1
|
Dang L, Wei S, Zhao Y, Zhou R, Shang S, Gao F, Wang J, Wang J, Qu Q. Effects of Probucol on plasma amyloid-β transport in patients with hyperlipidemia: a 12-week randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2024; 23:410. [PMID: 39702132 DOI: 10.1186/s12944-024-02398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although dyslipidemia has been acknowledged as a risk factor for Alzheimer's disease (AD), the effects of lipid-lowering drugs on AD have not been determined. The primary pathophysiological hallmark of AD is the deposition of amyloid-β (Aβ) plaques in the brain. Plasma Aβ levels are influenced by the transport of Aβ from the central nervous system to the peripheral blood. This study investigates the effects of Probucol, a lipid-lowering and antioxidant drug, on plasma Aβ transport. METHODS A total of 120 hyperlipidemic patients with normal cognition were randomly assigned (1:1 ratio) to receive either Probucol (1000 mg daily for 12 weeks) or a placebo. Plasma Aβ, soluble receptor of advanced glycation end products (sRAGE), and fasting lipid profiles were measured at baseline and every 6 weeks. RESULTS A total of 108 participants completed the study, with 55 in the Probucol group. The cohort consisted of 58 (53.7%) women, with a mean age of 58.4 ± 8.0 (range, 45-80) years. After 12 weeks of treatment, the changes in plasma Aβ42 and sRAGE levels significantly differed between the Probucol and placebo groups (ΔAβ42: β = 6.827, P = 0.030; ΔsRAGE: β = 98.668, P = 0.004). Furthermore, ΔsRAGE was positively correlated with the change in Aβ42 (β = 0.018, P = 0.048). When adjusted for ΔsRAGE, the effect of Probucol on plasma Aβ42 levels was attenuated (β = 5.065, P = 0.116). In the Probucol group only, ΔsRAGE was significantly correlated with oxidized low-density lipoproteins (β = 4.27, P = 0.011), total cholesterol (β = 67.50, P = 0.046), and low-density lipoproteins (β = - 91.01, P = 0.011). CONCLUSIONS Daily oral administration of Probucol (1000 mg) for 12 weeks significantly increased plasma Aβ42 levels, likely through modulation of sRAGE. This effect may be attributed to the antioxidant and lipid-lowering properties of Probucol. These findings suggest that Probucol could potentially serve as a protective agent against the pathological processes of AD. TRIAL REGISTRATION This study was registered on the Chinese Clinical Trial Registry platform in June 2019 (Trial registration number: ChiCTR-1900023542).
Collapse
Affiliation(s)
- Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong Zhou
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
DuBord AY, Paolillo EW, Staffaroni AM. Remote Digital Technologies for the Early Detection and Monitoring of Cognitive Decline in Patients With Type 2 Diabetes: Insights From Studies of Neurodegenerative Diseases. J Diabetes Sci Technol 2024; 18:1489-1499. [PMID: 37102472 PMCID: PMC11528805 DOI: 10.1177/19322968231171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Type 2 diabetes (T2D) is a risk factor for cognitive decline. In neurodegenerative disease research, remote digital cognitive assessments and unobtrusive sensors are gaining traction for their potential to improve early detection and monitoring of cognitive impairment. Given the high prevalence of cognitive impairments in T2D, these digital tools are highly relevant. Further research incorporating remote digital biomarkers of cognition, behavior, and motor functioning may enable comprehensive characterizations of patients with T2D and may ultimately improve clinical care and equitable access to research participation. The aim of this commentary article is to review the feasibility, validity, and limitations of using remote digital cognitive tests and unobtrusive detection methods to identify and monitor cognitive decline in neurodegenerative conditions and apply these insights to patients with T2D.
Collapse
Affiliation(s)
- Ashley Y. DuBord
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Technology Society, Burlingame, CA, USA
| | - Emily W. Paolillo
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. How calcineurin inhibitors affect cognition. Acta Physiol (Oxf) 2024; 240:e14161. [PMID: 38747643 DOI: 10.1111/apha.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
AIMS With a focus on the discrepancy between preclinical and clinical findings, this review will gather comprehensive information about the effects of calcineurin inhibitors (CNI) on cognitive function and related brain pathology from in vitro, in vivo, and clinical studies. We also summarize the potential mechanisms that underlie the pathways related to CNI-induced cognitive impairment. METHODS We systematically searched articles in PubMed using keywords 'calcineurin inhibitor*' and 'cognition' to identify related articles, which the final list pertaining to underlying mechanisms of CNI on cognition. RESULTS Several studies have reported an association between calcineurin and the neuropathology of Alzheimer's disease (AD). AD is the most common neurocognitive disorder associated with amyloid plaques and neurofibrillary tangles in the brain, leading to cognitive impairment. CNI, including tacrolimus and cyclosporin A, are commonly prescribed for patients with transplantation of solid organs such as kidney, liver, or heart, those drugs are currently being used as long-term immunosuppressive therapy. Although preclinical models emphasize the favorable effects of CNI on the restoration of brain pathology due to the impacts of calcineurin on the alleviation of amyloid-beta deposition and tau hyperphosphorylation, or rescuing synaptic and mitochondrial functions, treatment-related neurotoxicity, resulting in cognitive dysfunctions has been observed in clinical settings of patients who received CNI. CONCLUSION Inconsistent results of CNI on cognition from clinical studies have been observed due to impairment of the blood-brain barrier, neuroinflammation mediated by reactive oxygen species, and alteration in mitochondrial fission, and extended research is required to confirm its promising use in cognitive impairment.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripron C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Picton B, Wong J, Lopez AM, Solomon SS, Andalib S, Brown NJ, Dutta RR, Paff MR, Hsu FP, Oh MY. Deep Brain Stimulation as an Emerging Therapy for Cognitive Decline in Alzheimer Disease: Systematic Review of Evidence and Current Targets. World Neurosurg 2024; 184:253-266.e2. [PMID: 38141755 DOI: 10.1016/j.wneu.2023.12.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE With no cure for Alzheimer disease (AD), current efforts involve therapeutics that prevent further cognitive impairment. Deep brain stimulation (DBS) has been studied for its potential to mitigate AD symptoms. This systematic review investigates the efficacy of current and previous targets for their ability to slow cognitive decline in treating AD. METHODS A systematic review of the literature was performed through a search of the PubMed, Scopus, and Web of Science databases. Human studies between 1994 and 2023 were included. Sample size, cognitive outcomes, and complications were recorded for each study. RESULTS Fourteen human studies were included: 7 studies with 6 distinct cohorts (n = 56) targeted the fornix, 6 studies with 3 distinct cohorts (n = 17) targeted the nucleus basalis of Meynert (NBM), and 1 study (n = 3) investigated DBS of the ventral striatum (VS). The Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental State Examination, and Clinical Dementia Rating Scale Sum of Boxes were used as the primary outcomes. In 5 of 6 cohorts where DBS targeted the fornix, cognitive decline was slowed based on the Alzheimer's Disease Assessment Scale-Cognitive Subscale or Mini-Mental State Examination scores. In 2 of 3 NBM cohorts, a similar reduction was reported. When DBS targeted the VS, the patients' Clinical Dementia Rating Scale Sum of Boxes scores indicated a slowed decline. CONCLUSIONS This review summarizes current evidence and addresses variability in study designs regarding the therapeutic benefit of DBS of the fornix, NBM, and VS. Because of varying study parameters, varying outcome measures, varying study durations, and limited cohort sizes, definitive conclusions regarding the utility of DBS for AD cannot be made. Further investigation is needed to determine the safety and efficacy of DBS for AD.
Collapse
Affiliation(s)
- Bryce Picton
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA.
| | - Joey Wong
- School of Medicine, University of California, Irvine, Orange, California, USA
| | - Alexander M Lopez
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Sean S Solomon
- School of Medicine, University of California, Irvine, Orange, California, USA
| | - Saman Andalib
- School of Medicine, University of California, Irvine, Orange, California, USA
| | - Nolan J Brown
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Rajeev R Dutta
- School of Medicine, University of California, Irvine, Orange, California, USA
| | - Michelle R Paff
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Frank P Hsu
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Michael Y Oh
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| |
Collapse
|
5
|
Qiao Y, Gu J, Yu M, Chi Y, Ma Y. Comparative Efficacy and Safety of Monoclonal Antibodies for Cognitive Decline in Patients with Alzheimer's Disease: A Systematic Review and Network Meta-Analysis. CNS Drugs 2024; 38:169-192. [PMID: 38429615 DOI: 10.1007/s40263-024-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Recent clinical trials of anti-Aβ monoclonal antibodies (mAbs) in the treatment of early Alzheimer's disease (AD) have produced encouraging cognitive and clinical results. The purpose of this network meta-analysis (NMA) was to compare and rank mAb drugs according to their efficacy and safety. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were searched for randomized controlled trials testing various mAbs for the treatment of cognitive decline in patients with AD, up to March 31, 2023. R software (version 4.2.3) along with JAGS and STATA software (version 15.0) were used for statistical analysis. Odds ratio (OR) for binary variables, mean difference (MD) for continuous variables, and their 95% confidence intervals (CI) were utilized to estimate treatment effects and rank probabilities for each mAb in terms of safety and efficacy outcomes. We calculated the surface under the cumulative ranking area (SUCRA) to evaluate each mAb, with higher SUCRA values indicating better efficacy or lower likelihood of adverse events. RESULTS Thirty-three randomized controlled trials with a total of 21,087 patients were included in the current NMA, involving eight different mAbs. SUCRA values showed that aducanumab (87.01% and 99.37%, respectively) was the most likely to achieve the best therapeutic effect based on the changes of Mini-Mental State Examination (MMSE) and Clinical Dementia Rating scale Sum of Boxes (CDR-SB) scores. Donanemab (88.50% and 99.00%, respectively) performed better than other therapies for Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and Positron Emission Tomography-Standardized Uptake Value ratio (PET-SUVr). Lecanemab (87.24%) may be the most promising way to slow down the decrease of Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) score. In the analysis of the incidence of adverse events (subjects with any treatment-emergent adverse event), gantenerumab (89.12%) had the least potential for adverse events, while lecanemab (0.79%) may cause more adverse events. Solanezumab (95.75% and 80.38%, respectively) had the lowest incidence of amyloid-related imaging abnormalities characterized by edema and effusion (ARIA-E) and by cerebral microhemorrhages (ARIA-H) of the included immunotherapies. While SUCRA values provided a comprehensive measure of treatment efficacy, the inherent statistical uncertainty required careful analysis in clinical application. CONCLUSION Despite immunotherapies significantly increasing the risks of adverse events and ARIA, the data suggest that mAbs can effectively improve the cognitive function of patients with mild and moderate AD. According to the NMA, aducanumab was the most likely to achieve significant improvements in different cognitive and clinical assessments (statistically improved MMSE and CDR-SB), followed by donanemab (statistically improved ADAS-Cog, and PET-SUVr) and lecanemab (statistically improved ADCS-ADL).
