1
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
2
|
Sharma B, Rodarte D, Goyal G, Rodriguez S, Kumar S. MicroRNA-502-3p modulates the GABA A subunits, synaptic proteins and mitochondrial morphology in hippocampal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632229. [PMID: 39868313 PMCID: PMC11761796 DOI: 10.1101/2025.01.09.632229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
MicroRNA-502-3p (MiR-502-3p), a synapse enriched miRNA is considerably implicated in Alzheimer's disease (AD). Our previous study found the high expression level of miR-502-3p in AD synapses relative to controls. Further, miR-502-3p was found to modulate the GABAergic synapse function via modulating the GABA A receptor subunit α-1 (GABRA1) protein. The current study is attempted to examine the impact of miR-502-3p on other GABA subunit proteins, synaptic proteins, mitochondrial morphology and other hippocampal neuron genes. Mouse hippocampal neuronal (HT22) cells were transfected with miR-502-3p overexpression (OE) vector, miR-502-3p sponge (suppression) vector and scramble control vector. MiR-502-3p vectors transfection was confirmed by fluorescence microscopy. MiR-502-3p expression and GABRA1 expression was confirmed by qRT-PCR and miRNAScope in-situ hybridization. GABA A subunit and synaptic proteins were studied by immunoblotting analysis and mitochondrial morphology was analyzed by transmission electron microscopy (TEM) analysis. Further, Affymetrix gene array analysis was conducted in miR-502-3p overexpressed and suppressed cells. Our results observed that elevated miR-502-3p, negatively modulates the GABRA1 level. The levels of GABA A subunit and synaptic proteins were reduced by ectopic expression of miR-502-3p and increase by miR-502-3p suppression. The mitochondrial morphology was found to be improved in-terms of their number and length in miR-502-3p suppressed cells. Further, Gene array analysis unveiled the deregulation of several genes by miR-502-3p, which are associated with oxidative stress, immune response and synaptic function. These results provide new insights and an update to understand the biological roles of miR-502-3p in regulation of neuron function and synaptic activity.
Collapse
|
3
|
Jia N, Ganesan D, Guan H, Jeong YY, Han S, Rajapaksha G, Nissenbaum M, Kusnecov AW, Cai Q. Mitochondrial bioenergetics stimulates autophagy for pathological MAPT/Tau clearance in tauopathy neurons. Autophagy 2025; 21:54-79. [PMID: 39171695 DOI: 10.1080/15548627.2024.2392408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Hyperphosphorylation and aggregation of MAPT (microtubule-associated protein tau) is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer disease (AD). Pathological MAPT/tau is targeted by macroautophagy/autophagy for clearance after being sequestered within autophagosomes, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic deficits have been shown to precede MAPT/tau pathology in tauopathy brains, it is unclear whether energy metabolism deficiency is involved in the pathogenesis of autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy neurons which, strikingly, leads to pronounced MAPT/tau clearance by boosting autophagy functionality through enhancements of mitochondrial biosynthesis and supply of phosphatidylethanolamine for autophagosome biogenesis. Furthermore, early anaplerotic stimulation of OXPHOS elevates autophagy activity and attenuates MAPT/tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of mitochondrial bioenergetic deficiency in tauopathy-related autophagy defects and suggests a new therapeutic strategy to prevent the buildup of pathological MAPT/tau in AD and other tauopathy diseases.Abbreviation: AA: antimycin A; AD, Alzheimer disease; ATP, adenosine triphosphate; AV, autophagosome/autophagic vacuole; AZ, active zone; Baf-A1: bafilomycin A1; CHX, cycloheximide; COX, cytochrome c oxidase; DIV, days in vitro; DRG, dorsal root ganglion; ETN, ethanolamine; FRET, Förster/fluorescence resonance energy transfer; FTD, frontotemporal dementia; Gln, glutamine; HA: hydroxylamine; HsMAPT/Tau, human MAPT; IMM, inner mitochondrial membrane; LAMP1, lysosomal-associated membrane protein 1; LIs, lysosomal inhibitors; MDAV, mitochondria-derived autophagic vacuole; MmMAPT/Tau, murine MAPT; NFT, neurofibrillary tangle; OCR, oxygen consumption rate; Omy: oligomycin; OXPHOS, oxidative phosphorylation; PPARGC1A/PGC-1alpha: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PE, phosphatidylethanolamine; phospho-MAPT/tau, hyperphosphorylated MAPT; PS, phosphatidylserine; PISD, phosphatidylserine decarboxylase;SQSTM1/p62, sequestosome 1; STX1, syntaxin 1; SYP, synaptophysin; Tg, transgenic; TCA, tricarboxylic acid; TEM, transmission electron microscopy.
Collapse
Affiliation(s)
- Nuo Jia
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dhasarathan Ganesan
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hongyuan Guan
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yu Young Jeong
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sinsuk Han
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Gavesh Rajapaksha
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marialaina Nissenbaum
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Alexander W Kusnecov
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
4
|
Engelhardt E, Resende EDPF, Gomes KB. Physiopathological mechanisms underlying Alzheimer's disease: a narrative review. Dement Neuropsychol 2024; 18:e2024VR01. [PMID: 39697643 PMCID: PMC11654088 DOI: 10.1590/1980-5764-dn-2024-vr01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 12/20/2024] Open
Abstract
The neuropathological signature of Alzheimer's disease (AD) comprises mainly amyloid plaques, and neurofibrillary tangles, resulting in synaptic and neuronal loss. These pathological structures stem from amyloid dysfunctional metabolism according to the amyloid cascade hypothesis, leading to the formation of plaques, and apparently inducing the initiation of the abnormal tau pathway, with phosphorylation and aggregation of these proteins, ultimately causing the formation of tangles. In this narrative review, the existing hypothesis related to the pathophysiology of AD were compiled, and biological pathways were highlighted in order to identify the molecules that could represent biological markers of the disease, necessary to establish early diagnosis, as well as the selection of patients for therapeutical interventional strategies.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto, Rio de Janeiro RJ, Brazil
| | - Elisa de Paula França Resende
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil
| | - Karina Braga Gomes
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Belo Horizonte MG, Brazil
| |
Collapse
|
5
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024; 112:3823-3850. [PMID: 39515322 PMCID: PMC11624102 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Xiong W, Xu K, Sun JKL, Liu S, Zhao B, Shi J, Herrup K, Chow HM, Lu L, Li J. The mitochondrial long non-coding RNA lncMtloop regulates mitochondrial transcription and suppresses Alzheimer's disease. EMBO J 2024; 43:6001-6031. [PMID: 39424953 PMCID: PMC11612450 DOI: 10.1038/s44318-024-00270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining mitochondrial homeostasis is crucial for cell survival and organismal health, as evidenced by the links between mitochondrial dysfunction and various diseases, including Alzheimer's disease (AD). Here, we report that lncMtDloop, a non-coding RNA of unknown function encoded within the D-loop region of the mitochondrial genome, maintains mitochondrial RNA levels and function with age. lncMtDloop expression is decreased in the brains of both human AD patients and 3xTg AD mouse models. Furthermore, lncMtDloop binds to mitochondrial transcription factor A (TFAM), facilitates TFAM recruitment to mtDNA promoters, and increases mitochondrial transcription. To allow lncMtDloop transport into mitochondria via the PNPASE-dependent trafficking pathway, we fused the 3'UTR localization sequence of mitochondrial ribosomal protein S12 (MRPS12) to its terminal end, generating a specified stem-loop structure. Introducing this allotropic lncMtDloop into AD model mice significantly improved mitochondrial function and morphology, and ameliorated AD-like pathology and behavioral deficits of AD model mice. Taken together, these data provide insights into lncMtDloop as a regulator of mitochondrial transcription and its contribution to Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Wandi Xiong
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Kaiyu Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baizhen Zhao
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Karl Herrup
- Department of Neurobiology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Lu
- Peking-Tsinghua Center for Life Sciences, Beijing, China.
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China.
| | - Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China.
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA.
