1
|
Pappas I, Lohman T, Dutt S, Kapoor A, Engstrom AC, Alitin JPM, Barnes S, Chakhoyan A, Saca L, Gaggar R, Nourollahimoghadam E, Wang DJJ, Lai MHC, Joe EB, Ringman JM, Yassine HN, Schneider LS, Chui HC, Toga AW, Zlokovic BV, Nation DA. Cerebral hypoperfusion, brain structural integrity, and cognitive impairment in older APOE4 carriers. GeroScience 2025:10.1007/s11357-025-01642-5. [PMID: 40220152 DOI: 10.1007/s11357-025-01642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Cerebral blood flow (CBF) deficits, cognitive decline, and brain structural changes have been reported in older adults with and without apolipoprotein E-e4 (APOE4)-related risk for dementia. However, it remains unclear whether brain structural changes mediate the effects of hypoperfusion on cognitive impairment in APOE4 carriers and non-carriers. We studied 166 (60-89 years) APOE4 carriers (ε3/ε4 or ε4/ε4) and APOE3 homozygotes (e3/e3) with and without cognitive impairment by clinical dementia rating (CDR) and neuropsychological testing. Pseudocontinuous arterial spin-labeling-MRI assessed regional CBF, and T1-anatomical and diffusion-MRI assessed structural integrity. Mediation analyses examined relationships among grey matter CBF, grey matter volume, and white matter integrity in regions underlying impairment in distinct cognitive ability domains. APOE4 carriers with global/memory impairment (CDR 0.5) exhibited decreased CBF in the posterior cingulate, decreased grey matter volume in the hippocampus, parahippocampal gyrus, and posterior cingulate, and decreased white matter integrity in the cingulum relative to APOE4 carriers with no impairment (CDR 0). Mediation analysis in APOE4 carriers indicated decreased posterior cingulate CBF effects on global/memory impairment were mediated by decreased cingulum integrity. In the combined APOE4 and APOE3 carriers sample, there were direct effects of frontal and inferior parietal CBF and superior longitudinal fasciculus integrity on attention/executive impairment. There were also direct effects of left inferior frontal CBF on language impairment. Findings suggest links between hypoperfusion and brain structural integrity underlying global/memory impairment in APOE4 carriers. Independent CBF relationships with structural integrity are also identified across genotypes and impairment domains.
Collapse
Affiliation(s)
- Ioannis Pappas
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trevor Lohman
- Leonard Davis School of Gerontology, University of Southern California, Andrus Gerontology Center, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Shubir Dutt
- Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Andrus Gerontology Center, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Samuel Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA
| | - Ararat Chakhoyan
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucas Saca
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA
| | - Raghav Gaggar
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elnaz Nourollahimoghadam
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark H C Lai
- Deparment of Psychology, Dana and David Dornsife College of Arts and Letters, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth B Joe
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hussein N Yassine
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Andrus Gerontology Center, 3715 McClintock Ave, Los Angeles, CA, 90089, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
3
|
Kim GH, Kim BR, Yoon HJ, Jeong JH. Elevated cerebral blood flow proxy with increased beta-amyloid burden in Alzheimer's disease preclinical phase evaluated by dual-phase 18F-florbetaben positron emission tomography. Sci Rep 2024; 14:18480. [PMID: 39122860 PMCID: PMC11315901 DOI: 10.1038/s41598-024-68916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the earliest change of cerebral blood flow (CBF) and its relationship with β-amyloid (Aβ) burden in preclinical Alzheimer's disease (AD) employing dual-phase 18F-florbetaben (FBB) PET. Seventy-one cognitively normal (NC) individuals were classified as Aβ negative (Aβ-NC) or positive (Aβ+NC) based on two different cutoff values: an SUVR of > 1.08 and a Centiloid scale of > 20. The PET scans were acquired in two phases: an early phase (0-10 min, eFBB) and a delayed phase (90-110 min, dFBB), which were averaged to generate single-frame images for each phase. Furthermore, an R1 parametric map was generated from the early phase data using a simplified reference tissue model. We conducted regional and voxel-based analyses to compare the eFBB, dFBB, and R1 images between the Aβ positive and negative groups. In addition, the correlations between the CBF proxy R1 and the dFBB SUVR were analyzed. The Aβ+NC group showed significantly higher dFBB SUVR in both the global cerebral cortex and target regions compared to the Aβ-NC group, while no significant differences were observed in eFBB SUVR between the two groups. Furthermore, the Aβ+NC group exhibited significantly higher R1 values, a proxy for cerebral perfusion, in both the global cerebral cortex and target regions compared to the Aβ-NC group. Significant positive correlations were observed between R1 and dFBB SUVR in both the global cerebral cortex and target regions, which remained significant after controlling for demographics and cognitive profiles, except for the medial temporal and occipital cortices. The findings reveal increased CBF in preclinical AD and a positive correlation between CBF and amyloid pathology. The positive correlation between R1 and amyloid burden may indicate a compensatory mechanism in the preclinical stage of Alzheimer's disease, but to elucidate this hypothesis, further longitudinal observational studies are necessary.
