1
|
Souza IDD, Lanças FM, Hallak JEC, Queiroz MEC. Fiber-in-tube SPME-CapLC-MS/MS method to determine Aβ peptides in cerebrospinal fluid obtained from Alzheimer's patients. J Chromatogr A 2024; 1723:464913. [PMID: 38642449 DOI: 10.1016/j.chroma.2024.464913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Mass spectrometry is characterized by its high sensitivity, ability to measure very low analyte concentrations, specificity to distinguish between closely related compounds, availability to generate high-throughput methods for screening, and high multiplexing capacity. This technique has been used as a platform to analyze fluid biomarkers for Alzheimer's disease. However, more effective sample preparation procedures, preferably antibody-independent, and more automated mass spectrometry platforms with improved sensitivity, chromatographic separation, and high throughput are needed for this purpose. This short communication discusses the development of a fiber-in-tube SPME-CapLC-MS/MS method to determine Aβ peptides in cerebrospinal fluid obtained from Alzheimer's disease patients. To obtain the fiber-in-tube SPME capillary, we longitudinally packed 22 nitinol fibers coated with a zwitterionic polymeric ionic liquid into the same length of the PEEK tube. In addition, this communication compares this fiber-in-tube SPME method with the conventional HPLC scale (HPLC-MS/MS) and when directly coupled to CapESI-MS/MS without chromatographic separation, and, as a case study, discusses the benefits and challenges inherent in miniaturizing the flow scale of the sample preparation technique (fiber-in-tube SPME) to the CapLC-MS/MS system. Fiber-in-tube SPME-CapLC-MS/MS provided LLOQ ranging from 0.09 to 0.10 ng mL-1, accuracy ranging from 91 to 117 % (recovery), and reproducibility of less than 18 % (RSD). Analysis of the cerebrospinal fluid samples obtained from Alzheimer's disease patients evidenced that the method is robust. At the capillary scale (10 µL min-1), this innovative method presented higher analytical sensitivity than the conventional HPLC-MS/MS scale. Although fiber-in-tube SPME directly coupled to CapESI-MS/MS offers advantages in terms of high throughput, the sample was dispersed and non-quantitatively desorbed from the capillary at low flow rate. These results highlighted that chromatographic separation is important to decrease the matrix effect and to achieve higher detectability, which is indispensable for bioanalysis.
Collapse
Affiliation(s)
- Israel Donizeti de Souza
- Departamento de Química da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (DQ-FFCLRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Fernando M Lanças
- Instituto de Química de São Carlos (IQSC), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaime E Cecílio Hallak
- Departamento de Neurociências e Ciências do Comportamento da Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria E Costa Queiroz
- Departamento de Química da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (DQ-FFCLRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
He M, Lian T, Guo P, Zhang Y, Huang Y, Qi J, Li J, Guan H, Luo D, Liu Z, Zhang W, Zheng Z, Yue H, Li J, Zhang W, Wang R, Zhang F, Wang X, Zhang W. Association between nutritional status and gait performance in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14502. [PMID: 37950363 PMCID: PMC11017406 DOI: 10.1111/cns.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/12/2023] Open
Abstract
AIMS This study aimed to comprehensively explore the nutrition and gait of AD patients at different stages and the relationship between them. METHODS A total of 85 AD patients were consecutively enrolled in this cross-sectional study and divided into the mild cognitive impairment (MCI) due to AD (AD-MCI) and the dementia due to AD (AD-D) groups. Demographic information, nutritional status, and gait performance were compared between the two groups, and the correlation between nutritional status and gait performance was subsequently analyzed by Pearson and Spearman correlation analyses. RESULTS The AD-D group had lower scores on Mini-Nutritional Assessment (MNA) and MNAm scales, lower levels of urea nitrogen, folic acid, and vitamin B12 in blood, and higher homocysteine level than those in the AD-MCI group (all p < 0.05). The AD-D group had slower step speed, shorter step length, and shorter stride length than those in the AD-MCI group (all p < 0.05). AD patients with decreased scores of MNA and MNAm scales, and declined levels of urea nitrogen and vitamin B12 in blood had reduced gait speed and gait cadence, and prolonged step length time and stride length time, whereas homocysteine showed the almost opposite results (all p < 0.05). In the AD-MCI group, the score of scale was negatively correlated with the coefficient of variation (CV) of stride length, and the folic acid level was negatively correlated with the CV of stride length and cadence (all p < 0.05). CONCLUSIONS AD patients at the dementia stage had worse nutritional status and gait performance than those at the MCI stage, which was associated with worse global cognition and activities of daily living. Poorer nutritional status was associated with higher gait variability in patients at the MCI stage and with poorer gait performance in patients at the dementia stage. Early identification and intervention of patients with nutritional risk or malnutrition may improve gait performance, thus reducing the risk of falling and cognitive decline, as well as the mortality.
