1
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
2
|
Santiago J, Pocevičiūtė D, Wennström M. Perivascular phosphorylated TDP-43 inclusions are associated with Alzheimer's disease pathology and loss of CD146 and Aquaporin-4. Brain Pathol 2024:e13304. [PMID: 39251230 DOI: 10.1111/bpa.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
The majority of patients with Alzheimer's disease (AD) exhibit aggregates of Trans-active response DNA binding protein 43 (TDP-43) in their hippocampus, which is associated with a more aggressive disease progression. The TDP-43 inclusions are commonly found in neurons, but also in astrocytes. The impact of the inclusions in astrocytes is less known. In the current study, we investigate the presence of phosphorylated TDP-43 (pTDP-43) inclusions in astrocytic endfeet and their potential association with blood-brain barrier (BBB) damage, glymphatic system dysfunction, and AD pathology. By staining postmortem hippocampal sections from AD patients and non-demented controls against TDP-43 and pTDP-43 together with the astrocytic markers glial fibrillary acidic protein (GFAP), astrocytic endfeet marker Aquaporin-4 (AQP4), and markers for BBB alterations (CD146) and leakiness (Immunoglobulin A), we demonstrate a close association between perivascular pTDP-43 or TDP-43 inclusions and GFAP or AQP4. These perivascular inclusions were more prominent in AD and correlated with the disease severity and loss of CD146 and AQP4. The findings indicate a relationship between pTDP-43 accumulation in astrocytic endfeet and BBB and glymphatic system dysfunction, which may contribute to the downstream pathological events seen in AD patients and the aggressive disease progression.
Collapse
Affiliation(s)
- Jessica Santiago
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
3
|
Cai D, Pan M, Liu C, He W, Ge X, Lin J, Li R, Liu M, Xia J. Deep-learning-based segmentation of perivascular spaces on T2-Weighted 3T magnetic resonance images. Front Aging Neurosci 2024; 16:1457405. [PMID: 39267720 PMCID: PMC11390432 DOI: 10.3389/fnagi.2024.1457405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose Studying perivascular spaces (PVSs) is important for understanding the pathogenesis and pathological changes of neurological disorders. Although some methods for automated segmentation of PVSs have been proposed, most of them were based on 7T MR images that were majorly acquired in healthy young people. Notably, 7T MR imaging is rarely used in clinical practice. Herein, we propose a deep-learning-based method that enables automatic segmentation of PVSs on T2-weighted 3T MR images. Method Twenty patients with Parkinson's disease (age range, 42-79 years) participated in this study. Specifically, we introduced a multi-scale supervised dense nested attention network designed to segment the PVSs. This model fosters progressive interactions between high-level and low-level features. Simultaneously, it utilizes multi-scale foreground content for deep supervision, aiding in refining segmentation results at various levels. Result Our method achieved the best segmentation results compared with the four other deep-learning-based methods, achieving a dice similarity coefficient (DSC) of 0.702. The results of the visual count of the PVSs in our model correlated extremely well with the expert scoring results on the T2-weighted images (basal ganglia: rs = 0.845, P < 0.001; rs = 0.868, P < 0.001; centrum semiovale: rs = 0.845, P < 0.001; rs = 0.823, P < 0.001 for raters 1 and 2, respectively). Experimental results show that the proposed method performs well in the segmentation of PVSs. Conclusion The proposed method can accurately segment PVSs; it will facilitate practical clinical applications and is expected to replace the method of visual counting directly on T1-weighted images or T2-weighted images.
Collapse
Affiliation(s)
- Die Cai
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Minmin Pan
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Chenyuan Liu
- Five-Year Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenjie He
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Jiaying Lin
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rui Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Mengting Liu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jun Xia
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Sacchi L, D'Agata F, Campisi C, Arcaro M, Carandini T, Örzsik B, Dal Maschio VP, Fenoglio C, Pietroboni AM, Ghezzi L, Serpente M, Pintus M, Conte G, Triulzi F, Lopiano L, Galimberti D, Cercignani M, Bozzali M, Arighi A. A "glympse" into neurodegeneration: Diffusion MRI and cerebrospinal fluid aquaporin-4 for the assessment of glymphatic system in Alzheimer's disease and other dementias. Hum Brain Mapp 2024; 45:e26805. [PMID: 39185685 PMCID: PMC11345637 DOI: 10.1002/hbm.26805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
The glymphatic system (GS) is a whole-brain perivascular network, consisting of three compartments: the periarterial and perivenous spaces and the interposed brain parenchyma. GS dysfunction has been implicated in neurodegenerative diseases, particularly Alzheimer's disease (AD). So far, comprehensive research on GS in humans has been limited by the absence of easily accessible biomarkers. Recently, promising non-invasive methods based on magnetic resonance imaging (MRI) along with aquaporin-4 (AQP4) quantification in the cerebrospinal fluid (CSF) were introduced for an indirect assessment of each of the three GS compartments. We recruited 111 consecutive subjects presenting with symptoms suggestive of degenerative cognitive decline, who underwent 3 T MRI scanning including multi-shell diffusion-weighted images. Forty nine out of 111 also underwent CSF examination with quantification of CSF-AQP4. CSF-AQP4 levels and MRI measures-including perivascular spaces (PVS) counts and volume fraction (PVSVF), white matter free water fraction (FW-WM) and mean kurtosis (MK-WM), diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) (mean, left and right)-were compared among patients with AD (n = 47) and other neurodegenerative diseases (nAD = 24), patients with stable mild cognitive impairment (MCI = 17) and cognitively unimpaired (CU = 23) elderly people. Two runs of analysis were conducted, the first including all patients; the second after dividing both nAD and AD patients into two subgroups based on gray matter atrophy as a proxy of disease stage. Age, sex, years of education, and scanning time were included as confounding factors in the analyses. Considering the whole cohort, patients with AD showed significantly higher levels of CSF-AQP4 (exp(b) = 2.05, p = .005) and FW-WM FW-WM (exp(b) = 1.06, p = .043) than CU. AQP4 levels were also significantly higher in nAD in respect to CU (exp(b) = 2.98, p < .001). CSF-AQP4 and FW-WM were significantly higher in both less atrophic AD (exp(b) = 2.20, p = .006; exp(b) = 1.08, p = .019, respectively) and nAD patients (exp(b) = 2.66, p = .002; exp(b) = 1.10, p = .019, respectively) compared to CU subjects. Higher total (exp(b) = 1.59, p = .013) and centrum semiovale PVS counts (exp(b) = 1.89, p = .016), total (exp(b) = 1.50, p = .036) and WM PVSVF (exp(b) = 1.89, p = .005) together with lower MK-WM (exp(b) = 0.94, p = .006), mean and left ALPS (exp(b) = 0.91, p = .043; exp(b) = 0.88, p = .010 respectively) were observed in more atrophic AD patients in respect to CU. In addition, more atrophic nAD patients exhibited higher levels of AQP4 (exp(b) = 3.39, p = .002) than CU. Our results indicate significant changes in putative MRI biomarkers of GS and CSF-AQP4 levels in AD and in other neurodegenerative dementias, suggesting a close interaction between glymphatic dysfunction and neurodegeneration, particularly in the case of AD. However, the usefulness of some of these biomarkers as indirect and standalone indices of glymphatic activity may be hindered by their dependence on disease stage and structural brain damage.
Collapse
Affiliation(s)
- Luca Sacchi
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Federico D'Agata
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
| | - Corrado Campisi
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Balázs Örzsik
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Vera Pacoova Dal Maschio
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | | | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Manuela Pintus
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Giorgio Conte
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Fabio Triulzi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Leonardo Lopiano
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | | | - Marco Bozzali
- Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
- Neurology 2 Unit, A.O.U. Città della Salute e Della Scienza di TorinoTurinItaly
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
5
|
Richmond SB, Seidler RD, Iliff JJ, Schwartz DL, Luther M, Silbert LC, Wood SJ, Bloomberg JJ, Mulder E, Lee JK, De Luca A, Piantino J. Dynamic changes in perivascular space morphology predict signs of spaceflight-associated neuro-ocular syndrome in bed rest. NPJ Microgravity 2024; 10:24. [PMID: 38429289 PMCID: PMC10907584 DOI: 10.1038/s41526-024-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
During long-duration spaceflight, astronauts experience headward fluid shifts and expansion of the cerebral perivascular spaces (PVS). A major limitation to our understanding of the changes in brain structure and physiology induced by spaceflight stems from the logistical difficulties of studying astronauts. The current study aimed to determine whether PVS changes also occur on Earth with the spaceflight analog head-down tilt bed rest (HDBR). We examined how the number and morphology of magnetic resonance imaging-visible PVS (MV-PVS) are affected by HDBR with and without elevated carbon dioxide (CO2). These environments mimic the headward fluid shifts, body unloading, and elevated CO2 observed aboard the International Space Station. Additionally, we sought to understand how changes in MV-PVS are associated with signs of Spaceflight Associated Neuro-ocular Syndrome (SANS), ocular structural alterations that can occur with spaceflight. Participants were separated into two bed rest campaigns: HDBR (60 days) and HDBR + CO2 (30 days with elevated ambient CO2). Both groups completed multiple magnetic resonance image acquisitions before, during, and post-bed rest. We found that at the group level, neither spaceflight analog affected MV-PVS quantity or morphology. However, when taking into account SANS status, persons exhibiting signs of SANS showed little or no MV-PVS changes, whereas their No-SANS counterparts showed MV-PVS morphological changes during the HDBR + CO2 campaign. These findings highlight spaceflight analogs as models for inducing changes in MV-PVS and implicate MV-PVS dynamic compliance as a mechanism underlying SANS. These findings may lead to countermeasures to mitigate health risks associated with human spaceflight.