Collapse
Affiliation(s)
- Geon Ha Kim
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Bori R Kim
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Republic of Korea
- Ewha Medical Research Institute, Ewha Womans University, Seoul, Republic of Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University, College of Medicine, Seoul, Republic of Korea.
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zhou TD, Zhang Z, Balachandrasekaran A, Raji CA, Becker JT, Kuller LH, Ge Y, Lopez OL, Dai W, Gach HM. Prospective Longitudinal Perfusion in Probable Alzheimer's Disease Correlated with Atrophy in Temporal Lobe. Aging Dis 2024; 15:1855-1871. [PMID: 37196135 PMCID: PMC11272196 DOI: 10.14336/ad.2023.0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Reduced cerebral blood flow (CBF) in the temporoparietal region and gray matter volumes (GMVs) in the temporal lobe were previously reported in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the temporal relationship between reductions in CBF and GMVs requires further investigation. This study sought to determine if reduced CBF is associated with reduced GMVs, or vice versa. Data came from 148 volunteers of the Cardiovascular Health Study Cognition Study (CHS-CS), including 58 normal controls (NC), 50 MCI, and 40 AD who had perfusion and structural MRIs during 2002-2003 (Time 2). Sixty-three of the 148 volunteers had follow-up perfusion and structural MRIs (Time 3). Forty out of the 63 volunteers received prior structural MRIs during 1997-1999 (Time 1). The relationships between GMVs and subsequent CBF changes, and between CBF and subsequent GMV changes were investigated. At Time 2, we observed smaller GMVs (p<0.05) in the temporal pole region in AD compared to NC and MCI. We also found associations between: (1) temporal pole GMVs at Time 2 and subsequent declines in CBF in this region (p=0.0014) and in the temporoparietal region (p=0.0032); (2) hippocampal GMVs at Time 2 and subsequent declines in CBF in the temporoparietal region (p=0.012); and (3) temporal pole CBF at Time 2 and subsequent changes in GMV in this region (p = 0.011). Therefore, hypoperfusion in the temporal pole may be an early event driving its atrophy. Perfusion declines in the temporoparietal and temporal pole follow atrophy in this temporal pole region.
Collapse
Affiliation(s)
- Tony D Zhou
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Zongpai Zhang
- Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | - Cyrus A Raji
- Departments of Radiology and Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - James T Becker
- Departments of Psychiatry, Psychology, and Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, PA 15260, USA.
| | - Weiying Dai
- Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | - H. Michael Gach
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
- Departments of Radiology and Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
5
|
Motger-Albertí A, de la Calle E, Giménez M, Blasco G, Biarnés C, Arnoriaga-Rodríguez M, Puig J, Coll-Martínez C, Contreras-Rodríguez O, Fernández-Real JM. Increased brain fractional perfusion in obesity using intravoxel incoherent motion (IVIM) MRI metrics. Obesity (Silver Spring) 2024; 32:756-767. [PMID: 38383843 DOI: 10.1002/oby.24001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE This research seeks to shed light on the associations between brain perfusion, cognitive function, and mental health in individuals with and without obesity. METHODS In this study, we employed the noninvasive intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) technique to examine brain fractional perfusion (FP) in two groups: individuals with obesity (N = 72) and healthy controls (N = 66). Additionally, we investigated potential associations between FP, cognitive function, and depressive symptoms in the participants with and without obesity. Finally, artificial intelligence algorithms (Boruta analysis) were also used. RESULTS Participants with obesity exhibited increased FP within dopaminergic brain circuits, particularly involving prefrontal cortex areas, anterior and posterior sections of the cingulate cortex, the right striatum, and the midbrain. Additionally, these individuals demonstrated lower working memory and higher depressive symptoms compared to the control group. Notably, higher FP in the inferior temporal and occipital cortices correlated with greater depressive symptoms, whereas increased FP in the right ventral caudate and the midbrain was associated with better working memory performance. A link between inflammatory and metabolic variables, with a particular emphasis on monocytes, and FP in obesity was also evidenced by Boruta analysis. CONCLUSIONS Increased brain perfusion in individuals with obesity is associated with cognitive function and mental health through interaction with metabolic and inflammatory factors.