Collapse
Grants
- 2016YFC1306000 National Key Research and Development Program of China
- 2016YFC1306300 National Key Research and Development Program of China
- 82201639 National Natural Science Foundation of China
- 30770745 National Natural Science Foundation of China
- 81071015 National Natural Science Foundation of China
- 81571229 National Natural Science Foundation of China
- 81970992 National Natural Science Foundation of China
- 2022-2-2048 Capital's Funds for Health Improvement and Research (CFH)
- kz201610025030 Key Technology R&D Program of Beijing Municipal Education Commission
- 4161004 Key Project of Natural Science Foundation of Beijing, China
- 7082032 Natural Science Foundation of Beijing, China
- JJ2018-48 Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing
- Z121107001012161 Capital Clinical Characteristic Application Research
- 2009-3-26 High Level Technical Personnel Training Project of Beijing Health System, China
- BIBD-PXM2013_014226_07_000084 Project of Beijing Institute for Brain Disorders
- 20071D0300400076 Excellent Personnel Training Project of Beijing, China
- IDHT20140514 Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality
- JING-15-2 Beijing Healthcare Research Project, China
- 14JL15 Capital Medical University, China
- 10JL49 Capital Medical University, China
- 2015-JL-PT-X04 Capital Medical University, China
- PYZ2018077 Natural Science Foundation of Capital Medical University, Beijing, China
- National Key Research and Development Program of China
- National Natural Science Foundation of China
- Capital's Funds for Health Improvement and Research (CFH)
- Natural Science Foundation of Beijing, China
- Capital Medical University, China
Collapse
Affiliation(s)
- Mingyue He
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tenghong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanan Zhang
- Department of Blood Transfusion, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yue Huang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & HealthUNSW SydneySydneyNew South WalesAustralia
| | - Jing Qi
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinghui Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Huiying Guan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Dongmei Luo
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhan Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weijia Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zijing Zheng
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hao Yue
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jing Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenjing Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ruidan Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Fan Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaomin Wang
- Department of PhysiologyCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Parkinson's DiseaseBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory on Parkinson DiseaseBeijingChina
| |
Collapse
|
3
|
Sampatakakis SN, Mamalaki E, Ntanasi E, Kalligerou F, Liampas I, Yannakoulia M, Gargalionis AN, Scarmeas N. Objective Physical Function in the Alzheimer's Disease Continuum: Association with Cerebrospinal Fluid Biomarkers in the ALBION Study. Int J Mol Sci 2023; 24:14079. [PMID: 37762384 PMCID: PMC10531412 DOI: 10.3390/ijms241814079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cognitive and physical decline, both indicators of aging, seem to be associated with each other. The aim of the present study was to investigate whether physical function parameters (walking time and handgrip strength) are related to cerebrospinal fluid (CSF) biomarkers (amyloid-beta Aβ42, Tau, PhTau) in individuals in the Alzheimer's disease (AD) continuum. The sample was drawn from the Aiginition Longitudinal Biomarker Investigation of Neurodegeneration study, comprising 163 individuals aged 40-75 years: 112 cognitively normal (CN) and 51 with mild cognitive impairment (MCI). Physical function parameters were measured at baseline, a lumbar puncture was performed the same day and CSF biomarkers were analyzed using automated methods. The association between walking time, handgrip strength and CSF biomarkers was evaluated by linear correlation, followed by multivariate linear regression models adjusted for age, sex, education and APOEe4 genotype. Walking time was inversely related to CSF Aβ42 (lower CSF values correspond to increased brain deposition) in all participants (p < 0.05). Subgroup analysis showed that this association was stronger in individuals with MCI and participants older than 60 years old, a result which remained statistically significant after adjustment for the aforementioned confounding factors. These findings may open new perspectives regarding the role of mobility in the AD continuum.
Collapse
Affiliation(s)
- Stefanos N. Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Eirini Mamalaki
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Faidra Kalligerou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece;
| | - Mary Yannakoulia
- Department of Nutrition and Diatetics, Harokopio University, 17671 Athens, Greece;
| | - Antonios N. Gargalionis
- Department of Medical Biopathology and Clinical Microbiology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
- The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Souza ID, Anderson JL, Tumas V, Queiroz MEC. Direct coupling of fiber-in-tube solid-phase microextraction with tandem mass spectrometry to determine amyloid beta peptides as biomarkers for Alzheimer's disease in cerebrospinal fluid samples. Talanta 2023; 254:124186. [PMID: 36521326 DOI: 10.1016/j.talanta.2022.124186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Current research efforts at neurological diseases have focused on identifying novel biomarkers to aid in diagnosis, to provide accurate prognostic information, and to monitor disease progression. This study presents the direct coupling of fiber-in-tube solid-phase microextraction to tandem mass spectrometry as a reliable method to determine amyloid beta peptides (Aβ38, Aβ40, and Aβ42) as biomarkers for Alzheimer's disease in cerebrospinal fluid (CSF) samples. To obtain the biocompatible fiber-in-tube SPME capillary, a PEEK tube segment was longitudinally packed with fine fibers [nitinol wires coated with a zwitterionic polymeric ionic liquid], to act as selective extraction medium. The fiber-in-tube SPME-MS/MS method integrated analyte extraction/enrichment and sample cleanup (exclusion of interferents) into one step. The method provided lower limits of quantification (LLOQ: 0.2 ng mL-1 for Aβ38 and 0.1 ng mL-1 for Aβ40 and Aβ42), high precision (CV lower than 11.6%), and high accuracy (relative standard deviation lower than 15.1%). This method was successfully applied to determine Aβ peptides in CSF samples obtained from AD patients (n = 8) and controls (healthy volunteers, n = 10). Results showed that Aβ42 levels in the CSF samples obtained from AD patients were significantly lower compared to healthy controls (p < 0.05). On the basis of the ROC analysis results, the Aβ42/Aβ40 ratio (AUC = 0.950, p < 0.01; 95%) performed significantly better than Aβ42 alone (AUC = 0.913, p < 0.01; 95%) in discriminating between AD patients and healthy controls and presented better diagnostic ability for AD. The novelties of this study are not only related to evaluating Aβ peptides as AD biomarkers, but also to demonstrating direct online coupling of fiber-in-tube SPME with MS/MS as a quantitative high-throughput method for bioanalysis.
