1
|
Manfredi JN, Gupta SK, Vyavahare S, Deak F, Lu X, Buddha L, Wankhade U, Lohakare J, Isales C, Fulzele S. Gut microbiota dysbiosis in Alzheimer's disease (AD): Insights from human clinical studies and the mouse AD models. Physiol Behav 2025; 290:114778. [PMID: 39672482 DOI: 10.1016/j.physbeh.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's Disease (AD) is a debilitating neurocognitive disorder with an unclear underlying mechanism. Recent studies have implicated gut microbiota dysbiosis with the onset and progression of AD. The connection between gut microbiota and AD can significantly affect the prevention and treatment of AD patients. This systematic review summarizes primary outcomes of human and mouse AD models concerning gut microbiota alterations. A systematic literature search in February through March 2023 was conducted on PubMed, Embase, and Web of Science. We identified 711 as potential manuscripts of which 672 were excluded because of irrelevance to the identified search criteria. Primary outcomes include microbiota compositions of control and AD models in humans and mice. In total, 39 studies were included (19 mouse and 20 human studies), published between 2017 and 2023. We included studies involving well-established mice models of AD (5xFAD, 3xTg-AD, APP/PS1, Tg2576, and APPPS2) which harbor mutations and genes that drive the formation of Aß plaques. All human studies were included on those with AD or mild cognitive impairment. Among alterations in gut microbiota, most studies found a decreased abundance of the phyla Firmicutes and Bifidobacteria, a genus of the phylum Actinomycetota. An increased abundance of the phyla Bacteroidetes and Proteobacteria were identified in animal and human studies. Studies indicated that gut microbiota alter the pathogenesis of AD through its impact on neuroinflammation and permeability of the gastrointestinal tract. The ensuing increase in blood-brain barrier permeability may accelerate Aβ penetrance and formation of neuritic plaques that align with the amyloid hypothesis of AD pathogenesis. Further studies should assess the relationship between gut microbiota and AD progression and therapy preserving beneficial gut microbiota.
Collapse
Affiliation(s)
- John N Manfredi
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Xinyun Lu
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Lasya Buddha
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Umesh Wankhade
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jayant Lohakare
- College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Zhao H, Zhou X, Song Y, Zhao W, Sun Z, Zhu J, Yu Y. Multi-omics analyses identify gut microbiota-fecal metabolites-brain-cognition pathways in the Alzheimer's disease continuum. Alzheimers Res Ther 2025; 17:36. [PMID: 39893498 PMCID: PMC11786436 DOI: 10.1186/s13195-025-01683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Gut microbiota dysbiosis is linked to Alzheimer's disease (AD), but our understanding of the molecular and neuropathological bases underlying such association remains fragmentary. METHODS Using 16S rDNA amplicon sequencing, untargeted metabolomics, and multi-modal magnetic resonance imaging, we examined group differences in gut microbiome, fecal metabolome, neuroimaging measures, and cognitive variables across 30 patients with AD, 75 individuals with mild cognitive impairment (MCI), and 61 healthy controls (HC). Furthermore, we assessed the associations between these multi-omics changes using correlation and mediation analyses. RESULTS There were significant group differences in gut microbial composition, which were driven by 8 microbial taxa (e.g., Staphylococcus and Bacillus) exhibiting a progressive increase in relative abundance from HC to MCI to AD, and 2 taxa (e.g., Anaerostipes) showing a gradual decrease. 26 fecal metabolites (e.g., Arachidonic, Adrenic, and Lithocholic acids) exhibited a progressive increase from HC to MCI to AD. We also observed progressive gray matter atrophy in broadly distributed gray matter regions and gradual micro-structural integrity damage in widespread white matter tracts along the AD continuum. Integration of these multi-omics changes revealed significant associations between microbiota, metabolites, neuroimaging, and cognition. More importantly, we identified two potential mediation pathways: (1) microbiota → metabolites → neuroimaging → cognition, and (2) microbiota → metabolites → cognition. CONCLUSION Aside from elucidating the underlying mechanism whereby gut microbiota dysbiosis is linked to AD, our findings may contribute to groundwork for future interventions targeting the microbiota-metabolites-brain-cognition pathways as a therapeutic strategy in the AD continuum.
Collapse
Affiliation(s)
- Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| |
Collapse
|
3
|
Zhang Y, Liu T, Pan F, Li Y, Wang D, Pang J, Sang H, Xi Y, Shi L, Liu Z. Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1356-1372. [PMID: 39745486 DOI: 10.1021/acs.jafc.4c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.17% methionine, w/w) improved working memory and reduced neuronal damage exclusively in 4-month-old male APP/PS1 AD mice. Transcriptomic analysis revealed the activation of serum- and glucose-corticoid-regulated kinase 1 (SGK1) and peroxisome proliferator-activated receptor α (PPARα) pathways. Furthermore, metabolomics demonstrated increased serum indole-3-propionic acid (IPA) levels and an enhanced expression of gut barrier proteins Claudin-1 and MUC2 in male mice. MR significantly altered the gut microbiota composition, notably increasing indole-producing bacteria such as Lactobacillus reuteri (L. reuteri). Multiomics integration linked L. reuteri, IPA, and PPARα signaling to improved cognitive outcomes. Molecular docking and RT-qPCR analyses confirmed IPA's interaction with PPARα, leading to the activation of neuroprotective targets (Bdnf, Pparα, Acsbg1, Scd2, and Scd3). These results highlight the role of methionine restriction in modulating gut microbiota and metabolites, offering a promising dietary approach to managing neurodegenerative diseases with sex-specific effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yiju Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Agriculture/Forestry Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Da Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haojie Sang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
4
|
Prajapati SK, Wang S, Mishra SP, Jain S, Yadav H. Protection of Alzheimer's disease progression by a human-origin probiotics cocktail. Sci Rep 2025; 15:1589. [PMID: 39794404 PMCID: PMC11724051 DOI: 10.1038/s41598-024-84780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities. We aimed to determine the probiotics cocktail's efficacy in ameliorating AD pathology in a humanized AD mouse model of APP/PS1 strains. Remarkably, feeding mice with 1 × 1011 CFU per day in drinking water for 16 weeks significantly reduced cognitive decline (measured by the Morris Water Maze test) and AD pathology markers, such as Aβ aggregation, microglia activation, neuroinflammation, and preserved blood-brain barrier (BBB) tight junctions. The beneficial effects were linked to a reduced inflammatory microbiome, leading to decreased gut permeability and inflammation in both systemic circulation and the brain. Although both male and female mice showed overall improvements in cognition and biological markers, females did not exhibit improvements in specific markers related to inflammation and barrier permeability, suggesting that the underlying mechanisms may differ depending on sex. In conclusion, our results suggest that this unique probiotics cocktail could serve as a prophylactic agent to reduce the progression of cognitive decline and AD pathology. This is achieved by beneficially modulating the microbiome, improving intestinal tight junction proteins, reducing permeability in both gut and BBB, and decreasing inflammation in the gut, blood circulation, and brain, ultimately mitigating AD pathology and cognitive decline.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shaohua Wang
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Biomedical Sciences, Infectious and Tropical Disease Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Internal Medicine-Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
5
|
Martin M, Boulaire M, Lucas C, Peltier A, Pourtau L, Gaudout D, Layé S, Pallet V, Joffre C, Dinel AL. Plant Extracts and ω-3 Improve Short-Term Memory and Modulate the Microbiota-Gut-Brain Axis in D-galactose Model Mice. J Nutr 2024; 154:3704-3717. [PMID: 39332773 DOI: 10.1016/j.tjnut.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Aging, characterized by a slow and progressive alteration of cognitive functions, is associated with gut microbiota dysbiosis, low-grade chronic inflammation, as well as increased oxidative stress and neurofunctional alterations. Some nutrients, such as polyphenols, carotenoids, and omega (ω)-3 (n-3), are good candidates to prevent age-related cognitive decline, because of their immunomodulatory, antioxidant, and neuroprotective properties. OBJECTIVES The objective of this study was to demonstrate the preventive effect of a combination of plant extracts (PE) containing Memophenol™ (grapes and blueberries polyphenols) and a patented saffron extract (saffron carotenoids and safranal) and ω-3 on cognitive function in a mouse model of accelerated aging and to understand the biological mechanisms involved. METHODS We used an accelerated-aging model by injecting 3-mo-old male C57Bl6/J mice with D-galactose for 8 wk, during which they were fed with a balanced control diet and supplemented or not with PE and/or ω-3 (n = 15-16/group). Short-term memory was evaluated by Y-maze test, following analyses of hippocampal and intestinal RNA expressions, brain fatty acid and oxylipin amounts, and gut microbiota composition (16S rRNA gene sequencing). Statistical analyses were performed (t test, analysis of variance, and Pearson correlation). RESULTS Our results showed that oral administration of PE, ω-3, or both (mix) prevented hippocampus-dependent short-term memory deficits induced by D-galactose (P < 0.05). This effect was accompanied by the modulation of gut microbiota, altered by the treatment. PE and the mix increased the expression of antioxidative and neurogenesis markers, such as catalase and doublecortin, in hippocampus (P < 0.05 for both). Moreover, ω-3 and the mix showed a higher ω-3 amounts (P < 0.05) and EPA-derived 18- hydroxyeicosapentaenoic acid (P < 0.001) in prefrontal cortex. These changes may contribute to the improvement in memory. CONCLUSIONS These results suggest that the mix of PE and ω-3 could be more efficient at attenuating age-related cognitive decline than individual supplementations because it targeted, in mice, the different pathways impaired with aging.