Collapse
Affiliation(s)
- Sutton B Richmond
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Daniel L Schwartz
- Layton-NIA Oregon Aging and Alzheimer's Disease Research Center, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Madison Luther
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA
| | - Lisa C Silbert
- Layton-NIA Oregon Aging and Alzheimer's Disease Research Center, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Veteran's Affairs Portland Health Care System, Neurology, Portland, OR, USA
| | | | | | | | - Jessica K Lee
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
- German Aerospace Center (DLR), Cologne, Germany
| | - Alberto De Luca
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Gallina P, Lolli F, Cianti D, Perri F, Porfirio B. Failure of the glymphatic system by increases of jugular resistance as possible link between asthma and dementia. Brain Commun 2024; 6:fcae039. [PMID: 38410621 PMCID: PMC10896477 DOI: 10.1093/braincomms/fcae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Affiliation(s)
- Pasquale Gallina
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy
- Careggi University Hospital, 50134 Florence, Italy
| | - Francesco Lolli
- Careggi University Hospital, 50134 Florence, Italy
- Department of Clinical and Experimental Biomedical Sciences ‘Mario Serio’, University of Florence, 50134 Florence, Italy
| | - Duccio Cianti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy
| | | | - Berardino Porfirio
- Department of Clinical and Experimental Biomedical Sciences ‘Mario Serio’, University of Florence, 50134 Florence, Italy
| |
Collapse
|
7
|
Switzer AR, Graff-Radford J, Gunter JL, Elder BD, Jones DT, Huston J, Jack CR, Cogswell PM. Patients with normal pressure hydrocephalus have fewer enlarged perivascular spaces in the centrum semiovale compared to cognitively unimpaired individuals. Clin Neurol Neurosurg 2024; 237:108123. [PMID: 38262154 DOI: 10.1016/j.clineuro.2024.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Enlarged perivascular spaces (ePVS) may be an indicator of glymphatic dysfunction. Limited studies have evaluated the role of ePVS in idiopathic normal pressure hydrocephalus (iNPH). We aimed to characterize the distribution and number of ePVS in iNPH compared to controls. METHODS Thirty-eight patients with iNPH and a pre-shunt MRI were identified through clinical practice. Age- and sex-matched controls who had negative MRIs screening for intracranial metastases were identified through a medical record linkage system. The number of ePVS were counted in the basal nuclei (BN) and centrum semiovale (CS) using the Wardlaw method blinded to clinical diagnosis. Imaging features of disproportionately enlarged subarachnoid space hydrocephalus (DESH), callosal angle, Fazekas white matter hyperintensity (WMH) grade, and the presence of microbleeds and lacunes were also evaluated. RESULTS Both iNPH patients and controls had a mean age of 74 ± 7 years and were 34% female with equal distributions of hypertension, dyslipidemia, diabetes, stroke, and history of smoking. There were fewer ePVS in the CS of patients with iNPH compared to controls (12.66 vs. 20.39, p < 0.001) but the same in the BN (8.95 vs. 11.11, p = 0.08). This remained significant in models accounting for vascular risk factors (p = 0.002) and MRI features of DESH and WMH grade (p = 0.03). CONCLUSIONS Fewer centrum semiovale ePVS may be a biomarker for iNPH. This pattern may be caused by mechanical obstruction due to upward displacement of the brain leading to reduced glymphatic clearance.
Collapse
Affiliation(s)
- Aaron R Switzer
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Benjamin D Elder
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | | |
Collapse
|
8
|
Voorter PHM, van Dinther M, Jansen WJ, Postma AA, Staals J, Jansen JFA, van Oostenbrugge RJ, van der Thiel MM, Backes WH. Blood-Brain Barrier Disruption and Perivascular Spaces in Small Vessel Disease and Neurodegenerative Diseases: A Review on MRI Methods and Insights. J Magn Reson Imaging 2024; 59:397-411. [PMID: 37658640 DOI: 10.1002/jmri.28989] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Perivascular spaces (PVS) and blood-brain barrier (BBB) disruption are two key features of cerebral small vessel disease (cSVD) and neurodegenerative diseases that have been linked to cognitive impairment and are involved in the cerebral waste clearance system. Magnetic resonance imaging (MRI) offers the possibility to study these pathophysiological processes noninvasively in vivo. This educational review provides an overview of the MRI techniques used to assess PVS functionality and BBB disruption. MRI-visible PVS can be scored on structural images by either (subjectively) counting or (automatically) delineating the PVS. We highlight emerging (diffusion) techniques to measure proxies of perivascular fluid and its movement, which may provide a more comprehensive understanding of the role of PVS in diseases. For the measurement of BBB disruption, we explain the most commonly used MRI technique, dynamic contrast-enhanced (DCE) MRI, as well as a more recently developed technique based on arterial spin labeling (ASL). DCE MRI and ASL are thought to measure complementary characteristics of the BBB. Furthermore, we describe clinical studies that have utilized these MRI techniques in cSVD and neurodegenerative diseases, particularly Alzheimer's disease (AD). These studies demonstrate the role of PVS and BBB dysfunction in these diseases and provide insight into the large overlap, but also into the differences between cSVD and AD. Overall, MRI techniques may provide valuable insights into the pathophysiological mechanisms underlying these diseases and have the potential to be used as markers for disease progression and treatment response. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Paulien H M Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Maud van Dinther
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Willemijn J Jansen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Julie Staals
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Merel M van der Thiel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
9
|
Lee SY, Chung WS. Astrocytic crosstalk with brain and immune cells in healthy and diseased conditions. Curr Opin Neurobiol 2024; 84:102840. [PMID: 38290370 DOI: 10.1016/j.conb.2024.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Astrocytes interact with various cell types, including neurons, vascular cells, microglia, and peripheral immune cells. These interactions are crucial for regulating normal brain functions as well as modulating neuroinflammation in pathological conditions. Recent transcriptomic and proteomic studies have identified critical molecules involved in astrocytic crosstalk with other cells, shedding light on their roles in maintaining brain homeostasis in both healthy and diseased conditions. Astrocytes perform these various roles through either direct or indirect physical associations with neuronal synapses and vasculature. Furthermore, astrocytes can communicate with other immune cells, such as microglia, T cells, and natural killer cells, through secreted molecules during neuroinflammation. In this review, we discuss the critical molecular basis of this astrocytic crosstalk and the underlying mechanisms of astrocyte communication with other cells. We propose that astrocytes function as a central hub in inter-connecting neurons, vasculatures, and immune cells in healthy and diseased brains.
Collapse
Affiliation(s)
- Se Young Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. https://twitter.com/SYLee_neuro
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
10
|
Hlauschek G, Nicolo J, Sinclair B, Law M, Yasuda CL, Cendes F, Lossius MI, Kwan P, Vivash L. Role of the glymphatic system and perivascular spaces as a potential biomarker for post-stroke epilepsy. Epilepsia Open 2024; 9:60-76. [PMID: 38041607 PMCID: PMC10839409 DOI: 10.1002/epi4.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
Stroke is one of the most common causes of acquired epilepsy, which can also result in disability and increased mortality rates particularly in elderly patients. No preventive treatment for post-stroke epilepsy is currently available. Development of such treatments has been greatly limited by the lack of biomarkers to reliably identify high-risk patients. The glymphatic system, including perivascular spaces (PVS), is the brain's waste clearance system, and enlargement or asymmetry of PVS (ePVS) is hypothesized to play a significant role in the pathogenesis of several neurological conditions. In this article, we discuss potential mechanisms for the role of perivascular spaces in the development of post-stroke epilepsy. Using advanced MR-imaging techniques, it has been shown that there is asymmetry and impairment of glymphatic function in the setting of ischemic stroke. Furthermore, studies have described a dysfunction of PVS in patients with different focal and generalized epilepsy syndromes. It is thought that inflammatory processes involving PVS and the blood-brain barrier, impairment of waste clearance, and sustained hypertension affecting the glymphatic system during a seizure may play a crucial role in epileptogenesis post-stroke. We hypothesize that impairment of the glymphatic system and asymmetry and dynamics of ePVS in the course of a stroke contribute to the development of PSE. Automated ePVS detection in stroke patients might thus assist in the identification of high-risk patients for post-stroke epilepsy trials. PLAIN LANGUAGE SUMMARY: Stroke often leads to epilepsy and is one of the main causes of epilepsy in elderly patients, with no preventative treatment available. The brain's waste removal system, called the glymphatic system which consists of perivascular spaces, may be involved. Enlargement or asymmetry of perivascular spaces could play a role in this and can be visualised with advanced brain imaging after a stroke. Detecting enlarged perivascular spaces in stroke patients could help identify those at risk for post-stroke epilepsy.
Collapse
Affiliation(s)
- Gernot Hlauschek
- Division of Clinical Neuroscience, National Centre for Epilepsy, member of ERN EpicareOslo University HospitalNorway
- The University of OsloOsloNorway
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - John‐Paul Nicolo
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
- Departments of Medicine and NeurologyThe University of Melbourne, Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Benjamin Sinclair
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
| | - Meng Law
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of RadiologyThe AlfredMelbourneVictoriaAustralia
| | | | | | - Morten Ingvar Lossius
- Division of Clinical Neuroscience, National Centre for Epilepsy, member of ERN EpicareOslo University HospitalNorway
- The University of OsloOsloNorway
| | - Patrick Kwan
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
- Departments of Medicine and NeurologyThe University of Melbourne, Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe AlfredMelbourneVictoriaAustralia
- Departments of Medicine and NeurologyThe University of Melbourne, Royal Melbourne HospitalParkvilleVictoriaAustralia
| |
Collapse
|
11
|
Zhang J, Liu S, Wu Y, Tang Z, Wu Y, Qi Y, Dong F, Wang Y. Enlarged Perivascular Space and Index for Diffusivity Along the Perivascular Space as Emerging Neuroimaging Biomarkers of Neurological Diseases. Cell Mol Neurobiol 2023; 44:14. [PMID: 38158515 DOI: 10.1007/s10571-023-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
The existence of lymphatic vessels or similar clearance systems in the central nervous system (CNS) that transport nutrients and remove cellular waste is a neuroscientific question of great significance. As the brain is the most metabolically active organ in the body, there is likely to be a potential correlation between its clearance system and the pathological state of the CNS. Until recently the successive discoveries of the glymphatic system and the meningeal lymphatics solved this puzzle. This article reviews the basic anatomy and physiology of the glymphatic system. Imaging techniques to visualize the function of the glymphatic system mainly including post-contrast imaging techniques, indirect lymphatic assessment by detecting increased perivascular space, and diffusion tensor image analysis along the perivascular space (DTI-ALPS) are discussed. The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders. The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index for of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijian Tang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yasong Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fangyong Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Sosa MJ, Shih AY, Bonney SK. The elusive brain perivascular fibroblast: a potential role in vascular stability and homeostasis. Front Cardiovasc Med 2023; 10:1283434. [PMID: 38075961 PMCID: PMC10704358 DOI: 10.3389/fcvm.2023.1283434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
In the brain, perivascular fibroblasts (PVFs) reside within the perivascular spaces (PVSs) of arterioles and large venules, however their physiological and pathophysiological roles remain largely unknown. PVFs express numerous extracellular matrix proteins that are found in the basement membrane and PVS surrounding large diameter vessels. PVFs are sandwiched between the mural cell layer and astrocytic endfeet, where they are poised to interact with mural cells, perivascular macrophages, and astrocytes. We draw connections between the more well-studied PVF pro-fibrotic response in ischemic injury and the less understood thickening of the vascular wall and enlargement of the PVS described in dementia and neurodegenerative diseases. We postulate that PVFs may be responsible for stability and homeostasis of the brain vasculature, and may also contribute to changes within the PVS during disease.
