1
|
Mike JK, White Y, Ha J, Iranmahboub A, Hawkins C, Hutchings RS, Vento C, Manzoor H, Wang A, Goudy BD, Vali P, Lakshminrusimha S, Gobburu JV, Long-Boyle J, Fineman JR, Ferriero DM, Maltepe E. Perinatal Caffeine Administration Improves Outcomes in an Ovine Model of Neonatal Hypoxia-Ischemia. Stroke 2024; 55:2705-2715. [PMID: 39429154 PMCID: PMC11518658 DOI: 10.1161/strokeaha.124.048264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy disproportionately affects low- and middle-income countries, where ≈96% of affected infants reside. The current standard of care, therapeutic hypothermia, is frequently ineffective in this setting, likely because injury may be occurring earlier during labor. Here, we studied the pharmacokinetics, safety, and efficacy of perinatal caffeine administration in near-term lambs following global ischemic injury to support the development of earlier treatment strategies targeting the fetus in utero as well as the infant postnatally. METHODS Ewes were randomly assigned to receive either 1 g IV caffeine citrate or placebo before delivery and placental transport assessed. Near-term lambs (141-143 days) of both sexes were subjected to severe global hypoxia-ischemia utilizing an acute umbilical cord occlusion model. Lambs that received caffeine in utero also received 20 mg/kg IV caffeine citrate following resuscitation and 10 mg/(kg·d) IV for 2 days. An additional cohort received 60 mg/kg followed by 30 mg/(kg·d) (low dose versus high dose) postnatally. Biochemical, histological, and neurological outcome measures in lambs were assessed over a 6-day period. RESULTS Perinatal caffeine administration demonstrated excellent placental transport kinetics and was well tolerated with lamb plasma levels comparable to those targeted in neonates with apnea of prematurity. Caffeine administration resulted in a systemic immunomodulatory effect, evidenced by significant reductions in proinflammatory IP-10 levels. Treated lambs demonstrated improved neurodevelopmental outcomes, while histological analysis revealed that caffeine reduced gray matter injury and attenuated inflammation in the cingulate and parasagittal cortex. This neuroprotective effect was greater and via a different mode of action than we previously reported for azithromycin. A higher caffeine dosing regimen demonstrated significant toxicity. CONCLUSIONS Perinatal caffeine administration is well tolerated, attenuates systemic and brain inflammation, and contributes to improvements in histological and neurological outcomes in an ovine model of neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Jana K. Mike
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
- Initiative for Pediatric Drug and Device Development, San Francisco, CA (J.K.M., J.V.S.G., J.L.-B., J.R.F., E.M.)
| | - Yasmine White
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
| | - Janica Ha
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
| | - Ariana Iranmahboub
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
| | - Cheryl Hawkins
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
- School of Pharmacy (J.L.-B.), University of California San Francisco
- Department of Neurology, Weill Institute for Neurosciences (D.M.F.), University of California San Francisco
- Department of Biomedical Sciences (E.M.), University of California San Francisco
- Department of Biomedical Engineering (A.W.), University of California Davis
- Department of Pediatrics (B.D.G., P.V., S.L.), University of California Davis
- School of Pharmacy, University of Maryland, Baltimore (J.V.S.G.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA (J.K.M., J.V.S.G., J.L.-B., J.R.F., E.M.)
| | - Rachel S. Hutchings
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
| | - Christian Vento
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
| | - Hadiya Manzoor
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
| | - Aijun Wang
- Department of Biomedical Engineering (A.W.), University of California Davis
| | - Brian D. Goudy
- Department of Pediatrics (B.D.G., P.V., S.L.), University of California Davis
| | - Payam Vali
- Department of Pediatrics (B.D.G., P.V., S.L.), University of California Davis
| | | | - Jogarao V.S. Gobburu
- School of Pharmacy, University of Maryland, Baltimore (J.V.S.G.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA (J.K.M., J.V.S.G., J.L.-B., J.R.F., E.M.)
| | - Janel Long-Boyle
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
- School of Pharmacy (J.L.-B.), University of California San Francisco
- Initiative for Pediatric Drug and Device Development, San Francisco, CA (J.K.M., J.V.S.G., J.L.-B., J.R.F., E.M.)
| | - Jeffrey R. Fineman
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
- Initiative for Pediatric Drug and Device Development, San Francisco, CA (J.K.M., J.V.S.G., J.L.-B., J.R.F., E.M.)
| | - Donna M. Ferriero
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
- Department of Neurology, Weill Institute for Neurosciences (D.M.F.), University of California San Francisco
| | - Emin Maltepe
- Department of Pediatrics (J.K.M., Y.W., J.H., A.I., C.H., R.S.H., C.V., H.M., J.L.-B., J.R.F., D.M.F., E.M.), University of California San Francisco
- Department of Biomedical Sciences (E.M.), University of California San Francisco
- Initiative for Pediatric Drug and Device Development, San Francisco, CA (J.K.M., J.V.S.G., J.L.-B., J.R.F., E.M.)
| |
Collapse
|
2
|
Varatharaj A, Jacob C, Darekar A, Yuen B, Cramer S, Larsson H, Galea I. Measurement variability of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-16. [PMID: 39449749 PMCID: PMC11497077 DOI: 10.1162/imag_a_00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to quantify the blood-brain barrier (BBB) permeability-surface area product. Serial measurements can indicate changes in BBB health, of interest to the study of normal physiology, neurological disease, and the effect of therapeutics. We performed a scan-rescan study to inform both sample size calculation for future studies and an appropriate reference change value for patient care. The final dataset included 28 healthy individuals (mean age 53.0 years, 82% female) scanned twice with mean interval 9.9 weeks. DCE-MRI was performed at 3T using a 3D gradient echo sequence with whole brain coverage, T1 mapping using variable flip angles, and a 16-min dynamic sequence with a 3.2-s time resolution. Segmentation of white and grey matter (WM/GM) was performed using a 3D magnetization-prepared gradient echo image. The influx constant Ki was calculated using the Patlak method. The primary outcome was the within-subject coefficient of variation (CV) of Ki in both WM and GM. Ki values followed biological expectations in relation to known GM/WM differences in cerebral blood volume (CBV) and consequently vascular surface area. Subject-derived arterial input functions showed marked within-subject variability which were significantly reduced by using a venous input function (CV of area under the curve 46 vs. 12%, p < 0.001). Use of the venous input function significantly improved the CV of Ki in both WM (30 vs. 59%, p < 0.001) and GM (21 vs. 53%, p < 0.001). Further improvement was obtained using motion correction, scaling the venous input function by the artery, and using the median rather than the mean of individual voxel data. The final method gave CV of 27% and 17% in WM and GM, respectively. No further improvement was obtained by replacing the subject-derived input function by one standard population input function. CV of Ki was shown to be highly sensitive to dynamic sequence duration, with shorter measurement periods giving marked deterioration especially in WM. In conclusion, measurement variability of 3D brain DCE-MRI is sensitive to analysis method and a large precision improvement is obtained using a venous input function.
Collapse
Affiliation(s)
- Aravinthan Varatharaj
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Carmen Jacob
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Angela Darekar
- Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Brian Yuen
- Medical Statistics, Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stig Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Glostrup, Denmark
| | - Henrik Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Glostrup, Denmark
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
3
|
Farias HR, Ramos JMO, Griesang CT, Santos L, Junior OVR, Souza DG, Ferreira FS, Somacal S, Martins LAM, de Souza DOG, Moreira JCF, Wyse ATS, Guma FTCR, de Oliveira J. LDL Exposure Disrupts Mitochondrial Function and Dynamics in a Hippocampal Neuronal Cell Line. Mol Neurobiol 2024:10.1007/s12035-024-04476-y. [PMID: 39302616 DOI: 10.1007/s12035-024-04476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Hypercholesterolemia has been associated with cognitive dysfunction and neurodegenerative diseases. Moreover, this metabolic condition disrupts the blood-brain barrier, allowing low-density lipoprotein (LDL) to enter the central nervous system. Thus, we investigated the effects of LDL exposure on mitochondrial function in a mouse hippocampal neuronal cell line (HT-22). HT-22 cells were exposed to human LDL (50 and 300 μg/mL) for 24 h. After this, intracellular lipid droplet (LD) content, cell viability, cell death, and mitochondrial parameters were assessed. We found that the higher LDL concentration increases LD content compared with control. Both concentrations increased the number of Annexin V-positive cells, indicating apoptosis. Moreover, in mitochondrial parameters, the LDL exposure on hippocampal neuronal cell line leads to a decrease in mitochondrial complexes I and II activities in both concentrations tested and a reduction in Mitotracker™ Red fluorescence and Mitotracker™ Red and Mitotracker™ Green ratio in the higher concentration, indicating mitochondrial impairment. The LDL incubation induces mitochondrial superoxide production and decreases superoxide dismutase activity in the lower concentration in HT-22 cells. Finally, LDL exposure increases the expression of genes associated with mitochondrial fusion (OPA1 and mitofusin 2) in the lower concentration. In conclusion, our findings suggest that LDL exposure induces mitochondrial dysfunction and modulates mitochondrial dynamics in the hippocampal neuronal cells.