Collapse
Affiliation(s)
- Marie Martin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Milan Boulaire
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Adrien Peltier
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Line Pourtau
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - David Gaudout
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France.
| |
Collapse
|
6
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
7
|
Zhang W, Yu X, Wei M, Zhou J, Zhou Y, Zhou X, Zhao K, Zhu X. The influence of alterations in the composition of intestinal microbiota on neurovascular coupling and cognitive dysfunction in individuals afflicted with CSVD. Brain Res Bull 2024; 219:111115. [PMID: 39510273 DOI: 10.1016/j.brainresbull.2024.111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION An expanding body of research has explored the crucial role of gut microbiota in cerebral small vessel disease (CSVD). The objective of this study is to investigate alterations in the gut microbiota structure among CSVD patients, to explore the correlation between differential taxonomic levels and the neurovascular coupling index as well as cognitive function and to elucidate the imaging and biomarkers of mild cognitive impairment (MCI) in CSVD. METHODS We enrolled 104 patients with CSVD and 40 healthy controls (HC). Based on cognitive test scores, CSVD patients were categorized into a cognitively normal group (CSVD-NCI, n=61) and a mild cognitive impairment group (CSVD-MCI, n=43). Performing magnetic resonance imaging (MRI) scans, gut microbiota analysis, as well as clinical and neuropsychological assessments for all participants. Based on arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) imaging data, cerebral blood flow (CBF) and neural activity indices are computed. The coupling indices of CBF/mReHo, CBF/mfALFF, CBF/mALFF, and CBF/mDC are calculated to assess the whole-brain neurovascular coupling changes in patients with CSVD. RESULTS Species annotation revealed differences in the composition at the phylum and genus levels among the HC, CSVD-NCI, and CSVD-MCI groups. Additionally, differential analysis using the Kruskal-Wallis test demonstrated specific dominant microbial communities in all three groups. The relative abundance of certain dominant microbial communities in CSVD patients exhibited correlations with neurovascular coupling and cognitive function. The combined assessment of Bacteroides genus and CBF/mDC proved effective in distinguishing between CSVD-NCI and CSVD-MCI, providing a novel non-invasive approach for the diagnosis of MCI in CSVD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Xianfeng Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Min Wei
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jie Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yajun Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| | - Kai Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|
8
|
Sun L, Geng Q, Zheng G. Mediating role of gut microbiota on Baduanjin for cognitive function in community-dwelling older adults with mild cognitive impairment: a study protocol for a cluster randomised controlled trial. BMJ Open 2024; 14:e087684. [PMID: 39578030 PMCID: PMC11590836 DOI: 10.1136/bmjopen-2024-087684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
INTRODUCTION The gut microbiome plays an important role in maintaining both cognitive and physical functions in older adults, and gut dysbiosis is an important pathophysiological mechanism of mild cognitive impairment (MCI) in older adults. As a typical traditional Chinese mind-body exercise, regular Baduanjin training has been shown to improve cognitive function and modulate the gut microbiome in community-dwelling older adults. However, the potential role of the gut microbiome in the benefits of Baduanjin on cognitive function remains unclear. The aim of this study is to investigate the mediating effect of gut microbiome between regular Baduanjin training and improvement in cognitive function in community-dwelling older adults with MCI. METHODS AND ANALYSIS This is a two-arm, randomised, parallel-controlled, single-blinded trial. Four residential communities (clusters) with a total of 64 eligible participants (16 participants in each residential community) will be randomised 1:1 to either the 24-week Baduanjin exercise intervention group (60 min per session, four sessions per week) or the no specific exercise intervention control group. Global cognitive function and the subdimensions of cognition including executive function, visuospatial function, language function and memory function will be assessed using the Montreal Cognitive Assessment Scale, Trail Making Test, Auditory Verbal Learning Test, Boston Naming Test-30 and Clock-Drawing Test, while the gut microbiome and its metabolomics will be detected using 16S rRNA and ultra-high-performance liquid chromatography-tandem mass spectrometry at baseline and at the end of 24-week intervention. The intervention effect of Baduanjin exercise and mediating role of gut microbiota will be analysed using linear mixed models and the bootstrapping method in the Hayes process. ETHICS AND DISSEMINATION This study conforms to Declaration of Helsinki principles and relevant ethical guidelines. Ethical approval has been obtained from the Ethics Committee of the Shanghai University of Medicine and Health Sciences (approval number: 2023-GZR-011). Written informed consent will be obtained from all participants. Results will be disseminated to relevant groups in peer-reviewed journal(s), and at relevant international or national scientific conferences. Key findings will also be shared with social media, healthcare providers, participants or community-dwelling older adults to support access for non-research audiences. TRIAL REGISTRATION NUMBER ChiCTR2300078147.
Collapse
Affiliation(s)
- Liwei Sun
- Shanghai University of Medicine and Health Sciences, School of Nursing and Health Management, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Geng
- Shanghai University of Medicine and Health Sciences, School of Nursing and Health Management, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohua Zheng
- Shanghai University of Medicine and Health Sciences, School of Nursing and Health Management, Shanghai, China
| |
Collapse
|
9
|
Kim H, Lee E, Park M, Min K, Diep YN, Kim J, Ahn H, Lee E, Kim S, Kim Y, Kang YJ, Jung JH, Byun MS, Joo Y, Jeong C, Lee DY, Cho H, Park H, Kim T. Microbiome-derived indole-3-lactic acid reduces amyloidopathy through aryl-hydrocarbon receptor activation. Brain Behav Immun 2024; 122:568-582. [PMID: 39197546 DOI: 10.1016/j.bbi.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) pathogenesis has been associated with the gut microbiome and its metabolites, though the specific mechanisms have remained unclear. In our study, we used a multi-omics approach to identify specific microbial strains and metabolites that could potentially mitigate amyloidopathy in 5xFAD mice, a widely used model for AD research. Among the microbial strains tested, three showed promising results in reducing soluble amyloid-beta (Aβ) levels. Plasma metabolomics analysis revealed an enrichment of tryptophan (Trp) and indole-3-lactic acid (ILA) in mice with reduced soluble Aβ levels, suggesting a potential preventative role. The administration of a combined treatment of Trp and ILA prevented both Aβ accumulation and cognitive impairment in the 5xFAD mice. Our investigation into the mechanism revealed that ILA's effect on reducing Aβ levels was mediated through the activation of microglia and astrocytes, facilitated by the aryl hydrocarbon receptor (AhR) signaling pathway. These mechanisms were verified through experiments in 5xFAD mice that included an additional group with the administration of ILA alone, as well as in vitro experiments using an AhR inhibitor. Clinical data analysis revealed a greater abundance of Lactobacillus reuteri in the gut of healthy individuals compared to those at early stages of Aβ accumulation or with mild cognitive impairment. Additionally, human post-mortem brain analyses showed an increased expression of genes associated with the AhR signaling pathway in individuals without AD, suggesting a protective effect against AD progression. Our results indicate that ILA from gut microbes could inhibit the progression of amyloidopathy in 5xFAD mice through activation of AhR signaling in the brain.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eunkyung Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kyungchan Min
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Jinhong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yanghyun Joo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chanyeong Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; Genome and Company, Gyeonggi-do, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
10
|
Mateo D, Carrión N, Cabrera C, Heredia L, Marquès M, Forcadell-Ferreres E, Pino M, Zaragoza J, Moral A, Cavallé L, González-de-Echávarri JM, Vicens P, Domingo JL, Torrente M. Gut Microbiota Alterations in Alzheimer's Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle. Microorganisms 2024; 12:2046. [PMID: 39458354 PMCID: PMC11510339 DOI: 10.3390/microorganisms12102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Recently, an association between dysbiosis of the gut microbiota (GMB) and the development of several diseases, such as Alzheimer's disease (AD), has been proposed. Dysbiosis involves changes in microbial diversity influenced by environmental factors, like diet or lifestyle. In this study, we investigated the role of GMB parameters in Spanish AD patients, assessing the impact of adherence to the Mediterranean lifestyle (ML), as well as to characterize these parameters in relation to neuropsychological, neuropsychiatric, emotional, and functionality parameters. A case-control study was conducted to investigate the association between the composition of the GMB and cognitive, emotional, neuropsychiatric, and functionality status in Spanish AD patients, along with a shotgun metagenomics approach. Richness and alpha-diversity were significantly lower in the AD group compared to the controls. PERMANOVA and ANOSIM tests of Bray-Curtis dissimilarity, Aitchison distance, and Jaccard similarity did not showed significant differences in beta-diversity between the two groups. Moreover, associations between various phyla of the AD group and orientation performance, food consumption, and activities of daily living were identified. Dysbiosis observed in Spanish AD patients is characterized by reductions in richness and alpha-diversity, alongside alterations in GMB composition, which may be linked to adherence to the ML and cognitive and functionality symptoms.
Collapse
Affiliation(s)
- David Mateo
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Nerea Carrión
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristian Cabrera
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Institute Lerin Neurocognitive, Alzheimer and Other Neurocognitive Disorders Association, 43205 Reus, Spain
| | - Luis Heredia
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Research Center for Behaviour Assessment (CRAMC), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Research Methods and Diagnosis in Education, Universidad Internacional de la Rioja, 26006 Logroño, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Eva Forcadell-Ferreres
- Neurology, Hospital Verge de la Cinta de Tortosa, 43500 Tortosa, Spain; (E.F.-F.); (J.Z.)
| | - Maria Pino
- Cognitive Impairment Unit, University Hospital Sant Joan de Reus, 43204 Reus, Spain;
| | - Josep Zaragoza
- Neurology, Hospital Verge de la Cinta de Tortosa, 43500 Tortosa, Spain; (E.F.-F.); (J.Z.)
| | - Alfons Moral
- Neurology, Xarxa Santa Tecla, 43003 Tarragona, Spain;
| | - Lluís Cavallé
- Neurology, University Hospital Joan XXIII, 43005 Tarragona, Spain; (L.C.); (J.M.G.-d.-E.)
