1
|
Lee S, Silverman N, Gao FB. Emerging roles of antimicrobial peptides in innate immunity, neuronal function, and neurodegeneration. Trends Neurosci 2024:S0166-2236(24)00173-5. [PMID: 39389804 DOI: 10.1016/j.tins.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Antimicrobial peptides (AMPs), a collection of small proteins with important roles in classical innate immunity, have been extensively studied in multiple organisms, particularly in Drosophila melanogaster. Advances in CRISPR/Cas9 genome editing have allowed individual AMP functions to be dissected, revealing specific and selective roles in host defense. Recent findings have also revealed many unexpected contributions of endogenous AMPs to neuronal functions and neurodegenerative diseases, and have shed light on the intersections between innate immunity and neurobiology. We explore the intricate relationships between AMPs and sleep regulation, memory formation, as well as traumatic brain injury and several neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). Understanding the diverse functions of AMPs opens new avenues for neuroinflammation and neurodegenerative disease research and potential therapeutic development.
Collapse
Affiliation(s)
- Soojin Lee
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
3
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
4
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
5
|
Zielke C, Nielsen JE, Lin JS, Barron AE. Between good and evil: Complexation of the human cathelicidin LL-37 with nucleic acids. Biophys J 2024; 123:1316-1328. [PMID: 37919905 PMCID: PMC11163296 DOI: 10.1016/j.bpj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
The innate immune system provides a crucial first line of defense against invading pathogens attacking the body. As the only member of the human cathelicidin family, the antimicrobial peptide LL-37 has been shown to have antiviral, antifungal, and antibacterial properties. In complexation with nucleic acids, LL-37 is suggested to maintain its beneficial health effects while also acting as a condensation agent for the nucleic acid. Complexes formed by LL-37 and nucleic acids have been shown to be immunostimulatory with a positive impact on the human innate immune system. However, some studies also suggest that in some circumstances, LL-37/nucleic acid complexes may be a contributing factor to autoimmune disorders such as psoriasis and systemic lupus erythematosus. This review provides a comprehensive discussion of research highlighting the beneficial health effects of LL-37/nucleic acid complexes, as well as discussing observed detrimental effects. We will emphasize why it is important to investigate and elucidate structural characteristics, such as condensation patterns of nucleic acids within complexation, and their mechanisms of action, to shed light on the intricate physiological effects of LL-37 and the seemingly contradictory role of LL-37/nucleic acid complexes in the innate immune response.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California.
| |
Collapse
|
6
|
Singh K, Gupta JK, Kumar S, Soni U. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides. Curr Protein Pept Sci 2024; 25:507-526. [PMID: 38561605 DOI: 10.2174/0113892037275221240327042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Urvashi Soni
- Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, India
| |
Collapse
|
7
|
Petrlova J, Hartman E, Petruk G, Lim JCH, Adav SS, Kjellström S, Puthia M, Schmidtchen A. Selective protein aggregation confines and inhibits endotoxins in wounds: Linking host defense to amyloid formation. iScience 2023; 26:107951. [PMID: 37817942 PMCID: PMC10561040 DOI: 10.1016/j.isci.2023.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces rapid protein aggregation in human wound fluid. We aimed to characterize these LPS-induced aggregates and their functional implications using a combination of mass spectrometry analyses, biochemical assays, biological imaging, cell experiments, and animal models. The wound-fluid aggregates encompass diverse protein classes, including sequences from coagulation factors, annexins, histones, antimicrobial proteins/peptides, and apolipoproteins. We identified proteins and peptides with a high aggregation propensity and verified selected components through Western blot analysis. Thioflavin T and Amytracker staining revealed amyloid-like aggregates formed after exposure to LPS in vitro in human wound fluid and in vivo in porcine wound models. Using NF-κB-reporter mice and IVIS bioimaging, we demonstrate that such wound-fluid LPS aggregates induce a significant reduction in local inflammation compared with LPS in plasma. The results show that protein/peptide aggregation is a mechanism for confining LPS and reducing inflammation, further emphasizing the connection between host defense and amyloidogenesis.