Collapse
Affiliation(s)
- Anna Motger-Albertí
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Elena de la Calle
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Mònica Giménez
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Gerard Blasco
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Clàudia Coll-Martínez
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Josep Trueta University Hospital, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute, Department of Medical Sciences, University of Girona, Girona, Spain
| | - Oren Contreras-Rodríguez
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
6
|
Edwards L, Thomas KR, Weigand AJ, Edmonds EC, Clark AL, Brenner EK, Banks SJ, Gilbert PE, Nation DA, Delano-Wood L, Bondi MW, Bangen KJ. Pulse pressure and APOE ε4 dose interact to affect cerebral blood flow in older adults without dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100206. [PMID: 38328026 PMCID: PMC10847851 DOI: 10.1016/j.cccb.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
This study assessed whether the effect of vascular risk on cerebral blood flow (CBF) varies by gene dose of apolipoprotein (APOE) ε4 alleles. 144 older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative underwent arterial spin labeling and T1-weighted MRI, APOE genotyping, fluorodeoxyglucose positron emission tomography (FDG-PET), lumbar puncture, and blood pressure (BP) assessment. Vascular risk was assessed using pulse pressure (systolic BP - diastolic BP). CBF was examined in six AD-vulnerable regions: entorhinal cortex, hippocampus, inferior temporal cortex, inferior parietal cortex, rostral middle frontal gyrus, and medial orbitofrontal cortex. Linear regressions tested the interaction between APOE ε4 dose and pulse pressure on CBF in each region, adjusting for age, sex, cognitive classification, antihypertensive medication use, FDG-PET, reference CBF region, and AD biomarker positivity. There was a significant interaction between pulse pressure and APOE ɛ4 dose on CBF in the entorhinal cortex, hippocampus, and inferior parietal cortex, such that higher pulse pressure was associated with lower CBF only among ε4 homozygous participants. These findings demonstrate that the association between pulse pressure and regional CBF differs by APOE ε4 dose, suggesting that targeting modifiable vascular risk factors may be particularly important for those genetically at risk for AD.
Collapse
Affiliation(s)
- Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C. Edmonds
- Banner Alzheimer's Institute, Tucson, AZ, USA
- Departments of Neurology and Psychology, University of Arizona, Tucson, AZ, USA
| | - Alexandra L. Clark
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Paul E. Gilbert
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Daniel A. Nation
- Department of Psychology, University of California Irvine, Irvine, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
van Dinther M, Hooghiemstra AM, Bron EE, Versteeg A, Leeuwis AE, Kalay T, Moonen JE, Kuipers S, Backes WH, Jansen JFA, van Osch MJP, Biessels G, Staals J, van Oostenbrugge RJ. Lower cerebral blood flow predicts cognitive decline in patients with vascular cognitive impairment. Alzheimers Dement 2024; 20:136-144. [PMID: 37491840 PMCID: PMC10917014 DOI: 10.1002/alz.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Chronic cerebral hypoperfusion is one of the assumed pathophysiological mechanisms underlying vascular cognitive impairment (VCI). We investigated the association between baseline cerebral blood flow (CBF) and cognitive decline after 2 years in patients with VCI and reference participants. METHODS One hundred eighty-one participants (mean age 66.3 ± 7.4 years, 43.6% women) underwent arterial spin labeling (ASL) magnetic resonance imaging (MRI) and neuropsychological assessment at baseline and at 2-year follow-up. We determined the association between baseline global and lobar CBF and cognitive decline with multivariable regression analysis. RESULTS Lower global CBF at baseline was associated with more global cognitive decline in VCI and reference participants. This association was most profound in the domain of attention/psychomotor speed. Lower temporal and frontal CBF at baseline were associated with more cognitive decline in memory. DISCUSSION Our study supports the role of hypoperfusion in the pathophysiological and clinical progression of VCI. HIGHLIGHTS Impaired cerebral blood flow (CBF) at baseline is associated with faster cognitive decline in VCI and normal aging. Our results suggest that low CBF precedes and contributes to the development of vascular cognitive impairment. CBF determined by ASL might be used as a biomarker to monitor disease progression or treatment responses in VCI.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Astrid M. Hooghiemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Esther E. Bron
- Department of Radiology & Nuclear MedicineErasmus MC—University Medical Center RotterdamRotterdamThe Netherlands
| | - Adriaan Versteeg
- Department of Radiology & Nuclear MedicineErasmus MC—University Medical Center RotterdamRotterdamThe Netherlands
| | - Anna E. Leeuwis
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Old Age PsychiatryGGZ inGeestAmsterdamThe Netherlands
| | - Tugba Kalay
- Department of NeurologySt. Antonius ZiekenhuisNieuwegeinThe Netherlands
| | - Justine E. Moonen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Kuipers
- Department of NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Walter H. Backes
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jacobus F. A. Jansen
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mathias J. P. van Osch