Collapse
Affiliation(s)
- Yue Qiao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Jian Gu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Miao Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Yuewei Chi
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Ying Ma
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
6
|
Hamada S, Iwagami M, Sakata N, Hattori Y, Kidana K, Ishizaki T, Tamiya N, Akishita M, Yamanaka T. Changes in Polypharmacy and Potentially Inappropriate Medications in Homebound Older Adults in Japan, 2015-2019: a Nationwide Study. J Gen Intern Med 2023; 38:3517-3525. [PMID: 37620717 PMCID: PMC10713963 DOI: 10.1007/s11606-023-08364-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND With rising worldwide population aging, the number of homebound individuals with multimorbidity is increasing. Improvement in the quality of home medical care (HMC), including medications, contributes to meeting older adults' preference for "aging in place" and securing healthcare resources. OBJECTIVE To evaluate the changes in drug prescriptions, particularly potentially inappropriate medications (PIMs), among older adults receiving HMC in recent years, during which measures addressing inappropriate polypharmacy were implemented, including the introduction of clinical practice guidelines and medical fees for deprescribing. DESIGN A cross-sectional study. PARTICIPANTS Using data from the national claims database in Japan, this study included older adults aged ≥ 75 years who received HMC in October 2015 (N = 499,850) and October 2019 (N = 657,051). MAIN MEASURES Number of drugs, prevalence of polypharmacy (≥ 5 regular drugs), major drug categories/classes, and PIMs according to Japanese guidelines were analyzed. Random effects logistic regression models were used to evaluate the differences in medications between 2015 and 2019, considering the correlation within individuals who contributed to the analysis in both years. KEY RESULTS The number of drugs remained unchanged from 2015 to 2019 (median: 6; interquartile range: 4, 9). The prevalence of polypharmacy also remained unchanged at 70.0% in both years (P = 0.93). However, the prescription of some drugs (e.g., direct oral anticoagulants, new types of hypnotics, acetaminophen, proton pump inhibitors, and β-blockers) increased, whereas others (e.g., warfarin, vasodilators, H2 blockers, acetylcholinesterase inhibitors, and benzodiazepines) decreased. Among the frequently prescribed PIMs, benzodiazepines/Z-drugs (25.6% in 2015 to 21.1% in 2019; adjusted odds ratio: 0.52) and H2 blockers (11.2 to 7.3%; 0.45) decreased, whereas diuretics (23.8 to 23.6%; 0.90) and antipsychotics (9.7 to 10.5%; 1.11) remained unchanged. CONCLUSIONS We observed some favorable changes but identified some continuous and new challenges. This study suggests that continued attention to medication optimization is required to achieve safe and effective HMC.
Collapse
Affiliation(s)
- Shota Hamada
- Research Department, Institute for Health Economics and Policy, Association for Health Economics Research and Social Insurance and Welfare, Tokyo, Japan.
- Department of Health Services Research, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
- Department of Home Care Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masao Iwagami
- Department of Health Services Research, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuo Sakata
- Department of Health Services Research, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Heisei Medical Welfare Group Research Institute, Tokyo, Japan
| | - Yukari Hattori
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiwami Kidana
- Department of Home Care Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuro Ishizaki
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Nanako Tamiya
- Department of Health Services Research, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Yamanaka
- Department of Home Care Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Zheng X, Lin Y, Huang L, Lin X. Effect of lidocaine on cognitively impaired rats: Anti-inflammatory and antioxidant mechanisms in combination with CRMP2 antiphosphorylation. Immun Inflamm Dis 2023; 11:e1040. [PMID: 37904712 PMCID: PMC10566448 DOI: 10.1002/iid3.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Studies have shown that lidocaine has antioxidative stress, anti-inflammatory, and nerve-protective effects. The current study investigated the effects of lidocaine on cognitive function in rats with cognitive dysfunction. METHODS A total of 48 rats were randomly assigned to four groups of 12 rats each: control group; L (lidocaine) + D (d-galactose) group, d-galactose group (D group); and D + L group. We assessed cognitive function using a Morris water maze (MWM) and pathologic changes of hippocampal sections. An enzyme-linked immunosorbent assay (ELIZA) was used to detect serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels in rats, and protein immunoblotting (western blot) was used to detect brain tissue proteins (collapsing response mediator protein-2 [CRMP2], phosphorylated-collapsing response mediator protein-2 [P-CRMP2], and β-amyloid protein [Aβ]). RESULTS The MWM showed that the d-gal group (284.09 ± 20.46, 5.20 ± 0.793) performed worse than the L + D (265.37 ± 22.34, 4.170 ± 0.577; p = .000) and D + L groups (254.72 ± 27.87, 3.750; p = .000) in escape latency and number of platform crossings, respectively. The L + D group (44.94 ± 2.92 pg/mL, 6.22 ± 0.50 pg/mL, and 460.02 ± 8.26 nmol/mL) and D + L group (46.88 ± 2.63 pg/mL, 5.90 ± 0.38 pg/mL, and 465.6 ± 16.07 nmol/mL) had significantly lower serum inflammatory levels of interleukin-6, tumor necrosis factor-α, and MDA than the d-gal group (57.79 ± 3.96 pg/mL, 11.25 ± 1.70 pg/mL, and 564.9 ± 15.90 nmol/mL), respectively. The L + D group (3.17 ± 0.41 μg/mL) and D + L group (3.08 ± 0.09 μg/mL) had significantly higher serum inflammatory levels of SOD than the d-gal group (2.20 ± 0.13 μg/mL) (all p = .000). The levels of CRMP2, P-CRMP2, and Aβ in the brain tissue homogenates of the L + D group (0.87 ± 0.04, 0.57 ± 0.0, and 0.16 ± 0.02) and the D + L group (0.82 ± 0.05, 0.58 ± 0.09, and 0.15 ± 0.02) were significantly different than the d-gal group (0.67 ± 0.03, 0.96 ± 0.040, and 0.29 ± 0.05). CONCLUSIONS Lidocaine was shown to reduce cognitive impairment in rats with cognitive dysfunction through anti-inflammatory and antioxidative stress mechanisms in combination with CRMP2 antiphosphorylation.
Collapse
Affiliation(s)
- Xiaohong Zheng
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Yuerong Lin
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Linshen Huang
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Xianzhong Lin
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
8
|
Abboud T, Rohde V, Mielke D. Mini review: Current status and perspective of S100B protein as a biomarker in daily clinical practice for diagnosis and prognosticating of clinical outcome in patients with neurological diseases with focus on acute brain injury. BMC Neurosci 2023; 24:38. [PMID: 37474905 PMCID: PMC10360330 DOI: 10.1186/s12868-023-00807-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Prognosticating the clinical outcome of neurological diseases is essential to guide treatment and facilitate decision-making. It usually depends on clinical and radiological findings. Biomarkers have been suggested to support this process, as they are deemed objective measures and can express the extent of tissue damage or reflect the degree of inflammation. Some of them are specific, and some are not. Few of them, however, reached the stage of daily application in clinical practice. This mini review covers available applications of the S100B protein in prognosticating clinical outcome in patients with various neurological disorders, particularly in those with traumatic brain injury, spontaneous subarachnoid hemorrhage and ischemic stroke. The aim is to provide an understandable picture of the clinical use of the S100B protein and give a brief overview of the current limitations that require future solutions.
Collapse
Affiliation(s)
- Tammam Abboud
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
9
|
Richmond V, Falcone BN, Maier MS, Arroyo Máñez P. Putting the Puzzle Together To Get the Whole Picture: Molecular Basis of the Affinity of Two Steroid Derivatives to Acetylcholinesterase. ACS OMEGA 2023; 8:25610-25622. [PMID: 37483177 PMCID: PMC10357547 DOI: 10.1021/acsomega.3c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has no cure because its etiology is still unknown, and its main treatment is the administration of acetylcholinesterase (AChE) inhibitors. The study of the mechanism of action of this family of compounds is critical for the design of new more potent and specific inhibitors. In this work, we study the molecular basis of an uncompetitive inhibitor (compound 1, 2β, 3α-dihydroxy-5α-cholestan-6-one disulfate), which we have proved to be a peripheral anionic site (PAS)-binding AChE inhibitor. The pipeline designed in this work is key to the development of other PAS inhibitors that not only inhibit the esterase action of the enzyme but could also modulate the non-cholinergic functions of AChE linked to the process of amylogenesis. Our studies showed that 1 inhibits the enzyme not simply by blocking the main gate but by an allosteric mechanism. A detailed and careful analysis of the ligand binding position and the protein dynamics, particularly regarding their secondary gates and active site, was necessary to conclude this. The same analysis was executed with an inactive analogue (compound 2, 2β, 3α-dihydroxy-5α-cholestan-6-one). Our first computational results showed no differences in affinity to AChE between both steroids, making further analysis necessary. This work highlights the variables to be considered and develops a refined methodology, for the successful design of new potent dual-action drugs for AD, particularly PAS inhibitors, an attractive strategy to combat AD.
Collapse
Affiliation(s)
- Victoria Richmond
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Bruno N. Falcone
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Marta S. Maier
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Pau Arroyo Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
- Departamento
de Química Orgánica, Universitat
de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| |
Collapse
|
10
|
Sharma A, Angnes L, Sattarahmady N, Negahdary M, Heli H. Electrochemical Immunosensors Developed for Amyloid-Beta and Tau Proteins, Leading Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:742. [PMID: 37504140 PMCID: PMC10377038 DOI: 10.3390/bios13070742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Alzheimer's disease (AD) is the most common neurological disease and a serious cause of dementia, which constitutes a threat to human health. The clinical evidence has found that extracellular amyloid-beta peptides (Aβ), phosphorylated tau (p-tau), and intracellular tau proteins, which are derived from the amyloid precursor protein (APP), are the leading biomarkers for accurate and early diagnosis of AD due to their central role in disease pathology, their correlation with disease progression, their diagnostic value, and their implications for therapeutic interventions. Their detection and monitoring contribute significantly to understanding AD and advancing clinical care. Available diagnostic techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are mainly used to validate AD diagnosis. However, these methods are expensive, yield results that are difficult to interpret, and have common side effects such as headaches, nausea, and vomiting. Therefore, researchers have focused on developing cost-effective, portable, and point-of-care alternative diagnostic devices to detect specific biomarkers in cerebrospinal fluid (CSF) and other biofluids. In this review, we summarized the recent progress in developing electrochemical immunosensors for detecting AD biomarkers (Aβ and p-tau protein) and their subtypes (AβO, Aβ(1-40), Aβ(1-42), t-tau, cleaved-tau (c-tau), p-tau181, p-tau231, p-tau381, and p-tau441). We also evaluated the key characteristics and electrochemical performance of developed immunosensing platforms, including signal interfaces, nanomaterials or other signal amplifiers, biofunctionalization methods, and even primary electrochemical sensing performances (i.e., sensitivity, linear detection range, the limit of detection (LOD), and clinical application).
Collapse
Affiliation(s)
- Abhinav Sharma
- Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Clevenger CK, Schlenger A, Gunter D, Glasgow GB. Cognitive assessment in primary care: Practical recommendations. Nurse Pract 2023; 48:26-35. [PMID: 37368555 DOI: 10.1097/01.npr.0000000000000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ABSTRACT Primary care clinicians play a critical role in both the identification and management of cognitive impairment due to common diseases. Primary care practices should incorporate feasible, reliable, and helpful tools into existing workflow to recognize and support people living with dementia and their care partners.