Collapse
Affiliation(s)
- Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Erik Hartman
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Jeremy Chun Hwee Lim
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Sunil Shankar Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Dermatology, Skane University Hospital, 22185 Lund, Sweden
| |
Collapse
|
8
|
Puneeth Kumar DRGKR, Nalawade SA, Pahan S, Singh M, Senapati DK, Roy S, Dey S, Toraskar SU, Raghothama S, Gopi HN. Proteolytically Stable ααγ-Hybrid Peptides Inhibit the Aggregation and Cytotoxicity of Aβ 42. ACS Chem Neurosci 2023; 14:3398-3408. [PMID: 37656905 DOI: 10.1021/acschemneuro.3c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
The recent approval of antibody-based therapy for targeting the clearance of amyloid plaques fuels the research in designing small molecules and peptide inhibitors to target the aggregation of Aβ-peptides. Here, we report that the 15-residue ααγ-hybrid peptide not only inhibits the aggregation of soluble Aβ42 into fibrils but also disintegrates the aggregated Aβ42 fibrils into smaller assemblies. Further, the hybrid peptide completely rescues neuronal cells from the toxicity of Aβ42 at equimolar concentrations. The shorter 10- and 12-mer peptides showed weak aggregation inhibition activity, while the fully hydrophobic 15-mer ααγ-hybrid peptide analogue showed no aggregation inhibition activity. Further, the 15-mer ααγ-hybrid peptide showed resistance against trypsin digestion and also nontoxic to the neuronal cells. The CD revealed that the peptide upon interaction induces a helix-type conformation in the Aβ42. This is in sharp contrast to the β-sheet conformation of Aβ42 upon incubation. The two-dimensional-NMR (2D-NMR) analysis revealed a large perturbation in the chemical shifts of residues at the N-terminus. The presence of 15-mer peptide at an equimolar concentration of Aβ42 showed less tendency for aggregation and also exhibited nontoxicity to the neuronal cells. The results reported here may be useful in designing new therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sachin A Nalawade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Saikat Pahan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Manjeet Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Dillip K Senapati
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Souvik Roy
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sandip U Toraskar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | | | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
9
|
Zhang LY, Wang DZ, Wang J, Guo L, Li BH, Wang JH. Associations of Serum Antimicrobial Peptide LL-37 with Longitudinal Cognitive Decline and Neurodegeneration Among Older Adults with Memory Complaints. J Alzheimers Dis 2023; 93:595-603. [PMID: 37066916 DOI: 10.3233/jad-230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND A potential role of the antimicrobial peptide LL-37, which is upregulated after infection, in the pathogenesis of Alzheimer's disease (AD) was identified. However, the clinical relevance of LL-37 in AD is not clear yet. OBJECTIVE This study aims to investigate the association of circulating LL-37 with longitudinal cognitive decline and neurodegeneration among older adults with memory complaints. METHODS This cohort study recruited 357 older adults with memory complaints. Participants were followed-up for two years and the cognitive functions were assessed using the Mini-Mental State Examination (MMSE). Serum LL-37, pTau181, and tTau levels were determined at baseline. Associations of baseline LL-37 with longitudinal cognitive decline and change of neurodegenerative biomarkers were analyzed. RESULTS No difference was found in the slope of longitudinal cognitive decline during follow-up between the low and high LL-37 group, adjusting for age, sex, education, body mass index, APOE ɛ4 carrier status, comorbidities, and baseline MMSE scores (difference in slope: 0.226, 95% CI: -0.169 to 0.621). Higher LL-37 levels were associated with longitudinal cognitive decline, as indicated by a decrease of MMSE scores of 3 points or above during follow-up (RR = 2.11, 95% CI: 1.32 to 3.38). The high LL-37 group had larger slopes of the increase in neurofilament light (difference in slope: 3.759, 95% CI: 2.367 to 5.152) and pTau181 (difference in slope: 0.325, 95% CI: 0.151 to 0.499) than the low LL-37 group. CONCLUSION These findings support an association of the antimicrobial peptide LL-37 with AD from a clinical perspective.
Collapse
Affiliation(s)
- Li-Ya Zhang
- Department of Neurology, 363 Hospital, Chengdu, Sichuan Province, China
| | - Duo-Zi Wang
- Department of Neurology, the Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, SichuanProvince, China
| | - Jian Wang
- Department of Neurology, Ya'an People's Hospital, Ya'an, Sichuan Province, China
| | - Lei Guo
- Department of Neurology, the Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, SichuanProvince, China
| | - Bing-Hu Li
- Department of Neurology, the Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, SichuanProvince, China
| | - Jian-Hong Wang
- Department of Neurology, the Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, SichuanProvince, China
| |
Collapse
|
10
|
De Lorenzi E, Seghetti F, Tarozzi A, Pruccoli L, Contardi C, Serra M, Bisi A, Gobbi S, Vistoli G, Gervasoni S, Argentini C, Ghirardo G, Guarato G, Orso G, Belluti F, Di Martino RMC, Zusso M. Targeting the multifaceted neurotoxicity of Alzheimer's disease by tailored functionalisation of the curcumin scaffold. Eur J Med Chem 2023; 252:115297. [PMID: 36996713 DOI: 10.1016/j.ejmech.2023.115297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Simultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aβ protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aβ protein oligomerisation and the consequent neurotoxic events. Interestingly, from in vitro studies, analogues 3 and 4, bearing a substituted triazole moiety, emerged as multifunctional agents able to counteract Aβ aggregation, neuroinflammation and oxidative stress. In vivo proof-of-concept evaluations, performed in a Drosophila oxidative stress model, allowed us to identify compound 4 as a promising lead candidate.