Collapse
Affiliation(s)
- Maria J. Sosa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| |
Collapse
|
13
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
14
|
Hussain R, Graham U, Elder A, Nedergaard M. Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci 2023; 46:901-911. [PMID: 37777345 DOI: 10.1016/j.tins.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Epidemiological evidence demonstrates a link between air pollution exposure and the onset and progression of cognitive impairment and Alzheimer's disease (AD). However, current understanding of the underlying pathophysiological mechanisms is limited. This opinion article examines the hypothesis that air pollution-induced impairment of glymphatic clearance represents a crucial etiological event in the development of AD. Exposure to airborne particulate matter (PM) leads to systemic inflammation and neuroinflammation, increased metal load, respiratory and cardiovascular dysfunction, and sleep abnormalities. All these factors are known to reduce the efficiency of glymphatic clearance. Rescuing glymphatic function by restricting the impact of causative agents, and improving sleep and cardiovascular system health, may increase the efficiency of waste metabolite clearance and subsequently slow the progression of AD. In sum, we introduce air pollution-mediated glymphatic impairment as an important mechanistic factor to be considered when interpreting the etiology and progression of AD as well as its responsiveness to therapeutic interventions.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.
| | | | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
15
|
Sacchi L, Arcaro M, Carandini T, Pietroboni AM, Fumagalli GG, Fenoglio C, Serpente M, Sorrentino F, Visconte C, Pintus M, Conte G, Contarino VE, Scarpini E, Triulzi F, Galimberti D, Arighi A. Association between enlarged perivascular spaces and cerebrospinal fluid aquaporin-4 and tau levels: report from a memory clinic. Front Aging Neurosci 2023; 15:1191714. [PMID: 37547746 PMCID: PMC10399743 DOI: 10.3389/fnagi.2023.1191714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background Perivascular spaces (PVS) are fluid-filled compartments that dilate in response to many different conditions. A high burden of enlarged PVS (EPVS) in the centrum semiovale (CSO) has been linked to neurodegeneration. Moreover, an increase in cerebrospinal fluid (CSF) levels of aquaporin-4 (AQP4), a water channel expressed on PVS-bounding astrocytes, has been described in patients with neurodegenerative dementia. Our aim was to investigate the relationship between neurodegenerative diseases and two putative glymphatic system biomarkers: AQP4 and EPVS. Methods We included 70 individuals, 54 patients with neurodegenerative diseases and 16 subjects with non-degenerative conditions. EPVS were visually quantified on MRI-scans applying Paradise's scale. All subjects underwent lumbar puncture for the measurement of AQP4 levels in the cerebrospinal fluid (CSF). CSF levels of amyloid-β-1-42, phosphorylated and total tau (tTau) were also measured. Linear regression analyses were adjusted for age, sex, education and disease duration, after excluding outliers. Results Cerebrospinal fluid (CSF)-AQP4 levels were independent predictors of total (β = 0.28, standard error [SE] = 0.08, p = 0.001), basal ganglia (β = 0.20, SE = 0.08, p = 0.009) and centrum semiovale EPVS (β = 0.37, SE = 0.12, p = 0.003). tTau levels predicted CSO-EPVS (β = 0.30, SE = 0.15, p = 0.046). Moreover, increased levels of AQP4 were strongly associated with higher levels of tTau in the CSF (β = 0.35, SE = 0.13, p = 0.008). Conclusion We provide evidence that CSO-EPVS and CSF-AQP4 might be clinically meaningful biomarkers of glymphatic dysfunction and associated neurodegeneration.
Collapse
Affiliation(s)
- Luca Sacchi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Margherita Pietroboni
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Sorrentino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Caterina Visconte
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Manuela Pintus
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giorgio Conte
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
16
|
Munis ÖB. Association of Type 2 Diabetes Mellitus With Perivascular Spaces and Cerebral Amyloid Angiopathy in Alzheimer's Disease: Insights From MRI Imaging. Dement Neurocogn Disord 2023; 22:87-99. [PMID: 37545864 PMCID: PMC10400344 DOI: 10.12779/dnd.2023.22.3.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Purpose According to the amyloid cascade hypothesis, fibrillary amyloid-beta load in the brain causes Alzheimer's disease (AD) with toxic effects. Recently, perivascular spaces (PVSs), fluid-filled cavities around small penetrating arterioles and venules in the brain, and the glymphatic system relationship with type 2 diabetes mellitus (DM2) and AD has been an important research topic from a physiopathological point of view. There are two types of PVSs that are associated with sporadic atherosclerosis and cerebral amyloid angiopathy. In this study, we evaluated the relationship between the number and localization of enlarged PVSs in AD. Methods A total of 254 patients with AD and 125 healthy controls were included in this study All the patients were evaluated with neurological and cognitive examinations and magnetic resonance imaging (MRI). PVSs on MRI were graded by recording their number and location. The study was a retrospective study. Results In our study, the number of white matter convexity-central semiovale localized PVSs was higher in patients than in the control group. In addition, the number of PVSs in this localization score was higher in patients with DM2. Cerebral PVS counts were higher in patients with AD than in the control group. Conclusions These results suggest the important role of cerebral amyloid angiopathy, one of the vascular risk factors, and the glymphatic system in the pathogenesis of AD. In addition, the results of our study suggest that the evaluation of PVSs levels, especially at the (centrum semiovale), using imaging studies in AD is a potential diagnostic option.
Collapse
|
17
|
Zhou L, Li Y, Sweeney EM, Wang XH, Kuceyeski A, Chiang GC, Ivanidze J, Wang Y, Gauthier SA, de Leon MJ, Nguyen TD. Association of brain tissue cerebrospinal fluid fraction with age in healthy cognitively normal adults. Front Aging Neurosci 2023; 15:1162001. [PMID: 37396667 PMCID: PMC10312090 DOI: 10.3389/fnagi.2023.1162001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background and purpose Our objective was to apply multi-compartment T2 relaxometry in cognitively normal individuals aged 20-80 years to study the effect of aging on the parenchymal CSF fraction (CSFF), a potential measure of the subvoxel CSF space. Materials and methods A total of 60 volunteers (age range, 22-80 years) were enrolled. Voxel-wise maps of short-T2 myelin water fraction (MWF), intermediate-T2 intra/extra-cellular water fraction (IEWF), and long-T2 CSFF were obtained using fast acquisition with spiral trajectory and adiabatic T2prep (FAST-T2) sequence and three-pool non-linear least squares fitting. Multiple linear regression analyses were performed to study the association between age and regional MWF, IEWF, and CSFF measurements, adjusting for sex and region of interest (ROI) volume. ROIs include the cerebral white matter (WM), cerebral cortex, and subcortical deep gray matter (GM). In each model, a quadratic term for age was tested using an ANOVA test. A Spearman's correlation between the normalized lateral ventricle volume, a measure of organ-level CSF space, and the regional CSFF, a measure of tissue-level CSF space, was computed. Results Regression analyses showed that there was a statistically significant quadratic relationship with age for CSFF in the cortex (p = 0.018), MWF in the cerebral WM (p = 0.033), deep GM (p = 0.017) and cortex (p = 0.029); and IEWF in the deep GM (p = 0.033). There was a statistically highly significant positive linear relationship between age and regional CSFF in the cerebral WM (p < 0.001) and deep GM (p < 0.001). In addition, there was a statistically significant negative linear association between IEWF and age in the cerebral WM (p = 0.017) and cortex (p < 0.001). In the univariate correlation analysis, the normalized lateral ventricle volume correlated with the regional CSFF measurement in the cerebral WM (ρ = 0.64, p < 0.001), cortex (ρ = 0.62, p < 0.001), and deep GM (ρ = 0.66, p < 0.001). Conclusion Our cross-sectional data demonstrate that brain tissue water in different compartments shows complex age-dependent patterns. Parenchymal CSFF, a measure of subvoxel CSF-like water in the brain tissue, is quadratically associated with age in the cerebral cortex and linearly associated with age in the cerebral deep GM and WM.
Collapse
Affiliation(s)
- Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiuyuan H. Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, United States
| | - Gloria C. Chiang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Susan A. Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
18
|
Sibilia F, Sheikh-Bahaei N, Mack WJ, Choupan J. Perivascular spaces in Alzheimer's disease are associated with inflammatory, stress-related, and hypertension biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543504. [PMID: 37333097 PMCID: PMC10274635 DOI: 10.1101/2023.06.02.543504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Perivascular spaces (PVS) are fluid-filled spaces surrounding the brain vasculature. Literature suggests that PVS may play a significant role in aging and neurological disorders, including Alzheimer's disease (AD). Cortisol, a stress hormone, has been implicated in the development and progression of AD. Hypertension, a common condition in older adults, has been found to be a risk factor for AD. Hypertension may contribute to PVS enlargement, impairing the clearance of waste products from the brain and promoting neuroinflammation. This study aims to understand the potential interactions between PVS, cortisol, hypertension, and inflammation in the context of cognitive impairment. Using MRI scans acquired at 1.5T, PVS were quantified in a cohort of 465 individuals with cognitive impairment. PVS was calculated in the basal ganglia and centrum semiovale using an automated segmentation approach. Levels of cortisol and angiotensin-converting enzyme (ACE) (an indicator of hypertension) were measured from plasma. Inflammatory biomarkers, such as cytokines and matrix metalloproteinases, were analyzed using advanced laboratory techniques. Main effect and interaction analyses were performed to examine the associations between PVS severity, cortisol levels, hypertension, and inflammatory biomarkers. In the centrum semiovale, higher levels of inflammation reduced cortisol associations with PVS volume fraction. For ACE, an inverse association with PVS was seen only when interacting with TNFr2 (a transmembrane receptor of TNF). There was also a significant inverse main effect of TNFr2. In the PVS basal ganglia, a significant positive association was found with TRAIL (a TNF receptor inducing apoptosis). These findings show for the first time the intricate relationships between PVS structure and the levels of stress-related, hypertension, and inflammatory biomarkers. This research could potentially guide future studies regarding the underlying mechanisms of AD pathogenesis and the potential development of novel therapeutic strategies targeting these inflammation factors.
Collapse
Affiliation(s)
- Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NeuroScope Inc. Scarsdale, New York
| |
Collapse
|
19
|
Park CH, Shin NY, Nam Y, Yoon U, Ahn K, Lee SK. Characteristics of perivascular space dilatation in normal aging. Hum Brain Mapp 2023; 44:3232-3240. [PMID: 36930038 PMCID: PMC10171536 DOI: 10.1002/hbm.26277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The increased incidence of dilated perivascular spaces (dPVSs) visible on MRI has been observed with advancing age, but the relevance of PVS dilatation to normal aging across the lifespan has yet to be fully clarified. In the current study, we sought to find out the age dependence of dPVSs by exploring changes in different characteristics of PVS dilatation across a wide range of age. For 1220 healthy subjects aged between 18 and 100 years, PVSs were automatically segmented and characteristics of PVS dilatation were assessed in terms of the burden, location, and morphology of PVSs in the white matter (WM) and basal ganglia (BG). A machine learning model using the random forests method was constructed to estimate the subjects' age by employing the PVS features. The constructed machine learning model was able to estimate the age of the subjects with an error of 9.53 years on average (correlation = 0.875). The importance of the PVS features indicated the primary contribution of the burden of PVSs in the BG and the additional contribution of locational and morphological changes of PVSs, specifically peripheral extension and reduced linearity, in the WM to age estimation. Indeed, adding the PVS location or morphology features to the PVS burden features provided an improvement to the performance of age estimation. The age dependence of dPVSs in terms of such various characteristics of PVS dilatation in healthy subjects could provide a more comprehensive reference for detecting brain disease-related PVS dilatation.