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Geert‐Jan Biessels
- Department of NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Julie Staals
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | | |
Collapse
|
8
|
Bangen KJ, Calcetas AT, Thomas KR, Wierenga C, Smith CN, Bordyug M, Brenner EK, Wing D, Chen C, Liu TT, Zlatar ZZ. Greater accelerometer-measured physical activity is associated with better cognition and cerebrovascular health in older adults. J Int Neuropsychol Soc 2023; 29:859-869. [PMID: 36789631 PMCID: PMC10425574 DOI: 10.1017/s1355617723000140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and regional cerebral blood flow (CBF) in older adults. METHOD Forty-three older adults without cognitive impairment underwent magnetic resonance imaging (MRI) and comprehensive neuropsychological assessment. Waist-worn accelerometers objectively measured PA for approximately one week. RESULTS Higher time spent in moderate to vigorous PA (MVPA) was uniquely associated with better memory and executive functioning after adjusting for all light PA. Higher MVPA was also uniquely associated with lower frontal WMH volume although the finding was no longer significant after additionally adjusting for age and accelerometer wear time. MVPA was not associated with CBF. Higher time spent in all light PA was uniquely associated with higher CBF but not with cognitive performance or WMH volume. CONCLUSIONS Engaging in PA may be beneficial for cerebrovascular health, and MVPA in particular may help preserve memory and executive function in otherwise cognitively healthy older adults. There may be differential effects of engaging in lighter PA and MVPA on MRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda T Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christine N Smith
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Einat K Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Ambeskovic M, Hopkins G, Hoover T, Joseph JT, Montina T, Metz GAS. Metabolomic Signatures of Alzheimer's Disease Indicate Brain Region-Specific Neurodegenerative Progression. Int J Mol Sci 2023; 24:14769. [PMID: 37834217 PMCID: PMC10573054 DOI: 10.3390/ijms241914769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Pathological mechanisms contributing to Alzheimer's disease (AD) are still elusive. Here, we identified the metabolic signatures of AD in human post-mortem brains. Using 1H NMR spectroscopy and an untargeted metabolomics approach, we identified (1) metabolomic profiles of AD and age-matched healthy subjects in post-mortem brain tissue, and (2) region-common and region-unique metabolome alterations and biochemical pathways across eight brain regions revealed that BA9 was the most affected. Phenylalanine and phosphorylcholine were mainly downregulated, suggesting altered neurotransmitter synthesis. N-acetylaspartate and GABA were upregulated in most regions, suggesting higher inhibitory activity in neural circuits. Other region-common metabolic pathways indicated impaired mitochondrial function and energy metabolism, while region-unique pathways indicated oxidative stress and altered immune responses. Importantly, AD caused metabolic changes in brain regions with less well-documented pathological alterations that suggest degenerative progression. The findings provide a new understanding of the biochemical mechanisms of AD and guide biomarker discovery for personalized risk prediction and diagnosis.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Giselle Hopkins
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Tanzi Hoover
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Jeffrey T. Joseph
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
10
|
Zhu W, Gao Z, Li H, Huang Z, Li X, Wang H, Wu X, Tian Y, Zhou S, Li X, Yu Y. Education reduces cognitive dysfunction in Alzheimer's disease by changing regional cerebral perfusion: An in-vivo arterial spin labeling study. Neurol Sci 2023; 44:2349-2361. [PMID: 36843146 DOI: 10.1007/s10072-023-06696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE Formal education and other cognitive challenges influence brain structure and improve function. It is believed that cognitive activities create a cognitive reserve (CR) that can slow the decline due to aging and neurodegenerative diseases. This study investigated alterations of regional cerebral blood flow (rCBF) associated with high and low CR in different stages of Alzheimer's disease (AD) and examined whether rCBF alteration mediates the relationship between education and cognitive performance. METHODS Patients with AD or amnestic mild cognitive impairment (aMCI) and healthy controls were divided into low cognitive reserve (LCR) and high cognitive reserve (HCR) subgroups according to median of education years (≤ 9 vs. > 9 years). The final study population included 89 AD patients (67 LCR, 22 HCR), 74 aMCI patients (44 LCR, 30 HCR), and 66 healthy controls (29 LCR, 37 HCR). All subjects were examined by arterial spin labeling magnetic resonance imaging and a neurocognitive test battery. rCBF was compared among groups by two-way analysis of variance. Mediation analyses were used to explore the relationships among education, rCBF, and cognitive test scores. RESULTS There were significant interaction effects of disease state (AD, aMCI, HC) and education level (LCR, HCR) on CBF in right hippocampus, posterior cingulate cortex, and right inferior parietal cortex (R_IPC). Education regulated episodic memory score by influencing right hippocampal CBF in HC_HCR and aMCI_HCR subgroups. CONCLUSION Our results indicate that the protective effect of education against cognitive dysfunction in early-stage AD is mediated at least partially by altered CBF in right hippocampus.