Collapse
|
11
|
Puneeth Kumar DRGKR, Reja RM, Senapati DK, Singh M, Nalawade SA, George G, Kaul G, Akhir A, Chopra S, Raghothama S, Gopi HN. A cationic amphiphilic peptide chaperone rescues Aβ 42 aggregation and cytotoxicity. RSC Med Chem 2023; 14:332-340. [PMID: 36846376 PMCID: PMC9945854 DOI: 10.1039/d2md00414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Directing Aβ42 to adopt a conformation that is free from aggregation and cell toxicity is an attractive and viable strategy to design therapeutics for Alzheimer's disease. Over the years, extensive efforts have been made to disrupt the aggregation of Aβ42 using various types of inhibitors but with limited success. Herein, we report the inhibition of aggregation of Aβ42 and disintegration of matured fibrils of Aβ42 into smaller assemblies by a 15-mer cationic amphiphilic peptide. The biophysical analysis comprising thioflavin T (ThT) mediated amyloid aggregation kinetic analysis, dynamic light scattering, ELISA, AFM, and TEM suggested that the peptide effectively disrupts Aβ42 aggregation. The circular dichroism (CD) and 2D-NMR HSQC analysis reveal that upon interaction, the peptide induces a conformational change in Aβ42 that is free from aggregation. Further, the cell assay experiments revealed that this peptide is non-toxic to cells and also rescues the cells from the toxicity of Aβ42. Peptides with a shorter length displayed either weak or no inhibitory effect on Aβ42 aggregation and cytotoxicity. These results suggest that the 15-residue cationic amphiphilic peptide reported here may serve as a potential therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- DRGKoppalu R. Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| | - Rahi M. Reja
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| | | | - Manjeet Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune-411008 India
| | - Sachin A. Nalawade
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| | - Gijo George
- NMR Research Centre, Indian Institute of ScienceBangalore-560012India
| | - Grace Kaul
- Division of Microbiology and Division of Medicinal and Process Chemistry, CSIR-Central Drug Research InstituteSitapur Road, Sector 10, Janakipuram ExtensionLucknow-226031Uttar PradeshIndia,AcSIR: Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Abdul Akhir
- Division of Microbiology and Division of Medicinal and Process Chemistry, CSIR-Central Drug Research InstituteSitapur Road, Sector 10, Janakipuram ExtensionLucknow-226031Uttar PradeshIndia
| | - Sidharth Chopra
- Division of Microbiology and Division of Medicinal and Process Chemistry, CSIR-Central Drug Research InstituteSitapur Road, Sector 10, Janakipuram ExtensionLucknow-226031Uttar PradeshIndia,AcSIR: Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | | | - Hosahudya N. Gopi
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| |
Collapse
|
12
|
Hanson MA, Lemaitre B. Repeated truncation of a modular antimicrobial peptide gene for neural context. PLoS Genet 2022; 18:e1010259. [PMID: 35714143 PMCID: PMC9246212 DOI: 10.1371/journal.pgen.1010259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading pathogens. These genes commonly encode multiple products as post-translationally cleaved polypeptides. Recent studies have highlighted roles for AMPs in neurological contexts suggesting functions for these defence molecules beyond infection. During our immune study characterizing the antimicrobial peptide gene Baramicin, we recovered multiple Baramicin paralogs in Drosophila melanogaster and other species, united by their N-terminal IM24 domain. Not all paralogs were immune-induced. Here, through careful dissection of the Baramicin family's evolutionary history, we find that paralogs lacking immune induction result from repeated events of duplication and subsequent truncation of the coding sequence from an immune-inducible ancestor. These truncations leave only the IM24 domain as the prominent gene product. Surprisingly, using mutation and targeted gene silencing we demonstrate that two such genes are adapted for function in neural contexts in D. melanogaster. We also show enrichment in the head for independent Baramicin genes in other species. The Baramicin evolutionary history reveals that the IM24 Baramicin domain is not strictly useful in an immune context. We thus provide a case study for how an AMP-encoding gene might play dual roles in both immune and non-immune processes via its multiple peptide products. As many AMP genes encode polypeptides, a full understanding of how immune effectors interact with the nervous system will require consideration of all their peptide products.
Collapse
Affiliation(s)
- Mark A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Bruno F, Malvaso A, Canterini S, Bruni AC. Antimicrobial Peptides (AMPs) in the Pathogenesis of Alzheimer's Disease: Implications for Diagnosis and Treatment. Antibiotics (Basel) 2022; 11:726. [PMID: 35740133 PMCID: PMC9220182 DOI: 10.3390/antibiotics11060726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. There are two major forms of the disease: sporadic (SAD)-whose causes are not completely understood-and familial (FAD)-with clear autosomal dominant inheritance. The two main hallmarks of AD are extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein (P-tau). An ever-growing body of research supports the infectious hypothesis of sporadic forms of AD. Indeed, it has been documented that some pathogens, such as herpesviruses and certain bacterial species, are commonly present in AD patients, prompting recent clinical research to focus on the characterization of antimicrobial peptides (AMPs) in this pathology. The literature also demonstrates that Aβ can be considered itself as an AMP; thus, representing a type of innate immune defense peptide that protects the host against a variety of pathogens. Beyond Aβ, other proteins with antimicrobial activity, such as lactoferrin, defensins, cystatins, thymosin β4, LL37, histatin 1, and statherin have been shown to be involved in AD. Here, we summarized and discussed these findings and explored the diagnostic and therapeutic potential of AMPs in AD.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy;
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, 00158 Rome, Italy;
| | | |
Collapse
|
14
|
Tempra C, Scollo F, Pannuzzo M, Lolicato F, La Rosa C. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140767. [PMID: 35144022 DOI: 10.1016/j.bbapap.2022.140767] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease; ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Collapse
Affiliation(s)
- Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
15
|
Ibacache-Quiroga C, González-Pizarro K, Charifeh M, Canales C, Díaz-Viciedo R, Schmachtenberg O, Dinamarca MA. Metagenomic and Functional Characterization of Two Chilean Kefir Beverages Reveals a Dairy Beverage Containing Active Enzymes, Short-Chain Fatty Acids, Microbial β-Amyloids, and Bio-Film Inhibitors. Foods 2022; 11:foods11070900. [PMID: 35406987 PMCID: PMC8997647 DOI: 10.3390/foods11070900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Kefir beverage is a probiotic food associated with health benefits, containing probiotic microorganisms and biomolecules produced during fermentation. The microbial composition of these beverages varies among countries, geographical regions, and the substrates, therefore, the characterization of kefir beverages is of great relevance in understanding their potential health-promoting and biotechnological applications. Therefore, this study presents the metagenomic and functional characterization of two Chilean kefir beverages, K02 and K03, through shotgun and amplicon-based metagenomic, microbiological, chemical, and biochemical studies. Results show that both beverages’ microbiota were mainly formed by Bacteria (>98%), while Eukarya represented less than 2%. Regarding Bacteria, the most abundant genera were Acetobacter (93.43% in K02 and 80.99% in K03) and Lactobacillus (5.72% in K02 and 16.75% in K03), while Kazachstania was the most abundant genus from Eukarya (42.55% and 36.08% in K02 and K03). Metagenomic analyses revealed metabolic pathways for lactose and casein assimilation, biosynthesis of health-promoting biomolecules, and clusters for antibiotic resistance, quorum sensing communication, and biofilm formation. Enzymatic activities, microbial β-amyloids, and short-chain fatty acids (acetic acid and propionic acid) were also detected in these beverages. Likewise, both kefir beverages inhibited biofilm formation of the opportunistic pathogen Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Claudia Ibacache-Quiroga
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
- Correspondence: (C.I.-Q.); (M.A.D.); Tel.: +56-322-508-440 (C.I.-Q.); +56-322-508-442 (M.A.D.)