Collapse
Affiliation(s)
- Chang-Hyun Park
- Division of Artificial Intelligence and Software, College of Engineering, Ewha Womans University, Seoul, South Korea
| | - Na-Young Shin
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, Seoul, South Korea
| | - Yoonho Nam
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Gyeonggi, South Korea
| | - Uicheul Yoon
- Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Gyeongbuk, South Korea
| | - Kookjin Ahn
- Department of Radiology, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
20
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Bah TM, Siler DA, Ibrahim AH, Cetas JS, Alkayed NJ. Fluid dynamics in aging-related dementias. Neurobiol Dis 2023; 177:105986. [PMID: 36603747 DOI: 10.1016/j.nbd.2022.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
Recent human and animal model experimental studies revealed novel pathways for fluid movement, immune cell trafficking and metabolic waste clearance in CNS. These studies raise the intriguing possibility that the newly discovered pathways, including the glymphatic system, lymphatic meningeal vessels and skull-brain communication channels, are impaired in aging and neurovascular and neurodegenerative diseases associated with dementia, including Alzheimer's disease (AD) and AD-related dementia. We provide an overview of the glymphatic and dural meningeal lymphatic systems, review current methods and approaches used to study glymphatic flow in humans and animals, and discuss current evidence and controversies related to its role in CNS flow homeostasis under physiological and pathophysiological conditions. Non-invasive imaging approaches are needed to fully understand the mechanisms and pathways driving fluid movement in CNS and their roles across lifespan including healthy aging and aging-related dementia.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Dominic A Siler
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Aseel H Ibrahim
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Justin S Cetas
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
22
|
Moses J, Sinclair B, Law M, O'Brien TJ, Vivash L. Automated Methods for Detecting and Quantitation of Enlarged Perivascular spaces on MRI. J Magn Reson Imaging 2023; 57:11-24. [PMID: 35866259 PMCID: PMC10083963 DOI: 10.1002/jmri.28369] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
The brain's glymphatic system is a network of intracerebral vessels that function to remove "waste products" such as degraded proteins from the brain. It comprises of the vasculature, perivascular spaces (PVS), and astrocytes. Poor glymphatic function has been implicated in numerous diseases; however, its contribution is still unknown. Efforts have been made to image the glymphatic system to further assess its role in the pathogenesis of different diseases. Numerous imaging modalities have been utilized including two-photon microscopy and contrast-enhanced magnetic resonance imaging (MRI). However, these are associated with limitations for clinical use. PVS form a part of the glymphatic system and can be visualized on standard MRI sequences when enlarged. It is thought that PVS become enlarged secondary to poor glymphatic drainage of metabolites. Thus, quantitating PVS could be a good surrogate marker for glymphatic function. Numerous manual rating scales have been developed to measure the PVS number and size on MRI scans; however, these are associated with many limitations. Instead, automated methods have been created to measure PVS more accurately in different diseases. In this review, we discuss the imaging techniques currently available to visualize the glymphatic system as well as the automated methods currently available to measure PVS, and the strengths and limitations associated with each technique. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jasmine Moses
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Ben Sinclair
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Meng Law
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Radiology, Alfred Health, Melbourne, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Wang ML, Zou QQ, Sun Z, Wei XE, Li PY, Wu X, Li YH. Associations of MRI-visible perivascular spaces with longitudinal cognitive decline across the Alzheimer's disease spectrum. Alzheimers Res Ther 2022; 14:185. [PMID: 36514127 PMCID: PMC9746143 DOI: 10.1186/s13195-022-01136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the characteristics and associations of MRI-visible perivascular spaces (PVS) with clinical progression and longitudinal cognitive decline across the Alzheimer's disease spectrum. METHODS We included 1429 participants (641 [44.86%] female) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. PVS number and grade in the centrum semiovale (CSO-PVS), basal ganglia (BG-PVS), and hippocampus (HP-PVS) were compared among the control (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) groups. PVS were tested as predictors of diagnostic progression (i.e., CN to MCI/AD or MCI to AD) and longitudinal changes in the 13-item Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog 13), Mini-Mental State Examination (MMSE), memory (ADNI-MEM), and executive function (ADNI-EF) using multiple linear regression, linear mixed-effects, and Cox proportional hazards modeling. RESULTS Compared with CN subjects, MCI and AD subjects had more CSO-PVS, both in number (p < 0.001) and grade (p < 0.001). However, there was no significant difference in BG-PVS and HP-PVS across the AD spectrum (p > 0.05). Individuals with moderate and frequent/severe CSO-PVS had a higher diagnostic conversion risk than individuals with no/mild CSO-PVS (log-rank p < 0.001 for all) in the combined CN and MCI group. Further Cox regression analyses revealed that moderate and frequent/severe CSO-PVS were associated with a higher risk of diagnostic conversion (HR = 2.007, 95% CI = 1.382-2.914, p < 0.001; HR = 2.676, 95% CI = 1.830-3.911, p < 0.001, respectively). A higher CSO-PVS number was associated with baseline cognitive performance and longitudinal cognitive decline in all cognitive tests (p < 0.05 for all). CONCLUSIONS CSO-PVS were more common in MCI and AD and were associated with cognitive decline across the AD spectrum.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Qiao-Qiao Zou
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Zheng Sun
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Peng-Yang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Xue Wu
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yue-Hua Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
24
|
Kang KM, Byun MS, Yi D, Lee KH, Kim M, Ahn H, Jung G, Lee J, Kim YK, Lee Y, Sohn C, Lee DY. Enlarged perivascular spaces are associated with decreased brain tau deposition. CNS Neurosci Ther 2022; 29:577-586. [PMID: 36468423 PMCID: PMC9873511 DOI: 10.1111/cns.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/10/2022] Open
Abstract
AIMS The aim of this study was to investigate the associations of enlarged perivascular spaces (EPVS) in the basal ganglia (BG) and centrum semiovale (CSO) with beta-amyloid (Aβ) and tau deposition in older adults with a diverse cognitive spectrum. METHODS A total of 163 (68 cognitively normal and 95 cognitively impaired) older participants underwent [11 C] Pittsburgh compound B and [18 F] AV-1451 PET, and MRI. EPVS in the BG and CSO and other small vessel disease markers, such as white matter hyperintensities, lacunes, and deep and lobar microbleeds, were assessed. RESULTS Increased EPVS in the BG showed a significant association with lower cerebral tau deposition, even after controlling for other small vessel disease markers. Further exploratory analyses showed that this association was significant in cognitively impaired, Aβ-positive, or APOE4-positive individuals, but not significant in the cognitively normal, Aβ-negative, or APOE4-negative participants. In contrast to EPVS in the BG, EPVS in the CSO did not have any relationship with cerebral tau deposition. In addition, none of the two types of EPVS were associated with cerebral Aβ deposition. CONCLUSION Brain tau deposition appears to be reduced with increased EPVS in the BG, especially in individuals with cognitive impairment, pathological amyloid burden, or genetic Alzheimer's disease risk.
Collapse
Affiliation(s)
- Koung Mi Kang
- Department of RadiologySeoul National University HospitalSeoulKorea,Department of RadiologySeoul National University College of MedicineSeoulKorea
| | - Min Soo Byun
- Department of NeuropsychiatrySeoul National University College of MedicineSeoulKorea,Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Dahyun Yi
- Biomedical Research Institute, Seoul National University HospitalSeoulKorea
| | - Kyung Hoon Lee
- Department of RadiologySeoul National University HospitalSeoulKorea
| | - Min Jung Kim
- Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Hyejin Ahn
- Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Gijung Jung
- Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Jun‐Young Lee
- Department of NeuropsychiatrySeoul National University College of MedicineSeoulKorea,Department of NeuropsychiatrySMG‐SNU Boramae Medical CenterSeoulKorea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSMG‐SNU Boramae Medical CenterSeoulKorea
| | - Yun‐Sang Lee
- Department of Nuclear MedicineSeoul National University College of MedicineSeoulKorea
| | - Chul‐Ho Sohn
- Department of RadiologySeoul National University HospitalSeoulKorea,Department of RadiologySeoul National University College of MedicineSeoulKorea
| | - Dong Young Lee
- Department of NeuropsychiatrySeoul National University College of MedicineSeoulKorea,Department of NeuropsychiatrySeoul National University HospitalSeoulKorea,Institute of Human Behavioral MedicineMedical Research Center Seoul National UniversitySeoulKorea
| | | |
Collapse
|
25
|
Littau JL, Velilla L, Hase Y, Villalba‐Moreno ND, Hagel C, Drexler D, Osorio Restrepo S, Villegas A, Lopera F, Vargas S, Glatzel M, Krasemann S, Quiroz YT, Arboleda‐Velasquez JF, Kalaria R, Sepulveda‐Falla D. Evidence of beta amyloid independent small vessel disease in familial Alzheimer's disease. Brain Pathol 2022; 32:e13097. [PMID: 35695802 PMCID: PMC9616091 DOI: 10.1111/bpa.13097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
We studied small vessel disease (SVD) pathology in Familial Alzheimer's disease (FAD) subjects carrying the presenilin 1 (PSEN1) p.Glu280Ala mutation in comparison to those with sporadic Alzheimer's disease (SAD) as a positive control for Alzheimer's pathology and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) bearing different NOTCH3 mutations, as positive controls for SVD pathology. Upon magnetic resonance imaging (MRI) in life, some FAD showed mild white matter hyperintensities and no further radiologic evidence of SVD. In post-mortem studies, total SVD pathology in cortical areas and basal ganglia was similar in PSEN1 FAD and CADASIL subjects, except for the feature of arteriosclerosis which was higher in CADASIL subjects than in PSEN1 FAD subjects. Further only a few SAD subjects showed a similar degree of SVD pathology as observed in CADASIL. Furthermore, we found significantly enlarged perivascular spaces in vessels devoid of cerebral amyloid angiopathy in FAD compared with SAD and CADASIL subjects. As expected, there was greater fibrinogen-positive perivascular reactivity in CADASIL but similar reactivity in PSEN1 FAD and SAD groups. Fibrinogen immunoreactivity correlated with onset age in the PSEN1 FAD cases, suggesting increased vascular permeability may contribute to cognitive decline. Additionally, we found reduced perivascular expression of PDGFRβ AQP4 in microvessels with enlarged PVS in PSEN1 FAD cases. We demonstrate that there is Aβ-independent SVD pathology in PSEN1 FAD, that was marginally lower than that in CADASIL subjects although not evident by MRI. These observations suggest presence of covert SVD even in PSEN1, contributing to disease progression. As is the case in SAD, these consequences may be preventable by early recognition and actively controlling vascular disease risk, even in familial forms of dementia.