| | | | - Paloma Vicens
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Research Center for Behaviour Assessment (CRAMC), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - José L. Domingo
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
| | - Margarita Torrente
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Institute Lerin Neurocognitive, Alzheimer and Other Neurocognitive Disorders Association, 43205 Reus, Spain
- Research Center for Behaviour Assessment (CRAMC), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Jimenez‐García AM, Villarino M, Arias N. A systematic review and meta-analysis of basal microbiota and cognitive function in Alzheimer's disease: A potential target for treatment or a contributor to disease progression? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70057. [PMID: 39734582 PMCID: PMC11672027 DOI: 10.1002/dad2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024]
Abstract
A systematic review and meta-analysis examined the impact of gut microbiota in Alzheimer's disease (AD) pathogenesis. Dysbiosis may influence neurodegeneration by affecting gut permeability and neurotrophic factors, leading to cognitive decline. The study analyzed microbiome differences between patients with AD and healthy individuals, as well as the impact of various interventions in both preclinical and clinical studies. Of 60 studies reviewed, 12 were excluded from the meta-analysis due to unsuitable data or lack of control groups. Meta-analyses revealed significant cognitive impairment in AD patients and animal models, with specific tests identifying these deficits. Notably, Bacteroides levels were higher in patients with AD, whereas probiotics improved Prevotella levels. Natural treatments increased Bacteroidetes and reduced Firmicutes in animal models. The findings emphasize the need for standardized methods to develop therapies targeting the gut microbiota to restore cognition in AD. Understanding individual dysbiosis could further clarify the cognitive effects of the gut-brain axis. Highlights Dysbiosis in the gut microbiota is linked to cognitive decline in Alzheimer's disease (AD).Patients with AD show significant differences in Bacteroides levels compared to healthy individuals.Probiotic treatments increase Prevotella levels in AD animal models.Natural agents boost Bacteroidetes and reduce Firmicutes in AD animal models.Human studies show no consistent effects of gut microbiota interventions on cognitive function in AD.
Collapse
Affiliation(s)
- Ana Maria Jimenez‐García
- BRABE Group, Department of Psychology, Faculty of Life and Natural SciencesUniversity of NebrijaMadridSpain
| | - Maria Villarino
- BRABE Group, Department of Psychology, Faculty of Life and Natural SciencesUniversity of NebrijaMadridSpain
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural SciencesUniversity of NebrijaMadridSpain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), OviedoPrincipado de AsturiasSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), OviedoPrincipado de AsturiasSpain
| |
Collapse
|
12
|
Guan Y, Wang C, Li L, Dai X, Liu Y, Hsiang T, Liu S, Wang D. Structural characterization of Hericium coralloides polysaccharide and its neuroprotective function in Alzheimer's disease. Int J Biol Macromol 2024; 277:133865. [PMID: 39019356 DOI: 10.1016/j.ijbiomac.2024.133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder. Polysaccharides have been scientifically demonstrated to possess neuroprotective properties. In this study, a polysaccharide was isolated from the fruiting bodies of Hericium coralloides using hot water extraction and purified using column chromatography. This H. coralloides polysaccharide (HCP) is a galactan with a main chain of →6)-α-d-Galp-(1 → and a molecular weight of 16.06 kDa. The partial α-l-Fucp-(1 → substitution takes place at its O-2 position. The neuroprotective effects of HCP were investigated in an APP/PS1 mouse model of Alzheimer's disease. The step-down and Morris water maze tests demonstrated that HCP effectively ameliorated cognitive impairment. After 8-week treatment, HCP reduced amyloid-β plaques and phosphorylated tau protein deposition. In combination with the gut microbiota and metabolites, proteomic analysis suggested that the neuroprotective effects of HCP are associated with neuroinflammation and autophagy. Immunofluorescence and western blotting analyses confirmed that HCP facilitated the polarization of M2 microglia by augmenting autophagy flux, thereby effectively reducing levels of amyloid-β plaques and neuroinflammation. These data demonstrate that HCP effectively mitigates neuroinflammation by enhancing autophagic flux, demonstrating its potential for the treatment of AD.
Collapse
Affiliation(s)
- Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaojing Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada.
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Kolobaric A, Andreescu C, Jašarević E, Hong CH, Roh HW, Cheong JY, Kim YK, Shin TS, Kang CS, Kwon CO, Yoon SY, Hong SW, Aizenstein HJ, Karim HT, Son SJ. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol Psychiatry 2024; 29:3064-3075. [PMID: 38664490 PMCID: PMC11449789 DOI: 10.1038/s41380-024-02551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 10/05/2024]
Abstract
Depression in older adults with cognitive impairment increases progression to dementia. Microbiota is associated with current mood and cognition, but the extent to which it predicts future symptoms is unknown. In this work, we identified microbial features that reflect current and predict future cognitive and depressive symptoms. Clinical assessments and stool samples were collected from 268 participants with varying cognitive and depressive symptoms. Seventy participants underwent 2-year follow-up. Microbial community diversity, structure, and composition were assessed using high-resolution 16 S rRNA marker gene sequencing. We implemented linear regression to characterize the relationship between microbiome composition, current cognitive impairment, and depressive symptoms. We leveraged elastic net regression to discover features that reflect current or future cognitive function and depressive symptoms. Greater microbial community diversity associated with lower current cognition in the whole sample, and greater depression in participants not on antidepressants. Poor current cognitive function associated with lower relative abundance of Bifidobacterium, while greater GABA degradation associated with greater current depression severity. Future cognitive decline associated with lower cognitive function, lower relative abundance of Intestinibacter, lower glutamate degradation, and higher baseline histamine synthesis. Future increase in depressive symptoms associated with higher baseline depression and anxiety, lower cognitive function, diabetes, lower relative abundance of Bacteroidota, and lower glutamate degradation. Our results suggest cognitive dysfunction and depression are unique states with an overall biological effect detectable through gut microbiota. The microbiome may present a noninvasive readout and prognostic tool for cognitive and psychiatric states.
Collapse
Affiliation(s)
- A Kolobaric
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA
| | - C Andreescu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - E Jašarević
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, Pittsburgh, USA
| | - C H Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - H W Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - J Y Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Y K Kim
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - T S Shin
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - C S Kang
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - C O Kwon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - S Y Yoon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - S W Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - H J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - H T Karim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| | - S J Son
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
14
|
Kang JW, Khatib LA, Heston MB, Dilmore AH, Labus JS, Deming Y, Schimmel L, Blach C, McDonald D, Gonzalez A, Bryant M, Sanders K, Schwartz A, Ulland TK, Johnson SC, Asthana S, Carlsson CM, Chin NA, Blennow K, Zetterberg H, Rey FE, Kaddurah-Daouk R, Knight R, Bendlin BB. Gut Microbiome Compositional and Functional Features Associate with Alzheimer's Disease Pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313004. [PMID: 39281749 PMCID: PMC11398448 DOI: 10.1101/2024.09.04.24313004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND The gut microbiome is a potentially modifiable factor in Alzheimer's disease (AD); however, understanding of its composition and function regarding AD pathology is limited. METHODS Shallow-shotgun metagenomic data was used to analyze fecal microbiome from participants enrolled in the Wisconsin Microbiome in Alzheimer's Risk Study, leveraging clinical data and cerebrospinal fluid (CSF) biomarkers. Differential abundance and ordinary least squares regression analyses were performed to find differentially abundant gut microbiome features and their associations with CSF biomarkers of AD and related pathologies. RESULTS Gut microbiome composition and function differed between people with AD and cognitively unimpaired individuals. The compositional difference was replicated in an independent cohort. Differentially abundant gut microbiome features were associated with CSF biomarkers of AD and related pathologies. DISCUSSION These findings enhance our understanding of alterations in gut microbial composition and function in AD, and suggest that gut microbes and their pathways are linked to AD pathology.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Lora A Khatib
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA Address: 9500 Gilman Dr, La Jolla, CA, USA 92093
| | - Margo B Heston
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Amanda H Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Jennifer S Labus
- Integrative Biostatistics and Bioinformatics Core (IBBC) at the Goodman-Luskin Microbiome Center Address: 42-210 CHS, Los Angeles, CA, USA 90095
- G. Oppenheimer Center for Neurobiology of Stress and Resilience Address: 10833 Le Conte Ave, Los Angeles, CA, USA 90095
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA Address: 100 Medical Plaza, Los Angeles, CA, USA 90095
| | - Yuetiva Deming
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA Address: 905 W Main St, Durham, NC, USA 27701
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA Address: 300 N Duke St, Durham, NC, USA 27701
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - MacKenzie Bryant
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Ara Schwartz
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA Address: 1685 Highland Ave, Madison, WI, USA 53705
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Nathaniel A Chin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden Address: Blå stråket 15, vån 3 SU/Sahlgrenska 413 45 Göteborg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden Address: Blå stråket 15, vån 3 SU/Sahlgrenska 413 45 Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden Address: Blå stråket 5, 413 45 Göteborg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK Address: Queen Square, London WC1N 3BG, United Kingdom
- UK Dementia Research Institute at UCL, London, UK Address: 6th Floor, Maple House, Tottenham Ct Rd, London W1T 7NF, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China Address: Units 1501-1502, 1512-1518, 15/F, Building 17W, Hong Kong Science Park, Shatin, N.T., Hong Kong
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA Address: 1550 Linden Dr, Madison, WI, USA 53706
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA Address: 905 W Main St, Durham, NC, USA 27701
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA Address: 308 Research Dr, Durham, NC, USA 27710
- Department of Medicine, Duke University, Durham, NC, USA Address: 40 Duke Medicine Circle, 124 Davison Building, Durham, NC, USA 27710
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA Address: Franklin Antonio Hall, Jacobs School of Engineering, 9500 Gilman Dr, La Jolla, CA, USA 92093
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA Address: 3235 Voigt Dr, La Jolla, CA, USA 92093
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA Address: 3234 Matthews Ln, La Jolla, CA, USA 92093
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA Address: 3223 Voigt Dr, La Jolla, CA, USA 92093
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 610 Walnut Street, 9th Floor, Madison, WI, USA 53726
| |
Collapse
|
15
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
16
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
17
|
Coretti L, Buommino E, Lembo F. The aryl hydrocarbon receptor pathway: a linking bridge between the gut microbiome and neurodegenerative diseases. Front Cell Neurosci 2024; 18:1433747. [PMID: 39175504 PMCID: PMC11338779 DOI: 10.3389/fncel.2024.1433747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
The Aryl hydrocarbon receptor (AHR) is a cytosolic receptor and ligand-activated transcription factor widely expressed across various cell types in the body. Its signaling is vital for host responses at barrier sites, regulating epithelial renewal, barrier integrity, and the activities of several types of immune cells. This makes AHR essential for various cellular responses during aging, especially those governing inflammation and immunity. In this review, we provided an overview of the mechanisms by which the AHR mediates inflammatory response at gut and brain level through signals from intestinal microbes. The age-related reduction of gut microbiota functions is perceived as a trigger of aberrant immune responses linking gut and brain inflammation to neurodegeneration. Thus, we explored gut microbiome impact on the nature and availability of AHR ligands and outcomes for several signaling pathways involved in neurodegenerative diseases and age-associated decline of brain functions, with an insight on Parkinson's and Alzheimer's diseases, the most common neurodegenerative diseases in the elderly. Specifically, we focused on microbial tryptophan catabolism responsible for the production of several AHR ligands. Perspectives for the development of microbiota-based interventions targeting AHR activity are presented for a healthy aging.
