blood-based DNA methylation and measures of phonemic verbal fluency and global cognitive ability. Further research is warranted to understand the mechanisms linking genomic regulatory changes with cognitive function to health and disease.
Collapse
Affiliation(s)
- Riccardo E. Marioni
- 0000 0004 1936 7988grid.4305.2Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK ,0000 0004 1936 7988grid.4305.2Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK ,0000 0000 9320 7537grid.1003.2Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD Australia
| | - Allan F. McRae
- 0000 0000 9320 7537grid.1003.2Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD Australia ,0000 0000 9320 7537grid.1003.2Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Jan Bressler
- 0000 0000 9206 2401grid.267308.8Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Elena Colicino
- 0000000419368729grid.21729.3fColumbia University Mailman School of Public Health, New York, NY USA ,0000 0001 0670 2351grid.59734.3cIcahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eilis Hannon
- 0000 0004 1936 8024grid.8391.3University of Exeter Medical School, Exeter, UK
| | - Shuo Li
- 0000 0004 1936 7558grid.189504.1Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Diddier Prada
- 0000 0004 1777 1207grid.419167.cInstituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jennifer A Smith
- 0000000086837370grid.214458.eDepartment of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA ,0000000086837370grid.214458.eSurvey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI USA
| | - Letizia Trevisi
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Pei-Chien Tsai
- 0000 0001 2322 6764grid.13097.3cDepartment of Twin Research and Genetic Epidemiology, King’s College London, London, UK ,grid.145695.aDepartment of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan ,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Dina Vojinovic
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeannette Simino
- 0000 0004 1937 0407grid.410721.1Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS USA ,0000 0004 1937 0407grid.410721.1MIND Center, University of Mississippi Medical Center, Jackson, MS USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA USA ,0000 0001 2293 4638grid.279885.9Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Chunyu Liu
- 0000 0004 1936 7558grid.189504.1Department of Biostatistics, Boston University School of Public Health, Boston, MA USA ,Framingham Heart Study, Framingham, MA USA ,0000 0001 2293 4638grid.279885.9Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Michael Mendelson
- Framingham Heart Study, Framingham, MA USA ,0000 0001 2293 4638grid.279885.9Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA ,0000 0004 0367 5222grid.475010.7Boston University School of Medicine, Boston, MA USA ,0000 0004 0378 8438grid.2515.3Department of Cardiology, Boston Children’s Hospital, Boston, MA USA
| | - Claudia L. Satizabal
- Framingham Heart Study, Framingham, MA USA ,0000 0004 0367 5222grid.475010.7Department of Neurology, Boston University School of Medicine, Boston, MA USA
| | - Qiong Yang
- 0000 0004 1936 7558grid.189504.1Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Min A. Jhun
- 0000000086837370grid.214458.eDepartment of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA ,0000 0001 2180 1622grid.270240.3Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Sharon L. R. Kardia
- 0000000086837370grid.214458.eDepartment of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Wei Zhao
- 0000000086837370grid.214458.eDepartment of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Stefania Bandinelli
- 0000 0004 1756 9121grid.423864.fGeriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
| | - Luigi Ferrucci
- 0000 0000 9372 4913grid.419475.aClinical Research Branch, National Institute on Aging, Baltimore, MD USA
| | - Dena G. Hernandez
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Andrew B. Singleton
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Sarah E. Harris
- 0000 0004 1936 7988grid.4305.2Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK ,0000 0004 1936 7988grid.4305.2Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - John M. Starr
- 0000 0004 1936 7988grid.4305.2Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK ,0000 0004 1936 7988grid.4305.2Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Douglas P. Kiel
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA ,000000041936754Xgrid.38142.3cHebrew SeniorLife Institute for Aging Research, Boston, MA USA
| | - Robert R. McLean
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA ,000000041936754Xgrid.38142.3cHebrew SeniorLife Institute for Aging Research, Boston, MA USA
| | - Allan C. Just
- 0000 0001 0670 2351grid.59734.3cIcahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joel Schwartz
- 000000041936754Xgrid.38142.3cHarvard T.H. Chan School of Public Health, Boston, MA USA
| | - Avron Spiro
- 0000 0004 1936 7558grid.189504.1Boston University Schools of Public Health and Medicine, Boston, MA USA ,0000 0004 4657 1992grid.410370.1VA Boston Healthcare System, Boston, MA USA
| | - Pantel Vokonas
- 0000 0004 1936 7558grid.189504.1Boston University Schools of Public Health and Medicine, Boston, MA USA ,0000 0004 4657 1992grid.410370.1VA Boston Healthcare System, Boston, MA USA
| | - Najaf Amin
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Arfan Ikram
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands ,000000040459992Xgrid.5645.2Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands ,000000040459992Xgrid.5645.2Departments of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands ,000000040459992Xgrid.5645.2Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joyce B. J. van Meurs