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| |
Collapse
|
7
|
Maiella M, Mencarelli L, Casula EP, Borghi I, Assogna M, di Lorenzo F, Bonnì S, Pezzopane V, Martorana A, Koch G. Breakdown of TMS evoked EEG signal propagation within the default mode network in Alzheimer's disease. Clin Neurophysiol 2024; 167:177-188. [PMID: 39332078 DOI: 10.1016/j.clinph.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD). OBJECTIVES We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients. METHODS Twenty mild to moderate AD patients were recruited. We used transcranial magnetic stimulation (TMS) pulses to probe with a millisecond time resolution the propagation of evoked electroencephalography (EEG) signal following the neural activation of the Precuneus (PC), which is a key hub area of the DMN. Moreover, functional and structural magnetic resonance imaging (MRI) data were collected to reconstruct individual features of the DMN. RESULTS In AD patients a probe TMS pulse applied over the PC evokes an increased local activity unmasking underlying hyperexcitability. In contrast, the EEG evoked neural signal did not propagate efficiently within the DMN showing a remarkable breakdown of signal propagation. fMRI and structural tractography showed that impaired signal propagation was related to the same connectivity matrices derived from DMN BOLD signal and transferred by specific white matter bundles forming the cingulum. These features were not detectable stimulating other areas (left dorsolateral prefrontal cortex) or for different networks (fronto-parietal network). Finally, connectivity breakdown was associated with cognitive impairment, as measured with the Clinical Dementia Rating Scale sum of boxes (CDR-SB). CONCLUSIONS TMS-EEG in AD shows both local hyperexcitability and a lack of signal propagation within the DMN. These neurophysiological features also correlate with structural and cognitive attributes of the patients. SIGNIFICANCE Neuronavigated TMS-EEG may be used as a novel neurophysiological biomarker of DMN connectivity in AD patients.
Collapse
Affiliation(s)
- Michele Maiella
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Mencarelli
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elias P Casula
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Borghi
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Martina Assogna
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco di Lorenzo
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonia Bonnì
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valentina Pezzopane
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | | | - Giacomo Koch
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy.
| |
Collapse
|
8
|
Hu FF, Pan SY, Chu JY, Liu JJ, Duan TT, Luo Y, Zhou W, Wang ZM, Liu W, Zeng Y. Xanthohumol Protects Against Neuronal Excitotoxicity and Mitochondrial Dysfunction in APP/PS1 Mice: An Omics-Based Study. Nutrients 2024; 16:3754. [PMID: 39519590 PMCID: PMC11548031 DOI: 10.3390/nu16213754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Neuronal excitotoxicity and metabolic decline, which begin in the early stages of Alzheimer's disease (AD), pose challenges for effective amelioration. Our previous work suggested that the natural compound xanthohumol, the most abundant prenylated flavonoid in hops, prevents memory deficits in APP/PS1 mice; however, the underlying mechanisms remain unclear. Methods: This study utilized APP/PS1 mice and cutting-edge omics techniques to investigate the effects of xanthohumol on hippocampal proteome, serum metabolome, and microbiome. Results: Our findings revealed that xanthohumol reduces the postsynaptic overexpression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, N-methyl-D-aspartate, and metabotropic glutamate receptors, but enhances ATP synthesis and mitophagy in the young AD hippocampus. Further mechanistic analyses suggested systemic regulatory effects, particularly on the decreasing glutamate synthesis in the blood and intestines of AD mice following xanthohumol administration. Conclusions: These results underscore the potential of xanthohumol in mitigating AD pathology through multifaceted mechanisms, sparking interest and curiosity in its preventive and therapeutic potential in AD.
Collapse
Affiliation(s)
- Fei-Fei Hu
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shi-Yao Pan
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jin-Yu Chu
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian-Jun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Ting-Ting Duan
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Luo
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wen Zhou
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhi-Ming Wang
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Yan Zeng
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
9
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
10
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
11
|
Islam MA, Kshirsagar S, Reddy AP, Sehar U, Reddy PH. Use and Reuse of Animal Behavioral, Molecular, and Biochemical Data in Alzheimer's Disease Research: Focus on 3Rs and Saving People's Tax Dollars. J Alzheimers Dis Rep 2024; 8:1171-1184. [PMID: 39247873 PMCID: PMC11380314 DOI: 10.3233/adr-240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Several decades of research on cell and animal models contributed tremendously to understanding human diseases. Particularly, research on rodents and non-human primates revealed that animal research is a major and important component in biomedical research in learning complex pathophysiological processes. Further, animal research helped us to understand human diseases, such as Alzheimer's disease. In addition, animal research has also helped us to test hundreds of drugs and develop treatments for human use. Researchers can gain a better understanding of key biological and physiological processes in humans by comparing them to laboratory animals. Based on their relevance and resemblance to people, or even usual living conditions, scientists rationalize the use of particular animal models in their studies. It is suggested that in the National Institutes of Health and other agencies-funded research, animal models should be carefully selected to study the biology and pathophysiology of human health and diseases such as Alzheimer's disease and other dementias. However, it is critical to use a minimum number of animals for human research. Further, it is also noted that the use and reuse of behavioral, molecular, and biochemical data from wild-type (WT) control mice with mutant lines of disease models, as long as the genetic background is the same in both WT and disease mice. On the other hand, anonymous readers have challenged the use and reuse of WT mice data for comparison. In the current article, we discuss the minimum utility of animals, covering the 3Rs, Replacement, Reduction, and Refinement, and also discuss the use and reuse of behavioral, molecular, and biochemical data.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Department of Nutritional Sciences, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
12
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
13
|
Sayehmiri F, Motamedi F, Batool Z, Naderi N, Shaerzadeh F, Zoghi A, Rezaei O, Khodagholi F, Pourbadie HG. Mitochondrial plasticity and synaptic plasticity crosstalk; in health and Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14897. [PMID: 39097920 PMCID: PMC11298206 DOI: 10.1111/cns.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Synaptic plasticity is believed to underlie the cellular and molecular basis of memory formation. Mitochondria are one of the main organelles involved in metabolism and energy maintenance as plastic organelles that change morphologically and functionally in response to cellular needs and regulate synaptic function and plasticity through multiple mechanisms, including ATP generation, calcium homeostasis, and biogenesis. An increased neuronal activity enhances synaptic efficiency, during which mitochondria's spatial distribution and morphology change significantly. These organelles build up in the pre-and postsynaptic zones to produce ATP, which is necessary for several synaptic processes like neurotransmitter release and recycling. Mitochondria also regulate calcium homeostasis by buffering intracellular calcium, which ensures proper synaptic activity. Furthermore, mitochondria in the presynaptic terminal have distinct morphological properties compared to dendritic or postsynaptic mitochondria. This specialization enables precise control of synaptic activity and plasticity. Mitochondrial dysfunction has been linked to synaptic failure in many neurodegenerative disorders, like Alzheimer's disease (AD). In AD, malfunctioning mitochondria cause delays in synaptic vesicle release and recycling, ionic gradient imbalances, and mostly synaptic failure. This review emphasizes mitochondrial plasticity's contribution to synaptic function. It also explores the profound effect of mitochondrial malfunction on neurodegenerative disorders, focusing on AD, and provides an overview of how they sustain cellular health under normal conditions and how their malfunction contributes to neurodegenerative diseases, highlighting their potential as a therapeutic target for such conditions.