Collapse
Affiliation(s)
- Lorena Coretti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Li H, Cui X, Lin Y, Huang F, Tian A, Zhang R. Gut microbiota changes in patients with Alzheimer's disease spectrum based on 16S rRNA sequencing: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1422350. [PMID: 39175809 PMCID: PMC11338931 DOI: 10.3389/fnagi.2024.1422350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background The gut microbiota (GM) is hypothesized to play roles in Alzheimer's disease (AD) pathogenesis. In recent years, many GM composition and abundance investigations in AD patients have been conducted; however, despite this work, some results remain controversial. Therefore, we conducted a systematic review and meta-analysis using 16S ribosomal RNA (16S rRNA) sequencing to explore GM alterations between patients with AD spectrum and healthy controls (HCs). Methods A systematic and comprehensive literature search of PubMed, Web of Science, Embase, the Cochrane Library, China National Knowledge Infrastructure, China Biology Medicine disc database, WanFang database and Social Sciences Citation Index databases was conducted from inception to January 2023. Inclusion and exclusion criteria were strictly defined, and two researchers independently screened and extracted information from selected studies. Data quality were evaluated according to the "Cochrane system evaluator manual" and pooled data were comprehensively analyzed using Stata 14 software with standardized mean differences (SMDs) and 95% confidence intervals (95% CIs) used to measure effect sizes. Also, geographical heterogeneity effects (related to cohorts) on GM abundance were examined based on subgroup meta-analyses if sufficient studies reported outcomes. Finally, publication bias was assessed using funnel plots. Results Out of 1566 articles, 13 studies involving 581 patients with AD spectrum and 445 HCs were deemed eligible and included in our analysis. In summary, a decreased microbiota alpha diversity and a significantly distinct pattern of clustering with regard to beta diversity were observed in AD spectrum patients when compared with HCs. Comparative analyses revealed a decreased Ruminococcus, Faecalibacterium, Lachnospira, Dialister, Lachnoclostridium, and Roseburia abundance in AD spectrum patients while Phascolarctobacterium, Lactobacillus, and Akkermansia muciniphila were more enriched in patients when compared to HCs. Furthermore, regional variations may have been in play for intestinal microbes such as Bacteroides, Bifidobacterium, and Alistipes. Conclusion Our meta-analysis identified alterations in GM abundance in patients with AD spectrum, with 12 genera from four major phyla significantly associated with AD. Moreover, we provided evidence for region-specific alterations in Bacteroides, Bifidobacterium, and Alistipes abundance. These findings may have profound implications for the development of innovative GM-based strategies to prevent and treat AD. Systematic review registration https://doi.org/10.37766/inplasy2024.6.0067, identifier INPLASY202460067.
Collapse
Affiliation(s)
- Hui Li
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopan Cui
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuxiu Lin
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengqiong Huang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ayong Tian
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rongwei Zhang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Liang Y, Liu C, Cheng M, Geng L, Li J, Du W, Song M, Chen N, Yeleen TAN, Song L, Wang X, Han Y, Sheng C. The link between gut microbiome and Alzheimer's disease: From the perspective of new revised criteria for diagnosis and staging of Alzheimer's disease. Alzheimers Dement 2024; 20:5771-5788. [PMID: 38940631 PMCID: PMC11350031 DOI: 10.1002/alz.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Over the past decades, accumulating evidence suggests that the gut microbiome exerts a key role in Alzheimer's disease (AD). The Alzheimer's Association Workgroup is updating the diagnostic criteria for AD, which changed the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." Previously, most of studies focus on the correlation between the gut microbiome and amyloid beta deposition ("A"), the initial AD pathological feature triggering the "downstream" tauopathy and neurodegeneration. However, limited research investigated the interactions between the gut microbiome and other AD pathogenesis ("TNIVS"). In this review, we summarize current findings of the gut microbial characteristics in the whole spectrum of AD. Then, we describe the association of the gut microbiome with updated biomarker categories of AD pathogenesis. In addition, we outline the gut microbiome-related therapeutic strategies for AD. Finally, we discuss current key issues of the gut microbiome research in the AD field and future research directions. HIGHLIGHTS: The new revised criteria for Alzheimer's disease (AD) proposed by the Alzheimer's Association Workgroup have updated the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." The associations of the gut microbiome with updated biomarker categories of AD pathogenesis are described. Current findings of the gut microbial characteristics in the whole spectrum of AD are summarized. Therapeutic strategies for AD based on the gut microbiome are proposed.
Collapse
Affiliation(s)
- Yuan Liang
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Congcong Liu
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Manman Cheng
- Department of Respiratory MedicineThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Lijie Geng
- Department of RadiologyThe People's Hospital of YanzhouJiningChina
| | - Jing Li
- Department of EmergencyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Wenying Du
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Minfang Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Nian Chen
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | | | - Li Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Xiaoni Wang
- Department of NeurologySir Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
| | - Can Sheng
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| |
Collapse
|
20
|
Frileux S, Boltri M, Doré J, Leboyer M, Roux P. Cognition and gut microbiota in schizophrenia spectrum and mood disorders: A systematic review. Neurosci Biobehav Rev 2024; 162:105722. [PMID: 38754717 DOI: 10.1016/j.neubiorev.2024.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
FRILEUX, M., BOLTRI M. and al. Cognition and Gut microbiota in schizophrenia spectrum and mood disorders: a Systematic Review. NEUROSCI BIOBEHAV REV (1) 2024 Schizophrenia spectrum disorders and major mood disorders are associated with cognitive impairments. Recent studies suggest a link between gut microbiota composition and cognitive functioning. Here, we review the relationship between gut microbiota and cognition in these disorders. To do this, we conducted a systematic review, searching Cochrane Central Register of Controlled Trials, EBSCOhost, Embase, Pubmed, Scopus, and Web of Science. Studies were included if they investigated the relationship between gut microbiota composition and cognitive function through neuropsychological assessments in patients with bipolar, depressive, schizophrenia spectrum, and other psychotic disorders. Ten studies were identified. Findings underscore a link between gut dysbiosis and cognitive impairment. This relationship identified specific taxa (Haemophilus, Bacteroides, and Alistipes) as potential contributors to bolstered cognitive performance. Conversely, Candida albicans, Toxoplasma gondii, Streptococcus and Deinococcus were associated with diminished performance on cognitive assessments. Prebiotics and probiotics interventions were associated with cognitive enhancements, particularly executive functions. These results emphasize the role of gut microbiota in cognition, prompting further exploration of the underlying mechanisms paving the way toward precision psychiatry.
Collapse
Affiliation(s)
- S Frileux
- Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177, rue de Versailles, Le Chesnay-Rocquencourt 78157, France; Université Paris-Saclay, Université Versailles Saint-Quentin-En-Yvelines, DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif 94807, France.
| | - M Boltri
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy; I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, Italy
| | - J Doré
- Université Paris-Saclay, INRA, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas 78350, France
| | - M Leboyer
- Inserm U955 IMRB, Translational Neuropsychiatry Laboratory, AP-HP, DMU IMPACT, Fédération Hospitalo-Universitaire de médecine de précision en psychiatrie (FHU ADAPT), Paris Est Créteil University and Fondation FondaMental, Créteil 94010, France; Fondation Fondamental, Créteil 94010, France
| | - P Roux
- Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177, rue de Versailles, Le Chesnay-Rocquencourt 78157, France; Université Paris-Saclay, Université Versailles Saint-Quentin-En-Yvelines, DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif 94807, France
| |
Collapse
|
21
|
Dadi P, Pauling CW, Shrivastava A, Shah DD. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583032. [PMID: 38915512 PMCID: PMC11195143 DOI: 10.1101/2024.03.02.583032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and β-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity towards the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.
Collapse
Affiliation(s)
- Pavani Dadi
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Clint W. Pauling
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Dhara D. Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| |
Collapse
|
22
|
Sarkar S, Patranabis S. Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics. Cell Biochem Biophys 2024; 82:379-398. [PMID: 38300375 DOI: 10.1007/s12013-024-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Extracellular vesicles (EVs) are minute lipid-bilayer sacs discharged by cells, encompassing a diverse array of proteins, nucleic acids, and lipids. The identification of EVs as pivotal agents in intercellular communication has sparked compelling research pathways in the realms of cell biology and neurodegenerative diseases. Utilizing EVs for medicinal reasons has garnered interest due to the adaptability of EV-mediated communication. EVs can be classified based on their physical characteristics, biochemical composition, or cell of origin following purification. This review delves into the primary sub-types of EVs, providing an overview of the biogenesis of each type. Additionally, it explores the diverse environmental conditions triggering EV release and the originating cells, including stem cells and those from the Central Nervous System. Within the brain, EVs play a pivotal role as essential mediators of intercellular communication, significantly impacting synaptic plasticity, brain development, and the etiology of neurological diseases. Their potential diagnostic and therapeutic applications in various brain-related conditions are underscored, given their ability to carry specific cargo. Specially engineered EVs hold promise for treating diverse diseases, including neurodegenerative disorders. This study primarily emphasizes the diagnostic and potential therapeutic uses of EVs in neurological disorders such as Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Prions disease. It also summarizes innovative techniques for detecting EVs in the brain, suggesting that EVs could serve as non-invasive biomarkers for early detection, disease monitoring, and prognosis in neurological disorders.