Collapse
Affiliation(s)
- Hémelin Resende Farias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Marques Obelar Ramos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Tainá Griesang
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Osmar Vieira Ramires Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Debora Guerini Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Somacal
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leo Anderson Meira Martins
- Programa de Pós-Graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Wang B, Ma T, Yang L, He S, Li J, Sun X. Association between coffee and tea consumption and the risk of dementia in individuals with hypertension: a prospective cohort study. Sci Rep 2024; 14:21063. [PMID: 39256489 PMCID: PMC11387621 DOI: 10.1038/s41598-024-71426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Many studies have shown that drinking coffee and tea may be associated with the risk of hypertension and dementia. Limited research exists on their impact on dementia risk in hypertensive patients. This study aimed to determine the association between coffee and tea consumption and the risk of dementia development in hypertensive population by utilizing Cox proportional risk modeling with 453,913 participants from a UK biobank. Our findings reveal a J-shaped and U-shaped association between the risk of all-cause dementia and the consumption of coffee and tea respectively in hypertensive people. The hypertensive patients who drink 0.5-1 cup of coffee or 4-5 cups of tea per day have the lowest risk of dementia. A U-shaped relationship was observed between daily caffeine consumption and the risk of developing all-cause dementia and vascular dementia in the hypertensive population. Furthermore, the significant association between the amount of coffee and tea consumed and the risk of all-cause and vascular dementia were more likely to be found in hypertensive patients than in the non-hypertensive population.
Collapse
Affiliation(s)
- Bo Wang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Ting Ma
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Lingling Yang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Shulan He
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Jiangping Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Xian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China.
| |
Collapse
|
5
|
Bhardwaj I, Ansari AH, Rai SP, Singh S, Singh D. Molecular targets of caffeine in the central nervous system. PROGRESS IN BRAIN RESEARCH 2024; 288:35-58. [PMID: 39168558 DOI: 10.1016/bs.pbr.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Caffeine is an alkaloid obtained from plants and is one of the most consumptive drug in the form of chocolate, coffee and beverages. The potential impact of caffeine within CNS can be easily understood by mechanism of action-antagonism of adenosine receptor, calcium influx, inhibits phosphodiesterases. Adenosine a neuromodulator for adenosine receptors, which are abundantly expressed within the central nervous system. Caffeine antagonized the adenosine receptor, hence stimulate expression of dopamine. It plays pivotal role in many metabolic pathways within the brain and nervous system, it reduced the amyloid-β-peptide (Aβ) accumulation, downregulation of tau protein phosphorylation, stimulate cholinergic neurons and inhibits the acetylcholinestrase (AChE). It also possess antioxidant and antiapoptotic activity. Caffeine act as nutraceutical product, improves mental health. It contains antioxidants, vitamins, minerals and dietary supplements, by reducing the risk factor of several neurodegenerations including Alzheimer's disease, migraine, gallstone, cancer, Huntington's disease and sclerosis. This act as a stimulant and have capability to increase the effectiveness of certain pain killer. Beside positive affects, over-consumption of caffeine leads to negative impact: change in sleep pattern, hallucinations, high blood pressure, mineral loss and even heartburn. This chapter highlights pros and cons of caffeine consumption.
Collapse
Affiliation(s)
- Ishita Bhardwaj
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
6
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Reich N, Mannino M, Kotler S. Using caffeine as a chemical means to induce flow states. Neurosci Biobehav Rev 2024; 159:105577. [PMID: 38331128 DOI: 10.1016/j.neubiorev.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Flow is an intrinsically rewarding state characterised by positive affect and total task absorption. Because cognitive and physical performance are optimal in flow, chemical means to facilitate this state are appealing. Caffeine, a non-selective adenosine receptor antagonist, has been emphasized as a potential flow-inducer. Thus, we review the psychological and biological effects of caffeine that, conceptually, enhance flow. Caffeine may facilitate flow through various effects, including: i) upregulation of dopamine D1/D2 receptor affinity in reward-associated brain areas, leading to greater energetic arousal and 'wanting'; ii) protection of dopaminergic neurons; iii) increases in norepinephrine release and alertness, which offset sleep-deprivation and hypoarousal; iv) heightening of parasympathetic high frequency heart rate variability, resulting in improved cortical stress appraisal, v) modification of striatal endocannabinoid-CB1 receptor-signalling, leading to enhanced stress tolerance; and vi) changes in brain network activity in favour of executive function and flow. We also discuss the application of caffeine to treat attention deficit hyperactivity disorder and caveats. We hope to inspire studies assessing the use of caffeine to induce flow.
Collapse
Affiliation(s)
- Niklas Reich
- Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK; The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK.
| | - Michael Mannino
- Flow Research Collective, USA; Miami Dade College, Miami, FL, USA
| | | |
Collapse
|
8
|
Bai H, Wu Y, Li H, Zhu Y, Che R, Wang F, Zhang C. Cerebral neurotoxicity of amino-modified polystyrene nanoplastics in mice and the protective effects of functional food Camellia pollen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169511. [PMID: 38145676 DOI: 10.1016/j.scitotenv.2023.169511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Accumulating evidence suggests that nanoplastics contribute to an increased risk of brain damage, however, the precise underlying mechanisms remain unclear. Here, we subjected mice to long-term exposure to amino-modified polystyrene nanoplastics (APS-NPs). These nanoplastics were detected in the mouse brain; coupled with the observed upregulation of Alzheimer's disease-associated genes (APP and MAPT). To further explore nanoplastic damage mechanisms and the corresponding protective strategies against these mechanisms in vitro, we used hCMEC/D3 and HT22 cells. Results showed that APS-NPs disrupted tight junction proteins (Occludin and ZO-1) via TLR2/MMP9 axis, resulting in blood-brain barrier permeation; this was significantly mitigated by functional food Camellia pollen treatment. APS-NPs initiated iNOS and nNOS upregulation within neurons resulting in Sirtuin 1 deacetylase inactivation and CBP acetyltransferase stimulation, ultimately leading to Ac-Tau formation. This process was attenuated by Camellia pollen, which also ameliorated the APS-NPs-induced neuronal apoptosis mediated by the p53/Bax/Bcl-2 axis. Network pharmacology analysis of Camellia pollen offered a further theoretical understanding of its potential applications in preventing and treating nervous system disorders, such as Alzheimer's disease. This study established that Camellia pollen protects the brain against APS-NPs-mediated blood-brain barrier damage and alleviates neuronal apoptosis and Alzheimer's disease-like neurotoxicity. This study elucidates the mechanisms underlying polystyrene-induced brain damage and can be used to inform future prevention and treatment strategies.