Collapse
|
12
|
Stanley M, Poupore N, Knisely K, Miller A, Imeh-Nathaniel A, Roley LT, Imeh-Nathaniel S, Goodwin R, Nathaniel TI. Differences in pharmacologic and demographic factors in male and female patients with vascular dementia, Alzheimer's disease, and mixed vascular dementia. FRONTIERS IN DEMENTIA 2023; 2:1137856. [PMID: 39081989 PMCID: PMC11285705 DOI: 10.3389/frdem.2023.1137856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2024]
Abstract
Background Increasing evidence suggests that demographic and pharmacologic factors may play a significant role in the epidemiology of dementia. Sex differences in prevalence also depend on dementia subtypes, such as Alzheimer's dementia (AD), vascular dementia (VaD), and mixed vascular-Alzheimer's dementia (MVAD). Therefore, studies are needed to investigate sex-specific differences, and identify potential therapeutic targets for both sexes. Methods Data was collected from the Prisma Health-Upstate Alzheimer's registry from 2016 to 2021 for 6,039 VaD patients, 9,290 AD patients, and 412 MVAD patients. A logistic regression was used to determine demographic and pharmacological factors associated with gender differences in patients with VaD, AD, and MVAD. Results In patients with VaD, African Americans (OR = 1.454, 95% CI, 1.257-1.682, p < 0.001) with increasing age (OR = 1.023, 95% CI, 1.017-1.029, p < 0.001), treated with aripiprazole (OR = 4.395, 95% CI, 2.880-6.707, p < 0.001), were associated with females, whereas patients treated with galantamine (OR = 0.228, 95% CI, 0.116-0.449, p < 0.001), memantine (OR = 0.662, 95% CI, 0.590-0.744, p < 0.001), with a history of tobacco (OR = 0.312, 95% CI, 0.278-0.349, p < 0.001), and ETOH (OR = 0.520, 95% CI, 0.452-0.598, p < 0.001) were associated with males. Among AD patients, African Americans (OR = 1.747, 95% CI, 1.486-2.053, p < 0.001), and Hispanics (OR = 3.668, 95% CI, 1.198-11.231, P = 0.023) treated with buspirone (OR = 1.541, 95% CI, 1.265-1.878, p < 0.001), and citalopram (OR = 1.790, 95% CI, 1.527-2.099, p < 0.001), were associated with females, whereas patients treated with memantine (OR = 0.882, 95% CI, 0.799-0.974, p = 0.013), and with a history of tobacco (OR = 0.247, 95% CI, 0.224-0.273, p < 0.001), and ETOH (OR = 0.627, 95% CI, 0.547-0.718, p < 0.001) were associated with male AD patients. In patients with MVAD, rivastigmine (OR = 3.293, 95% CI, 1.131-9.585, p = 0.029), memantine (OR = 2.816, 95% CI, 1.534-5.168, p < 0.001), and risperidone (OR = 10.515, 95% CI, 3.409-32.437, p < 0.001), were associated with females while patients with an increased length of stay (OR = 0.910, 95% CI, 0.828-1.000, p = 0.049), with a history of tobacco (OR = 0.148, 95% CI, 0.086-0.254, p < 0.001) and ETOH use (OR = 0.229, 95% CI, 0.110-0.477, p < 0.001) were more likely to be associated with males. Conclusions Our study revealed gender differences and similarities in the demographic and pharmacological factors of VaD, AD, and MVAD. Prospective studies are needed to determine the role of demographic and pharmacological factors in reducing sex-based disparities among VaD, AD, and MVAD patients.
Collapse
Affiliation(s)
- Madison Stanley
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Nicolas Poupore
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Krista Knisely
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Alyssa Miller
- Department of Biology, North Greenville University, Tigerville, SC, United States
| | | | | | | | - Rich Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| |
Collapse
|
13
|
Xu Z, Li O, Liang Y, Wu Z, Xu J, Wang L, Li L, Sun Y. Effectiveness and Safety of Bu Shen Kai Qiao Fang in the Treatment of Alzheimer's Disease: Study Protocol for a Multicenter, Prospective, Real-World Clinical Trial. Int J Gen Med 2023; 16:2573-2583. [PMID: 37351010 PMCID: PMC10284162 DOI: 10.2147/ijgm.s418700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Background Alzheimer's disease (AD) is a common degenerative disease of the nervous system with serious impact on quality of life of patients and their families. With an aging population, AD has become a major public health problem in China and worldwide. However, the physiological and pathological mechanisms of AD have not been fully elucidated, and there is a lack of effective prevention and clinical treatment methods. Many studies have found that traditional Chinese medicine (TCM) has a good therapeutic effect on cognitive function in AD patients. Bu Shen Kai Qiao Fang (BSKQF) is one such Chinese herbal preparation used in the treatment of AD. We designed a protocol for a real-world clinical study of BSKQF combined with Donepezil hydrochloride (DH) to evaluate the efficacy and safety of this approach in the treatment of AD patients. Methods This is a protocol for a real-world, multicenter, prospective, observational cohort study. The study will recruit 860 AD patients from four hospitals across China. Equal numbers of patients will be treated with BSKQF and DH or with DH only. The criteria for grouping are based primarily on patient preference. Outcome measures include scores on the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment Scale (MOCA) and will be recorded at baseline, and at one, two and three months after enrollment. The plasma Aβ42 and plasma Tau levels of participating patients will also be measured by ELISA at baseline and after 3 months of treatment. Safety metrics and adverse events (AEs) of participating patients will be monitored and recorded. Discussion This study will evaluate the clinical efficacy and safety of BSKQF in the treatment of AD. The results will provide reliable evidence for the clinical application of BSKQF in the treatment of AD. Study Registration Trial registration: Chinese Clinical Trial Registry, NO. ChiCTR2000039670, Registered 5 November 2020 https://www.chictr.org.cn/showprojEN.html?proj=63800.
Collapse
Affiliation(s)
- ZeYu Xu
- Department of Brain and Mental Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai, 200040, People’s Republic of China
| | - Ou Li
- Department of Brain and Mental Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai, 200040, People’s Republic of China
| | - YaTing Liang
- Department of Brain and Mental Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai, 200040, People’s Republic of China
| | - ZhiBing Wu
- Department of Encephalopathy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Jiamei Xu
- Department of Encephalopathy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Ling Wang
- Department of Geriatrics, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, 710003, People’s Republic of China
| | - Ling Li
- Department of Geriatrics, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, 710003, People’s Republic of China
| | - YongNing Sun
- Department of Brain and Mental Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai, 200040, People’s Republic of China
| |
Collapse
|
14
|
Whiteaker P, George AA. Discoveries and future significance of research into amyloid-beta/α7-containing nicotinic acetylcholine receptor (nAChR) interactions. Pharmacol Res 2023; 191:106743. [PMID: 37084859 PMCID: PMC10228377 DOI: 10.1016/j.phrs.2023.106743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Initiated by findings that Alzheimer's disease is associated with a profound loss of cholinergic markers in human brain, decades of studies have examined the interactions between specific subtypes of nicotinic acetylcholine receptors and amyloid-β [derived from the amyloid precursor protein (APP), which is cleaved to yield variable isoforms of amyloid-β]. We review the evolving understanding of amyloid-β's roles in Alzheimer's disease and pioneering studies that highlighted a role of nicotinic acetylcholine receptors in mediating important aspects of amyloid-β's effects. This review also surveys the current state of research into amyloid-β / nicotinic acetylcholine receptor interactions. The field has reached an exciting point in which common themes are emerging from the wide range of prior research and a range of accessible, relevant model systems are available to drive further progress. We highlight exciting new areas of inquiry and persistent challenges that need to be considered while conducting this research. Studies of amyloid-β and the nicotinic acetylcholine receptor populations that it interacts with provide opportunities for innovative basic and translational scientific breakthroughs related to nicotinic receptor biology, Alzheimer's disease, and cholinergic contributions to cognition more broadly.
Collapse
Affiliation(s)
- Paul Whiteaker
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA
| | - Andrew A George
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
15
|
Pauli P, Goetz K, Rogge A, Bartsch T, Philippen S, Berg D, Hertrampf K. Attitudes and Viewpoints Toward Prevention Trials in Alzheimer’s Disease. GEROPSYCH 2023. [DOI: 10.1024/1662-9647/a000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract: Alzheimer’s disease (AD) prevention studies use biomarkers to determine risk in asymptomatic study participants. This involves multifaceted implications. Determinants regarding participation in these trials are therefore of particular relevance. We used semistructured individual interviews to interview uninvolved persons ( n = 10), relatives of Alzheimer’s patients ( n = 10), and patients with mild cognitive impairment ( n = 5) and analyzed the interviews using qualitative content analysis according to Mayring. We discovered various factors to be positive motivations for participation; the most significant inhibiting factor was concern about negative psychological effects. These motivations and concerns should be specifically addressed in the study design of AD prevention trials. The fears and concerns expressed highlight the importance of a good methodological and ethical framework to increase participant acceptance.
Collapse
Affiliation(s)
- Philipp Pauli
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Katja Goetz
- Institute of Family Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Germany
| | - Annette Rogge
- Institute of Experimental Medicine, Biomedical Ethics, Christian Albrecht University Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Katrin Hertrampf
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
16
|
The Role of Dietary Antioxidants and Their Potential Mechanisms in Alzheimer’s Disease Treatment. Metabolites 2023; 13:metabo13030438. [PMID: 36984879 PMCID: PMC10054164 DOI: 10.3390/metabo13030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with cognitive decline and characterized by amyloid-β plaques and neurofibrillary tau tangles. Although AD’s exact pathophysiology remains unclear, oxidative stress is known to play a role in the neurodegenerative process. Since no curative treatment exists, antioxidants represent a potential treatment for AD due to their ability to modulate oxidative stress. Therefore, this review aims to examine the impact of antioxidant supplementation and its potential mechanisms on cognitive function. The review primarily discusses research articles published between 2012 and 2022 reporting the results of clinical trials involving antioxidant supplementation on cognitive function in individuals with AD. Antioxidant supplementation included probiotics, selenium, melatonin, resveratrol, rosmarinic acid, carotenoids, curcumin, vitamin E, and coenzyme Q. While the studies included in this review did not provide much evidence for the beneficial role of antioxidant supplements on cognitive function in AD, the results varied from antioxidant to antioxidant and among trials examining the same antioxidant. Furthermore, many of the studies’ findings face several limitations, including short trial durations, small sample sizes, and a lack of diversity among study participants. As a result, more research is required to examine the impact of antioxidant supplementation on cognitive function in AD.
Collapse
|
17
|
Shi A, Long Y, Ma Y, Yu S, Li D, Deng J, Wen J, Li X, Wu Y, He X, Hu Y, Li N, Hu Y. Natural essential oils derived from herbal medicines: A promising therapy strategy for treating cognitive impairment. Front Aging Neurosci 2023; 15:1104269. [PMID: 37009463 PMCID: PMC10060871 DOI: 10.3389/fnagi.2023.1104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Cognitive impairment (CI), mainly Alzheimer’s disease (AD), continues to increase in prevalence and is emerging as one of the major health problems in society. However, until now, there are no first-line therapeutic agents for the allopathic treatment or reversal of the disease course. Therefore, the development of therapeutic modalities or drugs that are effective, easy to use, and suitable for long-term administration is important for the treatment of CI such as AD. Essential oils (EOs) extracted from natural herbs have a wide range of pharmacological components, low toxicity, and wide sources, In this review, we list the history of using volatile oils against cognitive disorders in several countries, summarize EOs and monomeric components with cognitive improvement effects, and find that they mainly act by attenuating the neurotoxicity of amyloid beta, anti-oxidative stress, modulating the central cholinergic system, and improving microglia-mediated neuroinflammation. And combined with aromatherapy, the unique advantages and potential of natural EOs in the treatment of AD and other disorders were discussed. This review hopes to provide scientific basis and new ideas for the development and application of natural medicine EOs in the treatment of CI.