Collapse
|
23
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
24
|
Li J, Shan W, Zuo Z. Co-housing with Alzheimer's disease mice induces changes in gut microbiota and impairment of learning and memory in control mice. CNS Neurosci Ther 2024; 30:e14491. [PMID: 37789692 PMCID: PMC11017403 DOI: 10.1111/cns.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Affiliation(s)
- Jun Li
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Weiran Shan
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Zhiyi Zuo
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
25
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Kim GH, Kim BR, Yoon HJ, Jeong JH. Alterations in Gut Microbiota and Their Correlation with Brain Beta-Amyloid Burden Measured by 18F-Florbetaben PET in Mild Cognitive Impairment Due to Alzheimer's Disease. J Clin Med 2024; 13:1944. [PMID: 38610709 PMCID: PMC11012963 DOI: 10.3390/jcm13071944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: This study investigated changes in the gut microbial composition of individuals with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and their relationship with positron emission tomography (PET) amyloid accumulation. (2) Methods: In total, 17 cognitively normal individuals without amyloid-beta (Aβ) accumulation (Aβ-NC) and 24 with Aβ-positive mild cognitive impairment (Aβ+MCI) who underwent 18F-florbetaben PET and fecal bacterial 16S ribosomal RNA gene sequencing were enrolled. The taxonomic compositions of the Aβ-NC and Aβ+MCI groups were compared. The abundance of taxa was correlated with the standardized uptake value ratio (SUVR), using generalized linear models. (3) Results: There were significant differences in microbiome richness (ACE, p = 0.034 and Chao1, p = 0.024), alpha diversity (Shannon, p = 0.039), and beta diversity (Bray-Curtis, p = 0.018 and Generalized UniFrac, p = 0.034) between the Aβ-NC and Aβ+MCI groups. The global SUVR was positively correlated with the genus Intestinibacter (q = 0.006) and negatively correlated with the genera Roseburia (q = 0.008) and Agathobaculum (q = 0.029). (4) Conclusions: In this study, we identified significant changes in the gut microbiota composition that occur in individuals with MCI due to AD. In particular, the correlation analysis results between PET amyloid burden and gut microbial abundance showed that amyloid deposition is associated with a reduction in specific taxa involved in butyrate production.
Collapse
Affiliation(s)
- Geon Ha Kim
- Department of Neurology, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea;
| | - Bori R. Kim
- Ewha Medical Research Institute, Ewha Womans University, Seoul 07804, Republic of Korea;
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea;
| |
Collapse
|
27
|
Song J, Li M, Kang N, Jin W, Xiao Y, Li Z, Qi Q, Zhang J, Duan Y, Feng X, Lv P. Baicalein ameliorates cognitive impairment of vascular dementia rats via suppressing neuroinflammation and regulating intestinal microbiota. Brain Res Bull 2024; 208:110888. [PMID: 38295883 DOI: 10.1016/j.brainresbull.2024.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Neuroinflammation induced by chronic cerebral hypoperfusion (CCH) plays a crucial role in the pathophysiologic mechanisms of vascular dementia (VD). A growing body of research has found that intestinal microbiota is associated with a variety of central nervous system disorders and that there is a relationship between intestinal microbiota dysbiosis and cognitive dysfunction and inflammatory responses. Baicalein belongs to the class of flavonoids and has a variety of biological functions, including anti-inflammatory, antioxidant and anti-apoptotic. Baicalein has a significant improvement in memory and learning, and can be used as a potential drug for the protection and treatment of central nervous system disorders. Whether baicalein has an ameliorative effect on cognitive impairment in VD, and whether its mechanism is related to the inhibition of inflammatory response and regulation of intestinal microbiota has not been reported. We used bilateral common carotid artery occlusion (BCCAO) to establish a VD rat model. Morris water maze (MWM) test showed that baicalein improved cognitive dysfunction in VD rats. We applied HE staining, immunofluorescence and ELISA to observe that baicalein treatment significantly improved CCH-induced neuronal damage in the CA1 region of the hippocampus, and reduced glial cell activation and release of pro-inflammatory factors. Western blot showed that baicalein inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway in VD rats. We applied 16 S rDNA sequencing to analyze the composition of the intestinal microbiota. The results showed that baicalein modulated the diversity and composition of the intestinal microbiota, and suppressed the relative abundance of inflammation-associated microbiota in VD rats. In conclusion, this study found that baicalein ameliorated cognitive impairment, attenuated hippocampal inflammatory responses, inhibited the TLR4/MyD88/NF-κB signaling pathway, and modulated intestinal microbiota in VD rats.
Collapse
Affiliation(s)
- Jiaxi Song
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Ning Kang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Jiayu Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yaxin Duan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaoxiao Feng
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
28
|
Mateo D, Marquès M, Domingo JL, Torrente M. Influence of gut microbiota on the development of most prevalent neurodegenerative dementias and the potential effect of probiotics in elderly: A scoping review. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32959. [PMID: 37850544 DOI: 10.1002/ajmg.b.32959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Dementia is one of today's greatest public health challenges. Its high socio-economic impact and difficulties in diagnosis and treatment are of increasing concern to an aging world population. In recent years, the study of the relationship between gut microbiota and different neurocognitive disorders has gained a considerable interest. Several studies have reported associations between gut microbiota dysbiosis and some types of dementia. Probiotics have been suggested to restore dysbiosis and to improve neurocognitive symptomatology in these dementias. Based on these previous findings, the available scientific evidence on the gut microbiota in humans affected by the most prevalent dementias, as well as the probiotic trials conducted in these patients in recent years, have been here reviewed. Decreased concentrations of short-chain fatty acids (SCFA) and other bacterial metabolites appear to play a major role in the onset of neurocognitive symptoms in Alzheimer disease (AD) and Parkinson disease dementia (PDD). Increased abundance of proinflammatory taxa could be closely related to the more severe clinical symptoms in both, as well as in Lewy Bodies dementia. Important lack of information was noted in Frontotemporal dementia behavioral variant. Moreover, geographical differences in the composition of the gut microbiota have been reported in AD. Some potential beneficial effects of probiotics in AD and PDD have been reported. However, due to the controversial results further investigations are clearly necessary.
Collapse
Affiliation(s)
- David Mateo
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Margarita Torrente
- Laboratory of Toxicology and Environmental Health - TecnATox, School of Medicine, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Department of Psychology, CRAMC (Research Center for Behaviour Assessment), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Institute Lerin Neurocognitive, Alzheimer and other Neurocognitive Disorders Association, Reus, Catalonia, Spain
| |
Collapse
|
29
|
Bosch ME, Dodiya HB, Michalkiewicz J, Lee C, Shaik SM, Weigle IQ, Zhang C, Osborn J, Nambiar A, Patel P, Parhizkar S, Zhang X, Laury ML, Mondal P, Gomm A, Schipma MJ, Mallah D, Butovsky O, Chang EB, Tanzi RE, Gilbert JA, Holtzman DM, Sisodia SS. Sodium oligomannate alters gut microbiota, reduces cerebral amyloidosis and reactive microglia in a sex-specific manner. Mol Neurodegener 2024; 19:18. [PMID: 38365827 PMCID: PMC10874048 DOI: 10.1186/s13024-023-00700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024] Open
Abstract
It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aβ deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aβ amyloidosis in the 5XFAD mouse model that were treated at a point when Aβ burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aβ amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aβ burden was detectable upto 12 weeks of age when Aβ burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aβ burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-β deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aβ deposition or when given after Aβ deposition is already at higher levels.
Collapse
Affiliation(s)
- Megan E Bosch
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, USA
| | - Hemraj B Dodiya
- Department of Neurobiology, University of Chicago, Chicago, USA
| | | | - Choonghee Lee
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, USA
| | - Shabana M Shaik
- Department of Neurobiology, University of Chicago, Chicago, USA
| | - Ian Q Weigle
- Department of Neurobiology, University of Chicago, Chicago, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack Osborn
- Department of Neurobiology, University of Chicago, Chicago, USA
| | - Aishwarya Nambiar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, USA
| | - Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, USA
| | - Xiaoqiong Zhang
- Department of Neurobiology, University of Chicago, Chicago, USA
| | - Marie L Laury
- Genome Technology Access Center, Washington University in St. Louis, St. Louis, USA
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Dania Mallah
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugene B Chang
- Department Medicine, Section of Gastroenterology, Hepatology, and Nutrition, The University of Chicago, Chicago, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, UCSD, San Diego, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, USA.
| | | |
Collapse
|
30
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
31
|
Dissanayaka DMS, Jayasena V, Rainey-Smith SR, Martins RN, Fernando WMADB. The Role of Diet and Gut Microbiota in Alzheimer's Disease. Nutrients 2024; 16:412. [PMID: 38337696 PMCID: PMC10857293 DOI: 10.3390/nu16030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by the accumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau tangles. Currently, Alzheimer's disease (AD) impacts 50 million individuals, with projections anticipating an increase to 152 million by the year 2050. Despite the increasing global prevalence of AD, its underlying pathology remains poorly understood, posing challenges for early diagnosis and treatment. Recent research suggests a link between gut dysbiosis and the aggregation of Aβ, the development of tau proteins, and the occurrence of neuroinflammation and oxidative stress are associated with AD. However, investigations into the gut-brain axis (GBA) in the context of AD progression and pathology have yielded inconsistent findings. This review aims to enhance our understanding of microbial diversity at the species level and the role of these species in AD pathology. Additionally, this review addresses the influence of confounding elements, including diet, probiotics, and prebiotics, on AD throughout different stages (preclinical, mild cognitive impairment (MCI), and AD) of its progression.