Collapse
Affiliation(s)
- Fatemeh Sayehmiri
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Nima Naderi
- Department of Pharmacology and Toxicology, Faculty of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | | | - Anahita Zoghi
- Department of Neurology, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Omidvar Rezaei
- Skull Base Research CenterLoghman Hakim Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Fariba Khodagholi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | |
Collapse
|
14
|
Yang J, Zhao H, Qu S. Phytochemicals targeting mitophagy: Therapeutic opportunities and prospects for treating Alzheimer's disease. Biomed Pharmacother 2024; 177:117144. [PMID: 39004063 DOI: 10.1016/j.biopha.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
15
|
Behl T, Kaur I, Sehgal A, Khandige PS, Imran M, Gulati M, Khalid Anwer M, Elossaily GM, Ali N, Wal P, Gasmi A. The link between Alzheimer's disease and stroke: A detrimental synergism. Ageing Res Rev 2024; 99:102388. [PMID: 38914265 DOI: 10.1016/j.arr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
Being age-related disorders, both Alzheimer's disease (AD) and stroke share multiple risk factors, such as hypertension, smoking, diabetes, and apolipoprotein E (APOE) Ɛ4 genotype, and coexist in patients. Accumulation of amyloid-β plaques and neurofibrillary tangled impair cognitive potential, leading to AD. Blocked blood flow in the neuronal tissues, causes neurodegeneration and cell death in stroke. AD is commonly characterized by cerebral amyloid angiopathy, which significantly elevates the risk of hemorrhagic stroke. Patients with AD and stroke have been both reported to exhibit greater cognitive impairment, followed by multiple pathophysiological mechanisms shared between the two. The manuscript aims to elucidate the relationship between AD and stroke, as well as the common pathways and risk factors while understanding the preventive therapies that might limit the negative impacts of this correlation, with diagnostic modalities and current AD treatments. The authors provide a comprehensive review of the link and aid the healthcare professionals to identify suitable targets and risk factors, that may retard cognitive decline and neurodegeneration in patients. However, more intricate research is required in this regard and an interdisciplinary approach that would target both the vascular and neurodegenerative factors would improve the quality of life in AD patients.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Ishnoor Kaur
- University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Prasanna Shama Khandige
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangaluru, Karnataka, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Baisc Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Pranay Wal
- PSIT Kanpur, Department of Pharmacy, Uttar Pradesh, India
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint Etienne, France
| |
Collapse
|
16
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
17
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Gasca-Martínez D, Carrillo-González NJ, Beas-Zárate C, Gudiño-Cabrera G. Cytotoxic Effect of Amyloid-β1-42 Oligomers on Endoplasmic Reticulum and Golgi Apparatus Arrangement in SH-SY5Y Neuroblastoma Cells. NEUROSCI 2024; 5:141-157. [PMID: 39483494 PMCID: PMC11469764 DOI: 10.3390/neurosci5020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 11/03/2024] Open
Abstract
Amyloid-β oligomers are a cytotoxic structure that is key for the establishment of the beginning stages of Alzheimer's disease (AD). These structures promote subcellular alterations that cause synaptic dysfunction, loss of cell communication, and even cell death, generating cognitive deficits. The aim of this study was to investigate the cytotoxic effects of amyloid-β1-42 oligomers (AβOs) on the membranous organelles involved in protein processing: the endoplasmic reticulum (ER) and Golgi apparatus (GA). The results obtained with 10 μM AβOs in SH-SY5Y neuroblastoma cells showed that oligomeric structures are more toxic than monomers because they cause cell viability to decrease as exposure time increases. Survivor cells were analyzed to further understand the toxic effects of AβOs on intracellular organelles. Survivor cells showed morphological alterations associated with abnormal cytoskeleton modification 72-96 h after exposure to AβOs. Moreover, the ER and GA presented rearrangement throughout the cytoplasmic space, which could be attributed to a lack of constitutive protein processing or to previous abnormal cytoskeleton modification. Interestingly, the disorganization of both ER and GA organelles exposed to AβOs is likely an early pathological alteration that could be related to aberrant protein processing and accumulation in AD.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (J.J.J.-B.); (M.C.R.-C.)
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (J.J.J.-B.); (M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM, Juriquilla 76230, Mexico;
| | - Nidia Jannette Carrillo-González
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| | - Carlos Beas-Zárate
- Neurobiotechnology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico;
| | - Graciela Gudiño-Cabrera
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| |
Collapse
|
18
|
Khayatan D, Razavi SM, Arab ZN, Hosseini Y, Niknejad A, Momtaz S, Abdolghaffari AH, Sathyapalan T, Jamialahmadi T, Kesharwani P, Sahebkar A. Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol Cell Biochem 2024; 479:693-705. [PMID: 37166541 DOI: 10.1007/s11010-023-04757-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Over the past few years, the prevalence of neurodegenerative diseases (NDD) has increased dramatically. The community health system is burdened by the high healthcare costs associated with NDD. Superoxide dismutase (SOD) is a type of metalloenzyme that possesses a distinct characteristic of protecting the body from oxidative stress through antioxidants. In this way, SOD supplementation may activate the endogenous antioxidant mechanism in various pathological conditions and could be used to neutralize free radical excess. Several factors are responsible for damaging DNA and RNA in the body, including the overproduction of reactive species, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive ROS/RNS have deleterious effects on mitochondria and their metabolic processes, mainly through increased mitochondrial proteins, lipids and DNA oxidation. Studies have shown that oxidative stress is implicated in the etiology of many diseases, including NDD. It is thought that anti-inflammatory compounds, particularly phytochemicals, can interfere with these pathways and regulate inflammation. Extensive experimental and clinical research has proven that curcumin (Cur) has anti-inflammatory and anti-neurologic properties. In this review, we have compiled the available data on Cur's anti-inflammatory properties, paying special attention to its therapeutic impact on NDD through SOD.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland, Hull, UK
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Nasb M, Tao W, Chen N. Alzheimer's Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis 2024; 15:43-73. [PMID: 37450931 PMCID: PMC10796101 DOI: 10.14336/ad.2023.0608] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by both amnestic and non-amnestic clinical manifestations. It accounts for approximately 60-70% of all dementia cases worldwide. With the increasing number of AD patients, elucidating underlying mechanisms and developing corresponding interventional strategies are necessary. Hypotheses about AD such as amyloid cascade, Tau hyper-phosphorylation, neuroinflammation, oxidative stress, mitochondrial dysfunction, cholinergic, and vascular hypotheses are not mutually exclusive, and all of them play a certain role in the development of AD. The amyloid cascade hypothesis is currently the most widely studied; however, other hypotheses are also gaining support. This article summarizes the recent evidence regarding major pathological hypotheses of AD and their potential interplay, as well as the strengths and weaknesses of each hypothesis and their implications for the development of effective treatments. This could stimulate further studies and promote the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
20
|
Kavoosi S, Shahraki A, Sheervalilou R. Identification of microRNA-mRNA Regulatory Networks with Therapeutic Values in Alzheimer's Disease by Bioinformatics Analysis. J Alzheimers Dis 2024; 98:671-689. [PMID: 38427479 DOI: 10.3233/jad-230966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is the most prevalent neurological disorder worldwide, affecting approximately 24 million individuals. Despite more than a century of research on AD, its pathophysiology is still not fully understood. Objective Recently, genetic studies of AD have focused on analyzing the general expression profile by employing high-throughput genomic techniques such as microarrays. Current research has leveraged bioinformatics advancements in genetic science to build upon previous efforts. Methods Data from the GSE118553 dataset used in this investigation, and the analyses carried out using programs such as Limma and BioBase. Differentially expressed genes (DEGs) and differentially expressed microRNAs (DEmiRs) associated with AD identified in the studied areas of the brain. Target genes of the DEmiRs identified using the MultiMiR package. Gene ontology (GO) completed using the Enrichr website, and the protein-protein interaction (PPI) network for these genes drawn using STRING and Cytoscape software. Results The findings introduced DEGs including CTNNB1, PAK2, MAP2K1, PNPLA6, IGF1R, FOXL2, DKK3, LAMA4, PABPN1, and GDPD5, and DEmiRs linked to AD (miR-106A, miR-1826, miR-1253, miR-10B, miR-18B, miR-101-2, miR-761, miR-199A1, miR-379 and miR-668), (miR-720, miR-218-2, miR-25, miR-602, miR-1226, miR-548K, miR-H1, miR-410, miR-548F2, miR-181A2), (miR-1470, miR-651, miR-544, miR-1826, miR-195, miR-610, miR-599, miR-323, miR-587 and miR-340), and (miR-1282, miR-1914, miR-642, miR-1323, miR-373, miR-323, miR-1322, miR-612, miR-606 and miR-758) in cerebellum, frontal cortex, temporal cortex, and entorhinal cortex, respectively. Conclusions The majority of the genes and miRNAs identified by our findings may be employed as biomarkers for prediction, diagnosis, or therapy response monitoring.
Collapse
Affiliation(s)
- Sakine Kavoosi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Shahraki
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
21
|
Vijayan M, Reddy PH. Unveiling the Role of Novel miRNA PC-5P-12969 in Alleviating Alzheimer's Disease. J Alzheimers Dis 2024; 98:1329-1348. [PMID: 38552115 DOI: 10.3233/jad-231281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background The intricate and complex molecular mechanisms that underlie the progression of Alzheimer's disease (AD) have prompted a concerted and vigorous research endeavor aimed at uncovering potential avenues for therapeutic intervention. Objective This study aims to elucidate the role of miRNA PC-5P-12969 in the pathogenesis of AD. Methods We assessed the differential expression of miRNA PC-5P-12969 in postmortem AD brains, AD animal and cell models using real-time reverse-transcriptase RT-PCR, we also checked the gene and protein expression of GSK3α and APP. Results Our investigation revealed a notable upregulation of miRNA PC-5P-12969 in postmortem brains of AD patients, in transgenic mouse models of AD, and in mutant APP overexpressing-HT22 cells. Additionally, our findings indicate that overexpression of miRNA PC-5P-12969 exerts a protective effect on cell survival, while concurrently mitigating apoptotic cell death. Further-more, we established a robust and specific interaction between miRNA PC-5P-12969 and GSK3α. Our luciferase reporter assays provided confirmation of the binding between miRNA PC-5P-12969 and the 3'-UTR of the GSK3α gene. Manipulation of miRNA PC-5P-12969 levels in cellular models of AD yielded noteworthy alterations in the gene and protein expression levels of both GSK3α and APP. Remarkably, the manipulation of miRNA PC-5P-12969 levels yielded significant enhancements in mitochondrial respiration and ATP production, concurrently with a reduction in mitochondrial fragmentation, thus unveiling a potential regulatory role of miRNA PC-5P-12969 in these vital cellular processes. Conclusions In summary, this study sheds light on the crucial role of miRNA PC-5P-12969 and its direct interaction with GSK3α in the context of AD.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
22
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Suárez-Carrillo A, Romero-González A, Sánchez-Alcázar JA. Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules 2023; 13:1789. [PMID: 38136659 PMCID: PMC10741690 DOI: 10.3390/biom13121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.); (M.Á.-C.); (M.M.-C.); (M.T.-R.); (A.S.-C.); (A.R.-G.)