Collapse
Affiliation(s)
- Wanqiu Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Ziwen Gao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Hui Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Ziang Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
11
|
Swinford CG, Risacher SL, Wu YC, Apostolova LG, Gao S, Bice PJ, Saykin AJ. Altered cerebral blood flow in older adults with Alzheimer's disease: a systematic review. Brain Imaging Behav 2023; 17:223-256. [PMID: 36484922 PMCID: PMC10117447 DOI: 10.1007/s11682-022-00750-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
The prevalence of Alzheimer's disease is projected to reach 13 million in the U.S. by 2050. Although major efforts have been made to avoid this outcome, so far there are no treatments that can stop or reverse the progressive cognitive decline that defines Alzheimer's disease. The utilization of preventative treatment before significant cognitive decline has occurred may ultimately be the solution, necessitating a reliable biomarker of preclinical/prodromal disease stages to determine which older adults are most at risk. Quantitative cerebral blood flow is a promising potential early biomarker for Alzheimer's disease, but the spatiotemporal patterns of altered cerebral blood flow in Alzheimer's disease are not fully understood. The current systematic review compiles the findings of 81 original studies that compared resting gray matter cerebral blood flow in older adults with mild cognitive impairment or Alzheimer's disease and that of cognitively normal older adults and/or assessed the relationship between cerebral blood flow and objective cognitive function. Individuals with Alzheimer's disease had relatively decreased cerebral blood flow in all brain regions investigated, especially the temporoparietal and posterior cingulate, while individuals with mild cognitive impairment had consistent results of decreased cerebral blood flow in the posterior cingulate but more mixed results in other regions, especially the frontal lobe. Most papers reported a positive correlation between regional cerebral blood flow and cognitive function. This review highlights the need for more studies assessing cerebral blood flow changes both spatially and temporally over the course of Alzheimer's disease, as well as the importance of including potential confounding factors in these analyses.
Collapse
Affiliation(s)
- Cecily G Swinford
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Plaza-Rosales I, Brunetti E, Montefusco-Siegmund R, Madariaga S, Hafelin R, Ponce DP, Behrens MI, Maldonado PE, Paula-Lima A. Visual-spatial processing impairment in the occipital-frontal connectivity network at early stages of Alzheimer's disease. Front Aging Neurosci 2023; 15:1097577. [PMID: 36845655 PMCID: PMC9947357 DOI: 10.3389/fnagi.2023.1097577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the leading cause of dementia worldwide, but its pathophysiological phenomena are not fully elucidated. Many neurophysiological markers have been suggested to identify early cognitive impairments of AD. However, the diagnosis of this disease remains a challenge for specialists. In the present cross-sectional study, our objective was to evaluate the manifestations and mechanisms underlying visual-spatial deficits at the early stages of AD. Methods We combined behavioral, electroencephalography (EEG), and eye movement recordings during the performance of a spatial navigation task (a virtual version of the Morris Water Maze adapted to humans). Participants (69-88 years old) with amnesic mild cognitive impairment-Clinical Dementia Rating scale (aMCI-CDR 0.5) were selected as probable early AD (eAD) by a neurologist specialized in dementia. All patients included in this study were evaluated at the CDR 0.5 stage but progressed to probable AD during clinical follow-up. An equal number of matching healthy controls (HCs) were evaluated while performing the navigation task. Data were collected at the Department of Neurology of the Clinical Hospital of the Universidad de Chile and the Department of Neuroscience of the Faculty of Universidad de Chile. Results Participants with aMCI preceding AD (eAD) showed impaired spatial learning and their visual exploration differed from the control group. eAD group did not clearly prefer regions of interest that could guide solving the task, while controls did. The eAD group showed decreased visual occipital evoked potentials associated with eye fixations, recorded at occipital electrodes. They also showed an alteration of the spatial spread of activity to parietal and frontal regions at the end of the task. The control group presented marked occipital activity in the beta band (15-20 Hz) at early visual processing time. The eAD group showed a reduction in beta band functional connectivity in the prefrontal cortices reflecting poor planning of navigation strategies. Discussion We found that EEG signals combined with visual-spatial navigation analysis, yielded early and specific features that may underlie the basis for understanding the loss of functional connectivity in AD. Still, our results are clinically promising for early diagnosis required to improve quality of life and decrease healthcare costs.