Collapse
Affiliation(s)
- D. M. Sithara Dissanayaka
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (D.M.S.D.); (S.R.R.-S.); (R.N.M.)
- Alzheimer’s Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, M15, Rm. G54, Locked Bag 1797, Penrith, NSW 2751, Australia;
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (D.M.S.D.); (S.R.R.-S.); (R.N.M.)
- Alzheimer’s Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
- Centre for Healthy Aging, Murdoch University, Murdoch, WA 6150, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (D.M.S.D.); (S.R.R.-S.); (R.N.M.)
- Alzheimer’s Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - W. M. A. D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (D.M.S.D.); (S.R.R.-S.); (R.N.M.)
- Alzheimer’s Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
| |
Collapse
|
32
|
Fu J, Qin Y, Xiao L, Dai X. Causal relationship between gut microflora and dementia: a Mendelian randomization study. Front Microbiol 2024; 14:1306048. [PMID: 38287957 PMCID: PMC10822966 DOI: 10.3389/fmicb.2023.1306048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
Background Numerous pertinent investigations have demonstrated a correlation between gut microflora (GM) and the occurrence of dementia. However, a causal connection between GM and dementia and its subtypes has not yet been clarified. Objective To explore the causal association between GM and dementia, including its subtypes, a two-sample Mendelian randomization (TSMR) analysis was used. Methods Our data comes from the Genome-Wide Association Study (GWAS). The principal approach employed for the Mendelian randomization study was the inverse-variance weighted method, supplemented by four methods: MR-Egger, weighted median, simple mode, and weighted mode. This was followed by Cochrane's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out as sensitivity analysis validation. Results Twenty-one GMs associated with any dementia, Alzheimer's disease, vascular dementia, Lewy body dementia, Parkinson's disease, and dementia under other disease classifications were derived from the analysis, and 21 passed sensitivity tests. Conclusion We confirmed the causal relationship between GM and dementia and its subtypes, derived specific flora associated with increased or decreased risk of dementia, and provided new ideas for preventive, diagnostic, and therapeutic interventions for dementia mediated by gut microbiota.
Collapse
Affiliation(s)
- Jinjie Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Qin
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lingyong Xiao
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoyu Dai
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
33
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
34
|
Yu B, Wan G, Cheng S, Wen P, Yang X, Li J, Tian H, Gao Y, Zhong Q, Liu J, Li J, Zhu Y. Disruptions of Gut Microbiota are Associated with Cognitive Deficit of Preclinical Alzheimer's Disease: A Cross-Sectional Study. Curr Alzheimer Res 2024; 20:875-889. [PMID: 38529601 DOI: 10.2174/0115672050303878240319054149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most prevalent type of dementia. The early change of gut microbiota is a potential biomarker for preclinical AD patients. OBJECTIVE The study aimed to explore changes in gut microbiota characteristics in preclinical AD patients, including those with Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI), and detect the correlation between gut microbiota characteristics and cognitive performances. METHODS This study included 117 participants [33 MCI, 54 SCD, and 30 Healthy Controls (HC)]. We collected fresh fecal samples and blood samples from all participants and evaluated their cognitive performance. We analyzed the diversity and structure of gut microbiota in all participants through qPCR, screened characteristic microbial species through machine learning models, and explored the correlations between these species and cognitive performances and serum indicators. RESULTS Compared to the healthy controls, the structure of gut microbiota in MCI and SCD patients was significantly different. The three characteristic microorganisms, including Bacteroides ovatus, Bifidobacterium adolescentis, and Roseburia inulinivorans, were screened based on the best classification model (HC and MCI) having intergroup differences. Bifidobacterium adolescentis is associated with better performance in multiple cognitive scores and several serum indicators. Roseburia inulinivorans showed negative correlations with the scores of the Functional Activities Questionnaire (FAQ). CONCLUSION The gut microbiota in patients with preclinical AD has significantly changed in terms of composition and richness. Correlations have been discovered between changes in characteristic species and cognitive performances. Gut microbiota alterations have shown promise in affecting AD pathology and cognitive deficit.
Collapse
Affiliation(s)
- Binbin Yu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guomeng Wan
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Shupeng Cheng
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Pengcheng Wen
- Statistics Department, Nanjing Mini Silicon Valley Innovation Group Co., Ltd, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Jiahuan Li
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Huifang Tian
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yaxin Gao
- Department of Rehabilitation, Suzhou Municipal Hospital, Suzhou, China
| | - Qian Zhong
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jin Liu
- Clinical Medicine Research Institution, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Li
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Liang C, Pereira R, Zhang Y, Rojas OL. Gut Microbiome in Alzheimer's Disease: from Mice to Humans. Curr Neuropharmacol 2024; 22:2314-2329. [PMID: 39403057 PMCID: PMC11451315 DOI: 10.2174/1570159x22666240308090741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.
Collapse
Affiliation(s)
- Chang Liang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
36
|
Pan S, Zhang Y, Ye T, Kong Y, Cui X, Yuan S, Liu J, Zhang Y. A High-Tryptophan Diet Alleviated Cognitive Impairment and Neuroinflammation in APP/PS1 Mice through Activating Aryl Hydrocarbon Receptor via the Regulation of Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300601. [PMID: 38031265 DOI: 10.1002/mnfr.202300601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Indexed: 12/01/2023]
Abstract
SCOPE Recent studies have highlighted the vital role of gut microbiota in the pathogenesis of Alzheimer's disease (AD). However, the effect of the regulation of gut microbiota by dietary components on AD remains unknown. Thus, the study explored that a high-tryptophan (Trp) diet alleviates cognitive impairment by regulating microbiota. METHODS AND RESULTS Male APP/PS1 mice are fed 0.5% Trp diet for 4 weeks, and then cognitive function, amyloid-β (Aβ) deposition, microglial activation, proinflammatory cytokines production, and gut microbiota are detected. Moreover, the level of aryl hydrocarbon receptor (AhR) and NF-κB pathway related protein are determined. The results show that high-Trp diet significantly alleviates cognitive impairment and Aβ deposits. Moreover, high-Trp diet significantly inhibits activation of microglia, decreases the level of cluster of differentiation 11b (CD11b), and restrains the activation markers of microglia, such as cyclooxygenase-2 (Cox-2), interleukin (IL)-1β, and IL-6. Notably, high-Trp diet significantly activates AhR, inhibits the phosphorylation of p65, and improves microbiota dysbiosis. CONCLUSIONS These findings demonstrated that high-Trp diet exerts anti-inflammatory effects via upregulating AhR and suppressing NF-κB pathway, and its mechanisms may be mediated by regulating gut microbiota, suggesting that Trp diet may be a potential strategy for AD intervention.
Collapse
Affiliation(s)
- Sipei Pan
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaorui Cui
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
37
|
Wang J, Zhang G, Lai H, Li Z, Shen M, Li C, Kwan P, O'Brien TJ, Wu T, Yang S, Zhang X, Zhang L. Characterizing Gut Microbiota in Older Chinese Adults with Cognitive Impairment: A Cross-Sectional Study. J Alzheimers Dis 2024; 101:761-771. [PMID: 39213074 DOI: 10.3233/jad-240597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Cognitive impairment is a clinical manifestation that occurs in the course of dementia like Alzheimer's disease. The association between cognitive impairment and gut microbiota is unclear. Objective We aimed to identify gut microbiota characteristics and key gut microbiota biomarkers associated with cognitive impairment in a relatively large cohort of older adults in China. Methods A total of 229 adults aged ≥60 years from Shenzhen, China were recruited into this cross-sectional study. Participants were divided into cognitive impairment (CI) and no cognitive impairment (NCI) groups according to the results of the Mini-Mental State Examination. Diversity analysis and network analysis were used to characterize the gut microbiota between the two groups. The linear discriminant analysis effect size method and machine learning approaches were sequentially performed to identify gut microbiota biomarkers. The relationship between biomarkers and lifestyle factors was explored using Transformation-based redundancy analysis (tb-RDA). Results A total of 74 CI participants and 131 NCI participants were included in the analysis. The CI group demonstrated lower α-diversity compared to the NCI group (Shannon: 2.798 versus 3.152, p < 0.001). The density of the gut microbiota interaction network was lower in the CI group (0.074) compared to the NCI group (0.081). Megamonas, Blautia, Pseudomonas, Stenotrophomonas, and Veillonella were key biomarkers for CI. The tb-RDA revealed that increased fruit intake and exercise contribute to a higher abundance of Megamonas, Blautia, and Veillonella. Conclusions We identified a significantly reduced abundance of certain beneficial gut microbiota in older Chinese adults with cognitive impairment.
Collapse
Affiliation(s)
- Jing Wang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Gong Zhang
- MOE Key Laboratory of Tumour Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Lai
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Zengbin Li
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Mingwang Shen
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Patrick Kwan
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Yang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| |
Collapse
|
38
|
Quan Z, Zhang X, Wang S, Meng Y. Causal analysis of the gut microbiota in differentiated thyroid carcinoma: a two-sample Mendelian randomization study. Front Genet 2023; 14:1299930. [PMID: 38155712 PMCID: PMC10753834 DOI: 10.3389/fgene.2023.1299930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Objective: Numerous studies have highlighted an association between the gut microbiota (GM) and thyroid tumors. Employing Mendelian randomization methodology, we seek to elucidate the causal link between the gut microbiota and thyroid neoplasms. Methods: We procured data from the Mibiogen database encompassing 211 distinct gut microbiota taxa, alongside extensive genome-wide association studies (GWAS) summary data for differentiated thyroid carcinoma (DTC). Our principal analytical approach involved the application of the Inverse-Variance Weighted method (IVW) within the framework of Mendelian randomization. Simultaneously, we conducted sensitivity analyses to assess result heterogeneity, horizontal pleiotropy, and outcome stability. Results: IVW analysis revealed a dual role of the GM in thyroid carcinoma. The phylum Actinobacteria (OR, 0.249 [95% CI, 0.121-0.515]; p < 0.001) was associated with a decreased risk of DTC. Conversely, the genus Ruminiclostridium9 (OR, 11.276 [95% CI, 4.406-28.860]; p < 0.001), class Mollicutes (OR, 5.902 [95% CI, 1.768-19.699]; p = 0.004), genus RuminococcaceaeUCG004 (OR, 3.831 [95% CI, 1.516-9.683]; p = 0.005), genus Paraprevotella (OR, 3.536 [95% CI, 1.330-9.401]; p = 0.011), and phylum Tenericutes (OR, 5.902 [95% CI, 1.768-19.699]; p = 0.004) were associated with an increased risk of DTC. Conclusion: Our findings underscore that the presence of genus Ruminiclostridium9, class Mollicutes, genus RuminococcaceaeUCG004, genus Paraprevotella, and phylum Tenericutes is associated with an elevated risk of DTC, whereas the presence of the phylum Actinobacteria is linked to a decreased risk. These discoveries enhance our comprehension of the relationship between the GM and DTC.