| |
Collapse
|
23
|
Jia K, Tian J, Wang T, Guo L, Xuan Z, Swerdlow RH, Du H. Mitochondria-sequestered Aβ renders synaptic mitochondria vulnerable in the elderly with a risk of Alzheimer disease. JCI Insight 2023; 8:e174290. [PMID: 37991017 PMCID: PMC10721326 DOI: 10.1172/jci.insight.174290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
Mitochondria are critical for neurophysiology, and mitochondrial dysfunction constitutes a characteristic pathology in both brain aging and Alzheimer disease (AD). Whether mitochondrial deficiency in brain aging and AD is mechanistically linked, however, remains controversial. We report a correlation between intrasynaptosomal amyloid β 42 (Aβ42) and synaptic mitochondrial bioenergetics inefficiency in both aging and amnestic mild cognitive impairment, a transitional stage between normal aging and AD. Experiments using a mouse model expressing nonmutant humanized Aβ (humanized Aβ-knockin [hAβ-KI] mice) confirmed the association of increased intramitochondrial sequestration of Aβ42 with exacerbated synaptic mitochondrial dysfunction in an aging factor- and AD risk-bearing context. Also, in comparison with global cerebral Aβ, intramitochondrial Aβ was relatively preserved from activated microglial phagocytosis in aged hAβ-KI mice. The most parsimonious interpretation of our results is that aging-related mitochondrial Aβ sequestration renders synaptic mitochondrial dysfunction in the transitional stage between normal aging and AD. Mitochondrial dysfunction in both brain aging and the prodromal stage of AD may follow a continuous transition in response to escalated intraneuronal, especially intramitochondrial Aβ, accumulation. Moreover, our findings further implicate a pivotal role of mitochondria in harboring early amyloidosis during the conversion from normal to pathological aging.
Collapse
Affiliation(s)
- Kun Jia
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA
| | - Russell H. Swerdlow
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
24
|
Reddy PH, Kshirsagar S, Bose C, Pradeepkiran JA, Hindle A, Singh SP, Reddy AP. Rlip overexpression reduces oxidative stress and mitochondrial dysfunction in Alzheimer's disease: Mechanistic insights. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166759. [PMID: 37225106 DOI: 10.1016/j.bbadis.2023.166759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects a large proportion of the aging population. RalBP1 (Rlip) is a stress-activated protein that plays a crucial role in oxidative stress and mitochondrial dysfunction in aging and neurodegenerative diseases but its precise role in the progression of AD is unclear. The purpose of our study is to understand the role of Rlip in the progression and pathogenesis of AD in mutant APP/amyloid beta (Aβ)-expressed mouse primary hippocampal (HT22) hippocampal neurons. In the current study, we used HT22 neurons that express mAPP, transfected with Rlip-cDNA and/or RNA silenced, and studied cell survival, mitochondrial respiration, mitochondrial function, immunoblotting & immunofluorescence analysis of synaptic and mitophagy protein's and colocalization of Rlip and mutant APP/Aβ proteins and mitochondrial length and number. We also assessed Rlip levels in autopsy brains from AD patients and control subjects. We found cell survival was decreased in mAPP-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mAPP-HT22 cells. Oxygen consumption rate (OCR) was decreased in mAPP-HT22 cells and RNA-silenced Rlip-HT22 cells. OCR was increased in Rlip-overexpressed in mAPP-HT22 cells. Mitochondrial function was defective in mAPP-HT22 cells and RNA silenced Rlip in HT22 cells, however, it was rescued in Rlip overexpressed mAPP-HT22 cells. Synaptic and mitophagy proteins were decreased in mAPP-HT22 cells, further reducing RNA-silenced Rlip-HT22 cells. However, these were increased in mAPP+Rlip-HT22 cells. Colocalization analysis revealed Rlip is colocalized with mAPP/Aβ. An increased number of mitochondria and decreased mitochondrial length were found in mAPP-HT22 cells. These were rescued in Rlip overexpressed mAPP-HT22 cells. Reduced Rlip levels were found in autopsy brains from AD patients. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reduced these defects.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| |
Collapse
|
25
|
Ratis RC, Dacoregio MI, Simão-Silva DP, Mateus RP, Machado LP, Bonini JS, da Silva WCFN. Confirmed Synergy Between the ɛ4 Allele of Apolipoprotein E and the Variant K of Butyrylcholinesterase as a Risk Factor for Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis Rep 2023; 7:613-625. [PMID: 37483326 PMCID: PMC10357125 DOI: 10.3233/adr-220084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Alzheimer's disease (AD) has several risk factors. APOE4 is the main one, and it has been suggested that there may be a synergy between it and BCHE-K as a risk factor. Objective To investigate the association between APOE4 and BCHE-K as a risk factor for AD. Methods We searched PubMed, Web of Science, Embase, and Scopus on August 8, 2021 for studies that analyzed the association of APOE4 and BCHE-K with AD. The random effect model was performed in meta-analysis according to age group. A chi-square was performed with the meta-analysis data to verify if the effect found is not associated only with the E4 allele. Results Twenty-one studies with 6,853 subjects (3,528 AD and 3,325 Controls) were included in the meta-analysis. The quality of the evidence is moderate. There is a positive E4-K association for subjects with AD as shown by the odds ratio of 3.43. The chi-square meta test, which measures the probability that the E4-K association is due to chance, has an odds ratio of 6.155, indicating that the E4-K association is not a random event. The odds ratio of an E4-K association in subjects with AD increases to OR 4.46 for the 65- to 75-year-old group and OR 4.15 for subjects older than 75 years. The probability that the E4-K association is due to chance is ruled out by chi-square meta test values of OR 8.638 and OR 9.558. Conclusion The synergy between APOE4 and BCHE-K is a risk factor for late-onset AD.