Collapse
Affiliation(s)
- Hangjia Bai
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanliang Wu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haini Li
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yining Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 21094, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 21094, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 21094, China.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells 2024; 13:260. [PMID: 38334652 PMCID: PMC10854731 DOI: 10.3390/cells13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
The blood-brain barrier (BBB) is a remarkable and intricate barrier that controls the exchange of molecules between the bloodstream and the brain. Its role in maintaining the stability of the central nervous system cannot be overstated. Over the years, advancements in neuroscience and technology have enabled us to delve into the cellular and molecular components of the BBB, as well as its regulation. Yet, there is a scarcity of comprehensive reviews that follow a logical framework of structure-function-regulation, particularly focusing on the nuances of BBB regulation under both normal and pathological conditions. This review sets out to address this gap by taking a historical perspective on the discovery of the BBB and highlighting the major observations that led to its recognition as a distinct brain barrier. It explores the intricate cellular elements contributing to the formation of the BBB, including endothelial cells, pericytes, astrocytes, and neurons, emphasizing their collective role in upholding the integrity and functionality of the BBB. Furthermore, the review delves into the dynamic regulation of the BBB in physiological states, encompassing neural, humoral, and auto-regulatory mechanisms. By shedding light on these regulatory processes, a deeper understanding of the BBB's response to various physiological cues emerges. This review also investigates the disruption of the BBB integrity under diverse pathological conditions, such as ischemia, infection, and toxin exposure. It elucidates the underlying mechanisms that contribute to BBB dysfunction and explores potential therapeutic strategies that aim to restore the BBB integrity and function. Overall, this recapitulation provides valuable insights into the structure, functions, and regulation of the BBB. By integrating historical perspectives, cellular elements, regulatory mechanisms, and pathological implications, this review contributes to a more comprehensive understanding of the BBB and paves the way for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Botao Zhou
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| | - Haixiao Feng
- Gies College of Business, University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA;
| | - Chuoying Luo
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Boren Bai
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA;
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
10
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
11
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|
12
|
Kim S, Sharma C, Shin M, Kim HJ, Kim J, Kim SR. pKr-2 induces neurodegeneration via upregulation of microglial TLR4 in the hippocampus of AD brain. Brain Behav Immun Health 2023; 28:100593. [PMID: 36798617 PMCID: PMC9926212 DOI: 10.1016/j.bbih.2023.100593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
We recently demonstrated that prothrombin kringle-2 (pKr-2) derived from blood-brain barrier (BBB) disruption could induce hippocampal neurodegeneration and object recognition impairment through neurotoxic inflammatory responses in the five familial Alzheimer's disease mutation (5XFAD) mice. In the present study, we aimed to determine whether pKr-2 induces microglial activation by stimulating toll-like receptor 4 (TLR4) upregulation and examine whether this response contributes to pKr-2-induced neuroinflammatory damage in the hippocampi of mice models. We observed that inflammatory responses induced by pKr-2 administration in the hippocampi of wild-type mice were significantly abrogated in TLR4-deficient mice (TLR4-/-), and caffeine supply or rivaroxaban treatment that inhibits the overexpression of hippocampal pKr-2 reduced TLR4 upregulation in 5XFAD mice, resulting in the inhibition of neuroinflammatory responses. Similar to the expression patterns of pKr-2, TLR4, and the TLR4 transcription factors, PU.1 and p-c-Jun, seen in the postmortem hippocampal tissues of Alzheimer's disease (AD) patients, our results additionally showed the influence of transcriptional regulation on TLR4 expression following pKr-2 expression in triggering the production of neurotoxic inflammatory mediators. Therefore, we conclude that pKr-2 may play a role in initiating upregulation of microglial TLR4, consequently inducing hippocampal neurodegeneration. Furthermore, the control of pKr-2-induced microglial TLR4 could be a useful therapeutic strategy against hippocampal neurodegeneration in AD.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, South Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, South Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
- Corresponding author. School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
13
|
Effects of Chronic Caffeine Consumption on Synaptic Function, Metabolism and Adenosine Modulation in Different Brain Areas. Biomolecules 2023; 13:biom13010106. [PMID: 36671491 PMCID: PMC9855869 DOI: 10.3390/biom13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity and multi-omics analyses indicate that caffeine intake modifies synaptic and metabolic processes, it is unclear how caffeine intake affects behavior, synaptic plasticity and its modulation by adenosine. We now report that male mice drinking caffeinated water (0.3 g/L) for 2 weeks were behaviorally indistinguishable (locomotion, mood, memory) from control mice (drinking water) and displayed superimposable synaptic plasticity (long-term potentiation) in different brain areas (hippocampus, prefrontal cortex, amygdala). Moreover, there was a general preservation of the efficiency of adenosine A1 and A2A receptors to control synaptic transmission and plasticity, although there was a tendency for lower levels of endogenous adenosine ensuring A1 receptor-mediated inhibition. In spite of similar behavioral and neurophysiological function, caffeine intake increased the energy charge and redox state of cortical synaptosomes. This increased metabolic competence likely involved a putative increase in the glycolytic rate in synapses and a prospective greater astrocyte-synapse lactate shuttling. It was concluded that caffeine intake does not trigger evident alterations of behavior or of synaptic plasticity but increases the metabolic competence of synapses, which might be related with the previously described better ability of animals consuming caffeine to cope with deleterious stimuli triggering brain dysfunction.
Collapse
|
14
|
Sánchez-Martínez JD, Garcia AR, Alvarez-Rivera G, Valdés A, Brito MA, Cifuentes A. In Vitro Study of the Blood-Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. Int J Mol Sci 2022; 24:ijms24010533. [PMID: 36613976 PMCID: PMC9820279 DOI: 10.3390/ijms24010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Ana Rita Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| |
Collapse
|
15
|
Lin Z, Jiang D, Liu P, Ge Y, Moghekar A, Lu H. Blood-brain barrier permeability in response to caffeine challenge. Magn Reson Med 2022; 88:2259-2266. [PMID: 35754146 PMCID: PMC9420773 DOI: 10.1002/mrm.29355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a non-contrast MRI technique. METHODS Ten young healthy volunteers who were not regular coffee drinkers were studied. The experiment began with a pre-caffeine measurement, followed by four measurements at the post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI was used to assess the time dependence of BBB permeability to water following the ingestion of 200 mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), venous oxygenation (Yv ), and cerebral metabolic rate of oxygen (CMRO2 ) were also examined. The relationships between cerebral physiological parameters and time were studied with mixed-effect models. RESULTS It was found that, after caffeine ingestion, CBF and Yv showed a time-dependent decrease (p < 0.001), while CMRO2 did not change significantly. The fraction of arterial water crossing the BBB (E) showed a significant increase (p < 0.001). In contrast, the permeability-surface-area product (PS), i.e., BBB permeability to water, remained constant (p = 0.94). Additionally, it was observed that changes in physiological parameters were non-linear with regard to time and occurred at as early as 9 min after caffeine tablet ingestion. CONCLUSION These results suggest an unchanged BBB permeability despite alterations in perfusion during a vasoconstrictive caffeine challenge.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University, NY, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
17
|
Frank CJ, McNay EC. Breakdown of the blood-brain barrier: A mediator of increased Alzheimer's risk in patients with metabolic disorders? J Neuroendocrinol 2022; 34:e13074. [PMID: 34904299 PMCID: PMC8791015 DOI: 10.1111/jne.13074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Metabolic disorders (MDs), including type 1 and 2 diabetes and chronic obesity, are among the faster growing diseases globally and are a primary risk factor for Alzheimer's disease (AD). The term "type-3 diabetes" has been proposed for AD due to the interrelated cellular, metabolic, and immune features shared by diabetes, insulin resistance (IR), and the cognitive impairment and neurodegeneration found in AD. Patients with MDs and/or AD commonly exhibit altered glucose homeostasis and IR; systemic chronic inflammation encompassing all of the periphery, blood-brain barrier (BBB), and central nervous system; pathological vascular remodeling; and increased BBB permeability that allows transfusion of neurotoxic molecules from the blood to the brain. This review summarizes the components of the BBB, mechanisms through which MDs alter BBB permeability via immune and metabolic pathways, the contribution of BBB dysfunction to the manifestation and progression of AD, and current avenues of therapeutic research that address BBB permeability. In addition, issues with the translational applicability of current animal models of AD regarding BBB dysfunction and proposals for future directions of research that address the relationship between MDs, BBB dysfunction, and AD are discussed.