Collapse
Affiliation(s)
- Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Nan Li,
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yuan Hu,
| |
Collapse
|
18
|
Şenol H, Çelik Turgut G, Şen A, Sağlamtaş R, Tuncay S, Gülçin İ, Topçu G. Synthesis of nitrogen-containing oleanolic acid derivatives as carbonic anhydrase and acetylcholinesterase inhibitors. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
19
|
Cumbo E, Adair M, Åstrom DO, Christensen MC. Effectiveness of vortioxetine in patients with major depressive disorder and comorbid Alzheimer's disease in routine clinical practice: An analysis of a post-marketing surveillance study in South Korea. Front Aging Neurosci 2023; 14:1037816. [PMID: 36698860 PMCID: PMC9868833 DOI: 10.3389/fnagi.2022.1037816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vortioxetine has demonstrated procognitive effects in patients with major depressive disorder (MDD). We assessed the effectiveness and safety of vortioxetine in a cohort of patients with MDD and comorbid Alzheimer's disease participating in a large post-marketing surveillance study in South Korea. Methods Subgroup analysis of a 6-month, prospective, multicenter, non-interventional cohort study in outpatients with MDD with a pre-baseline diagnosis of Alzheimer's disease receiving vortioxetine in routine care settings (n = 207). Patients were assessed at baseline and after 8 weeks; a subset of patients was also assessed after 24 weeks. Depression severity was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) and Clinical Global Impression (CGI) scale, cognitive symptoms using the Perceived Deficits Questionnaire-Depression, Korean version (PDQ-K), and cognitive performance using the Digit Symbol Substitution Test (DSST). Results Most patients were receiving a mean daily vortioxetine dose of 5 mg/day (174/190 patients; 91.6%). After 24 weeks of vortioxetine treatment, 71.4% of patients (40/56) had experienced overall clinical improvement (i.e., CGI-Improvement score ≤3) and 51.9% (28/54) had achieved remission from depressive symptoms (i.e., MADRS total score ≤10 points). Respective mean changes in MADRS, PDQ-K, and DSST total scores from baseline to week 24 were -11.5 (p < 0.0001), -5.1 (p = 0.03), and +3.8 points (p = 0.0524). Adverse events were reported by 27 patients (13.0%) and were mostly mild (89.2%). Conclusion Patients with MDD and comorbid Alzheimer's disease receiving vortioxetine in routine care settings in South Korea demonstrated clinically meaningful improvements in depressive symptoms, cognitive symptoms, and objective cognitive performance over the 6-month treatment period. Treatment with vortioxetine was well tolerated in this patient cohort, with reported adverse events consistent with the established tolerability profile of vortioxetine.
Collapse
Affiliation(s)
- Eduardo Cumbo
- Neurodegenerative Disorders Unit, ASP 2 Caltanissetta, Caltanissetta, Italy
| | - Michael Adair
- H. Lundbeck A/S, Valby, Denmark,*Correspondence: Michael Adair,
| | | | | |
Collapse
|
20
|
Das B, Bhardwaj PK, Sharma N, Sarkar A, Haldar PK, Mukherjee PK. Evaluation of Mollugo oppositifolia Linn. as cholinesterase and β-secretase enzymes inhibitor. Front Pharmacol 2023; 13:990926. [PMID: 36686717 PMCID: PMC9846241 DOI: 10.3389/fphar.2022.990926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Mollugo oppositifolia Linn. is traditionally used in neurological complications. The study aimed to investigate in-vitro neuroprotective effect of the plant extracts through testing against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase linked to Alzheimer's disease (AD). To understand the safety aspects, the extracts were tested for CYP450 isozymes and human hepatocellular carcinoma cell (HepG2) inhibitory potential. The heavy metal contents were estimated using atomic absorption spectroscopy (AAS). Further, the antioxidant capacities as well as total phenolic content and total flavonoid content (TFC) were measured spectrophotometrically. UPLC-QTOF-MS/MS analysis was employed to identify phytometabolites present in the extract. The interactions of the ligands with the target proteins (AChE, BChE, and BACE-1) were studied using AutoDockTools 1.5.6. The results showed that M. oppositifolia extract has more selectivity towards BChE (IC50 = 278.23 ± 1.89 μg/ml) as compared to AChE (IC50 = 322.87 ± 2.05 μg/ml). The IC50 value against β-secretase was 173.93 μg/ml. The extract showed a CC50 value of 965.45 ± 3.07 μg/ml against HepG2 cells and the AAS analysis showed traces of lead 0.02 ± 0.001 which was found to be within the WHO prescribed limits. Moreover, the IC50 values against CYP3A4 (477.03 ± 2.01 μg/ml) and CYP2D6 (249.65 ± 2.46 μg/ml) isozymes justify the safety aspects of the extract. The in silico molecular docking analysis of the target enzymes showed that the compound menthoside was found to be the most stable and showed a good docking score among all the identified metabolites. Keeping in mind the multi-targeted drug approach, the present findings suggested that M. oppositifolia extract have anti-Alzheimer's potential.
Collapse
Affiliation(s)
- Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India,Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Pardeep K. Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India,*Correspondence: Pardeep K. Bhardwaj,
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pulok K. Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| |
Collapse
|
21
|
Grimm HP, Schumacher V, Schäfer M, Imhof-Jung S, Freskgård PO, Brady K, Hofmann C, Rüger P, Schlothauer T, Göpfert U, Hartl M, Rottach S, Zwick A, Seger S, Neff R, Niewoehner J, Janssen N. Delivery of the Brainshuttle™ amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. MAbs 2023; 15:2261509. [PMID: 37823690 PMCID: PMC10572082 DOI: 10.1080/19420862.2023.2261509] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
There are few treatments that slow neurodegeneration in Alzheimer's disease (AD), and while therapeutic antibodies are being investigated in clinical trials for AD treatment, their access to the central nervous system is restricted by the blood-brain barrier. This study investigates a bispecific modular fusion protein composed of gantenerumab, a fully human monoclonal anti- amyloid-beta (Aβ) antibody under investigation for AD treatment, with a human transferrin receptor 1-directed Brainshuttle™ module (trontinemab; RG6102, INN trontinemab). In vitro, trontinemab showed a similar binding affinity to fibrillar Aβ40 and Aβ plaques in human AD brain sections to gantenerumab. A single intravenous administration of trontinemab (10 mg/kg) or gantenerumab (20 mg/kg) to non-human primates (NHPs, Macaca fascicularis), was well tolerated in both groups. Immunohistochemistry indicated increased trontinemab uptake into the brain endothelial cell layer and parenchyma, and more homogeneous distribution, compared with gantenerumab. Brain and plasma pharmacokinetic (PK) parameters for trontinemab were estimated by nonlinear mixed-effects modeling with correction for tissue residual blood, indicating a 4-18-fold increase in brain exposure. A previously developed clinical PK/pharmacodynamic model of gantenerumab was adapted to include a brain compartment as a driver of plaque removal and linked to the allometrically scaled above model from NHP. The new brain exposure-based model was used to predict trontinemab dosing regimens for effective amyloid reduction. Simulations from these models were used to inform dosing of trontinemab in the first-in-human clinical trial.
Collapse
Affiliation(s)
- Hans Peter Grimm
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Vanessa Schumacher
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin Schäfer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sabine Imhof-Jung
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Per-Ola Freskgård
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Kevin Brady
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Carsten Hofmann
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Petra Rüger
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Tilman Schlothauer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Ulrich Göpfert
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Maximilian Hartl
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sylvia Rottach
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Adrian Zwick
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Shanon Seger
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Rachel Neff
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Jens Niewoehner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Niels Janssen
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
22
|
Kritikos M, Diminich ED, Meliker J, Mielke M, Bennett DA, Finch CE, Gandy SE, Carr MA, Yang X, Kotov R, Kuan P, Bromet EJ, Clouston SAP, Luft BJ. Plasma amyloid beta 40/42, phosphorylated tau 181, and neurofilament light are associated with cognitive impairment and neuropathological changes among World Trade Center responders: A prospective cohort study of exposures and cognitive aging at midlife. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12409. [PMID: 36911360 PMCID: PMC9994167 DOI: 10.1002/dad2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 03/14/2023]
Abstract
Introduction World Trade Center (WTC) responders are experiencing a high risk of mild cognitive impairment (MCI) and dementia, though the etiology remains inadequately characterized. This study investigated whether WTC exposures and chronic post-traumatic stress disorder (PTSD) were correlated with plasma biomarkers characteristic of Alzheimer's disease (AD) neuropathology. Methods Eligible participants included WTC-exposed individuals with a baseline cognitive assessment and available plasma sample. We examined levels of the amyloid beta (Aβ)40/42 ratio, phosphorylated tau 181 (p-tau181), and neurofilament light chain (NfL) and associations with a WTC exposures (duration on site ≥15 weeks, dust cloud), the PTSD Symptom Checklist for Diagnostic and Statistical Manual of Mental Disorders, 4th edition PTSD, and classification of amyloid/tau/neurodegeneration (AT[N]) profiles. Multinomial logistic regressions assessed whether biomarkers predicted increased risk of MCI or dementia. Results Of 1179 eligible responders, 93.0% were male, mean (standard deviation) age 56.6 years (7.8). Aβ40/42, p-tau181, and NfL intercorrelated and increased with age. In subgroup analyses of responders with available neuroimaging data (n = 75), Aβ40/42 and p-tau181 were further associated with decreased hippocampal volume (Spearman's ρ = -0.3). Overall, 58.08% of responders with dementia had ≥1 elevated biomarker, and 3.45% had elevations across all biomarkers. In total, 248 (21.05%) had MCI and 70 (5.94%) had dementia. Increased risk of dementia was associated with plasma AT(N) profile T+ or A+N+. Exposure on site ≥15 weeks was independently associated with T+ (adjusted risk ratio [aRR] = 1.03 [1.01-1.05], P = 0.009), and T+N+ profile (aRR = 2.34 [1.12-4.87]). The presence of PTSD was independently associated with risk of A+ (aRR = 1.77 [1.11-2.82]). Discussion WTC exposures and chronic PTSD are associated with plasma biomarkers consistent with neurodegenerative disease.