Collapse
Affiliation(s)
- Renan C. Ratis
- Laboratory of Neurosciences and Behavior, Department of Pharmacy, State University of the Midwest, Paraná, Brazil
| | | | - Daiane P. Simão-Silva
- Post-Graduate Program in Intellectual Property and Technology Transfer for Innovation, State University of the Midwest, Paraná, Brazil
| | - Rogério P. Mateus
- Evolutionary Biology Laboratory, Department of Biology, State University of the Midwest, Paraná, Brazil
| | - Luciana P.B. Machado
- Evolutionary Biology Laboratory, Department of Biology, State University of the Midwest, Paraná, Brazil
| | - Juliana S. Bonini
- Laboratory of Neurosciences and Behavior, Department of Pharmacy, State University of the Midwest, Paraná, Brazil
| | | |
Collapse
|
26
|
Impellizzeri D, Tomasello M, Cordaro M, D'Amico R, Fusco R, Abdelhameed AS, Wenzel U, Siracusa R, Calabrese V, Cuzzocrea S, Di Paola R. Memophenol TM Prevents Amyloid-β Deposition and Attenuates Inflammation and Oxidative Stress in the Brain of an Alzheimer's Disease Rat. Int J Mol Sci 2023; 24:ijms24086938. [PMID: 37108102 PMCID: PMC10138369 DOI: 10.3390/ijms24086938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence rises with age. Inflammation and altered antioxidant systems play essential roles in the genesis of neurodegenerative diseases. In this work, we looked at the effects of MemophenolTM, a compound rich in polyphenols derived from French grape (Vitis vinifera L.) and wild North American blueberry (Vaccinium angustifolium A.) extracts, in a rat model of AD. Methods: For 60 days, the animals were administered with AlCl3 (100 mg/kg, orally) and D-galactose (60 mg/kg, intraperitoneally), while from day 30, MemophenolTM (15 mg/kg) was supplied orally for 30 consecutive days. AlCl3 accumulates mainly in the hippocampus, the main part of the brain involved in memory and learning. Behavioral tests were performed the day before the sacrifice when brains were collected for analysis. Results: MemophenolTM decreased behavioral alterations and hippocampus neuronal degeneration. It also lowered phosphorylated Tau (p-Tau) levels, amyloid precursor protein (APP) overexpression, and β-amyloid (Aβ) buildup. Furthermore, MemophenolTM reduced the pro-oxidative and pro-inflammatory hippocampus changes caused by AD. Our finding, relevant to AD pathogenesis and therapeutics, suggests that MemophenolTM, by modulating oxidative and inflammatory pathways and by regulating cellular brain stress response mechanisms, protects against the behavioral and histopathological changes associated with AD.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35390 Giessen, Germany
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale SS Annunziata, 98168 Messina, Italy
| |
Collapse
|
27
|
Zotarelli-Filho IJ, Mogharbel BF, Irioda AC, Stricker PEF, de Oliveira NB, Saçaki CS, Perussolo MC, da Rosa NN, Lührs L, Dziedzic DSM, Vaz RS, de Carvalho KAT. State of the Art of microRNAs Signatures as Biomarkers and Therapeutic Targets in Parkinson's and Alzheimer's Diseases: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:biomedicines11041113. [PMID: 37189731 DOI: 10.3390/biomedicines11041113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
Identifying target microRNAs (miRNAs) might serve as a basis for developing advanced therapies for Parkinson's disease (PD) and Alzheimer's disease. This review aims to identify the main therapeutic targets of miRNAs that can potentially act in Parkinson's and Alzheimer's diseases. The publication research was conducted from May 2021 to March 2022, selected from Scopus, PubMed, Embase, OVID, Science Direct, LILACS, and EBSCO. A total of 25 studies were selected from 1549 studies evaluated. The total number of miRNAs as therapeutic targets evidenced was 90 for AD and 54 for PD. An average detection accuracy of above 84% for the miRNAs was observed in the selected studies of AD and PD. The major signatures were miR-26b-5p, miR-615-3p, miR-4722-5p, miR23a-3p, and miR-27b-3p for AD and miR-374a-5p for PD. Six miRNAs of intersection were found between AD and PD. This article identified the main microRNAs as selective biomarkers for diagnosing PD and AD and therapeutic targets through a systematic review and meta-analysis. This article can act as a microRNA guideline for laboratory research and pharmaceutical industries for treating Alzheimer's and Parkinson's diseases and offers the opportunity to evaluate therapeutic interventions earlier in the disease process.
Collapse
Affiliation(s)
- Idiberto José Zotarelli-Filho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
- Faculty of Medicine of São José do Rio Preto, FACERES., São José do Rio Preto, São Paulo 15090-305, Brazil
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Nathalia Barth de Oliveira
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Claudia Sayuri Saçaki
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Nádia Nascimento da Rosa
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Larissa Lührs
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Rogério Saad Vaz
- UNIFATEB Centro Universitário de Telêmaco Borba, Telêmaco Borba 84266-010, Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| |
Collapse
|
28
|
The Neuroprotective Activities of the Novel Multi-Target Iron-Chelators in Models of Alzheimer's Disease, Amyotrophic Lateral Sclerosis and Aging. Cells 2023; 12:cells12050763. [PMID: 36899898 PMCID: PMC10001413 DOI: 10.3390/cells12050763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques. These novel iron chelators exhibit neuroprotective activities by attenuating relevant neurodegenerative pathology, promoting positive behavior changes, and up-regulating neuroprotective signaling pathways. Taken together, these results suggest that our multifunctional iron-chelating compounds can upregulate several neuroprotective-adaptive mechanisms and pro-survival signaling pathways in the brain and might function as ideal drugs for neurodegenerative disorders, such as PD, AD, ALS, and aging-related cognitive decline, in which oxidative stress and iron-mediated toxicity and dysregulation of iron homeostasis have been implicated.
Collapse
|
29
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
30
|
Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer's disease. Front Aging Neurosci 2022; 14:1019412. [PMID: 36389082 PMCID: PMC9664938 DOI: 10.3389/fnagi.2022.1019412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no effective therapeutic drugs currently. The complicated pathophysiology of AD is not well understood, although beta-amyloid (Aβ) cascade and hyperphosphorylated tau protein were regarded as the two main causes of AD. Other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitters, mitochondrial dysfunction, and inflammation, were also proposed and studied as targets in AD. This review aims to summarize the small-molecule drugs that were developed based on the pathogenesis and gives a deeper understanding of the AD. We hope that it could help scientists find new and better treatments to gradually conquer the problems related to AD in future.
Collapse
|
31
|
Kshirsagar S, Alvir RV, Pradeepkiran JA, Hindle A, Vijayan M, Ramasubramaniam B, Kumar S, Reddy AP, Reddy PH. A Combination Therapy of Urolithin A+EGCG Has Stronger Protective Effects Than Single Drug Urolithin A in a Humanized Amyloid Beta Knockin Mice for Late-Onset Alzheimer’s Disease. Cells 2022; 11:cells11172660. [PMID: 36078067 PMCID: PMC9454743 DOI: 10.3390/cells11172660] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the current study, for the first time, we study mitophagy enhancer urolithin A and a combination of urolithin A+green tea extract EGCG against human Aβ peptide-induced mitochondrial and synaptic, dendritic, inflammatory toxicities and behavioral changes in humanized homozygous amyloid beta knockin (hAbKI) mice of late-onset Alzheimer’s disease (AD). Our findings reveal significantly increased positive effects of urolithin A and a combination treatment of urolithin A+EGCG in hAbKI mice for phenotypic behavioral changes including motor coordination, locomotion/exploratory activity, spatial learning and working memory. mRNA and protein levels of mitochondrial fusion, synaptic, mitophagy and autophagy genes were upregulated, and mitochondrial fission genes are downregulated in urolithin A and combine treatment in hAbKI mice; however, the effect is stronger in combined treatment. Immunofluorescence analysis of hippocampal brain sections shows similar findings of mRNA and protein levels. Mitochondrial dysfunction is significantly reduced in both treatment groups, but a stronger reduction is observed in combined treatment. Dendritic spines and lengths are significantly increased in both treatment groups, but the effect is stronger in combined treatment. The fragmented number of mitochondria is reduced, and mitochondrial length is increased, and mitophagosomal formations are increased in both the groups, but the effect is stronger in the combined treatment. The levels of amyloid beta (Aβ) 40 and Aβ42 are reduced in both treatments, however, the reduction is higher for combined treatment. These observations suggest that urolithin A is protective against human Aβ peptide-induced toxicities; however, combined treatment of urolithin A+EGCG is effective and stronger, indicating that combined therapy is promising to treat late-onset AD patients.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Rainier Vladlen Alvir
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Jangampalli Adi Pradeepkiran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Bhagavathi Ramasubramaniam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3194
| |
Collapse
|
32
|
Wingo TS, Liu Y, Gerasimov ES, Vattathil SM, Wynne ME, Liu J, Lori A, Faundez V, Bennett DA, Seyfried NT, Levey AI, Wingo AP. Shared mechanisms across the major psychiatric and neurodegenerative diseases. Nat Commun 2022; 13:4314. [PMID: 35882878 PMCID: PMC9325708 DOI: 10.1038/s41467-022-31873-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Several common psychiatric and neurodegenerative diseases share epidemiologic risk; however, whether they share pathophysiology is unclear and is the focus of our investigation. Using 25 GWAS results and LD score regression, we find eight significant genetic correlations between psychiatric and neurodegenerative diseases. We integrate the GWAS results with human brain transcriptomes (n = 888) and proteomes (n = 722) to identify cis- and trans- transcripts and proteins that are consistent with a pleiotropic or causal role in each disease, referred to as causal proteins for brevity. Within each disease group, we find many distinct and shared causal proteins. Remarkably, 30% (13 of 42) of the neurodegenerative disease causal proteins are shared with psychiatric disorders. Furthermore, we find 2.6-fold more protein-protein interactions among the psychiatric and neurodegenerative causal proteins than expected by chance. Together, our findings suggest these psychiatric and neurodegenerative diseases have shared genetic and molecular pathophysiology, which has important ramifications for early treatment and therapeutic development.