| | - Karoll González-Pizarro
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
| | - Mariam Charifeh
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
| | - Christian Canales
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción 4080871, Chile;
| | - Rodrigo Díaz-Viciedo
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Centro Interdisciplinario de Neurociencias (CINV), Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - M. Alejandro Dinamarca
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
- Correspondence: (C.I.-Q.); (M.A.D.); Tel.: +56-322-508-440 (C.I.-Q.); +56-322-508-442 (M.A.D.)
| |
Collapse
|
16
|
Stuart BAR, Franitza AL, E L. Regulatory Roles of Antimicrobial Peptides in the Nervous System: Implications for Neuronal Aging. Front Cell Neurosci 2022; 16:843790. [PMID: 35321204 PMCID: PMC8936185 DOI: 10.3389/fncel.2022.843790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are classically known as important effector molecules in innate immunity across all multicellular organisms. However, emerging evidence begins to suggest multifunctional properties of AMPs beyond their antimicrobial activity, surprisingly including their roles in regulating neuronal function, such as sleep and memory formation. Aging, which is fundamental to neurodegeneration in both physiological and disease conditions, interestingly affects the expression pattern of many AMPs in an infection-independent manner. While it remains unclear whether these are coincidental events, or a mechanistic relationship exists, previous studies have suggested a close link between AMPs and a few key proteins involved in neurodegenerative diseases. This review discusses recent literature and advances in understanding the crosstalk between AMPs and the nervous system at both molecular and functional levels, with the aim to explore how AMPs may relate to neuronal vulnerability in aging.
Collapse
Affiliation(s)
- Bradey A. R. Stuart
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ariel L. Franitza
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lezi E
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Lezi E
| |
Collapse
|
17
|
Zhao J, Sugihara K. Analysis of PDA Dose Curves for the Extraction of Antimicrobial Peptide Properties. J Phys Chem B 2021; 125:12206-12213. [PMID: 34706534 DOI: 10.1021/acs.jpcb.1c07533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A mechanochromic polymer, polydiacetylene, changes color upon ligand binding, being a popular material in biosensing. However, whether it can also detect ligand functions in addition to binding is left understudied. In this work, we report that the polydiacetylene can be used to determine the net charges and the mode of actions (carpet model, toroidal pore model, etc.) of antimicrobial peptides and detergents via EC50 and Hill coefficients from the colorimetric response-dose curves. This opens a potential for high-throughput peptide screening by functions, which is difficult with the conventional methods.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
18
|
Dow CT. Warm, Sweetened Milk at the Twilight of Immunity - Alzheimer's Disease - Inflammaging, Insulin Resistance, M. paratuberculosis and Immunosenescence. Front Immunol 2021; 12:714179. [PMID: 34421917 PMCID: PMC8375433 DOI: 10.3389/fimmu.2021.714179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 01/22/2023] Open
Abstract
This article prosecutes a case against the zoonotic pathogen Mycobacterium avium ss. paratuberculosis (MAP) as a precipitant of Alzheimer’s disease (AD). Like the other major neurodegenerative diseases AD is, at its core, a proteinopathy. Aggregated extracellular amyloid protein plaques and intracellular tau protein tangles are the recognized protein pathologies of AD. Autophagy is the cellular housekeeping process that manages protein quality control and recycling, cellular metabolism, and pathogen elimination. Impaired autophagy and cerebral insulin resistance are invariant features of AD. With a backdrop of age-related low-grade inflammation (inflammaging) and heightened immune risk (immunosenescence), infection with MAP subverts glucose metabolism and further exhausts an already exhausted autophagic capacity. Increasingly, a variety of agents have been found to favorably impact AD; they are agents that promote autophagy and reduce insulin resistance. The potpourri of these therapeutic agents: mTOR inhibitors, SIRT1 activators and vaccines are seemingly random until one recognizes that all these agents also suppress intracellular mycobacterial infection. The zoonotic mycobacterial MAP causes a common fatal enteritis in ruminant animals. Humans are exposed to MAP from contaminated food products and from the environment. The enteritis in animals is called paratuberculosis or Johne’s disease; in humans, it is the putative cause of Crohn’s disease. Beyond Crohn’s, MAP is associated with an increasing number of inflammatory and autoimmune diseases: sarcoidosis, Blau syndrome, autoimmune diabetes, autoimmune thyroiditis, multiple sclerosis, and rheumatoid arthritis. Moreover, MAP has been associated with Parkinson’s disease. India is one county that has extensively studied the human bio-load of MAP; 30% of more than 28,000 tested individuals were found to harbor, or to have harbored, MAP. This article asserts an unfolding realization that MAP infection of humans 1) is widespread in its presence, 2) is wide-ranging in its zoonosis and 3) provides a plausible link connecting MAP to AD.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Król S, Österlund N, Vosough F, Jarvet J, Wärmländer S, Barth A, Ilag LL, Magzoub M, Gräslund A, Mörman C. The amyloid-inhibiting NCAM-PrP peptide targets Aβ peptide aggregation in membrane-mimetic environments. iScience 2021; 24:102852. [PMID: 34381976 PMCID: PMC8340127 DOI: 10.1016/j.isci.2021.102852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 01/16/2023] Open
Abstract