Collapse
Affiliation(s)
- Minos Kritikos
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Erica D. Diminich
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Jaymie Meliker
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Michelle Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush UniversityChicagoIllinoisUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sam E. Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Psychiatry and Mount Sinai Alzheimer's Disease Research CenterIcahn School of Medicine, Mount SinaiNew YorkNew YorkUSA
| | - Melissa A. Carr
- Department of MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Xiaohua Yang
- Department of MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Roman Kotov
- Department of PsychiatryRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Pei‐Fen Kuan
- Department of Applied MathematicsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Evelyn J. Bromet
- Department of PsychiatryRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Sean A. P. Clouston
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Benjamin J. Luft
- Department of MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
23
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Short MI, Fohner AE, Skjellegrind HK, Beiser A, Gonzales MM, Satizabal CL, Austin TR, Longstreth W, Bis JC, Lopez O, Hveem K, Selbæk G, Larson MG, Yang Q, Aparicio HJ, McGrath ER, Gerszten RE, DeCarli CS, Psaty BM, Vasan RS, Zare H, Seshadri S. Proteome Network Analysis Identifies Potential Biomarkers for Brain Aging. J Alzheimers Dis 2023; 96:1767-1780. [PMID: 38007645 PMCID: PMC10741337 DOI: 10.3233/jad-230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease and related dementias (ADRD) involve biological processes that begin years to decades before onset of clinical symptoms. The plasma proteome can offer insight into brain aging and risk of incident dementia among cognitively healthy adults. OBJECTIVE To identify biomarkers and biological pathways associated with neuroimaging measures and incident dementia in two large community-based cohorts by applying a correlation-based network analysis to the plasma proteome. METHODS Weighted co-expression network analysis of 1,305 plasma proteins identified four modules of co-expressed proteins, which were related to MRI brain volumes and risk of incident dementia over a median 20-year follow-up in Framingham Heart Study (FHS) Offspring cohort participants (n = 1,861). Analyses were replicated in the Cardiovascular Health Study (CHS) (n = 2,117, mean 6-year follow-up). RESULTS Two proteomic modules, one related to protein clearance and synaptic maintenance (M2) and a second to inflammation (M4), were associated with total brain volume in FHS (M2: p = 0.014; M4: p = 4.2×10-5). These modules were not significantly associated with hippocampal volume, white matter hyperintensities, or incident all-cause or AD dementia. Associations with TCBV did not replicate in CHS, an older cohort with a greater burden of comorbidities. CONCLUSIONS Proteome networks implicate an early role for biological pathways involving inflammation and synaptic function in preclinical brain atrophy, with implications for clinical dementia.
Collapse
Affiliation(s)
- Meghan I. Short
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Alison E. Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Håvard K. Skjellegrind
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Thomas R. Austin
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - W.T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Levanger, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Selbæk
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Hugo J. Aparicio
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Emer R. McGrath
- Framingham Heart Study, Framingham, MA, USA
- School of Medicine, National University of Ireland Galway, Galway, Ireland
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine and Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Bruce M. Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Boston University Center for Computing and Data Science, Boston, MA, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
25
|
Guzzon A, Rebba V, Paccagnella O, Rigon M, Boniolo G. The value of supportive care: A systematic review of cost-effectiveness of non-pharmacological interventions for dementia. PLoS One 2023; 18:e0285305. [PMID: 37172047 PMCID: PMC10180718 DOI: 10.1371/journal.pone.0285305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2023] [Indexed: 05/14/2023] Open
Abstract
BACKGROUND Almost 44 million people are currently living with dementia worldwide. This number is set to increase threefold by 2050, posing a serious threat to the sustainability of healthcare systems. Overuse of antipsychotic drugs for the management of the symptoms of dementia carries negative consequences for patients while also increasing the health expenditures for society. Supportive care (SC) interventions could be considered a safer and potentially cost-saving option. In this paper we provide a systematic review of the existing evidence regarding the cost-effectiveness and cost-utility of SC interventions targeted towards persons living with dementia and their caregivers. METHODS A systematic literature review was performed between February 2019 and December 2021 through searches of the databases PubMed (MEDLINE), Cochrane Library, CENTRAL, Embase and PsycINFO. The search strategy was based on PRISMA 2020 recommendations. We considered studies published through December 2021 with no lower date limit. We distinguished between five categories of SC strategies: cognitive therapies, physical activity, indirect strategies (organisational and environmental changes), interventions primarily targeted towards family caregivers, and multicomponent interventions. RESULTS Of the 5,479 articles retrieved, 39 met the inclusion criteria. These studies analysed 35 SC programmes located at different stages of the dementia care pathway. Eleven studies provided evidence of high cost-effectiveness for seven interventions: two multicomponent interventions; two indirect interventions; two interventions aimed at caregivers of community-dwelling persons with dementia; one community-based cognitive stimulation and occupational programme. CONCLUSION We find that the most promising SC strategies in terms of cost-effectiveness are multicomponent interventions (targeted towards both nursing home residents and day-care service users), indirect strategies (group living and dementia care management at home), some forms of tailored occupational therapy, together with some psychosocial interventions for caregivers of community-dwelling persons with dementia. Our results suggest that the adoption of effective SC interventions may increase the economic sustainability of dementia care.
Collapse
Affiliation(s)
- Angelica Guzzon
- CRIEP (Interuniversity Research Centre on Public Economics), Veneto, Italy
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Vincenzo Rebba
- CRIEP (Interuniversity Research Centre on Public Economics), Veneto, Italy
- Department of Economics and Management "Marco Fanno", University of Padova, Padova, Italy
| | - Omar Paccagnella
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | | | - Giovanni Boniolo
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Miller A, Desai A, Roley LT, Goodwin RL, Nathaniel AI, Nathaniel TI. The role of ethnicity, biological sex, and psychotropic agents in early and late onset Alzheimer's disease. Front Aging Neurosci 2022; 14:1052330. [PMID: 36620767 PMCID: PMC9815502 DOI: 10.3389/fnagi.2022.1052330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objective This study investigates differences in pharmacological and demographic factors among male and female patients with Late-onset Alzheimer's disease (LOAD) and Early-onset Alzheimer's disease (EOAD). Method Data are from 10,126 AD patients, 9,290 were diagnosed with LOAD, while 836 were diagnosed with EOAD. Data were collected from the Prisma Health Upstate Alzheimer's patients' registry between 2016 and 2021. The logistic regression analysis was used to assess the association between pharmacological and demographic factors in males and females with LOAD and EOAD. Results In the adjusted analysis for males, patients that were administered memantine [odd ratio (OR) = 1.588, 95% CI, 1.175-2.145, p = 0.003], and buspirone [OR = 1.971, 95% CI, 1.221-3.183, p = 0.006] were more likely to be associated with EOAD, while increasing age [OR = 0.816, 95% CI, 0.799-0.834, p < 0.001] was associated with LOAD. Female patients with a history of alcohol (ETOH) use were more likely to be associated with EOAD while increasing age [OR = 0.845, 95% CI, 0.834-0.857, p < 0.001], treatment with memantine [OR = 0.774, 95% CI, 0.627-0.956, p = 0.017], African Americans [OR = 0.621, 95% CI, 0.462-0.835, p = 0.002] and tobacco use [OR = 0.529, 95% CI, 0.424-0.660, p < 0.001] were associated with LOAD. Conclusion Our findings identified specific demographic and pharmacological factors associated with males and females with LOAD and EOAD. These findings suggest the need to develop strategies to eliminate disparity in the care of LOAD or EOAD patients.
Collapse
Affiliation(s)
- Alyssa Miller
- Department of Biology, North Greenville University, Tigerville, SC, United States
| | - Ashna Desai
- Department of Biology, University of South Carolina, Columbia, SC, United States
| | | | - Richard L. Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | | | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States,*Correspondence: Thomas I. Nathaniel,
| |
Collapse
|
27
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
28
|
Igarashi A, Ikeda S. Value assessment of new interventions for Alzheimer's disease dementia in Japan based on literature review and group interview. Expert Rev Pharmacoecon Outcomes Res 2022; 22:1163-1170. [PMID: 36039772 DOI: 10.1080/14737167.2022.2118113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION With an increase in the number of patients with Alzheimer's disease dementia (ADD), new health technologies have been developed to address the problem. We propose an optimal way to assess the disease burden and treatment value of ADD in Japan by considering the characteristics of the disease. AREAS COVERED We performed literature searches and a group interview with professional care workers to obtain information on the items that would facilitate the assessment of the value of ADD intervention. We determined the items as patient quality of life (QOL), medical costs, caregiver QOL, public long-term care costs, and informal care costs. EXPERT OPINION There are several limitations to how QOL is measured, particularly for patients with ADD. Public long-term care costs represent a substantial proportion of total costs and should be included in the assessment and decision-making of ADD, even from the payer's perspective. Following that, a process is required to take informal care costs into account in decision-making, regardless of whether they are included or not in a base-case analysis. The importance of other elements of care burden that cannot be quantitatively measured should also be recognized and reflected in decision-making.
Collapse
Affiliation(s)
- Ataru Igarashi
- Unit of Public Health and Preventive Medicine, Yokohama City University School of Medicine, Yokohama, Japan.,Department of Health Economics and Outcomes Research, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunya Ikeda
- Department of Public Health, School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
29
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
30
|
Haddad HW, Malone GW, Comardelle NJ, Degueure AE, Poliwoda S, Kaye RJ, Murnane KS, Kaye AM, Kaye AD. Aduhelm, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer's Disease: A comprehensive review. Health Psychol Res 2022; 10:37023. [PMID: 35910244 DOI: 10.52965/001c.37023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of individuals, including family members who often take on the role of caregivers. This debilitating disease reportedly consumes 8% of the total United States healthcare expenditure, with medical and nursing outlays accounting for an estimated $290 billion. Cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists have historically been the most widely used pharmacologic therapies for patients with AD; however, these drugs are not curative. The present investigation describes the epidemiology, pathophysiology, risk factors, presentation, and current treatment of AD followed by the role of the novel monoclonal antibody, Adulhelm, in the treatment of AD. Currently, Adulhelm is the only Food and Drug Administration (FDA) approved drug that acts to slow the progression of this disease. Adulhelm is an anti-amyloid drug that functions by selectively binding amyloid aggregates in both the oligomeric and fibrillar states. Studies show Adulhelm may help to restore neurological function in patients with AD by reducing beta-amyloid plaques and reestablishing neuronal calcium permeability. At present, there is concern the magnitude of this drug's benefit may only be statistically significant, although not clinically significant. Despite skepticism, Adulhelm has proven to significantly decrease amyloid in all cortical brain regions examined. With such high stakes and potential, further research into Adulhelm's clinical efficacy is warranted in the treatment of AD.
Collapse
Affiliation(s)
| | - Garett W Malone
- Louisiana State University Health Shreveport, College of Medicine
| | | | | | | | - Rachel J Kaye
- Medical University of South Carolina, Charleston, SC
| | - Kevin S Murnane
- Department of Pharmacology, Louisiana State University Health Shreveport, Shreveport, LA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA
| | - Alan D Kaye
- Department of Anesthesiology,, Louisiana State University Health Shreveport, Shreveport, LA
| |
Collapse
|
31
|
Pharmacotherapy of Alzheimer's disease: an overview of systematic reviews. Eur J Clin Pharmacol 2022; 78:1567-1587. [PMID: 35881170 DOI: 10.1007/s00228-022-03363-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia. In this umbrella systematic review (SR), we summarized the efficacy of different pharmacological interventions in improving cognitive function in patients with AD. METHODS A systematic search was performed through the PubMed, Scopus, Embase, and Cochrane databases for SRs of studies assessing the efficacy of pharmacological interventions versus placebo in improving cognitive function in AD or mild cognitive impairment due to AD. The risk of bias (RoB) was assessed using the Risk of Bias in SRs (ROBIS) tool. RESULTS Out of 1748 articles found through the database survey, 33 SR articles were included. These studies assessed effects of immunotherapy, cholinesterase inhibitors (ChEIs), memantine, statins, lithium, nonsteroidal anti-inflammatory drugs (NSAIDs), antidiabetic agents, Cerebrolysin, RAS-targeting antihypertensive drugs (ARBs and ACEIs), psychostimulants, glycogen synthase kinase 3 (GSK-3) inhibitors, melatonin, and herbal medications on cognitive function in AD patients. There was no notable overall RoB in 18 studies (54.5%), the RoB in 14 studies (42.4%) was high, and in one study (3.0%) it was unclear. CONCLUSIONS The use of ChEIs, including rivastigmine, galantamine, and donepezil, as well as memantine has demonstrated a positive impact on improving cognitive outcomes of AD patients, but no considerable effects were found for immunotherapies. Melatonin, statins, antihypertensive drugs, antidiabetic agents, Cerebrolysin, psychostimulants, and some herbal drugs such as Danggui-Shaoyao-San and Ginkgo biloba seem to be effective in improving cognitive function of AD patients, but the evidence in this regard is limited.