Collapse
Affiliation(s)
- Israel D Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School of University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Maria Eugênia C Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
6
|
Tangen GG, Sverdrup K, Taraldsen K, Persson K, Engedal K, Bekkhus-Wetterberg P, Knapskog AB. Mobility and associations with levels of cerebrospinal fluid amyloid β and tau in a memory clinic cohort. Front Aging Neurosci 2023; 15:1101306. [PMID: 36820757 PMCID: PMC9939466 DOI: 10.3389/fnagi.2023.1101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Background Mobility impairments, in terms of gait and balance, are common in persons with dementia. To explore this relationship further, we examined the associations between mobility and cerebrospinal fluid (CSF) core biomarkers for Alzheimer's disease (AD). Methods In this cross-sectional study, we included 64 participants [two with subjective cognitive decline (SCD), 13 with mild cognitive impairment (MCI) and 49 with dementia] from a memory clinic. Mobility was examined using gait speed, Mini-Balance Evaluation Systems test (Mini-BESTest), Timed Up and Go (TUG), and TUG dual-task cost (TUG DTC). The CSF biomarkers included were amyloid-β 42 (Aβ42), total-tau (t-tau), and phospho tau (p-tau181). Associations between mobility and biomarkers were analyzed through correlations and multiple linear regression analyses adjusted for (1) age, sex, and comorbidity, and (2) SCD/MCI vs. dementia. Results Aβ42 was significantly correlated with each of the mobility outcomes. In the adjusted multiple regression analyses, Aβ42 was significantly associated with Mini-BESTest and TUG in the fully adjusted model and with TUG DTC in step 1 of the adjusted model (adjusting for age, sex, and comorbidity). T-tau was only associated with TUG DTC in step 1 of the adjusted model. P-tau181 was not associated with any of the mobility outcomes in any of the analyses. Conclusion Better performance on mobility outcomes were associated with higher levels of CSF Aβ42. The association was strongest between Aβ42 and Mini-BESTest, suggesting that dynamic balance might be closely related with AD-specific pathology.
Collapse
Affiliation(s)
- Gro Gujord Tangen
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway,*Correspondence: Gro Gujord Tangen,
| | - Karen Sverdrup
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristin Taraldsen
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway
| | - Karin Persson
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Engedal
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
7
|
Wisniewski T, Masurkar AV. Gait dysfunction in Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:267-274. [PMID: 37620073 DOI: 10.1016/b978-0-323-98817-9.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of age-associated dementia and will exponentially rise in prevalence in the coming decades, supporting the parallel development of the early stage detection and disease-modifying strategies. While primarily considered as a cognitive disorder, AD also features motor symptoms, primarily gait dysfunction. Such gait abnormalities can be phenotyped across classic clinical syndromes as well as by quantitative kinematic assessments to address subtle dysfunction at preclinical and prodromal stages. As such, certain measures of gait can predict the future cognitive and functional decline. Moreover, cross-sectional and longitudinal studies have associated gait abnormalities with imaging, biofluid, and genetic markers of AD across all stages. This suggests that gait assessment is an important tool in the clinical assessment of patients across the AD spectrum, especially to help identify at-risk individuals.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, NYU School of Medicine, New York, NY, United States; Department of Pathology, NYU School of Medicine, New York, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States; Division of Cognitive Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States.
| | - Arjun V Masurkar
- Department of Neurology, NYU School of Medicine, New York, NY, United States; Division of Cognitive Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Marcolini S, Rojczyk P, Seitz-Holland J, Koerte IK, Alosco ML, Bouix S. Posttraumatic Stress and Traumatic Brain Injury: Cognition, Behavior, and Neuroimaging Markers in Vietnam Veterans. J Alzheimers Dis 2023; 95:1427-1448. [PMID: 37694363 PMCID: PMC10578246 DOI: 10.3233/jad-221304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are common in Veterans and linked to behavioral disturbances, increased risk of cognitive decline, and Alzheimer's disease. OBJECTIVE We studied the synergistic effects of PTSD and TBI on behavioral, cognitive, and neuroimaging measures in Vietnam war Veterans. METHODS Data were acquired at baseline and after about one-year from male Veterans categorized into: PTSD, TBI, PTSD+TBI, and Veteran controls without PTSD or TBI. We applied manual tractography to examine white matter microstructure of three fiber tracts: uncinate fasciculus (N = 91), cingulum (N = 87), and inferior longitudinal fasciculus (N = 95). ANCOVAs were used to compare Veterans' baseline behavioral and cognitive functioning (N = 285), white matter microstructure, amyloid-β (N = 230), and tau PET (N = 120). Additional ANCOVAs examined scores' differences from baseline to follow-up. RESULTS Veterans with PTSD and PTSD+TBI, but not Veterans with TBI only, exhibited poorer behavioral and cognitive functioning at baseline than controls. The groups did not differ in baseline white matter, amyloid-β, or tau, nor in behavioral and cognitive functioning, and tau accumulation change. Progression of white matter abnormalities of the uncinate fasciculus in Veterans with PTSD compared to controls was observed; analyses in TBI and PTSD+TBI were not run due to insufficient sample size. CONCLUSIONS PTSD and PTSD+TBI negatively affect behavioral and cognitive functioning, while TBI does not contribute independently. Whether progressive decline in uncinate fasciculus microstructure in Veterans with PTSD might account for cognitive decline should be further studied. Findings did not support an association between PTSD, TBI, and Alzheimer's disease pathology based on amyloid and tau PET.