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands ,000000040459992Xgrid.5645.2Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tim D. Spector
- 0000 0001 2322 6764grid.13097.3cDepartment of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Claire Steves
- 0000 0001 2322 6764grid.13097.3cDepartment of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Andrea A. Baccarelli
- 0000000419368729grid.21729.3fColumbia University Mailman School of Public Health, New York, NY USA
| | - Jordana T. Bell
- 0000 0001 2322 6764grid.13097.3cDepartment of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Cornelia M. van Duijn
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Myriam Fornage
- 0000 0000 9206 2401grid.267308.8Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX USA ,0000 0000 9206 2401grid.267308.8Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yi-Hsiang Hsu
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA ,000000041936754Xgrid.38142.3cHebrew SeniorLife Institute for Aging Research, Boston, MA USA ,grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Jonathan Mill
- 0000 0001 0670 2351grid.59734.3cIcahn School of Medicine at Mount Sinai, New York, NY USA
| | - Thomas H. Mosley
- 0000 0004 1937 0407grid.410721.1MIND Center, University of Mississippi Medical Center, Jackson, MS USA ,0000 0004 1937 0407grid.410721.1Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS USA
| | - Sudha Seshadri
- 0000 0004 0367 5222grid.475010.7Department of Neurology, Boston University School of Medicine, Boston, MA USA ,0000 0001 0629 5880grid.267309.9Glenn Biggs Institute of Alzheimer and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX USA
| | - Ian J. Deary
- 0000 0004 1936 7988grid.4305.2Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK ,0000 0004 1936 7988grid.4305.2Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Andrews SJ, Eramudugolla R, Velez JI, Cherbuin N, Easteal S, Anstey KJ. Validating the role of the Australian National University Alzheimer's Disease Risk Index (ANU-ADRI) and a genetic risk score in progression to cognitive impairment in a population-based cohort of older adults followed for 12 years. ALZHEIMERS RESEARCH & THERAPY 2017; 9:16. [PMID: 28259165 PMCID: PMC5336661 DOI: 10.1186/s13195-017-0240-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/01/2017] [Indexed: 12/04/2022]
Abstract
Background The number of people living with dementia is expected to exceed 130 million by 2050, which will have serious personal, social and economic implications. Employing successful intervention and treatment strategies focused on disease prevention is currently the only available approach that can have an impact on the projected rates of dementia, with risk assessment being a key component of population-based risk reduction for identification of at-risk individuals. We evaluated a risk index comprising lifestyle, medical and demographic factors (the Australian National University Alzheimer’s Disease Risk Index [ANU-ADRI]), as well as a genetic risk score (GRS), for assessment of the risk of progression to mild cognitive impairment (MCI). Methods The ANU-ADRI was computed for the baseline assessment of 2078 participants in the Personality and Total Health (PATH) Through Life project. GRSs were constructed on the basis of 25 single-nucleotide polymorphisms previously associated with Alzheimer’s disease (AD). Participants were assessed for clinically diagnosed MCI and dementia as well as psychometric test-based MCI (MCI-TB) at 12 years of follow-up. Multi-state models were used to estimate the odds of transitioning from cognitively normal (CN) to MCI, dementia and MCI-TB over 12 years according to baseline ANU-ADRI and GRS. Results A higher ANU-ADRI score was associated with increased risk of progressing from CN to both MCI and MCI-TB (HR 1.07 [95% CI 1.04–1.11]; 1.07 [1.04–1.09]). The GRS was associated with transitions from CN to dementia (HR 4.19 [95% CI 1.72–10.20), but not to MCI or MCI-TB (HR 1.05 [95% CI 0.86–1.29]; 1.03 [0.87–1.21]). Limitations of our study include that the ethnicity of participants in the PATH project is predominately Caucasian, potentially limiting the generalisability of the results of this study to people of other ethnicities. Biomarkers of AD were not available to define MCI attributable to AD. Not all the predictive variables for the ANU-ADRI were available in the PATH project. Conclusions In the general population, the ANU-ADRI, comprising lifestyle, medical and demographic factors, is associated with the risk of progression from CN to MCI, whereas a GRS comprising the main AD risk genes was not associated with this risk. The ANU-ADRI may be used for population-level risk assessment and screening. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0240-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shea J Andrews
- John Curtin School of Medical Research, Australian National University, Canberra, Australia. .,Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health Australian National University, The Australian National University Florey, Building 54, Mills Road, Acton ACT 2601, Canberra, Australia.
| | - Ranmalee Eramudugolla
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health Australian National University, The Australian National University Florey, Building 54, Mills Road, Acton ACT 2601, Canberra, Australia
| | - Jorge I Velez
- John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Universidad del Norte, Barranquilla, Colombia.,Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health Australian National University, The Australian National University Florey, Building 54, Mills Road, Acton ACT 2601, Canberra, Australia
| | - Simon Easteal
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health Australian National University, The Australian National University Florey, Building 54, Mills Road, Acton ACT 2601, Canberra, Australia
| |
Collapse
|