Collapse
|
32
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
33
|
Khoury R, Gallop A, Roberts K, Grysman N, Lu J, Grossberg GT. Pharmacotherapy for Alzheimer’s disease: what’s new on the horizon? Expert Opin Pharmacother 2022; 23:1305-1323. [DOI: 10.1080/14656566.2022.2097868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rita Khoury
- Department of Psychiatry and Clinical Psychology, St. Georges Hospital University Medical Center, Beirut, Lebanon
- University of Balamand, Faculty of Medicine, Beirut, Lebanon
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Amy Gallop
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Kelsey Roberts
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Noam Grysman
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Jiaxi Lu
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - George T. Grossberg
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
34
|
Topal F, Ertas B, Guler E, Gurbuz F, Ozcan GS, Aydemir O, Bocekci VG, Duruksu G, Sahin Cam C, Yazir Y, Gunduz O, Cam ME. A novel multi-target strategy for Alzheimer's disease treatment via sublingual route: Donepezil/memantine/curcumin-loaded nanofibers. BIOMATERIALS ADVANCES 2022; 138:212870. [PMID: 35913251 DOI: 10.1016/j.bioadv.2022.212870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Drug delivery systems that not only show efficacy through multiple therapeutic pathways but also facilitate patient drug use and exhibit a high bioavailability profile represent a promising strategy in the treatment of Alzheimer's disease (AD). Here, donepezil (DO)/memantine (MM)/curcumin (CUR)-loaded electrospun nanofibers (NFs) were produced for the treatment of AD. DSC, XRD, and FT-IR studies demonstrated the complete incorporation of the drug into PVA/PVP NFs. The disintegration profile was improved by loading the drugs in PVA/PVP with fast wetting (less than 1 s), the start of disintegration (21 s), and dispersion in 110 s. The desired properties for sublingual application were achieved with the dissolution of NFs in 240 s. The cell viability in DO/MM/CUR-loaded NFs was similar to the control group after 48 h in the cell culture. DO/MM/CUR-loaded NFs enhanced the expressions of BDNF (13.5-fold), TUBB3 (8.9-fold), Neurog2 (5.6-fold), NeuroD1 (5.8-fold), Nestin (166-fold), and GFAP (115-fold). DO/MM/CUR-loaded NFs and powder of these drugs contained in these fibers were daily administered sublingually to intracerebroventricular-streptozotocin (icv-STZ) treated rats. DO/MM/CUR-loaded NFs treatment improved the short-term memory damage and enhanced memory, learning ability, and spatial exploration talent. Results indicated that the levels of Aβ, Tau protein, APP, GSK-3β, AChE, and TNF-α were significantly decreased, and BDNF was increased by DO/MM/CUR-loaded NFs treatment compared to the AD group. In the histopathological analysis of the hippocampus and cortex, neuritic plaques and neurofibrillary nodes were not observed in the rats treated with DO/MM/CUR-loaded NFs. Taken together, the sublingual route delivery of DO/MM/CUR-loaded NFs supports potential clinical applications for AD.
Collapse
Affiliation(s)
- Fadime Topal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey
| | - Busra Ertas
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey
| | - Fatmanur Gurbuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Gul Sinemcan Ozcan
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | - Oguzhan Aydemir
- Department of Research & Development, Joker Food Industry International Domestic and Foreign Trade Company, Istanbul 34885, Turkey
| | - Veysel Gokhan Bocekci
- Department of Electrical and Electronics Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gokhan Duruksu
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | - Cansun Sahin Cam
- Department of Psychiatry, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Yusufhan Yazir
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey.
| |
Collapse
|
35
|
Li XW, Lu YY, Zhang SY, Sai NN, Fan YY, Cheng Y, Liu QS. Mechanism of Neural Regeneration Induced by Natural Product LY01 in the 5×FAD Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:926123. [PMID: 35814256 PMCID: PMC9258960 DOI: 10.3389/fphar.2022.926123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/28/2022] Open
Abstract
Background: A sharp decline in neural regeneration in patients with Alzheimer's disease (AD) exacerbates the decline of cognition and memory. It is of great significance to screen for innovative drugs that promote endogenous neural regeneration. Cytisine N-methylene-(5,7,4'-trihydroxy)-isoflavone (LY01) is a new compound isolated from the Chinese herbal medicine Sophora alopecuroides with both isoflavone and alkaloid characteristic structures. Its pharmacological effects are worth studying. Objective: This study was designed to determine whether LY01 delays the cognitive and memory decline in the early stage of AD and whether this effect of LY01 is related to promoting neural regeneration. Methods: Eight-week-old 5×Familial Alzheimer's Disease (5×FAD) mice were used as disease models of early AD. Three doses of LY01 administered in two courses (2 and 5 weeks) of treatment were tested. Cognition, memory, and anxiety-like behaviors in mice were evaluated by the Morris water maze, fear conditioning, and open field experiments. Regeneration of neurons in the mouse hippocampus was observed using immunofluorescence staining. The effect of LY01 on cell regeneration was also demonstrated using a series of tests on primary cultured neurons, astrocytes, and neural stem cells (NSCs). In addition, flow cytometry and transcriptome sequencing were carried out to preliminarily explored the mechanisms. Results: We found that LY01 reduced the decline of cognition and memory in the early stage of 5×FAD mice. This effect was related to the proliferation of astrocytes, the proliferation and migration of NSCs, and increases in the number of new cells and neural precursor cells in the dentate gyrus area of 5×FAD mice. This phenomenon could be observed both in 2-week-old female and 5-week-old male LY01-treated 5×FAD mice. The neuronal regeneration induced by LY01 was related to the regulation of the extracellular matrix and associated receptors, and effects on the S phase of the cell cycle. Conclusion: LY01 increases the proliferation of NSCs and astrocytes and the number of neural precursor cells in the hippocampus, resulting in neural regeneration in 5×FAD mice by acting on the extracellular matrix and associated receptors and regulating the S phase of the cell cycle. This provides a new idea for the early intervention and treatment of AD.
Collapse
Affiliation(s)
- Xiao-Wan Li
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang-Yang Lu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Shu-Yao Zhang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Ning-Ning Sai
- University Hospital, Tianjin Normal University, Tianjin, China
| | - Yu-Yan Fan
- Traditional Chinese Medicine Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Qing-Shan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| |
Collapse
|
36
|
Coker-Ayo OO, Nathaniel SI, Poupore N, Bailey-Taylor MJ, Roley LT, Goodwin RL, McPhail B, Russ-Sellers R, Nathaniel TI. Sex Differences in Demographic and Pharmacological Factors in Alzheimer Patients With Dementia and Cognitive Impairments. Front Behav Neurosci 2022; 16:828782. [PMID: 35431827 PMCID: PMC9012112 DOI: 10.3389/fnbeh.2022.828782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
ObjectiveThe current study investigates sex differences associated with pharmacological and demographic characteristics in Alzheimer patients (AD) with dementia (ADD) or mild cognitive impairment (MCI).MethodA retrospective analytical approach was used to analyze data from 45,696 AD patients with MCI or ADD. The univariate analysis was used to determine differences in demographic, and pharmacological characteristics for male and female ADD and MCI-AD patients. Multivariate analysis was used to predict specific pharmacological and demographic factors that are associated with male and female MCI and ADD patients.ResultIn the adjusted analysis for male patients, Hispanics [0.166,0.020 – 1.355, P = 0.094] or African Americans [OR = 2.380, 95% CI,2.120 – 2.674, P < 0.001], were more likely to have MCI-AD and be treated with galantamine [OR = 0.559, 95% CI, 0.382 – 0.818, P = 0.003], donepezil [OR = 1.639, 95% CI,1.503 – 1.787, P < 0.001], rivastigmine [OR = 1.394, 95% CI,1.184 – 1.642, P < 0.001], olanzapine [OR = 2.727, 95% CI,2.315 – 3.212, P < 0.001], risperidone [OR = 2.973, 95% CI,2.506 – 3.526, P < 0.001], present with increasing age [1.075,1.071 – 1.079, P < 0.001], and are on tobacco use [OR = 1.150, 95% CI,1.054 – 1.254, P = 0.002]. For female patients, buspirone [OR = 0.767, 95% CI, 0.683 – 0.861, P < 0.001] and a history of alcohol (ETOH) use [OR = 0.484, 95% CI, 0.442 – 0.529, P < 0.001] were associated with MCI-AD. Increasing age [OR = 1.096, 95% CI, 1.093 – 1.100, P < 0.001], donepezil [OR = 2.185, 95% CI, 2.035 – 2.346, P < 0.001], memantine [OR = 2.283, 95% CI, 2.104 – 2.477, P < 0.001] aripiprazole [OR = 1.807, 95% CI, 1.544 – 2.113, P < 0.001] olanzapine [OR = 2.289, 95% CI, 1.986 – 2.640, P < 0.001] risperidone [OR = 2.548, 95% CI, 2.246 – 2.889, P < 0.001] buspirone [OR = 0.767, 95% CI, 0.683 – 0.861, P < 0.001] escitalopram [OR = 1.213, 95% CI,1.119 – 1.315, P < 0.001] African Americans [OR = 1.395, 95% CI, 1.268 – 1.535, P < 0.001] and tobacco use [OR = 1.150, 95% CI, 1.073 – 1.233, P < 0.001] were associated with ADD.ConclusionOur findings reveal that MCI-AD patients were more likely to be Hispanics or African American males treated with rivastigmine, olanzapine and citalopram. African American females were associated with ADD and more likely to be treated with buspirone and presented with a history of ETOH. This finding suggests the need for a pharmacological treatment approach encompassing sex-sensitive strategies for MCI-AD and ADD patients.