Collapse
Affiliation(s)
- Jessica Lisa Littau
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lina Velilla
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | - Yoshiki Hase
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | | | - Christian Hagel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Drexler
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Andres Villegas
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | | | - Sergio Vargas
- Department of Radiology, Neuroradiology SectionUniversidad de AntioquiaMedellínColombia
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Susanne Krasemann
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yakeel T. Quiroz
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph F. Arboleda‐Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical SchoolBostonMassachusetts
| | - Rajesh Kalaria
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | - Diego Sepulveda‐Falla
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| |
Collapse
|
26
|
Lynch M, Pham W, Sinclair B, O’Brien TJ, Law M, Vivash L. Perivascular spaces as a potential biomarker of Alzheimer's disease. Front Neurosci 2022; 16:1021131. [PMID: 36330347 PMCID: PMC9623161 DOI: 10.3389/fnins.2022.1021131] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 07/20/2023] Open
Abstract
Alzheimer's disease (AD) is a highly damaging disease that affects one's cognition and memory and presents an increasing societal and economic burden globally. Considerable research has gone into understanding AD; however, there is still a lack of effective biomarkers that aid in early diagnosis and intervention. The recent discovery of the glymphatic system and associated Perivascular Spaces (PVS) has led to the theory that enlarged PVS (ePVS) may be an indicator of AD progression and act as an early diagnostic marker. Visible on Magnetic Resonance Imaging (MRI), PVS appear to enlarge when known biomarkers of AD, amyloid-β and tau, accumulate. The central goal of ePVS and AD research is to determine when ePVS occurs in AD progression and if ePVS are causal or epiphenomena. Furthermore, if ePVS are indeed causative, interventions promoting glymphatic clearance are an attractive target for research. However, it is necessary first to ascertain where on the pathological progression of AD ePVS occurs. This review aims to examine the knowledge gap that exists in understanding the contribution of ePVS to AD. It is essential to understand whether ePVS in the brain correlate with increased regional tau distribution and global or regional Amyloid-β distribution and to determine if these spaces increase proportionally over time as individuals experience neurodegeneration. This review demonstrates that ePVS are associated with reduced glymphatic clearance and that this reduced clearance is associated with an increase in amyloid-β. However, it is not yet understood if ePVS are the outcome or driver of protein accumulation. Further, it is not yet clear if ePVS volume and number change longitudinally. Ultimately, it is vital to determine early diagnostic criteria and early interventions for AD to ease the burden it presents to the world; ePVS may be able to fulfill this role and therefore merit further research.
Collapse
Affiliation(s)
- Miranda Lynch
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - William Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Eide PK, Pripp AH, Berge B, Hrubos-Strøm H, Ringstad G, Valnes LM. Altered glymphatic enhancement of cerebrospinal fluid tracer in individuals with chronic poor sleep quality. J Cereb Blood Flow Metab 2022; 42:1676-1692. [PMID: 35350917 PMCID: PMC9441729 DOI: 10.1177/0271678x221090747] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic sleep disturbance is a risk factor for dementia disease, possibly due to impaired sleep-dependent clearance of toxic metabolic by-products. We compared enrichment of a cerebrospinal fluid (CSF) tracer within brain of patients reporting good or poor sleep quality, assessed by the Pittsburgh Sleep Quality Index (PSQI) questionnaire. Tracer enrichment in a selection of brain regions was assessed using multiphase magnetic resonance imaging up to 48 hours after intrathecal administration of the contrast agent gadobutrol (0.5 ml of 1 mmol/ml) serving as tracer. Tracer enrichment differed between patients with good (PSQI ≤5) and poor (PSQI >5) sleep quality in a cohort of non-dementia individuals (n = 44; age 42.3 ± 14.5 years), and in patients with the dementia subtype idiopathic normal pressure hydrocephalus (n = 24; age 71.0 ± 4.9 years). Sleep impairment was associated with increased CSF tracer enrichment in several brain regions. Cortical brain volume as well as entorhinal cortex thickness was reduced in the oldest cohort and was correlated with the severity of sleep disturbance and the degree of cortical tracer enrichment. We suggest chronic sleep disturbance is accompanied by altered glymphatic function along enlarged perivascular spaces.
Collapse
Affiliation(s)
- Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway.,Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | | | - Harald Hrubos-Strøm
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Otorhinolaryngology, Surgical Division, Akershus University Hospital, Nordbyhagen, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
28
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
The "Cerebrospinal Fluid Sink Therapeutic Strategy" in Alzheimer's Disease-From Theory to Design of Applied Systems. Biomedicines 2022; 10:biomedicines10071509. [PMID: 35884814 PMCID: PMC9313192 DOI: 10.3390/biomedicines10071509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a global health problem, with incidence and prevalence considered to increase during the next decades. However, no currently available effective treatment exists despite numerous clinical trials in progress. Moreover, although many hypotheses are accepted regarding the pathophysiological mechanisms of AD onset and evolution, there are still many unknowns about the disorder. A relatively new approach, based on the amyloid-beta dynamics among different biological compartments, is currently intensely discussed, as it seems to offer a promising solution with significant therapeutic impact. Known as the “cerebrospinal-fluid-sink therapeutic strategy”, part of the “three-sink therapeutic strategy”, this theoretical model focuses on the dynamics of amyloid-beta among the three main liquid compartments of the human body, namely blood, cerebrospinal fluid, and the (brain) interstitial fluid. In this context, this article aims to describe in detail the abovementioned hypothesis, by reviewing in the first part the most relevant anatomical and physiological aspects of amyloid-beta dynamics. Subsequently, explored therapeutic strategies based on the clearance of amyloid-beta from the cerebrospinal fluid level are presented, additionally highlighting their limitations. Finally, the originality and novelty of this work rely on the research experience of the authors, who focus on implantable devices and their utility in AD treatment.
Collapse
|
30
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
31
|
Hupfeld KE, Richmond SB, McGregor HR, Schwartz DL, Luther MN, Beltran NE, Kofman IS, De Dios YE, Riascos RF, Wood SJ, Bloomberg JJ, Mulavara AP, Silbert LC, Iliff JJ, Seidler RD, Piantino J. Longitudinal MRI-visible perivascular space (PVS) changes with long-duration spaceflight. Sci Rep 2022; 12:7238. [PMID: 35513698 PMCID: PMC9072425 DOI: 10.1038/s41598-022-11593-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Humans are exposed to extreme environmental stressors during spaceflight and return with alterations in brain structure and shifts in intracranial fluids. To date, no studies have evaluated the effects of spaceflight on perivascular spaces (PVSs) within the brain, which are believed to facilitate fluid drainage and brain homeostasis. Here, we examined how the number and morphology of magnetic resonance imaging (MRI)-visible PVSs are affected by spaceflight, including prior spaceflight experience. Fifteen astronauts underwent six T1-weighted 3 T MRI scans, twice prior to launch and four times following their return to Earth after ~ 6-month missions to the International Space Station. White matter MRI-visible PVS number and morphology were calculated using an established, automated segmentation algorithm. We validated our automated segmentation algorithm by comparing algorithm PVS counts with those identified by two trained raters in 50 randomly selected slices from this cohort; the automated algorithm performed similarly to visual ratings (r(48) = 0.77, p < 0.001). In addition, we found high reliability for four of five PVS metrics across the two pre-flight time points and across the four control time points (ICC(3,k) > 0.50). Among the astronaut cohort, we found that novice astronauts showed an increase in total PVS volume from pre- to post-flight, whereas experienced crewmembers did not (p = 0.020), suggesting that experienced astronauts may exhibit holdover effects from prior spaceflight(s). Greater pre-flight PVS load was associated with more prior flight experience (r = 0.60-0.71), though these relationships did not reach statistical significance (p > 0.05). Pre- to post-flight changes in ventricular volume were not significantly associated with changes in PVS characteristics, and the presence of spaceflight associated neuro-ocular syndrome (SANS) was not associated with PVS number or morphology. Together, these findings demonstrate that PVSs can be consistently identified on T1-weighted MRI scans, and that spaceflight is associated with PVS changes. Specifically, prior spaceflight experience may be an important factor in determining PVS characteristics.
Collapse
Affiliation(s)
- Kathleen E. Hupfeld
- grid.15276.370000 0004 1936 8091Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL USA
| | - Sutton B. Richmond
- grid.15276.370000 0004 1936 8091Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL USA
| | - Heather R. McGregor
- grid.15276.370000 0004 1936 8091Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL USA
| | - Daniel L. Schwartz
- grid.5288.70000 0000 9758 5690Layton-NIA Oregon Aging and Alzheimer’s Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR USA
| | - Madison N. Luther
- grid.5288.70000 0000 9758 5690Division of Child Neurology, Department of Pediatrics, Doernbecher Children’s Hospital, Oregon Health and Science University, 707 SW Gaines St., CDRC-P, Portland, OR 97239 USA
| | | | | | | | - Roy F. Riascos
- grid.267308.80000 0000 9206 2401Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Scott J. Wood
- grid.419085.10000 0004 0613 2864NASA Johnson Space Center, Houston, TX USA
| | - Jacob J. Bloomberg
- grid.419085.10000 0004 0613 2864NASA Johnson Space Center, Houston, TX USA
| | | | - Lisa C. Silbert
- grid.5288.70000 0000 9758 5690Layton-NIA Oregon Aging and Alzheimer’s Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR USA ,grid.484322.bNeurology, Veteran’s Affairs Portland Health Care System, Portland, OR USA
| | - Jeffrey J. Iliff
- grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA USA ,grid.34477.330000000122986657Department of Neurology, University of Washington School of Medicine, Seattle, WA USA ,grid.413919.70000 0004 0420 6540VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA USA
| | - Rachael D. Seidler
- grid.15276.370000 0004 1936 8091Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL USA
| | - Juan Piantino
- grid.5288.70000 0000 9758 5690Division of Child Neurology, Department of Pediatrics, Doernbecher Children’s Hospital, Oregon Health and Science University, 707 SW Gaines St., CDRC-P, Portland, OR 97239 USA
| |
Collapse
|
32
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|
33
|
Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X. Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases. Front Physiol 2022; 13:814285. [PMID: 35222082 PMCID: PMC8864228 DOI: 10.3389/fphys.2022.814285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes play an important role in the central nervous system (CNS). Ion channels in these cells not only function in ion transport, and maintain water/ion metabolism homeostasis, but also participate in physiological processes of neurons and glial cells by regulating signaling pathways. Increasing evidence indicates the ion channel proteins of astrocytes, such as aquaporins (AQPs), transient receptor potential (TRP) channels, adenosine triphosphate (ATP)-sensitive potassium (K-ATP) channels, and P2X7 receptors (P2X7R), are strongly associated with oxidative stress, neuroinflammation and characteristic proteins in neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Since ion channel protein dysfunction is a significant pathological feature of astrocytes in neurodegenerative diseases, we discuss these critical proteins and their signaling pathways in order to understand the underlying molecular mechanisms, which may yield new therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Kaige Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
34
|
Tu MC, Chung HW, Hsu YH, Yang JJ, Wu WC. Stage-Dependent Cerebral Blood Flow and Leukoaraiosis Couplings in Subcortical Ischemic Vascular Disease and Alzheimer's Disease. J Alzheimers Dis 2022; 86:729-739. [PMID: 35124651 PMCID: PMC9028753 DOI: 10.3233/jad-215405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Alzheimer’s disease (AD) and subcortical ischemic vascular disease (SIVD) have both been associated with white matter hyperintensities (WMHs) and altered cerebral blood flow (CBF) although the etiology of AD is still unclear. Objective: To test the hypothesis that CBF and WMHs have differential effects on cognition and that the relationship between CBF and WMHs changes with the subtypes and stages of dementia. Methods: Forty-two patients with SIVD, 50 patients with clinically-diagnosed AD, and 30 cognitively-normal subjects were included. Based on the Clinical Dementia Rating (CDR), the patients were dichotomized into early-stage (CDR = 0.5) and late-stage (CDR = 1 or 2) groups. CBF and WMH metrics were derived from magnetic resonance imaging and correlated with cognition. Results: Hierarchical linear regression revealed that CBF metrics had distinct contribution to global cognition, memory, and attention, whereas WMH metrics had distinct contribution to executive function (all p < 0.05). In SIVD, the WMHs in frontotemporal areas correlated with the CBF in bilateral thalami at the early stage; the correlation then became between the WMHs in basal ganglia and the CBF in frontotemporal areas at the late stage. A similar corticosubcortical coupling was observed in AD but involved fewer areas. Conclusion: A stage-dependent coupling between CBF and WMHs was identified in AD and SIVD, where the extent of cortical WMHs correlated with subcortical CBF for CDR = 0.5, whereas the extent of subcortical WMHs correlated with cortical CBF for CDR = 1–2.