Collapse
Affiliation(s)
- Corey J Frank
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| |
Collapse
|
18
|
de Oliveira J, Engel DF, de Paula GC, Dos Santos DB, Lopes JB, Farina M, Moreira ELG, de Bem AF. High Cholesterol Diet Exacerbates Blood-Brain Barrier Disruption in LDLr-/- Mice: Impact on Cognitive Function. J Alzheimers Dis 2021; 78:97-115. [PMID: 32925052 PMCID: PMC7683087 DOI: 10.3233/jad-200541] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Evidence has revealed an association between familial hypercholesterolemia and cognitive impairment. In this regard, a connection between cognitive deficits and hippocampal blood-brain barrier (BBB) breakdown was found in low-density lipoprotein receptor knockout mice (LDLr–/–), a mouse model of familial hypercholesterolemia. Objective: Herein we investigated the impact of a hypercholesterolemic diet on cognition and BBB function in C57BL/6 wild-type and LDLr–/–mice. Methods: Animals were fed with normal or high cholesterol diets for 30 days. Thus, wild-type and LDLr–/–mice were submitted to memory paradigms. Additionally, BBB integrity was evaluated in the mice’s prefrontal cortices and hippocampi. Results: A tenfold elevation in plasma cholesterol levels of LDLr–/–mice was observed after a hypercholesterolemic diet, while in wild-type mice, the hypercholesterolemic diet exposure increased plasma cholesterol levels only moderately and did not induce cognitive impairment. LDLr–/–mice presented memory impairment regardless of the diet. We observed BBB disruption as an increased permeability to sodium fluorescein in the prefrontal cortices and hippocampi and a decrease on hippocampal claudin-5 and occludin mRNA levels in both wild-type and LDLr–/–mice treated with a hypercholesterolemic diet. The LDLr–/–mice fed with a regular diet already presented BBB dysfunction. The BBB-increased leakage in the hippocampi of LDLr–/–mice was related to high microvessel content and intense astrogliosis, which did not occur in the control mice. Conclusion: Therefore, LDLr–/–mice seem to be more susceptible to cognitive impairments and BBB damage induced by exposure to a high cholesterol diet. Finally, BBB disruption appears to be a relevant event in hypercholesterolemia-induced brain alterations.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS)M, Porto Alegre, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Daiane F Engel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Gabriela C de Paula
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Danúbia B Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Jadna B Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Eduardo L G Moreira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Andreza F de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
19
|
Kim S, Moon GJ, Kim HJ, Kim DG, Kim J, Nam Y, Sharma C, Leem E, Lee S, Kim KS, Ha CM, McLean C, Jin BK, Shin WH, Kim DW, Oh YS, Hong CW, Kim SR. Control of hippocampal prothrombin kringle-2 (pKr-2) expression reduces neurotoxic symptoms in five familial Alzheimer's disease mice. Br J Pharmacol 2021; 179:998-1016. [PMID: 34524687 PMCID: PMC9298060 DOI: 10.1111/bph.15681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose There is a scarcity of information regarding the role of prothrombin kringle‐2 (pKr‐2), which can be generated by active thrombin, in hippocampal neurodegeneration and Alzheimer's disease (AD). Experimental Approach To assess the role of pKr‐2 in association with the neurotoxic symptoms of AD, we determined pKr‐2 protein levels in post‐mortem hippocampal tissues of patients with AD and the hippocampi of five familial AD (5XFAD) mice compared with those of age‐matched controls and wild‐type (WT) mice, respectively. In addition, we investigated whether the hippocampal neurodegeneration and object memory impairments shown in 5XFAD mice were mediated by changes to pKr‐2 up‐regulation. Key Results Our results demonstrated that pKr‐2 was up‐regulated in the hippocampi of patients with AD and 5XFAD mice, but was not associated with amyloid‐β aggregation in 5XFAD mice. The up‐regulation of pKr‐2 expression was inhibited by preservation of the blood–brain barrier (BBB) via addition of caffeine to their water supply or by treatment with rivaroxaban, an inhibitor of factor Xa that is associated with thrombin production. Moreover, the prevention of up‐regulation of pKr‐2 expression reduced neurotoxic symptoms, such as hippocampal neurodegeneration and object recognition decline due to neurotoxic inflammatory responses in 5XFAD mice. Conclusion and Implications We identified a novel pathological mechanism of AD mediated by abnormal accumulation of pKr‐2, which functions as an important pathogenic factor in the adult brain via blood brain barrier (BBB) breakdown. Thus, pKr‐2 represents a novel target for AD therapeutic strategies and those for related conditions.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Gyeong Joon Moon
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Center for Cell Therapy, Asan Medical Center, Seoul, Korea
| | - Hyung Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Eunju Leem
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Kyu-Sung Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Chang Man Ha
- Brain Research Core Facilities, Korea Brain Research Institute, Daegu, Korea
| | - Catriona McLean
- Victorian Brain Bank Network, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong-Seok Oh
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
20
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
21
|
Uddin MS, Kabir MT, Al Mamun A, Behl T, Mansouri RA, Aloqbi AA, Perveen A, Hafeez A, Ashraf GM. Exploring Potential of Alkaloidal Phytochemicals Targeting Neuroinflammatory Signaling of Alzheimer's Disease. Curr Pharm Des 2021; 27:357-366. [PMID: 32473620 DOI: 10.2174/1381612826666200531151004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is marked by cognitive dysfunctions and the existence of neuropathological hallmarks such as amyloid plaques, and neurofibrillary tangles. It has been observed that a persistent immune response in the brain has appeared as another neuropathological hallmark in AD. The sustained activation of the microglia, the brain's resident macrophages, and other immune cells has been shown to aggravate both tau and amyloid pathology and may consider as a connection in the AD pathogenesis. However, the basic mechanisms that link immune responses in the pathogenesis of AD are unclear until now since the process of neuroinflammation can have either a harmful or favorable effect on AD, according to the phase of the disease. Numerous researches recommend that nutritional fruits, as well as vegetables, possess neurodefensive properties against the detrimental effects of neuroinflammation and aging. Moreover, these effects are controlled by diverse phytochemical compounds that are found in plants and demonstrate anti-inflammatory, neuroprotective, as well as other beneficial actions. In this review, we focus on the link of neuroinflammation in AD as well as highlight the probable mechanisms of alkaloidal phytochemicals to combat the neuroinflammatory aspect of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Fisicaro F, Lanza G, Pennisi M, Vagli C, Cantone M, Pennisi G, Ferri R, Bella R. Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients 2021; 13:nu13020536. [PMID: 33562065 PMCID: PMC7916014 DOI: 10.3390/nu13020536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
To date, interest in the role of coffee intake in the occurrence and course of age-related neurological and neuropsychiatric disorders has provided an inconclusive effect. Moreover, no study has evaluated mocha coffee consumption in subjects with mild vascular cognitive impairment and late-onset depression. We assessed the association between different quantities of mocha coffee intake over the last year and cognitive and mood performance in a homogeneous sample of 300 non-demented elderly Italian subjects with subcortical ischemic vascular disease. Mini Mental State Examination (MMSE), Stroop Colour-Word Interference Test (Stroop T), 17-items Hamilton Depression Rating Scalfe (HDRS), Activities of Daily Living (ADL), and Instrumental ADL were the outcome measures. MMSE, HDRS, and Stroop T were independently and significantly associated with coffee consumption, i.e., better scores with increasing intake. At the post-hoc analyses, it was found that the group with a moderate intake (two cups/day) had similar values compared to the heavy drinkers (≥three cups/day), with the exception of MMSE. Daily mocha coffee intake was associated with higher cognitive and mood status, with a significant dose-response association even with moderate consumption. This might have translational implications for the identification of modifiable factors for vascular dementia and geriatric depression.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (C.V.); (R.B.)
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo 6, 93100 Caltanissetta, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018 Troina, Italy;
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (C.V.); (R.B.)
| |
Collapse
|
23
|
Potential of Caffeine in Alzheimer's Disease-A Review of Experimental Studies. Nutrients 2021; 13:nu13020537. [PMID: 33562156 PMCID: PMC7915779 DOI: 10.3390/nu13020537] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia leading to progressive memory loss and cognitive impairment. Considering that pharmacological treatment options for AD are few and not satisfactory, increasing attention is being paid to dietary components that may affect the development of the disease. Such a dietary component may be caffeine contained in coffee, tea or energy drinks. Although epidemiological data suggest that caffeine intake may counteract the development of cognitive impairment, results of those studies are not conclusive. The aim of the present study is to review the existing experimental studies on the efficacy of caffeine against AD and AD-related cognitive impairment, focusing on the proposed protective mechanisms of action. In conclusion, the reports of studies on experimental AD models generally supported the notion that caffeine may exert some beneficial effects in AD. However, further studies are necessary to elucidate the role of caffeine in the effects of its sources on cognition and possibly AD risk.
Collapse
|
24
|
Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients 2021. [PMID: 33562065 DOI: 10.3390/nu13020536.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, interest in the role of coffee intake in the occurrence and course of age-related neurological and neuropsychiatric disorders has provided an inconclusive effect. Moreover, no study has evaluated mocha coffee consumption in subjects with mild vascular cognitive impairment and late-onset depression. We assessed the association between different quantities of mocha coffee intake over the last year and cognitive and mood performance in a homogeneous sample of 300 non-demented elderly Italian subjects with subcortical ischemic vascular disease. Mini Mental State Examination (MMSE), Stroop Colour-Word Interference Test (Stroop T), 17-items Hamilton Depression Rating Scalfe (HDRS), Activities of Daily Living (ADL), and Instrumental ADL were the outcome measures. MMSE, HDRS, and Stroop T were independently and significantly associated with coffee consumption, i.e., better scores with increasing intake. At the post-hoc analyses, it was found that the group with a moderate intake (two cups/day) had similar values compared to the heavy drinkers (≥three cups/day), with the exception of MMSE. Daily mocha coffee intake was associated with higher cognitive and mood status, with a significant dose-response association even with moderate consumption. This might have translational implications for the identification of modifiable factors for vascular dementia and geriatric depression.
Collapse
|
25
|
Caffeine: A potential strategy to improve survival of neonatal pigs and sheep. Anim Reprod Sci 2021; 226:106700. [PMID: 33517067 DOI: 10.1016/j.anireprosci.2021.106700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Caffeine is commonly used to treat pre-and postnatal injuries, including apnoea in premature infants, as well as neurological impairment caused by hypoxia or asphyxiation often associated with difficult birthing. As an adenosine antagonist, caffeine is metabolised rapidly and transported into many tissues. Caffeine stimulates the brain respiratory centre, improving respiratory function in immature infants or neonates, provides neuroprotection to the fetal brain, and initiates non-shivering thermoregulation increasing metabolic rates. Recently, potential benefits of caffeine for animal production have been investigated. This has particularly occurred in pig production, where large litters are associated with relatively long parturition durations, and piglets born near the end of the parturition period have an increased risk of mortality due to asphyxia-related birthing injury. Similarly, in sheep, dystocia or prolonged parturition is a significant problem, where neonatal injury, dystocia and death in utero contributes to approximately 46 % of lamb mortalities. Within these two livestock production systems, large prevalence's of neonatal mortality is a persistent issue contributing to lost revenue, as well as being a significant animal welfare concern. Pre-partum maternal caffeine supplementation is a promising strategy to reduce neonatal mortality; however, there needs to be refinement of appropriate quantities administered, duration and administration pathway to provide producers with an efficient and cost-effective method to reduce mortality rates and increase production output. The information in this review details effects, benefits and important considerations regarding caffeine use in animal production, and identifies areas of limited knowledge where further research is needed.