Collapse
Affiliation(s)
- Zheng Quan
- Department of Oncology Surgery, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Xiaoyu Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong Meng
- Department of Oncology Surgery, The Affiliated Hospital of Northwest University, Xi’an, China
| |
Collapse
|
39
|
Grabrucker S, Marizzoni M, Silajdžić E, Lopizzo N, Mombelli E, Nicolas S, Dohm-Hansen S, Scassellati C, Moretti DV, Rosa M, Hoffmann K, Cryan JF, O’Leary OF, English JA, Lavelle A, O’Neill C, Thuret S, Cattaneo A, Nolan YM. Microbiota from Alzheimer's patients induce deficits in cognition and hippocampal neurogenesis. Brain 2023; 146:4916-4934. [PMID: 37849234 PMCID: PMC10689930 DOI: 10.1093/brain/awad303] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 08/19/2023] [Indexed: 10/19/2023] Open
Abstract
Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Nicola Lopizzo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sebastian Dohm-Hansen
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | | | | | - Melissa Rosa
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Karina Hoffmann
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Jane A English
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Cora O’Neill
- APC Microbiome Ireland, University College Cork, Ireland
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
40
|
Hao L, Wang L, Ju M, Feng W, Guo Z, Sun X, Xiao R. 27-Hydroxycholesterol impairs learning and memory ability via decreasing brain glucose uptake mediated by the gut microbiota. Biomed Pharmacother 2023; 168:115649. [PMID: 37806088 DOI: 10.1016/j.biopha.2023.115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Brain glucose hypometabolism is a significant manifestation of Alzheimer's disease (AD). 27-hydroxycholesterol (27-OHC) and the gut microbiota have been recognized as factors possibly influencing the pathogenesis of AD. This study aimed to investigate the link between 27-OHC, the gut microbiota, and brain glucose uptake in AD. Here, 6-month-old male C57BL/6 J mice were treated with sterile water or antibiotic cocktails, with or without 27-OHC and/or 27-OHC synthetic enzyme CYP27A1 inhibitor anastrozole (ANS). The gut microbiota, brain glucose uptake levels, and memory ability were measured. We observed that 27-OHC altered microbiota composition, damaged brain tissue structures, decreased the 2-deoxy-2-[18 F] fluorodeoxyglucose (18F-FDG) uptake value, downregulated the gene expression of glucose transporter type 4 (GLUT4), reduced the colocalization of GLUT1/glial fibrillary acidic protein (GFAP) in the hippocampus, and impaired spatial memory. ANS reversed the effects of 27-OHC. The antibiotic-treated mice did not exhibit similar results after 27-OHC treatment. This study reveals a potential molecular mechanism wherein 27-OHC-induced memory impairment might be linked to reduced brain glucose uptake, mediated by the gut microbiota.
Collapse
Affiliation(s)
- Ling Hao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Lijing Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Mengwei Ju
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Wenjing Feng
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Zhiting Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Xuejing Sun
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China.
| |
Collapse
|
41
|
Zhou Y, Chen Y, He H, Peng M, Zeng M, Sun H. The role of the indoles in microbiota-gut-brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases. Neuropharmacology 2023; 239:109690. [PMID: 37619773 DOI: 10.1016/j.neuropharm.2023.109690] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
At present, a large number of relevant studies have suggested that the changes in gut microbiota are related to the course of nervous system diseases, and the microbiota-gut-brain axis is necessary for the proper functioning of the nervous system. Indole and its derivatives, as the products of the gut microbiota metabolism of tryptophan, can be used as ligands to regulate inflammation and autoimmune response in vivo. In recent years, some studies have found that the levels of indole and its derivatives differ significantly between patients with central nervous system diseases and healthy individuals, suggesting that they may be important mediators for the involvement of the microbiota-gut-brain axis in the disease course. Tryptophan metabolites produced by gut microbiota are involved in multiple physiological reactions, take indole for example, it participates in the process of inflammation and anti-inflammatory effects through various cellular physiological activities mediated by aromatic hydrocarbon receptors (AHR), which can influence a variety of neurological and neuropsychiatric diseases. This review mainly explores and summarizes the relationship between indoles and human neurological and neuropsychiatric disorders, including ischemic stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, cognitive impairment, depression and anxiety, and puts forward that the level of indoles can be regulated through various direct or indirect ways to improve the prognosis of central nervous system diseases and reverse the dysfunction of the microbiota-gut-brain axis. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Yi Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yue Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui He
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
42
|
Bello-Corral L, Alves-Gomes L, Fernández-Fernández JA, Fernández-García D, Casado-Verdejo I, Sánchez-Valdeón L. Implications of gut and oral microbiota in neuroinflammatory responses in Alzheimer's disease. Life Sci 2023; 333:122132. [PMID: 37793482 DOI: 10.1016/j.lfs.2023.122132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A diverse and stable microbiota promotes a healthy state, nevertheless, an imbalance in gut or oral bacterial composition, called dysbiosis, can cause gastrointestinal disorders, systemic inflammatory states and oxidative stress, among others. Recently, gut and oral dysbiosis has been linked to Alzheimer's disease (AD), which is considered the most common form of dementia and a public health priority due to its high prevalence and incidence. The aim of this review is to highlight the implications of gut and oral microbiota in the neuroinflammation characteristic of AD pathology and the subsequent cognitive impairment. It is a systematic review of the current literature obtained by searching the PubMed, Web of Science and Scopus databases. The characteristic intestinal dysbiosis in AD patients leads to increased permeability of the intestinal barrier and activates immune cells in the central nervous system due to translocation of microbiota-derived metabolites and/or bacteria into the circulation leading to increased neuroinflammation and neuronal loss, thus generating the cognitive impairment characteristic of AD. The presence in the central nervous system of Porphyromonas gingivalis can cause an increased neuroinflammation and beta-amyloid peptide accumulation.
Collapse
Affiliation(s)
- Laura Bello-Corral
- Health Research Nursing Group (GREIS), University of Leon, 24071, Leon, Spain; Department of Nursing and Physiotherapy, University of Leon, 24071, Leon, Spain
| | | | - Jesús Antonio Fernández-Fernández
- Health Research Nursing Group (GREIS), University of Leon, 24071, Leon, Spain; Department of Nursing and Physiotherapy, University of Leon, 24071, Leon, Spain
| | - Daniel Fernández-García
- Health Research Nursing Group (GREIS), University of Leon, 24071, Leon, Spain; Department of Nursing and Physiotherapy, University of Leon, 24071, Leon, Spain
| | - Inés Casado-Verdejo
- Health Research Nursing Group (GREIS), University of Leon, 24071, Leon, Spain; Department of Nursing and Physiotherapy, University of Leon, 24401, Ponferrada, Spain
| | - Leticia Sánchez-Valdeón
- Health Research Nursing Group (GREIS), University of Leon, 24071, Leon, Spain; Department of Nursing and Physiotherapy, University of Leon, 24071, Leon, Spain.
| |
Collapse
|
43
|
Chen G, Zhou X, Zhu Y, Shi W, Kong L. Gut microbiome characteristics in subjective cognitive decline, mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Eur J Neurol 2023; 30:3568-3580. [PMID: 37399128 DOI: 10.1111/ene.15961] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND PURPOSE The gut microbiome has been reported to be closely related to Alzheimer's disease (AD) progression. Here, a comprehensive meta-analysis of gut microbial characteristics in AD, mild cognitive impairment (MCI) and subjective cognitive decline (SCD) was performed to compare gut microbial alterations at each stage. METHODS A total of 10 databases (CNKI, WanFang, VIP, SinoMed, WOS, PubMed, Embase, Cochrane Library, PsycINFO and Void) were searched and 34 case-control studies were included. α and β diversity and the relative abundance of gut microbiota were analysed as outcome indices. Data analysis was performed using Review Manager (5.4.1) and R. RESULTS Chao1 and Shannon index levels in AD were significantly lower compared with healthy controls (HCs), and the Chao1 index was significantly lower in MCI compared with HCs. There was a significant difference in β diversity of gut microbiomes in patients (SCD, MCI, AD) compared with HCs. The relative abundance of Firmicutes at the phylum level was significantly lower in patients with AD and MCI than HCs. However, the relative abundance of Bacteroidetes at the phylum level was significantly higher in patients with MCI than HCs. There was an increasing trend for Enterobacteriaceae and a decreasing trend for Ruminococcaceae, Lachnospiraceae and Lactobacillus during AD; Lactobacillus showed a decreasing trend early in SCD. CONCLUSION Our results indicated that there were gut microbiological abnormalities in AD, even as early as the SCD stage. The dynamic, consistent changes in gut microbes with the disease process showed that they might serve as potential biomarkers for early identification and diagnosis of AD.