Collapse
Affiliation(s)
- Thomas S Wingo
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Yue Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Selina M Vattathil
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Meghan E Wynne
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
- Veterans Affairs Atlanta Health Care System, Decatur, GA, USA.
| |
Collapse
|
33
|
Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. J Biomater Appl 2022; 37:614-633. [PMID: 35790487 DOI: 10.1177/08853282221111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial dysfunction, characterized by the electron transport chain (ETC) leakage and reduced adenosine tri-phosphate synthesis, occurs primarily due to free radicals -induced mutations in either the mitochondrial deoxyribonucleic acid (mtDNA) or nuclear (n) DNA caused by pathogenic infections, toxicant exposures, adverse drug-effects, or other environmental exposures, leading to secondary dysfunction affecting ischemic, diabetic, cancerous, and degenerative diseases. In these concerns, mitochondria-targeted remedies may include a significant role in the protection and treatment of mitochondrial function to enhance its activity. Coenzyme Q10 pyridinol and pyrimidinol antioxidant analogues and other potent drug-compounds for their multifunctional radical quencher and other anti-toxic activities may take a significant therapeutic effectivity for ameliorating mitochondrial dysfunction. Moreover, the encapsulation of these bioactive ligands-attached potent compounds in vesicular system may enable them a superb biological effective for the treatment of mitochondria-targeted dysfunction-related diseases with least side effects. This review depicts mainly on mitochondrial enzymatic dysfunction and their amelioration by potent drugs with the usages of nanoparticulated delivery system against mitochondria-affected diseases.
Collapse
|
34
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
35
|
Silveira IA, Mullis AS, Cairns DM, Shevzov-Zebrun A, Whalen J, Galuppo A, Walsh KG, Kaplan DL. Screening neuroprotective compounds in herpes-induced Alzheimer's disease cell and 3D tissue models. Free Radic Biol Med 2022; 186:76-92. [PMID: 35537596 DOI: 10.1016/j.freeradbiomed.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder that can cause life-altering and debilitating cognitive decline. AD's etiology is poorly understood, and no disease-modifying therapeutics exist. Here, we describe the use of 2D and 3D tissue culture models of herpesvirus-induced AD, which recapitulate hallmark disease features of plaque formation, gliosis, neuroinflammation, and impaired neuronal signaling, to screen a panel of 21 medications, supplements, and nutraceuticals with purported neuroprotective benefits. This screen identified green tea catechins and resveratrol as having strong anti-plaque properties, functional neuroprotective benefits, and minimal neurotoxicity, providing support for their further investigation as AD preventives and therapies. Two other candidates, citicoline and metformin, reduced plaque formation and were minimally toxic, but did not protect against virus-induced impairments in neuronal signaling. This study establishes a simple platform for rapidly screening and characterizing AD compounds of interest in 2D and 3D human cortical tissue models representing physiologically relevant disease features.
Collapse
Affiliation(s)
- Isabella A Silveira
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA
| | - Anna Shevzov-Zebrun
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jordyn Whalen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Alexa Galuppo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Katherine G Walsh
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
36
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
PINK1 regulates mitochondrial fission/fusion and neuroinflammation in β-amyloid-induced Alzheimer's disease models. Neurochem Int 2022; 154:105298. [DOI: 10.1016/j.neuint.2022.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
|
38
|
Goshtasbi H, Pakchin PS, Movafeghi A, Barar J, Castejon AM, Omidian H, Omidi Y. Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer's disease. Neurochem Int 2021; 153:105268. [PMID: 34954260 DOI: 10.1016/j.neuint.2021.105268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
The brain shows a high sensitivity to oxidative stress (OS). Thus, the maintenance of homeostasis of the brain regarding the reduction-oxidation (redox) situation is crucial for the regular function of the central nervous systems (CNS). The imbalance between the reactive oxygen species (ROS) and the cellular mechanism might lead to the emergence of OS, causing profound cell death as well as tissue damages and initiating neurodegenerative disorders (NDDs). Characterized by the cytoplasmic growth of neurofibrillary tangles and extracellular β-amyloid plaques, Alzheimer's disease (AD) is a complex NDD that causes dementia in adult life with severe manifestations. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor that regulates the functional expression of OS-related genes and the functionality of endogenous antioxidants. In the case of oxidative damage, NRF2 is transferred to the nucleus and attached to the antioxidant response element (ARE) that enhances the sequence to initiate transcription of the cell-protecting genes. This review articulates various mechanisms engaged with the generation of active and reactive species of endogenous and exogenous oxidants and focuses on the antioxidants as a body defense system regarding the NRF2-ARE signaling path in the CNS.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana M Castejon
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
39
|
Mamsa SSA, Meloni BP. Arginine and Arginine-Rich Peptides as Modulators of Protein Aggregation and Cytotoxicity Associated With Alzheimer's Disease. Front Mol Neurosci 2021; 14:759729. [PMID: 34776866 PMCID: PMC8581540 DOI: 10.3389/fnmol.2021.759729] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
A substantial body of evidence indicates cationic, arginine-rich peptides (CARPs) are effective therapeutic compounds for a range of neurodegenerative pathologies, with beneficial effects including the reduction of excitotoxic cell death and mitochondrial dysfunction. CARPs, therefore, represent an emergent class of promising neurotherapeutics with multimodal mechanisms of action. Arginine itself is a known chaotrope, able to prevent misfolding and aggregation of proteins. The putative role of proteopathies in chronic neurodegenerative diseases such as Alzheimer's disease (AD) warrants investigation into whether CARPs could also prevent the aggregation and cytotoxicity of amyloidogenic proteins, particularly amyloid-beta and tau. While monomeric arginine is well-established as an inhibitor of protein aggregation in solution, no studies have comprehensively discussed the anti-aggregatory properties of arginine and CARPs on proteins associated with neurodegenerative disease. Here, we review the structural, physicochemical, and self-associative properties of arginine and the guanidinium moiety, to explore the mechanisms underlying the modulation of protein aggregation by monomeric and multimeric arginine molecules. Arginine-rich peptide-based inhibitors of amyloid-beta and tau aggregation are discussed, as well as further modulatory roles which could reduce proteopathic cytotoxicity, in the context of therapeutic development for AD.
Collapse
Affiliation(s)
- Somayra S A Mamsa
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WA, Australia
| |
Collapse
|
40
|
Kumar S, Morton H, Sawant N, Orlov E, Bunquin LE, Pradeepkiran JA, Alvir R, Reddy PH. MicroRNA-455-3p improves synaptic, cognitive functions and extends lifespan: Relevance to Alzheimer's disease. Redox Biol 2021; 48:102182. [PMID: 34781166 PMCID: PMC8604688 DOI: 10.1016/j.redox.2021.102182] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MicroRNA-455-3p is one of the highly conserved miRNAs involved in multiple cellular functions in humans and we explored its relevance to learning and memory functions in Alzheimer's disease (AD). Our recent in vitro studies exhibited the protective role of miR-455-3p against AD toxicities in reducing full-length APP and amyloid-β (Aβ) levels, and also in reducing defective mitochondrial biogenesis, impaired mitochondrial dynamics and synaptic deficiencies. In the current study, we sought to determine the function of miR-455-3p in mouse models. METHODS For the first time we generated both transgenic (TG) and knockout (KO) mouse models of miR-455-3p. We determined the lifespan extension, cognitive function, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial morphology, dendritic spine density, synapse numbers and synaptic activity in miR-455-3p TG and KO mice. RESULTS MiR-455-3p TG mice lived 5 months longer than wild-type (WT) counterparts, whereas KO mice lived 4 months shorter than WT mice. Morris water maze test showed improved cognitive behavior, spatial learning and memory in miR-455-3p TG mice relative to age-matched WT mice and miR-455-3p KO mice. Further, mitochondrial biogenesis, dynamics and synaptic activities were enhanced in miR-455-3p TG mice, while these were reduced in KO mice. Overall, overexpressed miR-455-3p in mice displayed protective effects, whereas depleted miR-455-3p in mice exhibited deleterious effects in relation to lifespan, cognitive behavior, and mitochondrial and synaptic activities. CONCLUSION Both mouse models could be ideal research tools to understand the molecular basis of aging and its relevance to AD and other age-related diseases.