Collapse
Affiliation(s)
- Min-Chien Tu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Taichung Tzu Chi Hospital, Taichung, Taiwan.,Department of Neurology, Tzu Chi University, Hualien, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan.,Center for Innovative Research on Aging Society, National Chung Cheng University, Chiayi, Taiwan
| | - Jir-Jei Yang
- Department of Radiology, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Wen-Chau Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Chen H, Wan H, Zhang M, Wardlaw JM, Feng T, Wang Y. Perivascular space in Parkinson's disease: Association with CSF amyloid/tau and cognitive decline. Parkinsonism Relat Disord 2022; 95:70-76. [PMID: 35051895 DOI: 10.1016/j.parkreldis.2022.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Whether perivascular space (PVS) visible on magnetic resonance imaging (MRI) represents glymphatic dysfunction and whether this imaging marker is pathologic in Parkinson's disease (PD) have been controversial. The objective was to determine whether PVS visible on MRI is independently associated with cognitive decline in patients with PD, and to test whether pathologic proteins in the CSF (such as Aβ42) mediate the pathologic role of PVS. METHODS A total of 341 patients with Parkinson's disease from Parkinson's Progression Marker Initiative (PPMI) cohort was included in the present study. PVS in the basal ganglia (BG-PVS) and centrum semiovale were evaluated with a semiquantitative scale. Changes in the Montreal Cognitive Assessment (MoCA) score and the absolute MoCA score at the 3-year assessment were considered the main cognitive outcome. A multivariable linear regression model was used to test the association between PVS and cognitive decline. A mixed linear model and path analysis were used to test the interaction among PVS, CSF biomarkers and cognitive decline. RESULTS BG-PVS was associated with cognitive decline in patients with PD at the 3-year follow-up independent of age, baseline cognition, motor and nonmotor function, presynaptic dopaminergic deficiency, and CSF biomarkers. The interaction between BG-PVS and Aβ42/tTau, Aβ42/pTau, and Aβ42 levels was significantly predictive of 3-year cognitive decline. Path analysis confirmed that CSF Aβ42/tTau levels partially mediated the pathologic effect of BG-PVS on cognitive outcome in PD. CONCLUSIONS BG-PVS is independently associated with cognitive decline in PD, and this association may be partially mediated by toxic CSF proteins.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China; Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China
| | - Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China; Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China; Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Meimei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China; Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China; Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China; Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China.
| |
Collapse
|
36
|
Liu J, Guo Y, Zhang C, Zeng Y, Luo Y, Wang G. Clearance Systems in the Brain, From Structure to Function. Front Cell Neurosci 2022; 15:729706. [PMID: 35173581 PMCID: PMC8841422 DOI: 10.3389/fncel.2021.729706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
As the most metabolically active organ in the body, there is a recognized need for pathways that remove waste proteins and neurotoxins from the brain. Previous research has indicated potential associations between the clearance system in the brain and the pathological conditions of the central nervous system (CNS), due to its importance, which has attracted considerable attention recently. In the last decade, studies of the clearance system have been restricted to the glymphatic system. However, removal of toxic and catabolic waste by-products cannot be completed independently by the glymphatic system, while no known research or article has focused on a comprehensive overview of the structure and function of the clearance system. This thesis addresses a neglected aspect of linkage between the structural composition and main components as well as the role of neural cells throughout the clearance system, which found evidence that the components of CNS including the glymphatic system and the meningeal lymphatic system interact with a neural cell, such as astrocytes and microglia, to carry out vital clearance functions. As a result of this evidence that can contribute to a better understanding of the clearance system, suggestions were identified for further clinical intervention development of severe conditions caused by the accumulation of metabolic waste products and neurotoxins in the brain, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Yunzhi Guo
- Xiangya Medical College of Central South University, Changsha, China
| | - Chengyue Zhang
- Xiangya Medical College of Central South University, Changsha, China
| | - Yang Zeng
- Xiangya Medical College of Central South University, Changsha, China
| | - Yongqi Luo
- Xiangya Medical College of Central South University, Changsha, China
| | - Gaiqing Wang
- Shanxi Medical University, Taiyuan, China
- Department of Neurology, Affiliated Sanya Central Hospital of Hainan Medical University, Sanya, China
- *Correspondence: Gaiqing Wang, ,
| |
Collapse
|
37
|
Jones O, Cutsforth-Gregory J, Chen J, Bhatti MT, Huston J, Brinjikji W. Idiopathic Intracranial Hypertension is Associated with a Higher Burden of Visible Cerebral Perivascular Spaces: The Glymphatic Connection. AJNR Am J Neuroradiol 2021; 42:2160-2164. [PMID: 34824096 DOI: 10.3174/ajnr.a7326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/22/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Research suggests a connection between idiopathic intracranial hypertension and the cerebral glymphatic system. We hypothesized that visible dilated perivascular spaces, possible glymphatic pathways, would be more prevalent in patients with idiopathic intracranial hypertension. This prevalence could provide a biomarker and add evidence to the glymphatic connection in the pathogenesis of idiopathic intracranial hypertension. MATERIALS AND METHODS We evaluated 36 adult (older than 21 years of age) patients with idiopathic intracranial hypertension and 19 controls, 21-69 years of age, who underwent a standardized MR imaging protocol that included high-resolution precontrast T2- and T1-weighted images. All patients had complete neuro-ophthalmic examinations for papilledema. The number of visible perivascular spaces was evaluated using a comprehensive 4-point qualitative rating scale, which graded the number of visible perivascular spaces in the centrum semiovale and basal ganglia; a 2-point scale was used for the midbrain. Readers were blinded to patient diagnoses. Continuous variables were compared using a Student t test. RESULTS The mean number of visible perivascular spaces overall was greater in the idiopathic intracranial hypertension group than in controls (4.5 [SD, 1.9] versus 2.9 [SD, 1.9], respectively; P = .004). This finding was significant for centrum semiovale idiopathic intracranial hypertension (2.3 [SD, 1.4] versus controls, 1.3 [SD, 1.1], P = .003) and basal ganglia idiopathic intracranial hypertension (1.7 [SD, 0.6] versus controls, 1.2 [SD, 0.7], P = .009). There was no significant difference in midbrain idiopathic intracranial hypertension (0.5 [SD, 0.5] versus controls, 0.4 [SD, 0.5], P = .47). CONCLUSIONS Idiopathic intracranial hypertension is associated with an increased number of visible intracranial perivascular spaces. This finding provides insight into the pathophysiology of idiopathic intracranial hypertension, suggesting a possible relationship between idiopathic intracranial hypertension and glymphatic dysfunction and providing another useful biomarker for the disease.
Collapse
Affiliation(s)
- O Jones
- From the Departments of Radiology (O.J., J.H., W.B.)
| | | | - J Chen
- Neurology (J.C.-G., J.C., M.T.B.)
- Ophthalmology (J.C., M.T.B.), Mayo Clinic, Rochester, Minnesota
| | - M T Bhatti
- Neurology (J.C.-G., J.C., M.T.B.)
- Ophthalmology (J.C., M.T.B.), Mayo Clinic, Rochester, Minnesota
| | - J Huston
- From the Departments of Radiology (O.J., J.H., W.B.)
| | - W Brinjikji
- From the Departments of Radiology (O.J., J.H., W.B.)
| |
Collapse
|
38
|
Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer's continuum. ALZHEIMERS RESEARCH & THERAPY 2021; 13:135. [PMID: 34353353 PMCID: PMC8340485 DOI: 10.1186/s13195-021-00878-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Background Perivascular spaces (PVS) have an important role in the elimination of metabolic waste from the brain. It has been hypothesized that the enlargement of PVS (ePVS) could be affected by pathophysiological mechanisms involved in Alzheimer’s disease (AD), such as abnormal levels of CSF biomarkers. However, the relationship between ePVS and these pathophysiological mechanisms remains unknown. Objective We aimed to investigate the association between ePVS and CSF biomarkers of several pathophysiological mechanisms for AD. We hypothesized that ePVS will be associated to CSF biomarkers early in the AD continuum (i.e., amyloid positive cognitively unimpaired individuals). Besides, we explored associations between ePVS and demographic and cardiovascular risk factors. Methods The study included 322 middle-aged cognitively unimpaired participants from the ALFA + study, many within the Alzheimer’s continuum. NeuroToolKit and Elecsys® immunoassays were used to measure CSF Aβ42, Aβ40, p-tau and t-tau, NfL, neurogranin, TREM2, YKL40, GFAP, IL6, S100, and α-synuclein. PVS in the basal ganglia (BG) and centrum semiovale (CS) were assessed based on a validated 4-point visual rating scale. Odds ratios were calculated for associations of cardiovascular and AD risk factors with ePVS using logistic and multinomial models adjusted for relevant confounders. Models were stratified by Aβ status (positivity defined as Aβ42/40 < 0.071). Results The degree of PVS significantly increased with age in both, BG and CS regions independently of cardiovascular risk factors. Higher levels of p-tau, t-tau, and neurogranin were significantly associated with ePVS in the CS of Aβ positive individuals, after accounting for relevant confounders. No associations were detected in the BG neither in Aβ negative participants. Conclusions Our results support that ePVS in the CS are specifically associated with tau pathophysiology, neurodegeneration, and synaptic dysfunction in asymptomatic stages of the Alzheimer’s continuum. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00878-5.