Collapse
Affiliation(s)
- Sofia Marcolini
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Philine Rojczyk
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Johanna Seitz-Holland
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Michael L. Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de Technologie Supe´rieure, Montre´al, Canada
| | | |
Collapse
|
9
|
Liu S, Li S, Xia Y, Zhang H, Tian J, Shan C, Pang F, Wang Y, Shang Y, Chen N. Effects of multi-mode physical stimulation on APP/PS1 Alzheimer's disease model mice. Heliyon 2022; 8:e12366. [PMID: 36590474 PMCID: PMC9800530 DOI: 10.1016/j.heliyon.2022.e12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Some researchers and clinics have reported that non-drug treatments for Alzheimer disease (AD) such as electrical stimulation, light stimulation, music stimulation, laser stimulation, and transcranial magnetic stimulation may have beneficial treatment effects. Following these findings, in this study, we performed multimodel physical stimulation on APP/PS1 mice using visible light, music with a γ rhythm, and an infrared laser. And the effects of physical stimulation on APP/PS1 mice were evaluated by behavioral analysis, the content of amyloid (Aβ40 and Aβ42), and NISSL staining of hippocampal tissue slices. The results of subsequent behavioral and tissue analyses showed that the multi-model physical stimulations could relieve APP/PS1 mice's dementia symptoms, such as the behavior ability, the content of Aβ40 and Aβ42 in the hippocampal tissue suspension, and Nissl staining for hippocampal tissue analyses.
Collapse
Affiliation(s)
- Shupeng Liu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Shuyang Li
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Yudan Xia
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Heng Zhang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Jing Tian
- School of Electron and Computer, Southeast University Chengxian College, Nanjing, 210088, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fufei Pang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Ying Wang
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yana Shang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Na Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
10
|
Skillbäck T, Blennow K, Zetterberg H, Skoog J, Rydén L, Wetterberg H, Guo X, Sacuiu S, Mielke MM, Zettergren A, Skoog I, Kern S. Slowing gait speed precedes cognitive decline by several years. Alzheimers Dement 2022; 18:1667-1676. [PMID: 35142034 PMCID: PMC9514316 DOI: 10.1002/alz.12537] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 01/24/2023]
Abstract
INTRODUCTION In this longitudinal study, we aimed to examine if slowing gait speed preceded cognitive decline and correlated with brain amyloidosis. METHODS The sample (n = 287) was derived from the Gothenburg H70 Birth Cohort Studies, with follow-ups between 2000 and 2015. Gait speed was measured by indoor walk, and cognition using the Clinical Dementia Rating (CDR) score. All participants had CDR = 0 at baseline. Some participants had data on cerebrospinal fluid (CSF) amyloid beta (Aβ)1-42 concentrations at the 2009 examination. RESULTS Gait speed for participants who worsened in CDR score during follow-up was slower at most examinations. Baseline gait speed could significantly predict CDR change from baseline to follow-up. Subjects with pathological CSF Aβ1- 42 concentrations at the 2009 visit had lost more gait speed compared to previous examinations. DISCUSSION Our results indicate that gait speed decline precedes cognitive decline, is linked to Alzheimer's pathology, and might be used for early detection of increased risk for dementia development.
Collapse
Affiliation(s)
- Tobias Skillbäck
- Institute of Neuroscience and Physiology, Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Dementia Research Institute at UCLLondonUK
| | - Johan Skoog
- Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden,Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalRegion Västra GötalandMölndalSweden
| | - Lina Rydén
- Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden,Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalRegion Västra GötalandMölndalSweden
| | - Hanna Wetterberg
- Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden
| | - Xinxin Guo
- Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden
| | - Simona Sacuiu
- Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden,Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalRegion Västra GötalandMölndalSweden
| | - Michelle M. Mielke
- Department of Health Sciences Research, Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Anna Zettergren
- Institute of Neuroscience and Physiology, Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden
| | - Ingmar Skoog
- Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden,Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalRegion Västra GötalandMölndalSweden
| | - Silke Kern
- Department of Neuropsychiatric epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgGothenburgSweden,Department of Psychiatry Cognition and Old Age PsychiatrySahlgrenska University HospitalRegion Västra GötalandMölndalSweden
| |
Collapse
|
11
|
Ojakäär T, Koychev I. Secondary Prevention of Dementia: Combining Risk Factors and Scalable Screening Technology. Front Neurol 2021; 12:772836. [PMID: 34867762 PMCID: PMC8634660 DOI: 10.3389/fneur.2021.772836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia. Over a third of dementia cases are estimated to be due to potentially modifiable risk factors, thus offering opportunities for both identification of those most likely to be in early disease as well as secondary prevention. Diabetes, hypertension and chronic kidney failure have all been linked to increased risk for AD and dementia and through their high prevalence are particularly apt targets for initiatives to reduce burden of AD. This can take place through targeted interventions of cardiovascular risk factors (shown to improve cognitive outcomes) or novel disease modifying treatments in people with confirmed AD pathology. The success of this approach to secondary prevention depends on the availability of inexpensive and scalable methods for detecting preclinical and prodromal dementia states. Developments in blood-based biomarkers for Alzheimer's disease are rapidly becoming a viable such method for monitoring large at-risk groups. In addition, digital technologies for remote monitoring of cognitive and behavioral changes can add clinically relevant data to further improve personalisation of prevention strategies. This review sets the scene for this approach to secondary care of dementia through a review of the evidence for cardiovascular risk factors (diabetes, hypertension and chronic kidney disease) as major risk factors for AD. We then summarize the developments in blood-based and cognitive biomarkers that allow the detection of pathological states at the earliest possible stage. We propose that at-risk cohorts should be created based on the interaction between cardiovascular and constitutional risk factors. These cohorts can then be monitored effectively using a combination of blood-based biomarkers and digital technologies. We argue that this strategy allows for both risk factor reduction-based prevention programmes as well as for optimisation of any benefits offered by current and future disease modifying treatment through rapid identification of individuals most likely to benefit from them.