Substantial research efforts have gone into elucidating the role of protein misfolding and self-assembly in the onset and progression of Alzheimer's disease (AD). Aggregation of the Amyloid-β (Aβ) peptide into insoluble fibrils is closely associated with AD. Here, we use biophysical techniques to study a peptide-based approach to target Aβ amyloid aggregation. A peptide construct, NCAM-PrP, consists of a largely hydrophobic signal sequence linked to a positively charged hexapeptide. The NCAM-PrP peptide inhibits Aβ amyloid formation by forming aggregates which are unavailable for further amyloid aggregation. In a membrane-mimetic environment, Aβ and NCAM-PrP form specific heterooligomeric complexes, which are of lower aggregation states compared to Aβ homooligomers. The Aβ:NCAM-PrP interaction appears to take place on different aggregation states depending on the absence or presence of a membrane-mimicking environment. These insights can be useful for the development of potential future therapeutic strategies targeting Aβ at several aggregation states.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Sebastian Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Leopold L. Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 106 91, Sweden
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Box 129188, Abu Dhabi, United Arab Emirates
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
20
|
α-Helical peptidic scaffolds to target α-synuclein toxic species with nanomolar affinity. Nat Commun 2021; 12:3752. [PMID: 34145261 PMCID: PMC8213730 DOI: 10.1038/s41467-021-24039-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein aggregation is a key driver of neurodegeneration in Parkinson's disease and related syndromes. Accordingly, obtaining a molecule that targets α-synuclein toxic assemblies with high affinity is a long-pursued objective. Here, we exploit the biophysical properties of toxic oligomers and amyloid fibrils to identify a family of α-helical peptides that bind to these α-synuclein species with low nanomolar affinity, without interfering with the monomeric functional protein. This activity is translated into a high anti-aggregation potency and the ability to abrogate oligomer-induced cell damage. Using a structure-guided search we identify a human peptide expressed in the brain and the gastrointestinal tract with analogous binding, anti-aggregation, and detoxifying properties. The chemical entities we describe here may represent a therapeutic avenue for the synucleinopathies and are promising tools to assist diagnosis by discriminating between native and toxic α-synuclein species.
Collapse
|
21
|
Venko K, Novič M, Stoka V, Žerovnik E. Prediction of Transmembrane Regions, Cholesterol, and Ganglioside Binding Sites in Amyloid-Forming Proteins Indicate Potential for Amyloid Pore Formation. Front Mol Neurosci 2021; 14:619496. [PMID: 33642992 PMCID: PMC7902868 DOI: 10.3389/fnmol.2021.619496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Besides amyloid fibrils, amyloid pores (APs) represent another mechanism of amyloid induced toxicity. Since hypothesis put forward by Arispe and collegues in 1993 that amyloid-beta makes ion-conducting channels and that Alzheimer's disease may be due to the toxic effect of these channels, many studies have confirmed that APs are formed by prefibrillar oligomers of amyloidogenic proteins and are a common source of cytotoxicity. The mechanism of pore formation is still not well-understood and the structure and imaging of APs in living cells remains an open issue. To get closer to understand AP formation we used predictive methods to assess the propensity of a set of 30 amyloid-forming proteins (AFPs) to form transmembrane channels. A range of amino-acid sequence tools were applied to predict AP domains of AFPs, and provided context on future experiments that are needed in order to contribute toward a deeper understanding of amyloid toxicity. In a set of 30 AFPs we predicted their amyloidogenic propensity, presence of transmembrane (TM) regions, and cholesterol (CBM) and ganglioside binding motifs (GBM), to which the oligomers likely bind. Noteworthy, all pathological AFPs share the presence of TM, CBM, and GBM regions, whereas the functional amyloids seem to show just one of these regions. For comparative purposes, we also analyzed a few examples of amyloid proteins that behave as biologically non-relevant AFPs. Based on the known experimental data on the β-amyloid and α-synuclein pore formation, we suggest that many AFPs have the potential for pore formation. Oligomerization and α-TM helix to β-TM strands transition on lipid rafts seem to be the common key events.
Collapse
Affiliation(s)
- Katja Venko
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novič
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
22
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
23
|
Krishtal J, Metsla K, Bragina O, Tõugu V, Palumaa P. Toxicity of Amyloid-β Peptides Varies Depending on Differentiation Route of SH-SY5Y Cells. J Alzheimers Dis 2020; 71:879-887. [PMID: 31450506 DOI: 10.3233/jad-190705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a currently incurable neurodegenerative disorder being the major form of dementia worldwide. AD pathology is initiated by cerebral aggregation of amyloid-β (Aβ) peptides in the form of amyloid plaques; however, the mechanism how Aβ peptide aggregates participate in the disease progression and neurodegeneration is still under debate. Human neuroblastoma cell line SH-SY5Y is a convenient cellular model, which is widely used in biochemical and toxicological studies of neurodegenerative diseases. This model can be further improved by differentiation of the cells toward more neuron-like culture using different protocols. In the current study, dbcAMP, retinoic acid with TPA, or BDNF were used for differentiation of SH-SY5Y cells, and the resulting cultures were tested for the toxicity toward the Aβ42 peptide. The toxicity of Aβ42 peptide depended on the type of differentiated cells: RA and TPA- differentiated cells were most resistant, whereas dbcAMP and RA/BDNF- differentiated cells were more sensitive to Aβ toxicity as compared with non-differentiated cells. The differentiated cultures provide more appropriate cellular models of human origin that can be used for studies of the mechanism of Aβ pathogenesis and for a screening of compounds antagonistic to the toxicity of Aβ peptides.