Collapse
Affiliation(s)
- Guanlin Chen
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Xiaoqi Zhou
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wendian Shi
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Li Kong
- Department of Psychology, Shanghai Normal University, Shanghai, China
| |
Collapse
|
44
|
Kim EJ, Kim JS, Park SE, Seo SH, Cho KM, Kwon SJ, Lee MH, Kim JH, Son HS. Association between Mild Cognitive Impairment and Gut Microbiota in Elderly Korean Patients. J Microbiol Biotechnol 2023; 33:1376-1383. [PMID: 37463853 PMCID: PMC10619554 DOI: 10.4014/jmb.2305.05009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/20/2023]
Abstract
Recent studies have confirmed that gut microbiota differs according to race or country in many diseases, including mild cognitive impairment (MCI) and Alzheimer's disease. However, no study has analyzed the characteristics of Korean MCI patients. This study was performed to observe the association between gut microbiota and MCI in the Korean elderly and to identify potential markers for Korean MCI patients. For this purpose, we collected fecal samples from Korean subjects who were divided into an MCI group (n = 40) and control group (n = 40) for 16S rRNA gene amplicon sequencing. Although no significant difference was observed in the overall microbial community profile, the relative abundance of several genera, including Bacteroides, Prevotella, and Akkermansia, showed significant differences between the two groups. In addition, the relative abundance of Prevotella was negatively correlated with that of Bacteroides (r = 0.733). This study may provide Korean-specific basic data for comparing the characteristics of the gut microbiota between Korean and non-Korean MCI patients.
Collapse
Affiliation(s)
- Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Seong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | | | | | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jae-Hong Kim
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
45
|
Heravi FS, Naseri K, Hu H. Gut Microbiota Composition in Patients with Neurodegenerative Disorders (Parkinson's and Alzheimer's) and Healthy Controls: A Systematic Review. Nutrients 2023; 15:4365. [PMID: 37892440 PMCID: PMC10609969 DOI: 10.3390/nu15204365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This systematic review aims to provide a comprehensive understanding of the current literature regarding gut microbiota composition in patients with Parkinson's disease (PD) and Alzheimer's disease (AD) compared to healthy controls. To identify the relevant studies, a thorough search of PubMed, Medline, and Embase was conducted following the PRISMA guidelines. Out of 5627 articles, 73 studies were assessed for full-text eligibility, which led to the inclusion of 42 studies (26 PD and 16 AD studies). The risk of bias assessment showed a medium risk in 32 studies (20 PD studies and 12 AD studies), a low risk in 9 studies (5 PD studies and 4 AD studies), and 1 PD study with a high risk. Among the PD studies, 22 out of 26 studies reported a different gut microbiota composition between the PD cases and the healthy controls, and 15 out of 16 AD studies reported differences in gut microbiota composition between the AD cases and the healthy controls. The PD and AD studies consistently identified the phyla Bacteroidetes, Firmicutes, and Proteobacteria as prevalent in the gut microbiota in both the healthy groups and the case groups. Microbial dysbiosis was specifically characterized in the PD studies by a high abundance of Akkermansia, Verrucomicrobiaceae, Lachnospiraceae, and Ruminococcaceae in the cases and a high abundance of Blautia, Coprococcus, Prevotellaceae, and Roseburia in the controls. Similarly, Bacteroides and Acidobacteriota were abundant in the AD cases, and Acidaminococcaceae, Firmicutes, Lachnospiraceae, and Ruminiclostridium were abundant in the AD controls. The microbial signature assessment showed the association of several microbial taxa, including Akkermansia, Lachnospiraceae, Verrucomicrobiaceae, Bifidobacterium, Ruminococcacea, and Verrucomicrobia with PD and Ruminococcaceae, Bacteroides, and Actinobacteria with AD. The microbial diversity evaluations in the PD and AD studies indicated comparable alpha diversity in some groups and distinct gut microbiota composition in others, with consistent beta diversity differences between the cases and the controls across multiple studies. The bacterial signatures identified in this study that are associated with PD and AD may offer promising prospects for efficient management and treatment approaches.
Collapse
Affiliation(s)
| | - Kaveh Naseri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3983, Australia;
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321016, China
| |
Collapse
|
46
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
47
|
Choi H, Mook-Jung I. Functional effects of gut microbiota-derived metabolites in Alzheimer's disease. Curr Opin Neurobiol 2023; 81:102730. [PMID: 37236067 DOI: 10.1016/j.conb.2023.102730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
The precise causation of Alzheimer's disease (AD) is unknown, and the factors that contribute to its etiology are highly complicated. Numerous research has been conducted to investigate the potential impact of various factors to the risk of AD development or prevention against it. A growing body of evidence suggests to the importance of the gut microbiota-brain axis in the modulation of AD, which is characterized by altered gut microbiota composition. These changes can alter the production of microbial-derived metabolites, which may play a detrimental role in disease progression by being involved in cognitive decline, neurodegeneration, neuroinflammation, and accumulation of Aβ and tau. The focus of this review is on the relationship between the key metabolic products of the gut microbiota and AD pathogenesis in the brain. Understanding the action of microbial metabolites can open up new avenues for the development of AD treatment targets.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Lu X, Xiong L, Zheng X, Yu Q, Xiao Y, Xie Y. Structure of gut microbiota and characteristics of fecal metabolites in patients with lung cancer. Front Cell Infect Microbiol 2023; 13:1170326. [PMID: 37577375 PMCID: PMC10415071 DOI: 10.3389/fcimb.2023.1170326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Objective The gut micro-biome plays a pivotal role in the progression of lung cancer. However, the specific mechanisms by which the intestinal microbiota and its metabolites are involved in the lung cancer process remain unclear. Method Stool samples from 52 patients with lung cancer and 29 healthy control individuals were collected and subjected to 16S rRNA gene amplification sequencing and non-targeted gas/liquid chromatography-mass spectrometry metabolomics analysis. Then microbiota, metabolites and potential signaling pathways that may play an important role in the disease were filtered. Results Firmicutes, Clostridia, Bacteroidacea, Bacteroides, and Lachnospira showed a greater abundance in healthy controls. In contrast, the Ruminococcus gnavus(R.gnavus) was significantly upregulated in lung cancer patients. In this respect, the micro-biome of the squamous cell carcinoma(SCC)group demonstrated a relatively higher abundance of Proteobacteria, Gammaproteobacteria, Bacteroides,and Enterobacteriaceae, as well as higher abundances of Fusicatenibacter and Roseburia in adenocarcinoma(ADC) group. Metabolomic analysis showed significant alterations in fecal metabolites including including quinic acid, 3-hydroxybenzoic acid,1-methylhydantoin,3,4-dihydroxydrocinnamic acid and 3,4-dihydroxybenzeneacetic acid were significantly altered in lung cancer patients. Additionally, the R.gnavus and Fusicatenibacter of lung cancer were associated with multiple metabolite levels. Conclusion Our study provides essential guidance for a fundamental systematic and multilevel assessment of the contribution of gut micro-biome and their metabolites in lung cancer,which has great potential for understanding the pathogenesis of lung cancer and for better early prevention and targeted interventions.
Collapse
Affiliation(s)
- Xingbing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Xiong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Zhu G, Zhao J, Zhang H, Wang G, Chen W. Gut Microbiota and its Metabolites: Bridge of Dietary Nutrients and Alzheimer's Disease. Adv Nutr 2023; 14:819-839. [PMID: 37075947 PMCID: PMC10334159 DOI: 10.1016/j.advnut.2023.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment and neuroinflammation. Recent research has revealed the crucial role of gut microbiota and microbial metabolites in modulating AD. However, the mechanisms by which the microbiome and microbial metabolites affect brain function remain poorly understood. Here, we review the literature on changes in the diversity and composition of the gut microbiome in patients with AD and in animal models of AD. We also discuss the latest progress in understanding the pathways by which the gut microbiota and microbial metabolites from the host or diet regulate AD. By understanding the effects of dietary components on brain function, microbiota composition, and microbial metabolites, we examine the potential for manipulation of the gut microbiota through dietary intervention to delay the progression of AD. Although it is challenging to translate our understanding of microbiome-based approaches to dietary guidelines or clinical therapies, these findings provide an attractive target for promoting brain function.
Collapse
Affiliation(s)
- Guangsu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China; National Engineering Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
50
|
Guo X, Zhang X, Tang P, Chong L, Li R. Integration of genome-wide association studies (GWAS) and microbiome data highlights the impact of sulfate-reducing bacteria on Alzheimer's disease. Age Ageing 2023; 52:afad112. [PMID: 37466641 DOI: 10.1093/ageing/afad112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND observational studies have indicated that gut microbiome dysbiosis was associated with Alzheimer's disease (ad). However, the results are largely inconsistent and it remains unknown whether the association is causal in nature. METHODS leveraging observational studies and genome-wide association studies (GWAS) on the gut microbiome in ad patients, we pooled the microbiome data (N = 1,109) to screen the microbiota significantly altered in ad patients and then conducted Mendelian randomisation (MR) study to determine the causal associations between altered microbiota (N = 18,340) and ad using two different ad GWAS datasets (N = 63,926 and N = 472,868) using the inverse variance-weighted (IVW) method. RESULTS the combined effect sizes from observational studies showed that 8 phyla, 18 classes, 22 orders, 37 families, 78 genera and 109 species significantly changed in ad patients. Using the MR analysis, we found that two classes, one order, one family and one genus were suggestively associated with ad consistently in two different GWAS datasets. Both observational studies and MR analysis simultaneously showed that Desulfovibrionales (order) and Desulfovibrionaceae (family), which were mainly implicated in dissimilatory sulfate reduction, were significantly associated with an elevated risk of ad. CONCLUSIONS our findings demonstrated that the abundance of sulfate-reducing bacteria was increased in ad patients, which was causally linked to an increased risk of ad. Further efforts are warranted to clarify the underlying mechanisms, which will provide new insight into the prevention and treatment of ad.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an Shaanxi 710068, People's Republic of China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi 710072, People's Republic of China
| | - Xin Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an Shaanxi 710068, People's Republic of China
| | - Peng Tang
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an Shaanxi 710068, People's Republic of China
| | - Li Chong
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an Shaanxi 710068, People's Republic of China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an Shaanxi 710068, People's Republic of China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi 710072, People's Republic of China
| |
Collapse
|