Collapse
Affiliation(s)
- Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hallie Morton
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Erika Orlov
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lloyd E Bunquin
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Razelle Alvir
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
41
|
Key Mechanisms and Potential Implications of Hericium erinaceus in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10111664. [PMID: 34829535 PMCID: PMC8615045 DOI: 10.3390/antiox10111664] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the principal cause of dementia, and its incidence increases with age. Altered antioxidant systems and inflammation have an important role in the etiology of neurodegenerative disorders. In this study, we evaluated the effects of Hericium erinaceus, a nutritional mushroom with important antioxidant effects, in a rat model of AD. Animals were injected with 70 mg/Kg of AlCl3 daily for 6 weeks, and Hericium erinaceus was administered daily by gavage. Before the experiment’s end date, behavioral test training was performed. At the end of the study, behavioral changes were assessed, and the animals were euthanized. Brain tissues were harvested for further analysis. AlCl3 mainly accumulates in the hippocampus, the principal region of the brain involved in memory functions and learning. Hericium erinaceus administration reduced behavioral changes and hippocampal neuronal degeneration. Additionally, it reduced phosphorylated Tau levels, aberrant APP overexpression, and β-amyloid accumulation. Moreover, Hericium erinaceus decreased the pro-oxidative and pro-inflammatory hippocampal alterations induced by AD. In particular, it reduced the activation of the NLRP3 inflammasome components, usually activated by increased oxidative stress during AD. Collectively, our results showed that Hericium erinaceus has protective effects on behavioral alteration and histological modification associated with AD due to the modulation of the oxidative and inflammatory pathways, as well as regulating cellular brain stress.
Collapse
|
42
|
Merelli A, Repetto M, Lazarowski A, Auzmendi J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J Alzheimers Dis 2021; 82:S109-S126. [PMID: 33325385 DOI: 10.3233/jad-201074] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cerebral hypoxia-ischemia can induce a wide spectrum of biologic responses that include depolarization, excitotoxicity, oxidative stress, inflammation, and apoptosis, and result in neurodegeneration. Several adaptive and survival endogenous mechanisms can also be activated giving an opportunity for the affected cells to remain alive, waiting for helper signals that avoid apoptosis. These signals appear to help cells, depending on intensity, chronicity, and proximity to the central hypoxic area of the affected tissue. These mechanisms are present not only in a large list of brain pathologies affecting commonly older individuals, but also in other pathologies such as refractory epilepsies, encephalopathies, or brain trauma, where neurodegenerative features such as cognitive and/or motor deficits sequelae can be developed. The hypoxia inducible factor 1α (HIF-1α) is a master transcription factor driving a wide spectrum cellular response. HIF-1α may induce erythropoietin (EPO) receptor overexpression, which provides the therapeutic opportunity to administer pharmacological doses of EPO to rescue and/or repair affected brain tissue. Intranasal administration of EPO combined with other antioxidant and anti-inflammatory compounds could become an effective therapeutic alternative, to avoid and/or slow down neurodegenerative deterioration without producing adverse peripheral effects.
Collapse
Affiliation(s)
- Amalia Merelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Marisa Repetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica; Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (IBIMOL, UBA-CONICET), Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Jerónimo Auzmendi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
43
|
Morton H, Kshirsagar S, Orlov E, Bunquin LE, Sawant N, Boleng L, George M, Basu T, Ramasubramanian B, Pradeepkiran JA, Kumar S, Vijayan M, Reddy AP, Reddy PH. Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse. Free Radic Biol Med 2021; 172:652-667. [PMID: 34246776 DOI: 10.1016/j.freeradbiomed.2021.07.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. AD is marked by multiple cellular changes, including deregulation of microRNAs, activation of glia and astrocytes, hormonal imbalance, defective mitophagy, synaptic degeneration, in addition to extracellular neuritic amyloid-beta (Aβ) plaques, phosphorylated tau (P-tau), and intracellular neurofibrillary tangles (NFTs). Recent research in AD revealed that defective synaptic mitophagy leads to synaptic degeneration and cognitive dysfunction in AD neurons. Our critical analyses of mitochondria and Aβ and P-tau revealed that increased levels of Aβ and P-Tau, and abnormal interactions between Aβ and Drp1, P-Tau and Drp1 induced increased mitochondrial fragmentation and proliferation of dysfunctional mitochondria in AD neurons and depleted Parkin and PINK1 levels. These events ultimately lead to impaired clearance of dead and/or dying mitochondria in AD neurons. The purpose of our article is to highlight the recent research on mitochondria and synapses in relation to Aβ and P-tau, focusing on recent developments.
Collapse
Affiliation(s)
- Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Erika Orlov
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lloyd E Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lauren Boleng
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - Mathew George
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
44
|
Xu D, Yang P, Yang ZJ, Li QG, Ouyang YT, Yu T, Shangguan JH, Wan YY, Jiang LP, Qu XH, Han XJ. Blockage of Drp1 phosphorylation at Ser579 protects neurons against Aβ 1‑42‑induced degeneration. Mol Med Rep 2021; 24:657. [PMID: 34278489 PMCID: PMC8299198 DOI: 10.3892/mmr.2021.12296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD), one of the most common types of chronic neurodegenerative diseases, is pathologically characterized by the formation of amyloid β (Aβ) peptide-containing plaques and neurofibrillary tangles. Among Aβ peptides, Aβ1–42 induces neuronal toxicity and neurodegeneration. In our previous studies, Cdk5 was found to regulate Aβ1–42-induced mitochondrial fission via the phosphorylation of dynamin-related protein 1 (Drp1) at Ser579. However, whether blockage of Drp1 phosphorylation at Ser579 protects neurons against Aβ1–42-induced degeneration remains to be elucidated. Thus, the aim the present study was to examine the effect of mutant Drp1-S579A on neurodegeneration and its underlying mechanism. First, the phosphorylation-defect (phospho-defect) mutant, Lenti-Drp1-S579A was constructed. Phospho-defect Drp1-S579A expression was detected in primary cultures of mouse cortical neurons infected with Lenti-Drp1-S579A using western blotting and it was found to successfully attenuate the phosphorylation of endogenous Drp1 at Ser579. In primary neuronal cultures, the neuronal processes were evaluated under microscopy. Treatment with 10 µM Aβ1–42 significantly decreased dendritic density and length, spine outgrowth and synapse number. As expected, infection of neurons with Lenti-Drp1-S579A efficiently alleviated the inhibitory effect of Aβ1–42 on neurite outgrowth and synapse density. In addition, infection with Lenti-Drp1-S579A abolished the cleavage of caspase-3 and apoptosis in neurons exposed to Aβ1–42. Thus, the current data demonstrated that blockage of Drp1 phosphorylation at Ser579 may be an effective strategy to protect neurons against Aβ1–42-induced degeneration and apoptosis. These findings underline the therapeutic potential of targeting Drp1 in the treatment of AD.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Geriatrics, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Yang
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi 330006, P.R. China
| | - Zhang-Jian Yang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Jiangxi 330006, P.R. China
| | - Qiu-Gen Li
- Institute of Geriatrics, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ye-Tong Ouyang
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi 330006, P.R. China
| | - Ting Yu
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi 330006, P.R. China
| | - Jian-Hui Shangguan
- Department of Neurology, Affiliated People's Hospital of Nanchang University, Jiangxi 330006, P.R. China
| | - Yu-Ying Wan
- Department of Intra‑Hospital Infection Management, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, P.R. China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Jiangxi 330006, P.R. China
| | - Xin-Hui Qu
- Institute of Geriatrics, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
45
|
Heydari M, Hojati Z, Dehbashi M. Identification of Circulating hsa-miR-324-3p and hsa-miR-331-3p Exchanges in The Serum of Alzheimer's Patients and Insights into The Pathophysiological Pathways. CELL JOURNAL 2021; 23:211-217. [PMID: 34096222 PMCID: PMC8181312 DOI: 10.22074/cellj.2021.7047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/08/2019] [Indexed: 11/04/2022]
Abstract
Objective Alzheimer's disease (AD) is a type of dementia. Currently, there are not any existing and reliable methods for the prognosis or diagnosis of AD. Hence, finding a diagnostic/prognostic biomarker for AD helps physicians to prescribe the treatments and methods preventing disease progression. Circulating microRNAs (miRNAs) are the most promising biomarkers due to their non-invasive and easily accessible for diagnosis and prognosis of AD. The aim of current study is to evaluate expression levels of two unwell-known circulating miRNAs including hsa-miR-324-3p and hsa-miR-331-3p in serums of AD patients and to understand their roles in AD physiopathogenesis by in silico analysis. Materials and Methods In this case and control study, to get the gene targets related to these two miRNAs, TargetScan, miRTargetLink Human and mirDIP web servers were applied. In addition, gene networks and gene ontology enrichment analysis were performed by STRING 10.5, KEGG and ShinyGO v0.41. Experimentally, expression levels of these two miRNAs in the serum of 21 patients with AD and 23 healthy individuals were compared using the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. Results The pathophysiological pathways associated with these two miRNAs were nucleotide metabolism and cellular response to stress pathway. Furthermore, the upregulated expression levels of hsa-miR-324-3p and hsa-miR-331-3p in comparison with the healthy control serums were not statistically significant (P>0.05). Conclusion Non-significant results were obtained from the expression levels of AD patients and two significant pathways were obtained by networks and gene enrichment analysis.