Collapse
Affiliation(s)
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Park S, Kim Y. Bias-generating factors in biofluid amyloid-β measurements for Alzheimer's disease diagnosis. Biomed Eng Lett 2021; 11:287-295. [PMID: 34616582 DOI: 10.1007/s13534-021-00201-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide, yet the dearth of readily accessible diagnostic biomarkers is a substantial hindrance towards progressing to effective preventive and therapeutic approaches. Due to a long delay between cerebral amyloid-β (Aβ) accumulation and the onset of cognitive impairments, biomarkers that reflect Aβ pathology and enable routine screening for disease progression are of urgent need for application in the clinical diagnosis of AD. According to accumulating evidences, cerebrospinal fluid (CSF) and plasma offer windows to the brain as they allow monitoring of biochemical changes in the brain. Considering the high availability and accuracy in depicting Aβ deposition in the brain, Aβ levels in CSF and plasma are regarded as promising fluid biomarkers for the diagnosis of AD patients at an early stage. However, clinical data with intra- and interindividual variations in the concentrations of CSF and plasma Aβ implicate the need to reevaluate current Aβ detection methods and establish a standardized operating procedure. Therefore, this review introduces three bias-generating factors in biofluid Aβ measurement that may hamper the accurate Aβ quantification and how such complications can be overcome for the widespread implementation of fluid Aβ detection in clinical practice.
Collapse
Affiliation(s)
- Sohui Park
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| |
Collapse
|
13
|
Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-Based ATN Biomarkers of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2021; 79:177-195. [PMID: 33252080 DOI: 10.3233/jad-200900] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Amyloid Tau Neurodegeneration (ATN) framework was proposed to define the biological state underpinning Alzheimer's disease (AD). Blood-based biomarkers offer a scalable alternative to the costly and invasive currently available biomarkers. OBJECTIVE In this meta-analysis we sought to assess the diagnostic performance of plasma amyloid (Aβ40, Aβ42, Aβ42/40 ratio), tangle (p-tau181), and neurodegeneration (total tau [t-tau], neurofilament light [NfL]) biomarkers. METHODS Electronic databases were screened for studies reporting biomarker concentrations for AD and control cohorts. Biomarker performance was examined by random-effect meta-analyses based on the ratio between biomarker concentrations in patients and controls. RESULTS 83 studies published between 1996 and 2020 were included in the analyses. Aβ42/40 ratio as well as Aβ42 discriminated AD patients from controls when using novel platforms such as immunomagnetic reduction (IMR). We found significant differences in ptau-181 concentration for studies based on single molecule array (Simoa), but not for studies based on IMR or ELISA. T-tau was significantly different between AD patients and control in IMR and Simoa but not in ELISA-based studies. In contrast, NfL differentiated between groups across platforms. Exosome studies showed strong separation between patients and controls for Aβ42, t-tau, and p-tau181. CONCLUSION Currently available assays for sampling plasma ATN biomarkers appear to differentiate between AD patients and controls. Novel assay methodologies have given the field a significant boost for testing these biomarkers, such as IMR for Aβ, Simoa for p-tau181. Enriching samples through extracellular vesicles shows promise but requires further validation.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Katrin Jansen
- Department of Psychology, University of Münster, Münster, Germany
| | - Alina Dette
- Department of Psychology, University of Münster, Münster, Germany
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Heinz Holling
- Department of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Zhang JH, Zhang JF, Song J, Bai Y, Deng L, Feng CP, Xu XY, Guo HX, Wang Y, Gao X, Gu Y, Jin C, Zheng JF, Zhen Z, Su H. Effects of Berberine on Diabetes and Cognitive Impairment in an Animal Model: The Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1399-1415. [PMID: 34137676 DOI: 10.1142/s0192415x21500658] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a group of metabolic disorders with an increased risk of developing cognitive impairment and dementia. The hippocampus in the forebrain contains an abundance of insulin receptors related to cognitive function and plays an important role in the pathophysiology of neurodegenerative disorders. Berberine from traditional Chinese medicine has been used to treat diabetes and diabetic cognitive impairment, although its related mechanisms are largely unknown. In this study, a STZ diabetes rat model feeding with a high-fat diet was used to test the effects of berberine compared with metformin. Oral glucose tolerance and hyperinsulinemic-euglycemic clamp were used for glucose metabolism and insulin resistance. The Morris water maze was used to observe the compound effects on cognitive impairment. Serum and hippocampal [Formula: see text]-amyloid peptide (A[Formula: see text], Tau and phosphorylated Tau protein deposition in the hippocampi were measured. The TUNEL assay was used to detect the neuronal apoptosis, supported by histomorphological changes and transmissional electron microscopy (TEM) image. Our data showed that the diabetic rats had a significantly cognitive impairment. In addition to improving glucose metabolism and reducing insulin resistance, berberine significantly improved the cognitive function in the rat. Berberine also effectively decreased the expression of hippocampal tau protein, phosphorylated Tau, and increased insulin receptor antibodies. Moreover, berberine downregulated the abnormal phosphorylation of A[Formula: see text] and Tau protein and improved hippocampal insulin signaling. The TUNEL assay confirmed that berberine reduced hippocampal neuronal apoptosis supported by TEM. Thus, berberine significantly improved the cognitive function in diabetic rats by changing the peripheral and central insulin resistance. The reduction of neuronal injury, A[Formula: see text] deposition, abnormal phosphorylation of Tau protein, and neuronal apoptosis in the hippocampus were observed as the related mechanisms of action.