Collapse
|
26
|
Tonkaboni A, Lotfibakhshaiesh N, Danesh P, Tajerian R, Ziaei H. Evaluation of Inhibitory Effects of Caffeine on Human Carcinoma Cells. Nutr Cancer 2020; 73:1998-2002. [PMID: 32996789 DOI: 10.1080/01635581.2020.1819344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
One of the world's most consumed medications is caffeine which is available in the vast majority of beverages. Previously, some effects of caffeine have been evaluated including its inhibitory effect on cancer cells. But, the influence of caffeine on esophagus carcinoma squamous cells (CSC) and head and neck carcinoma cells still has not well understood. Herein, the relation between different amounts of caffeine with the proliferation rate of human esophagus carcinoma squamous cell line KYSE-30 as well as human head and neck carcinoma cell line HN5 was evaluated. Furthermore, concentrations of caffeine were adjusted and their effect on cells were studied. The inhibitory effects of caffeine on cells were measured using the conventional colorimetric MTT assay after 3 and 7 day of incubation. Our findings are suggested that caffeine has a significant inhibitory effect on both cell lines at the concentrations of 20, 50, and 70 milli-mol (mmol). The result shows that caffeine can prevent the proliferation of carcinoma cells and it is a perfect candidate for therapeutic applications.
Collapse
Affiliation(s)
- Arghavan Tonkaboni
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pariya Danesh
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Roksana Tajerian
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Heliya Ziaei
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Belayneh A, Molla F. The Effect of Coffee on Pharmacokinetic Properties of Drugs : A Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7909703. [PMID: 32775441 PMCID: PMC7397437 DOI: 10.1155/2020/7909703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Coffee has been the most commercialized food product and most widely consumed stimulant beverage in the world. It is a major source of caffeine which is the most bioactive component of coffee. Although both the United States Department of Agriculture and European Food Safety Authority consider daily intake of coffee which contains 400 mg of caffeine as safe for health, it causes different clinically significant pharmacokinetic interactions with many drugs. The aim of this work was to review the effect of coffee on the pharmacokinetic properties of drugs. METHOD This review was done by investigating the in vitro and in vivo research findings, clinical case reports, and expert panels from credible sources including Scopus, PubMed, Hindawi, OVID, Google Scholar, Embase, Cochrane Library, and Web of Science. RESULT Several studies and medical case reports evidently showed that concomitant consumption of coffee significantly affects the absorption, distribution, metabolism, and excretion of many drugs. These effects of coffee on the pharmacokinetics of drugs could lead to enhanced therapeutic response, therapeutic failure, or toxic reactions. Conclusion and Recommendation. Concomitant use of coffee should be avoided with medications which have a significant interaction with coffee. There should be an appropriate time gap between intake of drugs and coffee based on drug properties. Pharmacists and clinicians should be aware of the potential risks of drug-coffee interaction and advice patients appropriately. Further in vitro and in vivo studies should be done for frequently prescribed drugs to get a strong evidence on the pharmacokinetic interaction with coffee.
Collapse
Affiliation(s)
- Anteneh Belayneh
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Ethiopia
| | - Fantahun Molla
- Department of Pharmaceutics, School of Pharmacy, College of Health Sciences, Mekelle University, Ethiopia
| |
Collapse
|
28
|
Machado S, Sá Filho AS, Campos C, de Paula CC, Bernardes F, Murillo-Rodriguez E, Maranhão Neto GA, Lattari E. Can caffeine intake combined with aerobic exercise lead to improvement in attentional and psychomotor performance in trained individuals? IBRO Rep 2020; 8:76-81. [PMID: 32529114 PMCID: PMC7283292 DOI: 10.1016/j.ibror.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/29/2020] [Indexed: 11/29/2022] Open
Abstract
Supplementation effect was found, suggesting distinct interaction mechanisms between attention and SRT (simple reaction time). The change in the SRT magnitude increased after 60 min from caffeine intake, and even more after exercise. The decrease in the SRT magnitude after caffeine intake and exercise suggests additional effects of caffeine on exercise.
To evaluate the acute effects of ingestion of 500 mg of caffeine in addition to aerobic exercise on the optimization of cognitive attention tasks and simple reaction time. Twenty men were randomly divided into two groups, caffeine (CAF) and placebo (PLA), and underwent cardiopulmonary exercise testing and cognitive testing (D2SLK, D2GZ, D2F% and TRS). Then, both ingested 500 mg of caffeine or placebo (double blind), and after 60 min performed a 30-minute continuous exercise session at 70 % VO2Max. Cognitive tests were repeated immediately after exercise, and after 30 min. D2SLK, D2GZ, D2F% and TRS scores were compared by repeated measures ANOVA. The magnitude of the effect was established, and it was considered meaningful p = 0.05. CAF is able to alter D2SLK and also reduce D2F% (0.001 - moderate effect, 0.82) and improve the task after 30 min of exercise (p = 0.014 - moderate effect 0.95). The TRS showed significant gains for the CAF group compared to PLA (0.000 - high effect 1.76). Caffeine induces significant effects in attention and reaction time domains independent of the effect of aerobic exercise.
Collapse
Affiliation(s)
- Sergio Machado
- Laboratory of Physical Activity Neuroscience (LABNAF), Physical Activity Sciences Postgraduate Program of Salgado de Oliveira University (PPGCAF/UNIVERSO), Niterói, Brazil.,Intercontinental Neuroscience Research Group, Brazil
| | - Alberto Souza Sá Filho
- Department of Physical Education - University Center of Anápolis (UniEVANGÉLICA), Anápolis, Goiás (GO), Brazil.,Department of Physical Education - Universidade Paulista (UNIP), Goiânia, Goiás, Brazil
| | | | - Carolina Cavalcante de Paula
- Department of Cellular, Tissue and Developmental Biology at the Institute of Biomedical Science at the University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Fabyana Bernardes
- Laboratory of Physical Activity Neuroscience (LABNAF), Physical Activity Sciences Postgraduate Program of Salgado de Oliveira University (PPGCAF/UNIVERSO), Niterói, Brazil.,Intercontinental Neuroscience Research Group, Brazil
| | - Eric Murillo-Rodriguez
- Laboratorio de Neurociencias Moleculares e Integrativas Escuela de Medicina, División Ciencias de la Salud Universidad Anáhuac Mayab Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Mexico
| | - Geraldo A Maranhão Neto
- Physical Activity Sciences Postgraduate Program of Salgado de Oliveira University (PPGCAF/UNIVERSO), Niterói, Brazil
| | - Eduardo Lattari
- Laboratory of Physical Activity Neuroscience (LABNAF), Physical Activity Sciences Postgraduate Program of Salgado de Oliveira University (PPGCAF/UNIVERSO), Niterói, Brazil.,Intercontinental Neuroscience Research Group, Brazil
| |
Collapse
|
29
|
Milkova V, Goycoolea FM. Encapsulation of caffeine in polysaccharide oil-core nanocapsules. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04653-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Takeshige-Amano H, Saiki S, Fujimaki M, Ueno SI, Li Y, Hatano T, Ishikawa KI, Oji Y, Mori A, Okuzumi A, Tsunemi T, Daida K, Ishiguro Y, Imamichi Y, Nanmo H, Nojiri S, Funayama M, Hattori N. Shared Metabolic Profile of Caffeine in Parkinsonian Disorders. Mov Disord 2020; 35:1438-1447. [PMID: 32357260 PMCID: PMC7496239 DOI: 10.1002/mds.28068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Objective The objective of this study was to determine comprehensive metabolic changes of caffeine in the serum of patients with parkinsonian disorders including Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) and to compare this with healthy control serum. Methods Serum levels of caffeine and its 11 downstream metabolites from independent double cohorts consisting of PD (n = 111, 160), PSP (n = 30, 19), MSA (n = 23, 17), and healthy controls (n = 43, 31) were examined by liquid chromatography–mass spectrometry. The association of each metabolite with clinical parameters and medication was investigated. Mutations in caffeine‐associated genes were investigated by direct sequencing. Results A total of 9 metabolites detected in more than 50% of participants in both cohorts were decreased in 3 parkinsonian disorders compared with healthy controls without any significant association with age at sampling, sex, or disease severity (Hoehn and Yahr stage and Unified Parkinson's Disease Rating Scale motor section) in PD, and levodopa dose or levodopa equivalent dose in PSP and MSA. Of the 9 detected metabolites, 8 in PD, 5 in PSP, and 3 in MSA were significantly decreased in both cohorts even after normalizing to daily caffeine consumption. No significant genetic variations in CYP1A2 or CYP2E1 were detected when compared with controls. Conclusion Serum caffeine metabolic profiles in 3 parkinsonian diseases show a high level of overlap, indicative of a common potential mechanism such as caffeine malabsorption from the small intestine, hypermetabolism, increased clearance of caffeine, and/or reduced caffeine consumption. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Motoki Fujimaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yutaka Oji