Collapse
|
39
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
40
|
Stackhouse TL, Mishra A. Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Front Cell Dev Biol 2021; 9:702832. [PMID: 34327206 PMCID: PMC8313501 DOI: 10.3389/fcell.2021.702832] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Neurovascular coupling is a crucial mechanism that matches the high energy demand of the brain with a supply of energy substrates from the blood. Signaling within the neurovascular unit is responsible for activity-dependent changes in cerebral blood flow. The strength and reliability of neurovascular coupling form the basis of non-invasive human neuroimaging techniques, including blood oxygen level dependent (BOLD) functional magnetic resonance imaging. Interestingly, BOLD signals are negative in infants, indicating a mismatch between metabolism and blood flow upon neural activation; this response is the opposite of that observed in healthy adults where activity evokes a large oversupply of blood flow. Negative neurovascular coupling has also been observed in rodents at early postnatal stages, further implying that this is a process that matures during development. This rationale is consistent with the morphological maturation of the neurovascular unit, which occurs over a similar time frame. While neurons differentiate before birth, astrocytes differentiate postnatally in rodents and the maturation of their complex morphology during the first few weeks of life links them with synapses and the vasculature. The vascular network is also incomplete in neonates and matures in parallel with astrocytes. Here, we review the timeline of the structural maturation of the neurovascular unit with special emphasis on astrocytes and the vascular tree and what it implies for functional maturation of neurovascular coupling. We also discuss similarities between immature astrocytes during development and reactive astrocytes in disease, which are relevant to neurovascular coupling. Finally, we close by pointing out current gaps in knowledge that must be addressed to fully elucidate the mechanisms underlying neurovascular coupling maturation, with the expectation that this may also clarify astrocyte-dependent mechanisms of cerebrovascular impairment in neurodegenerative conditions in which reduced or negative neurovascular coupling is noted, such as stroke and Alzheimer’s disease.
Collapse
Affiliation(s)
- Teresa L Stackhouse
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, OR, United States
| |
Collapse
|
41
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Ciampa I, Operto G, Falcon C, Minguillon C, Castro de Moura M, Piñeyro D, Esteller M, Molinuevo JL, Guigó R, Navarro A, Gispert JD, Vilor-Tejedor N. Genetic Predisposition to Alzheimer's Disease Is Associated with Enlargement of Perivascular Spaces in Centrum Semiovale Region. Genes (Basel) 2021; 12:genes12060825. [PMID: 34072165 PMCID: PMC8226614 DOI: 10.3390/genes12060825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study investigated whether genetic factors involved in Alzheimer’s disease (AD) are associated with enlargement of Perivascular Spaces (ePVS) in the brain. A total of 680 participants with T2-weighted MRI scans and genetic information were acquired from the ALFA study. ePVS in the basal ganglia (BG) and the centrum semiovale (CS) were assessed based on a validated visual rating scale. We used univariate and multivariate logistic regression models to investigate associations between ePVS in BG and CS with BIN1-rs744373, as well as APOE genotypes. We found a significant association of the BIN1-rs744373 polymorphism in the CS subscale (p value = 0.019; OR = 2.564), suggesting that G allele carriers have an increased risk of ePVS in comparison with A allele carriers. In stratified analysis by APOE-ε4 status (carriers vs. non-carriers), these results remained significant only for ε4 carriers (p value = 0.011; OR = 1.429). To our knowledge, the present study is the first suggesting that genetic predisposition for AD is associated with ePVS in CS. These findings provide evidence that underlying biological processes affecting AD may influence CS-ePVS.
Collapse
Affiliation(s)
- Iacopo Ciampa
- Department of Radiology, Hospital Universitari Sagrat Cor, 08029 Barcelona, Spain;
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (M.C.d.M.); (D.P.); (M.E.)
| | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (M.C.d.M.); (D.P.); (M.E.)
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), 28019 Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (M.C.d.M.); (D.P.); (M.E.)
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), 28019 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08097 Barcelona, Spain
| | - Jose Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain;
| | - Roderic Guigó
- Universitat Pompeu Fabra, 08005 Barcelona, Spain;
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
- Correspondence: (J.D.G.); (N.V.-T.)
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain; (G.O.); (C.F.); (C.M.); (J.L.M.); (A.N.)
- Universitat Pompeu Fabra, 08005 Barcelona, Spain;
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Correspondence: (J.D.G.); (N.V.-T.)
| | | |
Collapse
|
43
|
Zong X, Nanavati S, Hung SC, Li T, Lin W. Effects of motion and retrospective motion correction on the visualization and quantification of perivascular spaces in ultrahigh resolution T2-weighted images at 7T. Magn Reson Med 2021; 86:1944-1955. [PMID: 34009709 DOI: 10.1002/mrm.28847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Motion can strongly affect MRI image quality and derived imaging measures. We studied the effects of motion and retrospective motion correction (MC) on the visualization and quantitative measures of the perivascular space and penetrating vessel (PVSV) complex, an essential part of the glymphatic system, on high-resolution T2 -weighted MRI images at 7T. METHODS MC was achieved by adjusting k-space data based on head positions measured using fat navigator images. PVSV visibility and quantitative measures including diameter, volume fraction (VF), count, and contrast were compared between images with and without MC. RESULTS Without MC, VF, and count decreased significantly with increasing head rotation. MC improved PVSV visualization in all cases with severe motion artifacts. MC decreased diameter in white matter (WM) and increased VF, count, and contrast in basal ganglia and WM. The changes of VF, count, and contrast after MC strongly correlated with motion severity. MC eliminated the significant dependences of VF and count on rotation and reduced the inter-subject variations of VF and count. The effect sizes of age and breathing gas effects on VF and count, and contrast increased in most cases after MC, while those on diameter exhibited inconsistent behavior. CONCLUSIONS Motion affects PVSV quantification without MC. MC improves PVSV visibility and increases the statistical power of detecting physiological PVSV VF, count, and contrast changes but may have limited benefits for increasing the power for detecting diameter changes.
Collapse
Affiliation(s)
- Xiaopeng Zong
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Soham Nanavati
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sheng-Che Hung
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Weili Lin
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Wang S, Huang P, Zhang R, Hong H, Jiaerken Y, Lian C, Yu X, Luo X, Li K, Zeng Q, Xu X, Yu W, Wu X, Zhang M. Quantity and Morphology of Perivascular Spaces: Associations With Vascular Risk Factors and Cerebral Small Vessel Disease. J Magn Reson Imaging 2021; 54:1326-1336. [PMID: 33998738 DOI: 10.1002/jmri.27702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Perivascular spaces (PVSs) are important component of the brain glymphatic system. While visual rating has been widely used to assess PVS, computational measures may have higher sensitivity for capturing PVS characteristics under disease conditions. PURPOSE To compute quantitative and morphological PVS features and to assess their associations with vascular risk factors and cerebral small vessel disease (CSVD). STUDY TYPE Prospective. POPULATION One hundred sixty-one middle-aged/later middle-aged subjects (age = 60.4 ± 7.3). SEQUENCE 3D T1-weighted, T2-weighted and T2-FLAIR sequences, and susceptibility-weighted multiecho gradient-echo sequence on a 3 T scanner. ASSESSMENT Automated PVS segmentation was performed on sub-millimeter T2-weighted images. Quantitative and morphological PVS features were calculated in white matter (WM) and basal ganglia (BG) regions, including volume, count, size, length (Lmaj ), width (Lmin ), and linearity. Visual PVS scores were also acquired for comparison. STATISTICAL TESTS Simple and multiple linear regression analyses were used to explore the associations among variables. RESULTS WM-PVS visual score and count were associated with hypertension (β = 0.161, P < 0.05; β = 0.193, P < 0.05), as were BG-PVS rating score, volume, count and Lmin (β = 0.197, P < 0.05; β = 0.170, P < 0.05; β = 0.200, P < 0.05; β = 0.172, P < 0.05). WM-PVS size was associated with diabetes (β = 0.165, P < 0.05). WM-PVS and BG-PVS were associated with CSVD markers, especially white matter hyperintensities (WMHs) (P < 0.05). Multiple regression analysis showed that WM/BG-PVS quantitative measures were widely associated with vascular risk factors and CSVD markers (P < 0.05). Morphological measures were associated with WMH severity in WM region and also associated with lacunes and microbleeds (P < 0.05) in BG region. DATA CONCLUSION These novel PVS measures may capture mild PVS alterations driven by different pathologies. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Marazuela P, Bonaterra-Pastra A, Faura J, Penalba A, Pizarro J, Pancorbo O, Rodríguez-Luna D, Vert C, Rovira A, Pujadas F, Freijo MM, Tur S, Martínez-Zabaleta M, Cardona Portela P, Vera R, Lebrato-Hernández L, Arenillas JF, Pérez-Sánchez S, Montaner J, Delgado P, Hernández-Guillamon M. Circulating AQP4 Levels in Patients with Cerebral Amyloid Angiopathy-Associated Intracerebral Hemorrhage. J Clin Med 2021; 10:jcm10050989. [PMID: 33801197 PMCID: PMC7957864 DOI: 10.3390/jcm10050989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage (ICH) in elderly patients. Growing evidence suggests a potential role of aquaporin 4 (AQP4) in amyloid-beta-associated diseases, including CAA pathology. Our aim was to investigate the circulating levels of AQP4 in a cohort of patients who had suffered a lobar ICH with a clinical diagnosis of CAA. AQP4 levels were analyzed in the serum of 60 CAA-related ICH patients and 19 non-stroke subjects by enzyme-linked immunosorbent assay (ELISA). The CAA–ICH cohort was divided according to the time point of the functional outcome evaluation: mid-term (12 ± 18.6 months) and long-term (38.5 ± 32.9 months) after the last ICH. Although no differences were found in AQP4 serum levels between cases and controls, lower levels were found in CAA patients presenting specific hemorrhagic features such as ≥2 lobar ICHs and ≥5 lobar microbleeds detected by magnetic resonance imaging (MRI). In addition, CAA-related ICH patients who presented a long-term good functional outcome had higher circulating AQP4 levels than subjects with a poor outcome or controls. Our data suggest that AQP4 could potentially predict a long-term functional outcome and may play a protective role after a lobar ICH.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Júlia Faura
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (O.P.); (D.R.-L.)