Collapse
Affiliation(s)
- Iván Plaza-Rosales
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Enzo Brunetti
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Institute of Neurosurgery and Brain Research Dr. Alfonso Asenjo, Santiago, Chile,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Montefusco-Siegmund
- Faculty of Medicine, Institute of Locomotor System and Rehabilitation, Universidad Austral de Chile, Valdivia, Chile
| | - Samuel Madariaga
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Hafelin
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela P. Ponce
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile,Faculty of Medicine, Center for Advanced Clinical Research, Universidad de Chile, Santiago, Chile
| | - María Isabel Behrens
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile,Faculty of Medicine, Center for Advanced Clinical Research, Universidad de Chile, Santiago, Chile,Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pedro E. Maldonado
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Pedro E. Maldonado,
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile,*Correspondence: Andrea Paula-Lima,
| |
Collapse
|
13
|
Hays Weeks CC, Zlatar ZZ, Meloy MJ, Shin DD, Thomas L, Wierenga CE. APOE Genotype Modifies the Association of Fusiform Gyrus Cerebral Metabolic Rate of Oxygen Consumption and Object Naming Performance. J Alzheimers Dis 2023; 91:1371-1383. [PMID: 36641668 DOI: 10.3233/jad-220749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The apolipoprotein E (APOE) ɛ4 allele confers risk for age and Alzheimer's disease related cognitive decline but the mechanistic link remains poorly understood. Blood oxygenation level dependent (BOLD) response in the fusiform gyrus (FG) during object naming appears greater among APOEɛ4 carriers even in the face of equivalent cognitive performance, suggesting neural compensation. However, BOLD is susceptible to known age and APOE-related vascular changes that could confound its interpretation. OBJECTIVE To address this limitation, we used calibrated fMRI during an object naming task and a hypercapnic challenge to obtain a more direct measure of neural function - percent change cerebral metabolic rate of oxygen consumption (%ΔCMRO2). METHODS Participants were 45 older adults without dementia (28 ɛ4-, 17 ɛ4+) between the ages of 65 and 85. We examined APOE-related differences in %ΔCMRO2 in the FG during object naming and the extent to which APOE modified associations between FG %ΔCMRO2 and object naming accuracy. Exploratory analyses also tested the hypothesis that %ΔCMRO2 is less susceptible to vascular compromise than are measures of %ΔCBF and %ΔBOLD. RESULTS We observed a modifying role of APOE on associations between FG %ΔCMRO2 and cognition, with ɛ4 carriers (but not non-carriers) demonstrating a positive association between right FG %ΔCMRO2 and object naming accuracy. CONCLUSION Results suggest that the relationship between neural function and cognition is altered among older adult APOEɛ4 carriers prior to the onset of dementia, implicating CMRO2 response as a potential mechanism to support cognition in APOE-related AD risk.
Collapse
Affiliation(s)
- Chelsea C Hays Weeks
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | | | - M J Meloy
- VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Liu Thomas
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| | - Christina E Wierenga
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
The Utility of Arterial Spin Labeling MRI in Medial Temporal Lobe as a Vascular Biomarker in Alzheimer's Disease Spectrum: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12122967. [PMID: 36552974 PMCID: PMC9776573 DOI: 10.3390/diagnostics12122967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
We sought to systematically review and meta-analy the role of cerebral blood flow (CBF) in the medial temporal lobe (MTL) using arterial spin labeling magnetic resonance imaging (ASL-MRI) and compare this in patients with Alzheimer's disease (AD), individuals with mild cognitive impairment (MCI), and cognitively normal adults (CN). The prevalence of AD is increasing and leading to high healthcare costs. A potential biomarker that can identify people at risk of developing AD, whilst cognition is normal or only mildly affected, will enable risk-stratification and potential therapeutic interventions in the future. All studies investigated the role of CBF in the MTL and compared this among AD, MCI, and CN participants. A total of 26 studies were included in the systematic review and 11 in the meta-analysis. Three separate meta-analyses were conducted. Four studies compared CBF in the hippocampus of AD compared with the CN group and showed that AD participants had 2.8 mL/min/100 g lower perfusion compared with the CN group. Eight studies compared perfusion in the hippocampus of MCI vs. CN group, which showed no difference. Three studies compared perfusion in the MTL of MCI vs. CN participants and showed no statistically significant differences. CBF measured via ASL-MRI showed impairment in AD compared with the CN group in subregions of the MTL. CBF difference was significant in hippocampus between the AD and CN groups. However, MCI and CN group showed no significant difference in subregions of MTL.