Collapse
Affiliation(s)
| | - Jin-Feng Zhang
- Jingmen Hospital of Traditional Chinese Medicine, Jingmen 448000, P. R. China
| | - Jun Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yu Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Lan Deng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Chun-Peng Feng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xin-Yao Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Hong-Xia Guo
- Langfang Normal University, Langfang 065000, P. R. China
| | - Yi Wang
- Tianjin Anding Hospital, Tianjin 300222, P. R. China
| | - Xin Gao
- Tianjin Anding Hospital, Tianjin 300222, P. R. China
| | - Yan Gu
- Tianjin Third Central Hospital, Tianjin 300170, P. R. China
| | - Chuan Jin
- Tianjin Binhai New Area Dagang Hospital, Tianjin 300270, P. R. China
| | - Jun-Fu Zheng
- Tianjin Binhai New Area TCM Hospital, Tianjin 300451, P. R. China
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Hao Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
15
|
Muurling M, Rhodius-Meester HFM, Pärkkä J, van Gils M, Frederiksen KS, Bruun M, Hasselbalch SG, Soininen H, Herukka SK, Hallikainen M, Teunissen CE, Visser PJ, Scheltens P, van der Flier WM, Mattila J, Lötjönen J, de Boer C. Gait Disturbances are Associated with Increased Cognitive Impairment and Cerebrospinal Fluid Tau Levels in a Memory Clinic Cohort. J Alzheimers Dis 2021; 76:1061-1070. [PMID: 32597806 PMCID: PMC7505008 DOI: 10.3233/jad-200225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Gait analysis with accelerometers is a relatively inexpensive and easy to use method to potentially support clinical diagnoses of Alzheimer’s disease and other dementias. It is not clear, however, which gait features are most informative and how these measures relate to Alzheimer’s disease pathology. Objective: In this study, we tested if calculated features of gait 1) differ between cognitively normal subjects (CN), mild cognitive impairment (MCI) patients, and dementia patients, 2) are correlated with cerebrospinal fluid (CSF) biomarkers related to Alzheimer’s disease, and 3) predict cognitive decline. Methods: Gait was measured using tri-axial accelerometers attached to the fifth lumbar vertebra (L5) in 58 CN, 58 MCI, and 26 dementia participants, while performing a walk and dual task. Ten gait features were calculated from the vertical L5 accelerations, following principal component analysis clustered in four domains, namely pace, rhythm, time variability, and length variability. Cognitive decline over time was measured using MMSE, and CSF biomarkers were available in a sub-group. Results: Linear mixed models showed that dementia patients had lower pace scores than MCI patients and CN subjects (p < 0.05). In addition, we found associations between the rhythm domain and CSF-tau, especially in the dual task. Gait was not associated with CSF Aβ42 levels and cognitive decline over time as measured with the MMSE. Conclusion: These findings suggest that gait — particularly measures related to pace and rhythm — are altered in dementia and have a direct link with measures of neurodegeneration.
Collapse
Affiliation(s)
- Marijn Muurling
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke F M Rhodius-Meester
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Internal Medicine, Geriatric Medicine section, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Juha Pärkkä
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Kristian S Frederiksen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Marie Bruun
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Merja Hallikainen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | | | - Casper de Boer
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
17
|
Seino Y, Nakamura T, Harada T, Nakahata N, Kawarabayashi T, Ueda T, Takatama M, Shoji M. Quantitative Measurement of Cerebrospinal Fluid Amyloid-β Species by Mass Spectrometry. J Alzheimers Dis 2020; 79:573-584. [PMID: 33337370 PMCID: PMC7902963 DOI: 10.3233/jad-200987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: High sensitivity liquid chromatography mass spectrometry (LC-MS/MS) was recently introduced to measure amyloid-β (Aβ) species, allowing for a simultaneous assay that is superior to ELISA, which requires more assay steps with multiple antibodies. Objective: We validated the Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 assay by LC-MS/MS and compared it with ELISA using cerebrospinal fluid (CSF) samples to investigate its feasibility for clinical application. Methods: CSF samples from 120 subjects [8 Alzheimer’s disease (AD) with dementia (ADD), 2 mild cognitive dementia due to Alzheimer’s disease (ADMCI), 14 cognitively unimpaired (CU), and 96 neurological disease subjects] were analyzed. Aβ species were separated using the Shimadzu Nexera X2 system and quantitated using a Qtrap 5500 LC-MS/MS system. Aβ1-40 and Aβ1-42 levels were validated using ELISA. Results: CSF levels in CU were 666±249 pmol/L in Aβ1-38, 2199±725 pmol/L in Aβ1-40, 153.7±79.7 pmol/L in Aβ1-42, and 9.78±4.58 pmol/L in Aβ1-43. The ratio of the amounts of Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 was approximately 68:225:16:1. Linear regression analyses showed correlations among the respective Aβ species. Both Aβ1-40 and Aβ1-42 values were strongly correlated with ELISA measurements. No significant differences were observed in Aβ1-38 or Aβ1-40 levels between AD and CU. Aβ1-42 and Aβ1-43 levels were significantly lower, whereas the Aβ1-38/1-42, Aβ1-38/1-43, and Aβ1-40/Aβ1-43 ratios were significantly higher in AD than in CU. The basic assay profiles of the respective Aβ species were adequate for clinical usage. Conclusion: A quantitative LC-MS/MS assay of CSF Aβ species is as reliable as specific ELISA for clinical evaluation of CSF biomarkers for AD.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Neurology, Hirosaki National Hospital, Hirosaki, Aomori, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tomoo Harada
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Naoko Nakahata
- Department of Speech-Language-Hearing Therapy, Hirosaki University of Health and Welfare, Hirosaki, Aomori, Japan
| | | | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Masamitsu Takatama
- Dementia Center, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - Mikio Shoji
- Dementia Center, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| |
Collapse
|
18
|
He L, de Souto Barreto P, Aggarwal G, Nguyen AD, Morley JE, Li Y, Bateman RJ, Vellas B. Plasma Aβ and neurofilament light chain are associated with cognitive and physical function decline in non-dementia older adults. Alzheimers Res Ther 2020; 12:128. [PMID: 33032662 PMCID: PMC7545881 DOI: 10.1186/s13195-020-00697-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cognition is closely associated with physical function. Although high brain amyloid-β (Aβ) deposition and neurofilament light chain (NfL) are associated with cognitive and gait speed decline, relationships of combined plasma Aβ and NfL profiles with cognitive and physical functions in older adults remain unknown. The research aim of this study was to investigate the prospective associations of combined plasma Aβ and NfL profiles with cognitive and physical functions in older adults. METHODS Participants (n = 452, aged 76 ± 5 years) who had both plasma Aβ and NfL data collected from the Multidomain Alzheimer's Preventive Trial (MAPT, May 2008 to April 2016) were included in the current study. These participants were from four MAPT groups (multidomain interventions [physical activity and nutritional counselling, and cognitive training], omega-3 supplementation, multidomain plus omega-3 supplementation and control group) and had received a 3-year intervention, followed by a 2-year observational follow-up. Cognitive function was evaluated as Mini-Mental State Examination and composite cognitive score (CCS, a mean Z-score combining four cognitive tests). Physical function was evaluated as gait speed (4-m usual-pace walk test) and chair-stand time (5-time maximal chair-stand test). Cognitive and physical function data measured at the time of and after blood Aβ and NfL tests were used for analysis. Participants with plasma Aβ42/Aβ40 ratios lower than 0.107 and NfL levels greater than 93.04 pg/ml were classified as Aβ+ and NfL+. Multivariable regressions and mixed-effects linear models were used for the analysis. RESULTS At the cross-sectional level, no significant association was found between Aβ+NfL+ and cognitive or physical function after controlling for age, sex, body mass index, education level and MAPT group. Evaluating longitudinal changes, participants with Aβ+NfL+ had greater annual declines in the CCS (β = - 0.11, 95%CI [- 0.17, - 0.05]) and gait speed (β = - 0.03, 95%CI [- 0.05, - 0.005]). After adjusting for APOE ɛ4 genotype, Aβ+NfL+ was associated with a greater decline only in the CCS (β = - 0.09, 95%CI [- 0.15, - 0.02]). CONCLUSIONS Combined low plasma Aβ42/Aβ40 ratio and high plasma NfL level was associated with greater declines in cognition and gait speed over time, providing further evidence of the links between cognitive and physical function. TRIAL REGISTRATION www.clinicaltrials.gov [ NCT00672685 ].
Collapse
Affiliation(s)
- Lingxiao He
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 allées Jules Guesdes, 31000, Toulouse, France.
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 allées Jules Guesdes, 31000, Toulouse, France
- UMR UPS/INSERM, 1027 University of Toulouse III, Toulouse, France
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 allées Jules Guesdes, 31000, Toulouse, France
- UMR UPS/INSERM, 1027 University of Toulouse III, Toulouse, France
| |
Collapse
|
19
|
Park YM, Ahn J, Choi YS, Jeong JM, Lee SJ, Lee JJ, Choi BG, Lee KG. Flexible nanopillar-based immunoelectrochemical biosensor for noninvasive detection of Amyloid beta. NANO CONVERGENCE 2020; 7:29. [PMID: 32870415 PMCID: PMC7462961 DOI: 10.1186/s40580-020-00239-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/25/2020] [Indexed: 05/11/2023]
Abstract
The noninvasive early detection of biomarkers for Alzheimer's disease (AD) is essential for the development of specific treatment strategies. This paper proposes an advanced method for fabricating highly ordered and flexible nanopillar-based electrochemical biosensors by the combination of soft/photolithography and metal evaporation. The nanopillar array (NPA) exhibits high surface area containing 1500 nm height and 500 nm diameter with 3:1 ratio. In regard with physical properties of polyurethane (PU) substrate, the developed NPA is sustainable and durable to external pressure such as bending and twisting. To manipulate the NPA surface to biocompatible, the gold was uniformly deposited on the PU substrate. The thiol chemistry which is stably modified on the gold surface as a form of self-assembled monolayer was employed for fabricating the NPA as a biocompatible chip by covalently immobilize the antibodies. The proposed nanopillar-based immunoelectrochemical biosensor exhibited good and stable electrochemical performance in β-amyloid (Aβ) detection. Moreover, we successfully confirmed the performance of the as-developed sensor using the artificial injection of Aβ in human tear, with sensitivity of 0.14 ng/mL and high reproducibility (as a standard deviation below 10%). Our findings show that the developed nanopillar-based sensor exhibits reliable electrochemical characteristics and prove its potential for application as a biosensor platform for testing at the point of care.
Collapse
Affiliation(s)
- Yoo Min Park
- Division of Nano-Bio Sensor/Chip Development, National NanoFab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Junhyoung Ahn
- Department of Nano Manufacturing Technology, Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Young Sun Choi
- Division of Nano-Bio Sensor/Chip Development, National NanoFab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Jae-Min Jeong
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seok Jae Lee
- Division of Nano-Bio Sensor/Chip Development, National NanoFab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Jae Jong Lee
- Department of Nano Manufacturing Technology, Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea.