Collapse
Affiliation(s)
- Jekaterina Krishtal
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristel Metsla
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olga Bragina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
24
|
Drab E, Sugihara K. Cooperative Function of LL-37 and HNP1 Protects Mammalian Cell Membranes from Lysis. Biophys J 2020; 119:2440-2450. [PMID: 33157121 DOI: 10.1016/j.bpj.2020.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023] Open
Abstract
LL-37, cleaved from human cathelicidin, and human neutrophil peptide-1 (HNP1) from the defensin family are antimicrobial peptides that are occasionally co-released from neutrophils, which synergistically kill bacteria. We report that this couple presents another type of cooperativity against host eukaryotic cells, in which they antagonistically minimize cytotoxicity by protecting membranes from lysis. Our results describe the potential of the LL-37/HNP1 cooperativity that switches from membrane-destructive to membrane-protective functions, depending on whether the target is an enemy or a host.
Collapse
Affiliation(s)
- Ewa Drab
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
25
|
Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells 2020; 9:cells9112350. [PMID: 33114371 PMCID: PMC7693759 DOI: 10.3390/cells9112350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is involved in the progression or secondary injury of multiple brain conditions, including stroke and neurodegenerative diseases. Alarmins, also known as damage-associated molecular patterns, are released in the presence of neuroinflammation and in the acute phase of ischemia. Defensins, cathelicidin, high-mobility group box protein 1, S100 proteins, heat shock proteins, nucleic acids, histones, nucleosomes, and monosodium urate microcrystals are thought to be alarmins. They are released from damaged or dying cells and activate the innate immune system by interacting with pattern recognition receptors. Being principal sterile inflammation triggering agents, alarmins are considered biomarkers and therapeutic targets. They are recognized by host cells and prime the innate immune system toward cell death and distress. In stroke, alarmins act as mediators initiating the inflammatory response after the release from the cellular components of the infarct core and penumbra. Increased c-Jun N-terminal kinase (JNK) phosphorylation may be involved in the mechanism of stress-induced release of alarmins. Putative crosstalk between the alarmin-associated pathways and JNK signaling seems to be inherently interwoven. This review outlines the role of alarmins/JNK-signaling in cerebral neurovascular inflammation and summarizes the complex response of cells to alarmins. Emerging anti-JNK and anti-alarmin drug treatment strategies are discussed.
Collapse
|
26
|
Armiento V, Hille K, Naltsas D, Lin JS, Barron AE, Kapurniotu A. Das humane Wirtsabwehrpeptid Cathelicidin LL‐37 ist ein nanomolarer Inhibitor der amyloiden Selbstassoziation von Inselamyloid‐Polypeptid (IAPP). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Valentina Armiento
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Kathleen Hille
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Denise Naltsas
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Jennifer S. Lin
- Department of Bioengineering Stanford University 443 Via Ortega, Shriram Center for Bioengineering Stanford CA 94305 USA
| | - Annelise E. Barron
- Department of Bioengineering Stanford University 443 Via Ortega, Shriram Center for Bioengineering Stanford CA 94305 USA
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| |
Collapse
|
27
|
Armiento V, Hille K, Naltsas D, Lin JS, Barron AE, Kapurniotu A. The Human Host-Defense Peptide Cathelicidin LL-37 is a Nanomolar Inhibitor of Amyloid Self-Assembly of Islet Amyloid Polypeptide (IAPP). Angew Chem Int Ed Engl 2020; 59:12837-12841. [PMID: 31999880 PMCID: PMC7497016 DOI: 10.1002/anie.202000148] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/18/2023]
Abstract
Amyloid self-assembly of islet amyloid polypeptide (IAPP) is linked to pancreatic inflammation, β-cell degeneration, and the pathogenesis of type 2 diabetes (T2D). The multifunctional host-defence peptides (HDPs) cathelicidins play crucial roles in inflammation. Here, we show that the antimicrobial and immunomodulatory polypeptide human cathelicidin LL-37 binds IAPP with nanomolar affinity and effectively suppresses its amyloid self-assembly and related pancreatic β-cell damage in vitro. In addition, we identify key LL-37 segments that mediate its interaction with IAPP. Our results suggest a possible protective role for LL-37 in T2D pathogenesis and offer a molecular basis for the design of LL-37-derived peptides that combine antimicrobial, immunomodulatory, and T2D-related anti-amyloid functions as promising candidates for multifunctional drugs.