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiji Tsunemi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kensuke Daida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuta Ishiguro
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoko Imamichi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hisayoshi Nanmo
- Mathematical Science Unit, Graduate School of Engineering Science, Yokohama National University, Kanagawa, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Manabu Funayama
- Research Institute of Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Cheng Y, Li S, Liu Y, Li J, Chen Y, Zhao H. Treatment of Brain Edema by Wogonoside Is Associated with Inhibition of Neuronal Apoptosis and SIRT1 Activation in Rats. Med Sci Monit 2020; 26:e921250. [PMID: 32221271 PMCID: PMC7133416 DOI: 10.12659/msm.921250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Brain edema and neuronal apoptosis are closely associated with loss of neurological function and death in rats with subarachnoid hemorrhage (SAH). The present study investigated the effect of wogonoside on brain edema induced by SAH in rats and studied the mechanism involved. Material/Methods The rats were intra-gastrically administered 10, 20, 50, 100, 150 and 200 mg/kg doses of wogonoside 24 h prior to SAH induction. Western blotting was used to assess levels of pro-apoptotic protein, SIRT1, ZO-1, and p53 protein expression. Apoptotic nuclei were detected using immunofluorescence and TUNEL staining. Results Wogonoside treatment significantly suppressed edema formation in SAH-induced rats. Pre-treatment with wogonoside exhibited an inhibitory effect on SAH-induced extravascular Evans blue staining in rats. The expression of ZO-1, Occludin, and Claudin-5 proteins was increased by wogonoside in the SAH-induced rats. The inhibitory effect of SAH was completely reversed in the rats treated with the 200 mg/kg dose of wogonoside. The expression of SIRT1 protein was upregulated, and p53 and AC-p53 were downregulated by wogonoside in SAH rats. Wogonoside treatment significantly reduced SAH-mediated promotion of Bax, Puma, Noxa, Bid, and cleaved Caspase-3 expression. In the SAH-induced rats, pre-treatment with wogonoside reduced the TUNEL-positive cell count. Conclusions The present study demonstrated that wogonoside prevents brain edema development and apoptosis of neurons in rats by promoting SIRT1 expression and suppression of p53 activation. Therefore, wogonoside has therapeutic potential for the treatment of edema and needs to be investigated further to completely define the mechanism involved.
Collapse
Affiliation(s)
- Yingqiu Cheng
- Department of Neurology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Shipeng Li
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yi Liu
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jinghui Li
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ye Chen
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hexiang Zhao
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
32
|
Alasmari F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm J 2020; 28:445-451. [PMID: 32273803 PMCID: PMC7132598 DOI: 10.1016/j.jsps.2020.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Evidence demonstrates that chronic caffeine exposure, primarily through consumption of coffee or tea, leads to increased alertness and anxiety. Preclinical and clinical studies showed that caffeine induced beneficial effects on mood and cognition. Other studies using molecular techniques have reported that caffeine exhibited neuroprotective effects in animal models by protecting dopaminergic neurons. Moreover, caffeine interacts with dopaminergic system, which leads to improvements in neurobehavioral measures in animal models of depression or attention deficit hyperactivity disorder (ADHD). Glutamatergic receptors have been found to be involved on the neurobiological effects of caffeine. Additionally, caffeine has been found to suppress the inhibitory (GABAergic) activity and modulate GABA receptors. Studies have also found that modulating these neurotransmitters leads to neurobehavioral effects. The linkage between the modulatory role of caffeine on neurotransmitters and neurobehavioral effects has not been fully discussed. The purpose of this review is to discuss in detail the role of neurotransmitters in the effects of caffeine on neurobehavioral disorders.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
33
|
Patocka J, Navratilova Z, Krejcar O, Kuca K. Coffee, Caffeine and Cognition: a Benefit or Disadvantage? LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190620142158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coffee, one of the world’s most consumed products, is extracted from the roasted seeds of
Coffea sp., a plant native to Africa. The effects of coffee on the human body have been recognized
for centuries and have now become the subject of systematic research. Caffeine’s impact on a
person’s cognitive ability was reviewed through a large set of literature related to the subject.
Learning and memory tasks are not typically influenced by caffeine when it comes to performance.
However, in some cases, it has been used to produce inhibitory or facilitatory effects on learning
and/or memory. Caffeine facilitates performance in tasks involving the working memory, but it has
been seen that tasks that rely on working memory may be hindered because of it. Moreover, caffeine
can augment the performance of memory during times where a person’s alertness is suboptimal at
best. However, a large body of research points to an improvement in reaction time. Consuming it has
little to no impact on long-term memory. Caffeine can be taken as a mild stimulant, proven by its
effect on performance in the context of subjects who are tired or fatigued. In some cases, it has been
observed that caffeine prevents cognitive decline, specifically when it comes to healthy subjects;
however, these results are heterogeneous at best. While drinking coffee positively influences both
physical and mental capacity, caffeine cannot and should not be viewed as an “absolute” enhancer of
cognitive function. Existing literature shows that the impact it causes on an individual is complex,
and can alter, for example, anxiety, performance and arousal.
Collapse
Affiliation(s)
- Jiri Patocka
- Faculty of Health and Social Studies,, University of South Bohemia Ceske Budejovice, Institute of Radiology, Toxicology and Civil Protection, Ceske Budejovice, Czech Republic
| | - Zdenka Navratilova
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ondrej Krejcar
- University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| |
Collapse
|
34
|
Toghi M, Bitarafan S, Kasmaei HD, Ghafouri-Fard S. Bifidobacteria: A probable missing puzzle piece in the pathogenesis of multiple sclerosis. Mult Scler Relat Disord 2019; 36:101378. [PMID: 31487552 DOI: 10.1016/j.msard.2019.101378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/29/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder in which the immunopathogenesis is not fully understood. In the recent years, the role of gut microbiome in the pathogenesis of this disorder has been highlighted. Bifidobacteria as a component of gut microbiome might also be involved in MS pathogenesis. Being emerged in early days after birth, bifidobacteria have a prominent role in immune system maturation and function. Some factors like mode of delivery, breast feeding, mother's blood group and her secretory state and also environmental factors could influence its level in the early infancy, which may remain throughout lifetime. In this review, we discussed possible immunopathogenic link between the bifidobacteria and MS.
Collapse
Affiliation(s)
- Mehdi Toghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bitarafan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Delavar Kasmaei
- Department of Neurology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Development of a Competition-Binding Assay to Determine Binding Affinity of Molecules to Neuromelanin via Fluorescence Spectroscopy. Biomolecules 2019; 9:biom9050175. [PMID: 31072013 PMCID: PMC6572089 DOI: 10.3390/biom9050175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022] Open
Abstract
Neuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as 'melanins' are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration. This linkage is best illustrated by Parkinson's disease, which is characterized by the loss of pigmented dopaminergic neurons and the 'white brain' pathological state. As such, the ability to determine the binding affinity of neurotoxic agents, as well as any potential specific endogenous ligands to neuromelanin are of interest and potential value. Neuromelanin has been shown to have saturable binding interactions with nicotine as monitored by a fluorimeter. This interaction provides a signal to allow for a competition-binding assay with target molecules which do not themselves produce signal. The current report establishes the viability of this competition assay toward three compounds with central relevance to Parkinson's disease. The Kd of binding toward neuromelanin by methyl-phenyl-pyridinium ion (MPP+), dopamine, and 6-hydroxydopamine were found to be 1 mM, 0.05 mM, and 0.1 mM, respectively in the current study. In addition, we demonstrate that 6-hydroxydopamine polymerizes to form neuromelanin granules in cultured dopaminergic neurons that treated with 2,4,5-trihydroxy-l-phenylalanine. Immunohistochemical analysis using fluor-tagged anti-dopamine antibodies suggests that the incorporation of 6-hydroxydopamine (following internalization and decarboxylation analogous to levodopa and dopamine) alters the localized distribution of bound dopamine in these cells.