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea.
| | - Kyoung G Lee
- Division of Nano-Bio Sensor/Chip Development, National NanoFab Center (NNFC), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Advantages and Pitfalls in Fluid Biomarkers for Diagnosis of Alzheimer's Disease. J Pers Med 2020; 10:jpm10030063. [PMID: 32708853 PMCID: PMC7563364 DOI: 10.3390/jpm10030063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a commonly occurring neurodegenerative disease in the advanced-age population, with a doubling of prevalence for each 5 years of age above 60 years. In the past two decades, there has been a sustained effort to find suitable biomarkers that may not only aide with the diagnosis of AD early in the disease process but also predict the onset of the disease in asymptomatic individuals. Current diagnostic evidence is supportive of some biomarker candidates isolated from cerebrospinal fluid (CSF), including amyloid beta peptide (Aβ), total tau (t-tau), and phosphorylated tau (p-tau) as being involved in the pathophysiology of AD. However, there are a few biomarkers that have been shown to be helpful, such as proteomic, inflammatory, oral, ocular and olfactory in the early detection of AD, especially in the individuals with mild cognitive impairment (MCI). To date, biomarkers are collected through invasive techniques, especially CSF from lumbar puncture; however, non-invasive (radio imaging) methods are used in practice to diagnose AD. In order to reduce invasive testing on the patients, present literature has highlighted the potential importance of biomarkers in blood to assist with diagnosing AD.
Collapse
|
21
|
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Vo VG. Role of Body-Fluid Biomarkers in Alzheimer's Disease Diagnosis. Diagnostics (Basel) 2020; 10:diagnostics10050326. [PMID: 32443860 PMCID: PMC7277970 DOI: 10.3390/diagnostics10050326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease that requires extremely specific biomarkers for its diagnosis. For current diagnostics capable of identifying AD, the development and validation of early stage biomarkers is a top research priority. Body-fluid biomarkers might closely reflect synaptic dysfunction in the brain and, thereby, could contribute to improving diagnostic accuracy and monitoring disease progression, and serve as markers for assessing the response to disease-modifying therapies at early onset. Here, we highlight current advances in the research on the capabilities of body-fluid biomarkers and their role in AD pathology. Then, we describe and discuss current applications of the potential biomarkers in clinical diagnostics in AD.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Qui Thanh Hoai Ta
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Kim Oanh Nguyen
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam;
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Correspondence: (T.T.D.N.); (V.G.V.)
| | - Van Giau Vo
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea
- Department of BionanoTechnology, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea
- Correspondence: (T.T.D.N.); (V.G.V.)
| |
Collapse
|
22
|
Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 2019; 51:1-10. [PMID: 31073121 PMCID: PMC6509326 DOI: 10.1038/s12276-019-0250-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023] Open
Abstract
Current technological advancements in clinical and research settings have permitted a more intensive and comprehensive understanding of Alzheimer’s disease (AD). This development in knowledge regarding AD pathogenesis has been implemented to produce disease-modifying drugs. The potential for accessible and effective therapeutic methods has generated a need for detecting this neurodegenerative disorder during early stages of progression because such remedial effects are more profound when implemented during the initial, prolonged prodromal stages of pathogenesis. The aggregation of amyloid-β (Aβ) and tau isoforms are characteristic of AD; thus, they are considered core candidate biomarkers. However, research attempting to establish the reliability of Aβ and tau as biomarkers has culminated in an amalgamation of contradictory results and theories regarding the biomarker concentrations necessary for an accurate diagnosis. In this review, we consider the capabilities and limitations of fluid biomarkers collected from cerebrospinal fluid, blood, and oral, ocular, and olfactory secretions as diagnostic tools for AD, along with the impact of the integration of these biomarkers in clinical settings. Furthermore, the evolution of diagnostic criteria and novel research findings are discussed. This review is a summary and reflection of the ongoing concerted efforts to establish fluid biomarkers as a diagnostic tool and implement them in diagnostic procedures. Markers from body fluids could help clinicians diagnose Alzheimer’s disease before cognitive decline appears. After numerous setbacks in treating advanced Alzheimer’s, researchers are eager to identify biological indicators that facilitate earlier disease detection and interception. A review by YoungSoo Kim and colleagues at Yonsei University in South Korea, explores the promise of ‘fluid biomarkers,’ which enables diagnosis using cerebrospinal fluid (CSF), blood, oral, ocular, and olfactory fluid samples. Shifts in CSF levels of amyloid beta and tau, two proteins central to Alzheimer’s pathology, can reliably monitor at-risk individuals. Although CSF collection is unpleasant for patients, it remains more promising than blood, where current data for candidate fluid biomarkers are relatively inconclusive. In this review, investigations to discover safer, cheaper, and more reliable diagnostic tools to shift treatment from alleviation to prevention are introduced.
Collapse
|
23
|
Abstract
Neurodegenerative diseases represent a daunting challenge in clinical diagnosis and management. Biomarkers that might aid in the diagnosis of these devastating and globally important diseases are urgently sought and required. Here we describe the application and state of development of a range of cerebrospinal fluid biomarkers in common neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia and prion diseases.
Collapse
Affiliation(s)
- Thalia T Robey
- Neurodegenerative Disorders Research Pty Ltd, 4 Lawrence Avenue, West Perth, Western Australia 6005, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, 4 Lawrence Avenue, West Perth, Western Australia 6005, Australia
| |
Collapse
|