Collapse
|
15
|
Thomas KR, Weigand AJ, Cota IH, Edmonds EC, Wierenga CE, Bondi MW, Bangen KJ. Intrusion errors moderate the relationship between blood glucose and regional cerebral blood flow in cognitively unimpaired older adults. Brain Imaging Behav 2022; 16:219-227. [PMID: 34415491 PMCID: PMC8825619 DOI: 10.1007/s11682-021-00495-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/03/2023]
Abstract
Regional cerebral blood flow (CBF) has a complex relationship with cognitive functioning such that cognitively unimpaired individuals at risk for Alzheimer's disease (AD) may show regional hyperperfusion, while those with cognitive impairment typically show hypoperfusion. Diabetes and word-list intrusion errors are both linked to greater risk of cognitive decline and dementia. Our study examined associations between fasting blood glucose, word-list intrusion errors, and regional CBF. 113 cognitively unimpaired older adults had arterial spin labeling MRI to measure CBF in a priori AD vulnerable regions: medial temporal lobe (MTL), inferior parietal lobe (IPL), precuneus, medial orbitofrontal cortex (mOFC), and pericalcarine (control region). Hierarchical linear regressions, adjusting for demographics, vascular risk, and reference CBF region, examined the main effect of blood glucose on regional CBF as well as whether intrusions moderated this relationship. Higher glucose was associated with higher CBF in the precuneus (β = .134, 95% CI = .007 to .261, p = .039), IPL (β = .173, 95% CI = .072 to .276, p = .001), and mOFC (β = .182, 95% CI = .047 to .320, p = .009). There was no main effect of intrusions on CBF across regions. However, the glucose x intrusions interaction was significant such that having higher glucose levels and more intrusion errors was associated with reduced CBF in the MTL (β = -.186, 95% CI = -.334 to -.040, p = .013) and precuneus (β = -.146, 95% CI = -.273 to -.022, p = .022). These findings may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain unimpaired cognition in individuals with higher glucose levels. However, lower regional CBF in unimpaired participants with both higher glucose and more intrusions suggests a failure in this early compensatory mechanism that may signal a decrease in neural activity in AD vulnerable regions.
Collapse
Affiliation(s)
- Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA.
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Isabel H Cota
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina E Wierenga
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Pearce AM, Marr C, Dewar M, Gow AJ. Apolipoprotein E Genotype Moderation of the Association Between Physical Activity and Brain Health. A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 13:815439. [PMID: 35153725 PMCID: PMC8833849 DOI: 10.3389/fnagi.2021.815439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Possession of one or two e4 alleles of the apolipoprotein E (APOE) gene is associated with cognitive decline and dementia risk. Some evidence suggests that physical activity may benefit carriers of the e4 allele differently. Method We conducted a systematic review and meta-analysis of studies which assessed APOE differences in the association between physical activity and: lipid profile, Alzheimer's disease pathology, brain structure and brain function in healthy adults. Searches were carried out in PubMed, SCOPUS, Web of Science and PsycInfo. Results Thirty studies were included from 4,896 papers screened. Carriers of the e4 allele gained the same benefit from physical activity as non-carriers on most outcomes. For brain activation, e4 carriers appeared to gain a greater benefit from physical activity on task-related and resting-state activation and resting-state functional connectivity compared to non-carriers. Post-hoc analysis identified possible compensatory mechanisms allowing e4 carriers to maintain cognitive function. Discussion Though there is evidence suggesting physical activity may benefit e4 carriers differently compared to non-carriers, this may vary by the specific brain health outcome, perhaps limited to brain activation. Further research is required to confirm these findings and elucidate the mechanisms.