Collapse
Affiliation(s)
- Valentina Armiento
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Kathleen Hille
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Denise Naltsas
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Jennifer S. Lin
- Department of BioengineeringStanford University443 Via Ortega, Shriram Center for BioengineeringStanfordCA94305USA
| | - Annelise E. Barron
- Department of BioengineeringStanford University443 Via Ortega, Shriram Center for BioengineeringStanfordCA94305USA
| | - Aphrodite Kapurniotu
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| |
Collapse
|
28
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Simonson AW, Aronson MR, Medina SH. Supramolecular Peptide Assemblies as Antimicrobial Scaffolds. Molecules 2020; 25:E2751. [PMID: 32545885 PMCID: PMC7355828 DOI: 10.3390/molecules25122751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial discovery in the age of antibiotic resistance has demanded the prioritization of non-conventional therapies that act on new targets or employ novel mechanisms. Among these, supramolecular antimicrobial peptide assemblies have emerged as attractive therapeutic platforms, operating as both the bactericidal agent and delivery vector for combinatorial antibiotics. Leveraging their programmable inter- and intra-molecular interactions, peptides can be engineered to form higher ordered monolithic or co-assembled structures, including nano-fibers, -nets, and -tubes, where their unique bifunctionalities often emerge from the supramolecular state. Further advancements have included the formation of macroscopic hydrogels that act as bioresponsive, bactericidal materials. This systematic review covers recent advances in the development of supramolecular antimicrobial peptide technologies and discusses their potential impact on future drug discovery efforts.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Matthew R. Aronson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Scott H. Medina
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-4400, USA
| |
Collapse
|
30
|
Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBK Ca channels by a membrane-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183337. [PMID: 32380169 DOI: 10.1016/j.bbamem.2020.183337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
Abstract
A causative agent of Alzheimer's disease (AD) is a short amphipathic peptide called amyloid beta (Aβ). Aβ monomers undergo structural changes leading to their oligomerization or fibrillization. The monomers as well as all aggregated forms of Aβ, i.e., oligomers, and fibrils, can bind to biological membranes, thereby modulating membrane mechanical properties. It is also known that some isoforms of the large-conductance calcium-activated potassium (BKCa) channel, including the mitochondrial BKCa (mitoBKCa) channel, respond to mechanical changes in the membrane. Here, using the patch-clamp technique, we investigated the impact of full-length Aβ (Aβ1-42) and its fragment, Aβ25-35, on the activity of mitoBKCa channels. We found that all forms of Aβ inhibited the activity of the mitoBKCa channel in a concentration-dependent manner. Since monomers, oligomers, and fibrils of Aβ exhibit different molecular characteristics and structures, we hypothesized that the inhibition was not due to direct peptide-protein interactions but rather to membrane-binding of the Aβ peptides. Our findings supported this hypothesis by showing that Aβ peptides block mitoBKCa channels irrespective of the side of the membrane to which they are applied. In addition, we found that the enantiomeric peptide, D-Aβ1-42, demonstrated similar inhibitory activity towards mitoBKCa channels. As a result, we proposed a general model in which all Aβ forms i.e., monomers, oligomers, and amyloid fibrils, contribute to the progression of AD by exerting a modulatory effect on mechanosensitive membrane components.
Collapse
Affiliation(s)
- Yevheniia Kravenska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland; Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine.
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Krzysztof Nieznanski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Elena Lukyanetz
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| |
Collapse
|
31
|
Boparai JK, Sharma PK. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept Lett 2020; 27:4-16. [PMID: 31438824 PMCID: PMC6978648 DOI: 10.2174/0929866526666190822165812] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides in recent years have gained increased interest among scientists, health professionals and the pharmaceutical companies owing to their therapeutic potential. These are low molecular weight proteins with broad range antimicrobial and immuno modulatory activities against infectious bacteria (Gram positive and Gram negative), viruses and fungi. Inability of micro-organisms to develop resistance against most of the antimicrobial peptide has made them as an efficient product which can greatly impact the new era of antimicrobials. In addition to this these peptides also demonstrates increased efficacy, high specificity, decreased drug interaction, low toxicity, biological diversity and direct attacking properties. Pharmaceutical industries are therefore conducting appropriate clinical trials to develop these peptides as potential therapeutic drugs. More than 60 peptide drugs have already reached the market and several hundreds of novel therapeutic peptides are in preclinical and clinical development. Rational designing can be used further to modify the chemical and physical properties of existing peptides. This mini review will discuss the sources, mechanism and recent therapeutic applications of antimicrobial peptides in treatment of infectious diseases.
Collapse
Affiliation(s)
- Jaspreet Kaur Boparai
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Pushpender Kumar Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
32
|
Hanson MA, Lemaitre B, Unckless RL. Dynamic Evolution of Antimicrobial Peptides Underscores Trade-Offs Between Immunity and Ecological Fitness. Front Immunol 2019; 10:2620. [PMID: 31781114 PMCID: PMC6857651 DOI: 10.3389/fimmu.2019.02620] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023] Open
Abstract
There is a developing interest in how immune genes may function in other physiological roles, and how traditionally non-immune peptides may, in fact, be active in immune contexts. In the absence of infection, the induction of the immune response is costly, and there are well-characterized trade-offs between immune defense and fitness. The agents behind these fitness costs are less understood. Here we implicate antimicrobial peptides (AMPs) as particularly costly effectors of immunity using an evolutionary framework. We describe the independent loss of AMPs in multiple lineages of Diptera (true flies), tying these observations back to life history. We then focus on the intriguing case of the glycine-rich AMP, Diptericin, and find several instances of loss, pseudogenization, and segregating null alleles. We suggest that Diptericin may be a particularly toxic component of the Dipteran immune response lost in flies either with reduced pathogen pressure or other environmental factors. As Diptericins have recently been described to have neurological roles, these findings parallel a developing interest in AMPs as potentially harmful neuropeptides, and AMPs in other roles beyond immunity.