Collapse
Affiliation(s)
- Maryam Heydari
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
46
|
Hidrox ® Roles in Neuroprotection: Biochemical Links between Traumatic Brain Injury and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050818. [PMID: 34065584 PMCID: PMC8161307 DOI: 10.3390/antiox10050818] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injuries (TBI) are a serious public-health problem. Furthermore, subsequent TBI events can compromise TBI patients’ quality of life. TBI is linked to a number of long- and short-term complications such as cerebral atrophy and risk of developing dementia and Alzheimer’s Disease (AD). Following direct TBI damage, oxidative stress and the inflammatory response lead to tissue injury-associated neurodegenerative processes that are characteristic of TBI-induced secondary damage. Hidrox® showed positive effects in preclinical models of toxic oxidative stress and neuroinflammation; thus, the aim of this study was to evaluate the effect of Hidrox® administration on TBI-induced secondary injury and on the propagation of the AD-like neuropathology. Hidrox® treatment reduced histological damage after controlled cortical impact. Form a molecular point of view, hydroxytyrosol is able to preserve the cellular redox balance and protein homeostasis by activating the Nrf2 pathway and increasing the expression of phase II detoxifying enzymes such as HO-1, SOD, Catalase, and GSH, thus counteracting the neurodegenerative damage. Additionally, Hidrox® showed anti-inflammatory effects by reducing the activation of the NFkB pathway and related cytokines overexpression. From a behavioral point of view, Hidrox® treatment ameliorated the cognitive dysfunction and memory impairment induced by TBI. Additionally, Hidrox® was associated with a significant increased number of hippocampal neurons in the CA3 region, which were reduced post-TBI. In particular, Hidrox® decreased AD-like phenotypic markers such as ß-amyloid accumulation and APP and p-Tau overexpression. These findings indicate that Hidrox® could be a valuable treatment for TBI-induced secondary injury and AD-like pathological features.
Collapse
|
47
|
Feinkohl I, Schipke CG, Kruppa J, Menne F, Winterer G, Pischon T, Peters O. Plasma Amyloid Concentration in Alzheimer's Disease: Performance of a High-Throughput Amyloid Assay in Distinguishing Alzheimer's Disease Cases from Controls. J Alzheimers Dis 2021; 74:1285-1294. [PMID: 32176645 PMCID: PMC7242850 DOI: 10.3233/jad-200046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Collection of cerebrospinal fluid (CSF) for measurement of amyloid-β (Aβ) species is a gold standard in Alzheimer’s disease (AD) diagnosis, but has risks. Thus, establishing a low-risk blood Aβ test with high AD sensitivity and specificity is of outmost interest. Objective: We evaluated the ability of a commercially available plasma Aβ assay to distinguish AD patients from biomarker-healthy controls. Method: In a case-control design, we examined plasma samples from 44 AD patients (A + N+) and 49 controls (A–N–) from a memory clinic. AD was diagnosed using a combination of neuropsychological examination, CSF biomarker analysis and brain imaging. Total Aβ40 and total Aβ42 in plasma were measured through enzyme-linked immunosorbent assay (ELISA) technology using ABtest40 and ABtest42 test kits (Araclon Biotech Ltd.). Receiver operating characteristic (ROC) analyses with outcome AD were performed, and sensitivity and specificity were calculated. Results: Plasma Aβ42/40 was weakly positively correlated with CSF Aβ42/40 (Spearman’s rho 0.22; p = 0.037). Plasma Aβ42/40 alone was not able to statistically significantly distinguish between AD patients and controls (AUC 0.58; 95% CI 0.46, 0.70). At a cut-point of 0.076 maximizing sensitivity and specificity, plasma Aβ42/40 had a sensitivity of 61.2% and a specificity of 63.6%. Conclusion: In this sample, the high-throughput blood Aβ assay was not able to distinguish well between AD patients and controls. Whether or not the assay may be useful in large-scale epidemiological settings remains to be seen.
Collapse
Affiliation(s)
- Insa Feinkohl
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carola G Schipke
- Berlin Institute of Health (BIH), Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Experimental & Clinical Research Center (ECRC), Berlin, Germany
| | - Jochen Kruppa
- Berlin Institute of Health (BIH), Berlin, Germany.,Institut für Biometrie und Klinische Epidemiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix Menne
- Berlin Institute of Health (BIH), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Georg Winterer
- Berlin Institute of Health (BIH), Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Tobias Pischon
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany.,MDC/BIH Biobank, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), and Berlin Institute of Health (BIH), Berlin, Germany
| | - Oliver Peters
- Berlin Institute of Health (BIH), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
48
|
Amyloid-β: A double agent in Alzheimer's disease? Biomed Pharmacother 2021; 139:111575. [PMID: 33845371 DOI: 10.1016/j.biopha.2021.111575] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 01/23/2023] Open
Abstract
Amyloid-β (Aβ) accumulation is one of the cardinal pathological hallmarks of Alzheimer's disease and plays an important role in its pathogenesis. Although the neurotoxic effects of Aβ has been extensively studied, recent studies have revealed that it may also have protective effects. Here, we review novel findings that have shifted our understanding of the role of Aβ in the pathogenesis of Alzheimer's disease. An in-depth and comprehensive understanding of Aβ will provide us with a broader perspective on the treatment of Alzheimer's disease.
Collapse
|
49
|
Kumar S, Reddy PH. Elevated levels of MicroRNA-455-3p in the cerebrospinal fluid of Alzheimer's patients: A potential biomarker for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166052. [PMID: 33412267 PMCID: PMC7867567 DOI: 10.1016/j.bbadis.2020.166052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
50
|
Kumar P, Liu C, Hsu JW, Chacko S, Minard C, Jahoor F, Sekhar RV. Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial. Clin Transl Med 2021; 11:e372. [PMID: 33783984 PMCID: PMC8002905 DOI: 10.1002/ctm2.372] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxidative stress (OxS) and mitochondrial dysfunction are implicated as causative factors for aging. Older adults (OAs) have an increased prevalence of elevated OxS, impaired mitochondrial fuel-oxidation (MFO), elevated inflammation, endothelial dysfunction, insulin resistance, cognitive decline, muscle weakness, and sarcopenia, but contributing mechanisms are unknown, and interventions are limited/lacking. We previously reported that inducing deficiency of the antioxidant tripeptide glutathione (GSH) in young mice results in mitochondrial dysfunction, and that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improves naturally-occurring GSH deficiency, mitochondrial impairment, OxS, and insulin resistance. This pilot trial in OA was conducted to test the effect of GlyNAC supplementation and withdrawal on intracellular GSH concentrations, OxS, MFO, inflammation, endothelial function, genotoxicity, muscle and glucose metabolism, body composition, strength, and cognition. METHODS A 36-week open-label clinical trial was conducted in eight OAs and eight young adults (YAs). After all the participants underwent an initial (pre-supplementation) study, the YAs were released from the study. OAs were studied again after GlyNAC supplementation for 24 weeks, and GlyNAC withdrawal for 12 weeks. Measurements included red-blood cell (RBC) GSH, MFO; plasma biomarkers of OxS, inflammation, endothelial function, glucose, and insulin; gait-speed, grip-strength, 6-min walk test; cognitive tests; genomic-damage; glucose-production and muscle-protein breakdown rates; and body-composition. RESULTS GlyNAC supplementation for 24 weeks in OA corrected RBC-GSH deficiency, OxS, and mitochondrial dysfunction; and improved inflammation, endothelial dysfunction, insulin-resistance, genomic-damage, cognition, strength, gait-speed, and exercise capacity; and lowered body-fat and waist-circumference. However, benefits declined after stopping GlyNAC supplementation for 12 weeks. CONCLUSIONS GlyNAC supplementation for 24-weeks in OA was well tolerated and lowered OxS, corrected intracellular GSH deficiency and mitochondrial dysfunction, decreased inflammation, insulin-resistance and endothelial dysfunction, and genomic-damage, and improved strength, gait-speed, cognition, and body composition. Supplementing GlyNAC in aging humans could be a simple and viable method to promote health and warrants additional investigation.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| | - Chun Liu
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| | - Jean W. Hsu
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Shaji Chacko
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Charles Minard
- Institute of Clinical and Translational Research, Baylor College of MedicineHoustonTexas
| | - Farook Jahoor
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Rajagopal V. Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| |
Collapse
|