Collapse
|
36
|
West RK, Ravona-Springer R, Livny A, Heymann A, Shahar D, Leroith D, Preiss R, Zukran R, Silverman JM, Schnaider-Beeri M. Age Modulates the Association of Caffeine Intake With Cognition and With Gray Matter in Elderly Diabetics. J Gerontol A Biol Sci Med Sci 2019; 74:683-688. [PMID: 29982422 PMCID: PMC6477644 DOI: 10.1093/gerona/gly090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The association between caffeine and cognitive performance has not been tested in older individuals with type 2 diabetes (T2D). Its association with brain volume in T2D has been tested only in animals. METHODS We examined the association of caffeine with cognitive function and brain volume in a sample of elderly diabetics participating in the Israel Diabetes and Cognitive Decline Study (n = 638) and the moderating effect of age on this association. In a subsample (n = 185) with magnetic resonance imaging, we also examined these associations with gray and white matter volumes (GM/WM). RESULTS Using linear regression adjusting for cognition-related covariates, we found that higher caffeine intake was associated with better function in overall cognition (p = .018), attention/working memory (p = .002), executive functioning (p = .047), and semantic categorization (p = .026). Interaction analyses of caffeine intake with age were significant for semantic categorization (p = .025), and approached significance for overall cognition (p = .066). This association was driven by the older group (above-median) for whom the association of caffeine intake with semantic categorization (p = .001), attention/working memory (p = .007), executive functioning (p = .005), and overall cognition (p = .002) were significant. In the magnetic resonance imaging subsample, there was an interaction (p = .034) of caffeine intake with age for GM volume; in the older group, higher caffeine intake was associated with greater GM volume (β = .198, p = .033). CONCLUSIONS Caffeine intake may have a beneficial role in cognitive functioning of elderly adults with T2D, which may be moderated by age. Greater GM volume may be a mechanism underlying the association of higher caffeine intake with better cognitive function.
Collapse
Affiliation(s)
- Rebecca K West
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ramit Ravona-Springer
- Sheba Medical Center, The Joseph Sagol Neuroscience Center, Tel Aviv University, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- Sheba Medical Center, The Joseph Sagol Neuroscience Center, Tel Aviv University, Tel Aviv, Israel
- Sheba Medical Center, Diagnostic Imaging Department, affiliated to Sackler Facility of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Danit Shahar
- The S. Daniel Abraham International Center for Health and Nutrition, Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Derek Leroith
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Preiss
- Sheba Medical Center, The Joseph Sagol Neuroscience Center, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Zukran
- Sheba Medical Center, The Joseph Sagol Neuroscience Center, Tel Aviv University, Tel Aviv, Israel
| | - Jeremy M Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Michal Schnaider-Beeri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Sheba Medical Center, The Joseph Sagol Neuroscience Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Theobromine Improves Working Memory by Activating the CaMKII/CREB/BDNF Pathway in Rats. Nutrients 2019; 11:nu11040888. [PMID: 31010016 PMCID: PMC6520707 DOI: 10.3390/nu11040888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023] Open
Abstract
Theobromine (TB) is a primary methylxanthine found in cacao beans. cAMP-response element-binding protein (CREB) is a transcription factor, which is involved in different brain processes that bring about cellular changes in response to discrete sets of instructions, including the induction of brain-derived neurotropic factor (BDNF). Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been strongly implicated in the memory formation of different species as a key regulator of gene expression. Here we investigated whether TB acts on the CaMKII/CREB/BDNF pathway in a way that might improve the cognitive and learning function in rats. Male Wistar rats (5 weeks old) were divided into two groups. For 73 days, the control rats (CN rats) were fed a normal diet, while the TB-fed rats (TB rats) received the same food, but with a 0.05% TB supplement. To assess the effects of TB on cognitive and learning ability in rats: The radial arm maze task, novel object recognition test, and Y-maze test were used. Then, the brain was removed and the medial prefrontal cortex (mPFC) was isolated for Western Blot, real-time PCR and enzyme-linked immunosorbent assay. Phosphorylated CaMKII (p-CaMKII), phosphorylated CREB (p-CREB), and BDNF level in the mPFC were measured. In all the behavior tests, working memory seemed to be improved by TB ingestion. In addition, p-CaMKII and p-CREB levels were significantly elevated in the mPFC of TB rats in comparison to those of CN rats. We also found that cortical BDNF protein and mRNA levels in TB rats were significantly greater than those in CN rats. These results suggest that orally supplemented TB upregulates the CaMKII/CREB/BDNF pathway in the mPFC, which may then improve working memory in rats.
Collapse
|
38
|
Wengler K, Bangiyev L, Canli T, Duong TQ, Schweitzer ME, He X. 3D MRI of whole-brain water permeability with intrinsic diffusivity encoding of arterial labeled spin (IDEALS). Neuroimage 2019; 189:401-414. [DOI: 10.1016/j.neuroimage.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
|
39
|
Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr 2019; 60:760-779. [DOI: 10.1080/10408398.2018.1550384] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
WITHDRAWN: Combined calcitonin gene-related peptide receptor antagonist, MK-8825, and caffeine as potential therapeutic target in the nitroglycerin-induced rat migraine model (MK-8825 and caffeine in migraine). ALEXANDRIA JOURNAL OF MEDICINE 2018. [DOI: 10.1016/j.ajme.2016.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
41
|
Dos Santos MKF, Gavioli EC, Rosa LS, de Paula Soares-Rachetti V, Lobão-Soares B. Craving espresso: the dialetics in classifying caffeine as an abuse drug. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1301-1318. [PMID: 30338342 DOI: 10.1007/s00210-018-1570-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Abstract
Caffeine is the most consumed psychoactive substance in the world; in general, it is not associated to potentially harmful effects. Nevertheless, few studies were performed attempting to investigate the caffeine addiction. The present review was mainly aimed to answer the following question: is caffeine an abuse drug? To adress this point, the effects of caffeine in preclinical and clinical studies were summarized and critically analyzed taking account the abuse disorders described in the Diagnostic and Statistical Manual of Mental Disorders (DSM-V). We concluded that the diagnostic criteria evidenced on DSM-V to intoxication-continued use and abstinence are not well supported by clinical studies. The fact that diagnostic criteria is not widely supported by preclinical or clinical studies may be due specially to a controversy in its exactly mechanism of action: recent literature point to an indirect, rather than direct modulation of dopamine receptors, and auto-limitant consumption due to adverse sensations in high doses. On the other hand, it reports clear withdrawal-related symptoms. Thus, based on a classical action on reward system, caffeine only partially fits its mechanism of action as an abuse drug, especially because previous research does not report a clear effect of dopaminergic activity enhance on nucleus accumbens; despite this, there are reports concerning dopaminergic modulation by caffeine on the striatum. However, based on human and animal research, caffeine withdrawal evokes signals and symptoms, which are relevant enough to include this substance among the drugs of abuse.
Collapse
Affiliation(s)
- Max Kenedy Felix Dos Santos
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Elaine C Gavioli
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Lorena Santa Rosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Vanessa de Paula Soares-Rachetti
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Bruno Lobão-Soares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000 Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
42
|
Coffee Consumption and Risk of Dementia and Alzheimer's Disease: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2018; 10:nu10101501. [PMID: 30322179 PMCID: PMC6213481 DOI: 10.3390/nu10101501] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022] Open
Abstract
Coffee consumption is associated with a reduced risk of several diseases but uncertainty remains about the influence of coffee consumption on the risk of dementia. We performed a dose-response meta-analysis to summarize the prospective data on coffee consumption and associated risk of dementia and Alzheimer’s disease. We identified studies by searching PubMed (from January 1966) and Web of Science (from January 1945) through 4 October 2018 and by scrutinizing the reference lists of pertinent publications. Two researchers independently reviewed the literature. Results were combined using a restricted cubic spline random-effects dose-response meta-analysis based on a one-stage approach. Eight relevant prospective studies were identified. These studies included 7486 dementia cases diagnosed among 328,885 individuals during an average follow-up of 4.9–25 years. Meta-analysis of all eight studies indicated no statistically significant association between coffee consumption and the risk of dementia and no deviations from a linear trend (p = 0.08). The relative risk of dementia per 1 cup/day increment of coffee consumption was 1.01 (95% confidence interval (CI) 0.98–1.05; p = 0.37). Meta-analysis of five studies that focused on Alzheimer’s disease revealed no association between coffee consumption and Alzheimer’s disease and no deviations from a linear trend (p = 0.79). The relative risk of Alzheimer’s disease per 1 cup/day increment of coffee consumption was 1.01 (95% confidence interval 0.95–1.07; p = 0.80). These results do not support an association between coffee consumption and an increased risk of overall dementia or Alzheimer’s disease specifically, but further research on the association of coffee consumption with dementia risk is needed.