Collapse
Affiliation(s)
- Mark A Hanson
- School of Life Science, Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno Lemaitre
- School of Life Science, Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
33
|
Abstract
Alzheimer's amyloid beta can perform a wide variety of actions that are highly concentration dependent. This viewpoint aims to provide a framework for basic considerations on what might be considered brain-relevant concentrations of the peptide. Some implications for the therapeutic implementation of the recently emerged oligomer-to-fibril strategy are discussed.
Collapse
Affiliation(s)
- Jevgenij A. Raskatov
- Department of Chemistry and Biochemistry, Physical Science Building 356, 1156 High Street, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
34
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
35
|
Yu L, Wu AG, Wong VKW, Qu LQ, Zhang N, Qin DL, Zeng W, Tang B, Wang HM, Wang Q, Law BYK. The New Application of UHPLC-DAD-TOF/MS in Identification of Inhibitors on β-Amyloid Fibrillation From Scutellaria baicalensis. Front Pharmacol 2019; 10:194. [PMID: 30936829 PMCID: PMC6431657 DOI: 10.3389/fphar.2019.00194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Literary evidence depicts that aggregated β-amyloid (Aβ) leads to the pathogenesis of Alzheimer's disease (AD). Although many traditional Chinese medicines (TCMs) are effective in treating neurodegenerative diseases, there is no effective way for identifying active compounds from their complicated chemical compositions. Instead of using a traditional herbal separation method with low efficiency, we herein apply UHPLC-DAD-TOF/MS for the accurate identification of the active compounds that inhibit the fibrillation of Aβ (1-42), via an evaluation of the peak area of individual chemical components in chromatogram, after incubation with an Aβ peptide. Using the neuroprotective herbal plant Scutellaria baicalensis (SB) as a study model, the inhibitory effect on Aβ by its individual compounds, were validated using the thioflavin-T (ThT) fluorescence assay, biolayer interferometry analysis, dot immunoblotting and native gel electrophoresis after UHPLC-DAD-TOF/MS analysis. The viability of cells after Aβ (1-42) incubation was further evaluated using both the tetrazolium dye (MTT) assay and flow cytometry analysis. Thirteen major chemical components in SB were identified by UHPLC-DAD-TOF/MS after incubation with Aβ (1-42). The peak areas of two components from SB, baicalein and baicalin, were significantly reduced after incubation with Aβ (1-42), compared to compounds alone, without incubation with Aβ (1-42). Consistently, both compounds inhibited the formation of Aβ (1-42) fibrils and increased the viability of cells after Aβ (1-42) incubation. Based on the hypothesis that active chemical components have to possess binding affinity to Aβ (1-42) to inhibit its fibrillation, a new application using UHPLC-DAD-TOF/MS for accurate identification of inhibitors from herbal plants on Aβ (1-42) fibrillation was developed.
Collapse
Affiliation(s)
- Lu Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.,Laboratory of Medical Chemistry, Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.,Sino-Portugal Traditional Chinese Medicine International Cooperation Center, Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Drugability Evaluation, Southwest Medical University, Luzhou, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Li-Qun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Ni Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Da-Lian Qin
- Sichuan Key Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Drugability Evaluation, Southwest Medical University, Luzhou, China
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Bin Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hui-Miao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qiong Wang
- Sino-Portugal Traditional Chinese Medicine International Cooperation Center, Southwest Medical University, Luzhou, China.,Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
36
|
Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer's Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet 2018; 9:362. [PMID: 30250480 PMCID: PMC6139345 DOI: 10.3389/fgene.2018.00362] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
This article reviews research results and ideas presented at a special symposium at the International Association of Gerontology and Geriatrics (IAGG) Congress held in July 2017 in San Francisco. Five researchers presented their results related to infection and Alzheimer's disease (AD). Prof. Itzhaki presented her work on the role of viruses, specifically HSV-1, in the pathogenesis of AD. She maintains that although it is true that most people harbor HSV-1 infection, either latent or active, nonetheless aspects of herpes infection can play a role in the pathogenesis of AD, based on extensive experimental evidence from AD brains and infected cell cultures. Dr. Miklossy presented research on the high prevalence of bacterial infections that correlate with AD, specifically spirochete infections, which have been known for a century to be a significant cause of dementia (e.g., in syphilis). She demonstrated how spirochetes drive senile plaque formation, which are in fact biofilms. Prof. Balin then described the involvement of brain tissue infection by the Chlamydia pneumoniae bacterium, with its potential to use the innate immune system in its spread, and its initiation of tissue damage characteristic of AD. Prof. Fülöp described the role of AD-associated amyloid beta (Aβ) peptide as an antibacterial, antifungal and antiviral innate immune effector produced in reaction to microorganisms that attack the brain. Prof. Barron put forward the novel hypothesis that, according to her experiments, there is strong sequence-specific binding between the AD-associated Aβ and another ubiquitous and important human innate immune effector, the cathelicidin peptide LL-37. Given this binding, LL-37 expression in the brain will decrease Aβ deposition via formation of non-toxic, soluble Aβ/LL-37 complexes. Therefore, a chronic underexpression of LL-37 could be the factor that simultaneously permits chronic infections in brain tissue and allows for pathological accumulation of Aβ. This first-of-its-kind symposium opened the way for a paradigm shift in studying the pathogenesis of AD, from the "amyloid cascade hypothesis," which so far has been quite unsuccessful, to a new "infection hypothesis," or perhaps more broadly, "innate immune system dysregulation hypothesis," which may well permit and lead to the discovery of new treatments for AD patients.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth F. Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Brian J. Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
37
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|