Collapse
Affiliation(s)
| | - Samuel I. Nathaniel
- Department of Biology, North Greenville University, Tigerville, SC, United States
| | - Nicolas Poupore
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | | | | | - Richard L. Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Brooks McPhail
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Rebecca Russ-Sellers
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
- *Correspondence: Thomas I. Nathaniel,
| |
Collapse
|
37
|
Jebelli J, Hamper MC, Van Quelef D, Caraballo D, Hartmann J, Kumi-Diaka J. The Potential Therapeutic Effects of Low-Dose Ionizing Radiation in Alzheimer's Disease. Cureus 2022; 14:e23461. [PMID: 35371871 PMCID: PMC8958987 DOI: 10.7759/cureus.23461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 01/20/2023] Open
Abstract
Dementia is an umbrella term used to describe a loss of cognitive function which results in the interference of an individual's daily life and activities. The most common form of dementia is Alzheimer's disease. Alzheimer’s is classified as a progressive, debilitating neurodegenerative disease that results in disturbances to a patient’s higher executive function, memory, language, and visuospatial orientation. Despite extensive research on Alzheimer’s dementia, including both available and potential therapeutic modalities, this neurodegenerative disease is incurable and will continue to pose a major public health concern. Current treatment options for Alzheimer’s focus on symptom management and/or delaying the progression of the disease. Therefore, new treatment strategies must be developed to combat such a deadly disease. One field of medicine that has garnered significant interest from researchers to potentially treat Alzheimer’s is low-dose ionizing radiation. Various reports suggest that the brain’s exposure to low doses of ionizing radiation may serve as a therapeutic modality for combating neurodegenerative diseases, including Alzheimer’s dementia. This article serves as a review of the current available treatments for Alzheimer’s disease and discusses recent studies that provide evidence for the potential use of low-dose ionizing radiation as a therapeutic in the treatment of Alzheimer’s disease.
Collapse
|
38
|
Zheng Y, Liu Y, Wu J, Xie Y, Yang S, Li W, Sun H, He Q, Wu T. Predicted Cognitive Conversion in Guiding Early Decision-Tailoring on Patients With Cognitive Impairment. Front Aging Neurosci 2022; 13:813923. [PMID: 35185520 PMCID: PMC8847748 DOI: 10.3389/fnagi.2021.813923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cognitive decline is the most dominant and patient-oriented symptom during the development of Alzheimer's disease (AD) and mild cognitive impairment (MCI). This study was designed to test the feasibility of hybrid convolutional neural networks and long-short-term memory (CNN-LSTM) modeling driven early decision-tailoring with the predicted long-term cognitive conversion in AD and MCI. METHODS Characteristics of patients with AD or MCI covering demographic features, clinical features, and time-dependent neuropsychological-related features were fused into the hybrid CNN-LSTM modeling to predict cognitive conversion based on a 4-point change in the AD assessment scale-cognition score. Treatment reassignment rates were estimated based on the actual and predicted cognitive conversion at 3 and 6 months according to the prespecified principle; that is if the ADAS-cog score of the patient declines less than 4 points or increases at either follow-up time point, the medical treatment recommended upon their diagnosis would be considered insufficient. Therefore, it is recommended to upgrade the medical treatment upon diagnosis. Actual and predicted treatment reassignment rates were compared in the general population and subpopulations categorized by age, gender, symptom severity, and the intervention subtypes. RESULTS A total of 224 patients were included in the analysis. The hybrid CNN-LSTM model achieved the mean AUC of 0.735 (95% CI: 0.701-0.769) at 3 months and 0.853 (95% CI: 0.814-0.892) at 6 months in predicting cognitive conversion status. The AUC at 6 months was significantly impacted when data collected at 3 months were withdrawn. The predicted cognitive conversion suggested a revision of medical treatment in 46.43% (104/224) of patients at 3 months and 54.02% (121/224) at 6 months as compared with 62.05% (139/224) at 3 months (p = 0.001) and 62.50% (140/224) at 6 months (p = 0.069) according to their actual cognitive conversion. No significant differences were detected between treatment reassignment rates estimated based on actual and predicted cognitive conversion in all directions at 6 months. CONCLUSION Using the synergistic advances of deep learning modeling and featured longitudinal information, our hypothesis was preliminarily verified with the comparable predictive performance in cognitive conversion. Results provided the possibility of reassigned recommended treatment for those who may suffer from cognitive decline in the future. Considering the limited diversity of treatment strategies applied in this study, the real-world medical situation should be further simulated.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Liu
- Division of Brain Rehabilitation, Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawen Wu
- Division of Brain Rehabilitation, Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xie
- Intensive Care Unit, Wuxi No.2 People’s Hospital, Wuxi, China
| | - Siyu Yang
- Division of Brain Rehabilitation, Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanting Li
- Division of Brain Rehabilitation, Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huaiqing Sun
- Division of Brain Rehabilitation, Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing He
- Department of Neurology, Xuzhou First People’s Hospital, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou, China
| | - Ting Wu
- Division of Brain Rehabilitation, Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Haddad HW, Malone GW, Comardelle NJ, Degueure AE, Kaye AM, Kaye AD. Aducanumab, a Novel Anti-Amyloid Monoclonal Antibody, for the Treatment of Alzheimer's Disease: A Comprehensive Review. Health Psychol Res 2022; 10:31925. [PMID: 35928986 PMCID: PMC9346954 DOI: 10.52965/001c.31925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of individuals, including family members who often take on the role as caregiver. This debilitating disease reportedly consumes 8% of the total United States healthcare expenditure, with medical and nursing outlays accounting for an estimated $290 billion. Cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists have historically been the most widely used pharmacologic therapies for patients with AD, however, these drugs are not curative. This review discusses the epidemiology, pathophysiology, risk factors, presentation, and current treatment of AD followed by the role of the novel monoclonal antibody, aducanumab, in treatment of AD. Currently aducanumab is the only Food and Drug Administration (FDA) approved drug that acts to slow progression of this disease. Aducanumab is an anti-amyloid drug which functions by selectively binding amyloid aggregates in both the oligomeric and fibrillar states. Studies show aducanumab may help to restore neurological function in patients with AD by reducing beta-amyloid plaques and reestablishing neuronal calcium permeability. However, there is concern the magnitude of this drug's benefit may only be statistically significant and not clinically significant. Despite this skepticism, aducanumab has proven to significantly decrease amyloid in all cortical brain regions examined. In summary, aducanumab has provided hope for those working toward the goal of providing patients a safe and viable treatment option in the management of AD.
Collapse
Affiliation(s)
- Hannah W Haddad
- College of Medicine, Kansas City University of Medicine and Biosciences, Kansas City, MO
| | - Garett W Malone
- College of Medicine, Louisiana State University Health Shreveport, Shreveport, LA
| | | | - Arielle E Degueure
- College of Medicine, Louisiana State University Health Shreveport, Shreveport, LA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA
| |
Collapse
|
40
|
Gender Differences in Demographic and Pharmacological Factors in Patients Diagnosed with Late-Onset of Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12020160. [PMID: 35203924 PMCID: PMC8870110 DOI: 10.3390/brainsci12020160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Whether gender differences exist in late-onset of Alzheimer’s disease (LOAD) treated with cholinesterase inhibitors (ChEIs) is not fully understood. This study investigated demographic and pharmacological characteristics in LOAD patients to determine gender differences in LOAD patients treated with ChEIs alone and ChEIs with other medications. Methods: This 5-year retrospective data analysis included 9290 LOAD AD patients with 2949 men patients and 6341 women. Potential predictors of demographic and pharmacological characteristics associated gender differences in patients treated with and without ChEIs therapy were determined using univariate analysis, while multivariable models adjusted for demographic and pharmacological variables. Results: In the adjusted analysis, men patients with LOAD that presented with a history of alcohol use (ETOH) (OR = 1.339, 95% CI, 1.072–1.672, p = 0.010), treated with second generation antipsychotics (SGAs) (OR = 1.271, 95% CI, 1.003–1.610, p = 0.047), citalopram (OR = 5.103, 95% CI, 3.423–7.607, p < 0.001), memantine (OR = 4.409, 95% CI, 3.704–5.249, p < 0.001), and buspirone (OR = 2.166, 95% CI, 1.437–3.264, p < 0.001) were more likely to receive ChEIs therapy, whereas older men were less likely to be treated with ChEIs therapy. Women who were African Americans (OR = 1.387, 95% CI, 1.168–1.647, p < 0.001), that received memantine (OR = 3.412, 95% CI, 3.034–3.837, p < 0.001), selective serotonin reuptake inhibitor (SSRIs) (OR = 1.143, 95% CI, 1.016–1.287, p = 0.026), and a history of ETOH (OR = 2.109, 95% CI, 1.724–2.580, p < 0.001) were more likely to receive ChEIs therapy, whereas older women were less likely to receive ChEIs therapy. Conclusion: In both men and women patients, those with increasing age were less likely to be treated with ChEI therapy, while patients treated with memantine were also likely to receive ChEI therapy. Our findings highlight the importance for clinicians to optimize ChEI in LOAD to improve treatment effectiveness and eliminate gender differences in ChEI therapy.
Collapse
|
41
|
Liu Y, Ding R, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X. Roles and Mechanisms of the Protein Quality Control System in Alzheimer's Disease. Int J Mol Sci 2021; 23:345. [PMID: 35008771 PMCID: PMC8745298 DOI: 10.3390/ijms23010345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy-lysosome system (ALS) and the ubiquitin-proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (R.D.); (Z.X.); (Y.X.); (D.Z.); (Y.Z.); (W.L.)
| |
Collapse
|
42
|
Mostafa NM, Mostafa AM, Ashour ML, Elhady SS. Neuroprotective Effects of Black Pepper Cold-Pressed Oil on Scopolamine-Induced Oxidative Stress and Memory Impairment in Rats. Antioxidants (Basel) 2021; 10:1993. [PMID: 34943096 PMCID: PMC8698347 DOI: 10.3390/antiox10121993] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is usually associated with many neurodegenerative diseases. In this study, the gas chromatography-mass spectrometry (GC-MS) analysis of cold-pressed oil (CPO) from black pepper (Piper nigrum) fruits was performed and its neuroprotective effects were evaluated for the first time. The analysis of CPO revealed the presence of the lignan sesamin (39.78%), the alkaloid piperine (33.79%), the monoterpene hydrocarbons 3-carene (9.53%) and limonene (6.23%), and the sesquiterpene β-caryophyllene (10.67%). Black pepper hydrodistilled oil (HDO) was also comparatively analyzed by GC-MS to show the impact of oil isolation by two different methodologies on their components and class of compounds identified. HDO analysis revealed 35 compounds (99.64% of the total peak areas) mainly composed of monoterpene hydrocarbons (77.28%), such as limonene (26.50%), sabinene (21.36%), and β-pinene (15.53%), and sesquiterpene hydrocarbons (20.59%) represented mainly by β-caryophyllene (19.12%). Due to the low yield obtained for HDO (0.01% v/w), only CPO was chosen for the evaluation of its neuroprotective potential. Alzheimer-type dementia was induced in rats by scopolamine intraperitoneal injection (1.5 mg/kg/day) for seven days. CPO was administered orally (100 mg/kg) for a week before scopolamine administration and then concomitantly for another week. Donepezil (1 mg/kg, orally) was used as a reference drug. CPO administration significantly improved the rat behaviors as evaluated by the Morris water maze test, evident from prolongation in time spent in the platform quadrant (262.9%, compared to scopolamine) and increasing in the crossing time by 18.18% compared to the control group. The rat behavior tested by passive avoidance, showed prolongation in the step-through latency compared to control. Moreover, CPO significantly (p < 0.05) ameliorated the activities of antioxidant enzymes such as catalase, superoxide dismutase (SOD) and reduced malondialdehyde (MDA) equivalents by 22.48%, 45.41%, and 86.61%, respectively, compared to scopolamine. Furthermore, CPO administration decreased scopolamine-induced elevated acetylcholinesterase levels in rats' hippocampi by 51.30%. These results were supported by histopathological and in silico molecular docking studies. Black pepper oil may be a potential antioxidant and neuroprotective supplement.