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (O.P.); (D.R.-L.)
| | - Carla Vert
- Neuroradiology, Department of Radiology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (C.V.); (A.R.)
| | - Alex Rovira
- Neuroradiology, Department of Radiology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (C.V.); (A.R.)
| | - Francesc Pujadas
- Dementia Unit, Neurology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| | - M. Mar Freijo
- Neurovascular Group, Biocruces Health Research Institute, 48903 Barakaldo, Spain;
| | - Silvia Tur
- Neurology, Son Espases University Hospital, 07120 Balearic Islands, Spain;
| | | | - Pere Cardona Portela
- Department of Neurology, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Rocío Vera
- Stroke Unit, Department of Neurology, Ramon y Cajal University Hospital, 28034 Madrid, Spain;
| | | | - Juan F. Arenillas
- Stroke Program, Department of Neurology, Hospital Clínico Universitario, 47003 Valladolid, Spain;
- Clinical Neurosciences Research Group, Department of Medicine, University of Valladolid, 47003 Valladolid, Spain
| | | | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
- Department of Neurology, Virgen Macarena University Hospital, 41009 Sevilla, Spain;
- Stroke Research Program, Institute of Biomedicine of Sevilla, IBiS, Virgen del Rocío University Hospital, University of Sevilla, 41009 Sevilla, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
- Correspondence:
| |
Collapse
|
46
|
Weijs R, Okkersen K, van Engelen B, Küsters B, Lammens M, Aronica E, Raaphorst J, van Cappellen van Walsum AM. Human brain pathology in myotonic dystrophy type 1: A systematic review. Neuropathology 2021; 41:3-20. [PMID: 33599033 PMCID: PMC7986875 DOI: 10.1111/neup.12721] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Brain involvement in myotonic dystrophy type 1 (DM1) is characterized by heterogeneous cognitive, behavioral, and affective symptoms and imaging alterations indicative of widespread grey and white matter involvement. The aim of the present study was to systematically review the literature on brain pathology in DM1. We conducted a structured search in EMBASE (index period 1974–2017) and MEDLINE (index period 1887–2017) on December 11, 2017, using free text and index search terms related to myotonic dystrophy type 1 and brain structures or regions. Eligible studies were full‐text studies reporting on microscopic brain pathology of DM1 patients without potentially interfering comorbidity. We discussed the findings based on the anatomical region and the nature of the anomaly. Neuropathological findings in DM1 can be classified as follows: (1) protein and nucleotide deposits; (2) changes in neurons and glial cells; and (3) white matter alterations. Most findings are unspecific to DM1 and may occur with physiological aging, albeit to a lesser degree. There are similarities and contrasts with Alzheimer's disease; both show the appearance of neurofibrillary tangles in the limbic system without plaque occurrence. Likewise, there is myelin loss and gliosis, and there are dilated perivascular spaces in the white matter resemblant of cerebral small vessel disease. However, we did not find evidence of lacunar infarction or microbleeding. The various neuropathological findings in DM1 are reflective of the heterogeneous clinical and neuroimaging features of the disease. The strength of conclusions from this study's findings is bounded by limited numbers of participants in studies, methodological constraints, and lack of assessed associations between histopathology and clinical or neuroimaging findings.
Collapse
Affiliation(s)
- Ralf Weijs
- Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Lammens
- Department of Pathological Anatomy, University of Antwerp, Antwerp, Belgium
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Pathology, Amsterdam Neuroscience Institute, Amsterdam, the Netherlands
| | - Joost Raaphorst
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Pathology, Amsterdam Neuroscience Institute, Amsterdam, the Netherlands
| | - Anne-Marie van Cappellen van Walsum
- Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
47
|
Howe MD, McCullough LD, Urayama A. The Role of Basement Membranes in Cerebral Amyloid Angiopathy. Front Physiol 2020; 11:601320. [PMID: 33329053 PMCID: PMC7732667 DOI: 10.3389/fphys.2020.601320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Dementia is a neuropsychiatric syndrome characterized by cognitive decline in multiple domains, often leading to functional impairment in activities of daily living, disability, and death. The most common causes of age-related progressive dementia include Alzheimer's disease (AD) and vascular cognitive impairment (VCI), however, mixed disease pathologies commonly occur, as epitomized by a type of small vessel pathology called cerebral amyloid angiopathy (CAA). In CAA patients, the small vessels of the brain become hardened and vulnerable to rupture, leading to impaired neurovascular coupling, multiple microhemorrhage, microinfarction, neurological emergencies, and cognitive decline across multiple functional domains. While the pathogenesis of CAA is not well understood, it has long been thought to be initiated in thickened basement membrane (BM) segments, which contain abnormal protein deposits and amyloid-β (Aβ). Recent advances in our understanding of CAA pathogenesis link BM remodeling to functional impairment of perivascular transport pathways that are key to removing Aβ from the brain. Dysregulation of this process may drive CAA pathogenesis and provides an important link between vascular risk factors and disease phenotype. The present review summarizes how the structure and composition of the BM allows for perivascular transport pathways to operate in the healthy brain, and then outlines multiple mechanisms by which specific dementia risk factors may promote dysfunction of perivascular transport pathways and increase Aβ deposition during CAA pathogenesis. A better understanding of how BM remodeling alters perivascular transport could lead to novel diagnostic and therapeutic strategies for CAA patients.
Collapse
Affiliation(s)
| | | | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
48
|
Vardakis JC, Chou D, Guo L, Ventikos Y. Exploring neurodegenerative disorders using a novel integrated model of cerebral transport: Initial results. Proc Inst Mech Eng H 2020; 234:1223-1234. [PMID: 33078663 PMCID: PMC7675777 DOI: 10.1177/0954411920964630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The neurovascular unit (NVU) underlines the complex and symbiotic relationship between brain cells and the cerebral vasculature, and dictates the need to consider both neurodegenerative and cerebrovascular diseases under the same mechanistic umbrella. Importantly, unlike peripheral organs, the brain was thought not to contain a dedicated lymphatics system. The glymphatic system concept (a portmanteau of glia and lymphatic) has further emphasized the importance of cerebrospinal fluid transport and emphasized its role as a mechanism for waste removal from the central nervous system. In this work, we outline a novel multiporoelastic solver which is embedded within a high precision, subject specific workflow that allows for the co-existence of a multitude of interconnected compartments with varying properties (multiple-network poroelastic theory, or MPET), that allow for the physiologically accurate representation of perfused brain tissue. This novel numerical template is based on a six-compartment MPET system (6-MPET) and is implemented through an in-house finite element code. The latter utilises the specificity of a high throughput imaging pipeline (which has been extended to incorporate the regional variation of mechanical properties) and blood flow variability model developed as part of the VPH-DARE@IT research platform. To exemplify the capability of this large-scale consolidated pipeline, a cognitively healthy subject is used to acquire novel, biomechanistically inspired biomarkers relating to primary and derivative variables of the 6-MPET system. These biomarkers are shown to capture the sophisticated nature of the NVU and the glymphatic system, paving the way for a potential route in deconvoluting the complexity associated with the likely interdependence of neurodegenerative and cerebrovascular diseases. The present study is the first, to the best of our knowledge, that casts and implements the 6-MPET equations in a 3D anatomically accurate brain geometry.
Collapse
Affiliation(s)
- John C Vardakis
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, UK
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Liwei Guo
- Department of Mechanical Engineering, University College London, London, UK
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
49
|
Gertje EC, van Westen D, Panizo C, Mattsson-Carlgren N, Hansson O. Association of Enlarged Perivascular Spaces and Measures of Small Vessel and Alzheimer Disease. Neurology 2020; 96:e193-e202. [PMID: 33046608 DOI: 10.1212/wnl.0000000000011046] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the relationship between enlarged perivascular spaces (EPVS) and measures of Alzheimer disease (AD), small vessel disease (SVD), cognition, vascular risk factors, and neuroinflammation, we tested associations between EPVS and different relevant neuroimaging, biochemical, and cognitive variables in 778 study participants. METHODS Four hundred ninety-nine cognitively unimpaired (CU) individuals, 240 patients with mild cognitive impairment, and 39 patients with AD from the Swedish Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study were included. EPVS with diameter >1 mm in centrum semiovale (CSO), basal ganglia (BG), and hippocampus (HP); hippocampal volume; white matter lesions (WML); and other SVD markers were determined from MRI. CSF levels of β-amyloid42 (Aβ42), phosphorylated tau, total tau, and neuroinflammatory markers; amyloid accumulation determined with [18F]-flutemetamol PET; and vascular risk factors and results from cognitive tests were determined and collected. RESULTS EPVS in CSO, BG, and HP were associated with WML volume and Fazekas score in individuals without dementia. No associations were found between EPVS and CSF Aβ42, total tau and phosphorylated tau, neuroinflammatory markers, vascular risk factors, and cognitive tests. EPVS in HP were associated with hippocampal atrophy. In a matched group of individuals with AD and CU, EPVS in HP were associated with AD diagnosis. CONCLUSIONS EPVS are related to SVD, also in early disease stages, but the lack of correlation with cognition suggests that their importance is limited. Our data do not support a role for EPVS in early AD pathogenesis.
Collapse
Affiliation(s)
- Eske Christiane Gertje
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Danielle van Westen
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden.
| | - Clara Panizo
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Oskar Hansson
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| |
Collapse
|
50
|
Zong X, Lian C, Jimenez J, Yamashita K, Shen D, Lin W. Morphology of perivascular spaces and enclosed blood vessels in young to middle-aged healthy adults at 7T: Dependences on age, brain region, and breathing gas. Neuroimage 2020; 218:116978. [PMID: 32447015 PMCID: PMC7485170 DOI: 10.1016/j.neuroimage.2020.116978] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Perivascular spaces (PVSs) are fluid-filled spaces surrounding penetrating blood vessels in the brain and are an integral pathway of the glymphatic system. A PVS and the enclosed blood vessel are commonly visualized as a single vessel-like complex (denoted as PVSV) in high-resolution MRI images. Quantitative characterization of the PVSV morphology in MRI images in healthy subjects may serve as a reference for detecting disease related PVS and/or blood vessel alterations in patients with brain diseases. To this end, we evaluated the age dependences, spatial heterogeneities, and dynamic properties of PVSV morphological features in 45 healthy subjects (21–55 years old), using an ultra-high-resolution three-dimensional transverse relaxation time weighted MRI sequence (0.41 × 0.41 × 0.4 mm3) at 7T. Quantitative PVSV parameters, including apparent diameter, count, volume fraction (VF), and relative contrast to noise ratio (rCNR) were calculated in the white matter and subcortical structures. Dynamic changes were induced by carbogen breathing which are known to induce vasodilation and increase the blood oxygenation level in the brain. PVSV count and VF significantly increased with age in basal ganglia (BG), so did rCNR in BG, midbrain, and white matter (WM). Apparent PVSV diameter also showed a positive association with age in the three brain regions, although it did not reach statistical significance. The PVSV VF and count showed large inter-subject variations, with coefficients of variation ranging from 0.17 to 0.74 after regressing out age and gender effects. Both apparent diameter and VF exhibited significant spatial heterogeneity, which cannot be explained solely by radio-frequency field inhomogeneities. Carbogen breathing significantly increased VF in BG and WM, and rCNR in thalamus, BG, and WM compared to air breathing. Our results are consistent with gradual dilation of PVSs with age in healthy adults. The PVSV morphology exhibited spatial heterogeneity and large inter-subject variations and changed during carbogen breathing compared to air breathing.
Collapse
Affiliation(s)
- Xiaopeng Zong
- Biomedical Research Imaging Center, Chapel Hill, NC, USA; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Chunfeng Lian
- Biomedical Research Imaging Center, Chapel Hill, NC, USA; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jordan Jimenez
- Biomedical Research Imaging Center, Chapel Hill, NC, USA
| | - Koji Yamashita
- Biomedical Research Imaging Center, Chapel Hill, NC, USA; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dinggang Shen
- Biomedical Research Imaging Center, Chapel Hill, NC, USA; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Biomedical Research Imaging Center, Chapel Hill, NC, USA; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|