Collapse
|
43
|
Mancini RS, Wang Y, Weaver DF. Phenylindanes in Brewed Coffee Inhibit Amyloid-Beta and Tau Aggregation. Front Neurosci 2018; 12:735. [PMID: 30369868 PMCID: PMC6194148 DOI: 10.3389/fnins.2018.00735] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Coffee consumption has been correlated with a decreased risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD), but the mechanism by which coffee may provide neuroprotection in humans is not fully understood. We hypothesized that compounds found in brewed coffee may elicit neuroprotective effects by inhibiting the aggregation of amyloid-beta (Aβ) and tau (AD) or α-synuclein (PD). Three instant coffee extracts (light roast, dark roast, decaffeinated dark roast) and six coffee components [caffeine (1), chlorogenic acid (2), quinic acid (3), caffeic acid (4), quercetin (5), and phenylindane (6)] were investigated for their ability to inhibit the fibrillization of Aβ and tau proteins using thioflavin T (ThT) and thioflavin S (ThS) fluorescence assays, respectively. Inhibition of Aβ and α-synuclein oligomerization was assessed using ELISA assays. All instant coffee extracts inhibit fibrillization of Aβ and tau, and promote α-synuclein oligomerization at concentrations above 100 μg/mL. Dark roast coffee extracts are more potent inhibitors of Aβ oligomerization (IC50 ca. 10 μg/mL) than light roast coffee extract (IC50 = 40.3 μg/mL), and pure caffeine (1) has no effect on Aβ, tau or α-synuclein aggregation. Coffee components 2, 4, and 5 inhibit the fibrillization of Aβ at 100 μM concentration, yet only 5 inhibits Aβ oligomerization (IC50 = 10.3 μM). 1-5 have no effect on tau fibrillization. Coffee component 6, however, is a potent inhibitor of both Aβ and tau fibrillization, and also inhibits Aβ oligomerization (IC50 = 42.1 μM). Coffee components 4 and 5 promote the aggregation of α-synuclein at concentrations above 100 μM; no other coffee components affect α-synuclein oligomerization. While the neuroprotective effect of coffee consumption is likely due to a combination of factors, our data suggest that inhibition Aβ and tau aggregation by phenylindane 6 (formed during the roasting of coffee beans, higher quantities found in dark roast coffees) is a plausible mechanism by which coffee may provide neuroprotection. The identification of 6 as a dual-inhibitor of both Aβ and tau aggregation is noteworthy, and to our knowledge this is the first report of the aggregation inhibition activity of 6.
Collapse
Affiliation(s)
- Ross S. Mancini
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yanfei Wang
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F. Weaver
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Liu X, Du X, Han G, Gao W. Association between tea consumption and risk of cognitive disorders: A dose-response meta-analysis of observational studies. Oncotarget 2018; 8:43306-43321. [PMID: 28496007 PMCID: PMC5522147 DOI: 10.18632/oncotarget.17429] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022] Open
Abstract
Background The epidemiological evidence for a dose-response relationship between tea consumption and risk of cognitive disorders is sparse. The aim of the study was to summarize the evidence for the association of tea consumption with risk of cognitive disorders and assess the dose-response relationship. Methods We searched electronic databases of Pubmed, Embase, and Cochrane Library (from 1965 to Jan 19, 2017) for eligible studies that published in the international journals. A random-effects model was used to pool the most adjusted odds ratios (ORs) and the corresponding 95% confidence intervals (CIs). Results Seventeen studies involving 48,435 participants were included in our study. The meta-analysis showed that a higher tea consumption was associated with a significant reduction in the risk of cognitive disorders (OR=0.73, 95% CI: 0.65-0.82). When considering the specific types of tea consumption, the significantly inverse association is only found in green tea consumption (OR=0.64, 95% CI: 0.53-0.77) but not in black/oolong tea consumption (OR=0.75, 95% CI: 0.55-1.01). Dose-response meta-analysis indicated that tea consumption is linearly associated with a reduced risk of cognitive disorders. An increment of 100 ml/day, 300 ml/day, and 500 ml/day of tea consumption was associated with a 6% (OR=0.94, 95% CI: 0.92-0.96), 19% (OR=0.81, 95% CI: 0.74-0.88), and 29% (OR=0.71, 95% CI: 0.62-0.82) lower risk of cognitive disorders. Conclusions Tea consumption is inversely and linearly related to the risk of cognitive disorders. More studies are needed to further confirm our findings.
Collapse
Affiliation(s)
- Xueying Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, Tianjin 300072, China.,Department of Pharmacy, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaoyuan Du
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Guanying Han
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, Tianjin 300072, China
| |
Collapse
|
45
|
Botanicals and phytochemicals active on cognitive decline: The clinical evidence. Pharmacol Res 2018; 130:204-212. [DOI: 10.1016/j.phrs.2017.12.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/05/2017] [Accepted: 12/27/2017] [Indexed: 01/31/2023]
|
46
|
Nanotherapy for Alzheimer's disease and vascular dementia: Targeting senile endothelium. Adv Colloid Interface Sci 2018; 251:44-54. [PMID: 29274774 DOI: 10.1016/j.cis.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022]
Abstract
Due to the complexity of Alzheimer's disease, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted lipid nanoemulsion) are available. Versatile small molecule drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble" [LCM]/"nanoparticle-derived" [ND] (or LCM/ND) nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly class B type I), or SR-BI, making possible for various Alzheimer's-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM suspension); such film-stabilized microbubbles are well known to substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer's patient.
Collapse
|
47
|
Alzheimer’s Disease, Brain Injury, and C.N.S. Nanotherapy in Humans: Sonoporation Augmenting Drug Targeting. Med Sci (Basel) 2017. [PMCID: PMC5753658 DOI: 10.3390/medsci5040029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Owing to the complexity of neurodegenerative diseases, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted nanoemulsion) are available. Versatile small-molecule drug(s) targeting multiple pathways of Alzheimer’s disease pathogenesis are known. By incorporating such drug(s) into the targeted lipid-coated microbubble/nanoparticle-derived (LCM/ND) lipid nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly scavenger receptor class B type I (SR-BI)), making it possible for various Alzheimer’s-related cell types to be simultaneously sought for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble (LCM) subpopulation (i.e., a stable LCM suspension); such LCM substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer’s patient.
Collapse
|
48
|
Qian C, Jin J, Chen J, Li J, Yu X, Mo H, Chen G. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep 2017; 16:9627-9635. [PMID: 29039533 DOI: 10.3892/mmr.2017.7773] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation. The present study aimed to evaluate the role of SIRT1 in a rat endovascular perforation model of SAH. The SIRT1 activator resveratrol (RES) was administered 48 h prior to SAH induction and the SIRT1 inhibitor Sirtinol (SIR) was used to reverse the effects of RES on SIRT1 expression. Mortality rate, neurological function and brain water content were measured 24 h post‑SAH induction. Proteins associated with the blood brain barrier (BBB), apoptosis and SIRT1 in the cortex, such as zona occludens 1 (ZO‑1), occludin, claudin‑5, SIRT1, p53 and cleaved caspase3 were investigated. mRNA expression of the p53 downstream molecules including Bcl‑associated X protein, P53 upregulated modulator of apoptosis, Noxa and BH3 interacting‑domain death agonist were also investigated. Neuronal apoptosis was also investigated by immunofluorescence. RES pretreatment reduced the mortality rate and improved neurological function, which was consistent with reduced brain water content and neuronal apoptosis; these effects were partially reversed by co‑treatment with SIR. SIRT1 may reduce the brain water content by improvement of dysfunctional BBB permeability, and protein analysis revealed that both ZO‑1, occludin and claudin‑5 may be involved, and these effects were reversed by SIRT1 inhibition. SIRT1 may also affect apoptosis post‑SAH through p53 deacetylation, and the analysis of p53 related downstream pro‑apoptotic molecules supported this hypothesis. Localization of neuron specific apoptosis revealed that SIRT1 may regulate neuronal apoptosis following SAH. SIRT1 may also ease brain edema and neuronal protection through BBB improvement and p53 deacetylation. SIRT1 activators such as RES may have the potential to improve the prognosis of patients with SAH and clinical research should be investigated further.
Collapse
Affiliation(s)
- Cong Qian
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianxiang Jin
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingyin Chen
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianru Li
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaobo Yu
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hangbo Mo
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Gao Chen
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
49
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
50
|
Solfrizzi V, Custodero C, Lozupone M, Imbimbo BP, Valiani V, Agosti P, Schilardi A, D’Introno A, La Montagna M, Calvani M, Guerra V, Sardone R, Abbrescia DI, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G, Sabbá C, Panza F. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J Alzheimers Dis 2017; 59:815-849. [DOI: 10.3233/jad-170248] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Custodero
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Bruno P. Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Vincenzo Valiani
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Agosti
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Schilardi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Alessia D’Introno
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Maddalena La Montagna
- Department of Clinical and Experimental Medicine, Psychiatric Unit, University of Foggia, Foggia, Italy
| | - Mariapaola Calvani
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vito Guerra
- National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, Castellana, Bari, Italy
| | - Rodolfo Sardone
- National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, Castellana, Bari, Italy
| | - Daniela I. Abbrescia
- National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, Castellana, Bari, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, Psychiatric Unit, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Davide Seripa
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce, Italy
| | - Carlo Sabbá
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
- Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce, Italy
| |
Collapse
|