Collapse
Affiliation(s)
- Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Ahmed M. Mostafa
- Department of Biochemistry, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
43
|
Cholinesterase inhibitors for the treatment of dementia: real-life data in Hungary. GeroScience 2021; 44:253-263. [PMID: 34655009 PMCID: PMC8811017 DOI: 10.1007/s11357-021-00470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022] Open
Abstract
Dementia is one of the leading causes of death and disability in older population. Previous reports have shown that antidementia medications are associated with longer survival; nonetheless, the prevalence of their use and the compliance with them are quite different worldwide. There is hardly any available information about the pharmacoepidemiology of these drugs in the Eastern-European region; we aimed to analyze the use of cholinesterase inhibitors (ChEis) for the treatment of dementia to provide real-life information from the Eastern European region. All medical and medication prescription reports of the in- and outpatient specialist services collected in the NEUROHUN database in Hungary were analyzed between 2013 and 2016. Survival, adherence, and persistence values were calculated. 8803 patients were treated with ChEis during the study period, which was only 14.5% of the diagnosed demented patients. The survival of treated patients (more than 4 years) was significantly longer than patients without ChEi treatment (2.50 years). The best compliance was observed with rivastigmine patch. Choosing the appropriate medication as soon as possible after the dementia diagnosis may lead to increased life expectancy.
Collapse
|
44
|
Mak S, Li W, Fu H, Luo J, Cui W, Hu S, Pang Y, Carlier PR, Tsim KW, Pi R, Han Y. Promising tacrine/huperzine A-based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders: From relieving symptoms to modifying diseases through multitarget. J Neurochem 2021; 158:1381-1393. [PMID: 33930191 PMCID: PMC8458250 DOI: 10.1111/jnc.15379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, are devastating diseases in the elderly world, which are closely associated with progressive neuronal loss induced by a variety of genetic and/or environmental factors. Unfortunately, currently available treatments for neurodegenerative disorders can only relieve the symptoms but not modify the pathological processes. Over the past decades, our group by collaborating with Profs. Yuan-Ping Pang and Paul R. Carlier has developed three series of homo/hetero dimeric acetylcholinesterase inhibitors derived from tacrine and/or huperzine A. The representative dimers bis(3)-Cognitin (B3C), bis(12)-hupyridone, and tacrine(10)-hupyridone might possess disease-modifying effects through the modulation of N-methyl-d-aspartic acid receptors, the activation of myocyte enhancer factor 2D gene transcription, and the promotion of neurotrophic factor secretion. In this review, we summarize that the representative dimers, such as B3C, provide neuroprotection against a variety of neurotoxins via multiple targets, including the inhibitions of N-methyl-d-aspartic acid receptor with pathological-activated potential, neuronal nitric oxide synthase, and β-amyloid cascades synergistically. More importantly, B3C might offer disease-modifying potentials by activating myocyte enhancer factor 2D transcription, inducing neuritogenesis, and promoting the expressions of neurotrophic factors in vitro and in vivo. Taken together, the novel dimers might offer synergistic disease-modifying effects, proving that dimerization might serve as one of the strategies to develop new generation of therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shinghung Mak
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenming Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjun Fu
- Department of Neuroscience, Chronic Brain Injury, The Ohio State University, Columbus, OH, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China
| | - Shengquan Hu
- Shenzhen Institute of Geriatrics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuanping Pang
- Mayo Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, MN, USA
| | | | - Karl Wahkeung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Pi
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
45
|
Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179461. [PMID: 34502369 PMCID: PMC8431716 DOI: 10.3390/ijms22179461] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present review is to discuss traditional hypotheses on the etiopathogenesis of Alzheimer's disease (AD), as well as the role of metabolic-syndrome-related mechanisms in AD development with a special focus on advanced glycation end-products (AGEs) and their role in metal-induced neurodegeneration in AD. Persistent hyperglycemia along with oxidative stress results in increased protein glycation and formation of AGEs. The latter were shown to possess a wide spectrum of neurotoxic effects including increased Aβ generation and aggregation. In addition, AGE binding to receptor for AGE (RAGE) induces a variety of pathways contributing to neuroinflammation. The existing data also demonstrate that AGE toxicity seems to mediate the involvement of copper (Cu) and potentially other metals in AD pathogenesis. Specifically, Cu promotes AGE formation, AGE-Aβ cross-linking and up-regulation of RAGE expression. Moreover, Aβ glycation was shown to increase prooxidant effects of Cu through Fenton chemistry. Given the role of AGE and RAGE, as well as metal toxicity in AD pathogenesis, it is proposed that metal chelation and/or incretins may slow down oxidative damage. In addition, selenium (Se) compounds seem to attenuate the intracellular toxicity of the deranged tau and Aβ, as well as inhibiting AGE accumulation and metal-induced neurotoxicity.
Collapse
|
46
|
Das M, Jaya Balan D, Kasi PD. Mitigation of oxidative stress with dihydroactinidiolide, a natural product against scopolamine-induced amnesia in Swiss albino mice. Neurotoxicology 2021; 86:149-161. [PMID: 34371027 DOI: 10.1016/j.neuro.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The present work describes the neuroprotective efficacy of DHAc under escalated oxidative stress condition in scopolamine-induced amnesic mice. During the toxicity test of DHAc in mice, the acute dose (LD50) is found to be 3.468 mg/kg bw and the sub-acute dose is 0.68 mg/kg bw. Improved cognitive and learning abilities are observed in Morris water maze and Y-maze test in 10 days DHAc (0.68 mg/kg bw) treated scopolamine-induced male Swiss albino mice. In the molecular level these changes are monitored as reduced oxidative load followed by significantly lower lipid peroxidation and protein carbonylation, increased superoxide dismutase, catalase, acetylcholinesterase, caspase-3 activity and glutathione content followed by higher expression of anti apoptotic protein bcl-2 in mice brain as compared to scopolamine (1 mg/kg bw) treated mice. Meanwhile real time PCR shows higher expression of brain derived neurotrophic factor (BDNF) and synaptophysin in DHAc pretreated scopolamine treated mice brain. HPLC analysis suggested its possible blood brain barrier crossing ability. Overall DHAc reversed behavioral anomalies in the scopolamine treated mice via oxidative stress quenching, enhancing antioxidative enzyme activity, enhancing BDNF and synaptophysin mRNA levels and reducing expression of apoptotic protein Bax.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India.
| |
Collapse
|
47
|
Cunha S, Forbes B, Sousa Lobo JM, Silva AC. Improving Drug Delivery for Alzheimer's Disease Through Nose-to-Brain Delivery Using Nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels. Int J Nanomedicine 2021; 16:4373-4390. [PMID: 34234432 PMCID: PMC8256381 DOI: 10.2147/ijn.s305851] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Current treatments for Alzheimer's disease (AD) attenuate the progression of symptoms and aim to improve the patient's quality of life. Licensed medicines are mostly for oral administration and are limited by the difficulty in crossing the blood-brain barrier (BBB). Here in, the nasal route has been explored as an alternative pathway that allows drugs to be directly delivered to the brain via the nasal cavity. However, clearance mechanisms in the nasal cavity impair the delivery of drugs to the brain and limit their bioavailability. To optimize nose-to-brain delivery, formulations of lipid-based nanosystems, namely nanoemulsions and nanostructured lipid carriers (NLC), formulated in situ gelling hydrogels have been proposed as approaches for nose-to-brain delivery. These formulations possess characteristics that facilitate drug transport directly to the brain, minimizing side effects and maximizing therapeutic benefits. It has been recommended that the manufacture of these drug delivery systems follows the quality by design (QbD) approach based on nasal administration requirements. This review provides an insight into the current knowledge of the AD, highlighting the need for an effective drug delivery to the brain. Considering the mounting interest in the use of nanoemulsions and NLC for nose-to-brain delivery, a description of drug transport pathways in the nasal cavity and the application of these nanosystems and their in situ hydrogels through the intranasal route are presented. Relevant preclinical studies are summarised, and the future prospects for the use of lipid-based nanosystems in the treatment of AD are emphasized.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 9NH, UK
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, Porto, 4249-004, Portugal
| |
Collapse
|
48
|
Eriksdotter M, Mitra S. Gene and cell therapy for the nucleus basalis of Meynert with NGF in Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:219-229. [PMID: 34225964 DOI: 10.1016/b978-0-12-819975-6.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is currently no effective treatment for the most common of the dementia disorders, Alzheimer's disease (AD). It has been known for decades that the central cholinergic system is important for memory. The cholinergic neurons in the basal forebrain with its cortical and hippocampal projections degenerate in AD and thus contribute to the cognitive decline characteristic of AD. This knowledge led to the development of the currently approved treatment for AD, with inhibitors of acetylcholine-esterase targeting the cholinergic system with beneficial but mild effects. In recent years, other approaches to influence the degenerating cholinergic system in AD focusing on nerve growth factor (NGF) have been undertaken. NGF is required for the survival and function of the basal forebrain cholinergic neurons, the most important being the nucleus basalis of Meynert (nbM). Since there is a lack of NGF and its receptors in the AD forebrain, the hypothesis is that local delivery of NGF to the nbM could revive the cholinergic circuitry and thereby restore cognitive functions. Since NGF does not pass through the blood-brain barrier, approaches involving cerebral injections of genetically modified cells or viral vectors or implantation of encapsulated cells in the nbM in AD patients have been used. These attempts have been partially successful but also have limitations, which are presented and discussed here. In conclusion, these trials point to the importance of further development of NGF-related therapies in AD.
Collapse
Affiliation(s)
- Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Huddinge, Sweden.
| | - Sumonto Mitra
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
50
|
Nwafor DC, Chakraborty S, Jun S, Brichacek AL, Dransfeld M, Gemoets DE, Dakhlallah D, Brown CM. Disruption of metabolic, sleep, and sensorimotor functional outcomes in a female transgenic mouse model of Alzheimer's disease. Behav Brain Res 2020; 398:112983. [PMID: 33137399 DOI: 10.1016/j.bbr.2020.112983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of dementia globally, and the number of individuals with AD diagnosis is expected to double by 2050. Numerous preclinical AD studies have shown that AD neuropathology accompanies alteration in learning and memory. However, less attention has been given to alterations in metabolism, sleep, and sensorimotor functional outcomes during AD pathogenesis. The objective of this study was to elucidate the extent to which metabolic activity, sleep-wake cycle, and sensorimotor function is impaired in APPSwDI/Nos2-/- (CVN-AD) transgenic mice. Female mice were used in this study because AD is more prevalent in women compared to men. We hypothesized that the presence of AD neuropathology in CVN-AD mice would accompany alterations in metabolic activity, sleep, and sensorimotor function. Our results showed that CVN-AD mice had significantly decreased energy expenditure compared to wild-type (WT) mice. An examination of associated functional outcome parameters showed that sleep activity was elevated during the awake (dark) cycle and as well as an overall decrease in spontaneous locomotor activity. An additional functional parameter, the nociceptive response to thermal stimuli, was also impaired in CVN-AD mice. Collectively, our results demonstrate CVN-AD mice exhibit alterations in functional parameters that resemble human-AD clinical progression.
Collapse
Affiliation(s)
- Divine C Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sujung Jun
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Margaret Dransfeld
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Darren E Gemoets
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV 26506 USA
| | - Duaa Dakhlallah
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Cancer Institute, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|