Collapse
|
17
|
Carter KJ, Ward AT, Kellawan JM, Eldridge MW, Al-Subu A, Walker BJ, Lee JW, Wieben O, Schrage WG. Nitric oxide synthase inhibition in healthy adults reduces regional and total cerebral macrovascular blood flow and microvascular perfusion. J Physiol 2021; 599:4973-4989. [PMID: 34587648 PMCID: PMC9009720 DOI: 10.1113/jp281975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | | | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey W Lee
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
18
|
Quattrini G, Marizzoni M, Pizzini FB, Galazzo IB, Aiello M, Didic M, Soricelli A, Albani D, Romano M, Blin O, Forloni G, Golay X, Jovicich J, Nathan PJ, Richardson JC, Salvatore M, Frisoni GB, Pievani M. Convergent and Discriminant Validity of Default Mode Network and Limbic Network Perfusion in Amnestic Mild Cognitive Impairment Patients. J Alzheimers Dis 2021; 82:1797-1808. [PMID: 34219733 DOI: 10.3233/jad-210531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies reported default mode network (DMN) and limbic network (LIN) brain perfusion deficits in patients with amnestic mild cognitive impairment (aMCI), frequently a prodromal stage of Alzheimer's disease (AD). However, the validity of these measures as AD markers has not yet been tested using MRI arterial spin labeling (ASL). OBJECTIVE To investigate the convergent and discriminant validity of DMN and LIN perfusion in aMCI. METHODS We collected core AD markers (amyloid-β 42 [Aβ42], phosphorylated tau 181 levels in cerebrospinal fluid [CSF]), neurodegenerative (hippocampal volumes and CSF total tau), vascular (white matter hyperintensities), genetic (apolipoprotein E [APOE] status), and cognitive features (memory functioning on Paired Associate Learning test [PAL]) in 14 aMCI patients. Cerebral blood flow (CBF) was extracted from DMN and LIN using ASL and correlated with AD features to assess convergent validity. Discriminant validity was assessed carrying out the same analysis with AD-unrelated features, i.e., somatomotor and visual networks' perfusion, cerebellar volume, and processing speed. RESULTS Perfusion was reduced in the DMN (F = 5.486, p = 0.039) and LIN (F = 12.678, p = 0.004) in APOE ɛ4 carriers compared to non-carriers. LIN perfusion correlated with CSF Aβ42 levels (r = 0.678, p = 0.022) and memory impairment (PAL, number of errors, r = -0.779, p = 0.002). No significant correlation was detected with tau, neurodegeneration, and vascular features, nor with AD-unrelated features. CONCLUSION Our results support the validity of DMN and LIN ASL perfusion as AD markers in aMCI, indicating a significant correlation between CBF and amyloidosis, APOE ɛ4, and memory impairment.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesca B Pizzini
- Radiology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | | | | | - Mira Didic
- Aix-Marseille Univ, INSERM, INS, Instit Neurosci des Syst, Marseille, France.,APHM, Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy.,Department of Sport Sciences, University of Naples Parthenope, Naples, Italy
| | - Diego Albani
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Melissa Romano
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- Aix-Marseille Univ, INSERM, INS, Instit Neurosci des Syst, DHUNE, Ap-Hm, Marseille, France
| | - Gianluigi Forloni
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom
| | | | - Giovanni B Frisoni
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | |
Collapse
|
19
|
Memel M, Staffaroni AM, Cobigo Y, Casaletto KB, Fonseca C, Bettcher BM, Yassa MA, Elahi FM, Wolf A, Rosen HJ, Kramer JH. APOE moderates the effect of hippocampal blood flow on memory pattern separation in clinically normal older adults. Hippocampus 2021; 31:845-857. [PMID: 33835624 PMCID: PMC8295213 DOI: 10.1002/hipo.23327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 11/10/2022]
Abstract
Pattern separation, the ability to differentiate new information from previously experienced similar information, is highly sensitive to hippocampal structure and function and declines with age. Functional MRI studies have demonstrated hippocampal hyperactivation in older adults compared to young, with greater task-related activation associated with worse pattern separation performance. The current study was designed to determine whether pattern separation was sensitive to differences in task-free hippocampal cerebral blood flow (CBF) in 130 functionally intact older adults. Given prior evidence that apolipoprotein E e4 (APOE e4) status moderates the relationship between CBF and episodic memory, we predicted a stronger negative relationship between hippocampal CBF and pattern separation in APOE e4 carriers. An interaction between APOE group and right hippocampal CBF was present, such that greater right hippocampal CBF was related to better lure discrimination in noncarriers, whereas the effect reversed directionality in e4 carriers. These findings suggest that neurovascular changes in the medial temporal lobe may underlie memory deficits in cognitively normal older adults who are APOE e4 carriers.
Collapse
Affiliation(s)
- Molly Memel
- San Francisco VA Medical Center, San Francisco, California
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Corrina Fonseca
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Brianne M. Bettcher
- Department of Neurology, University of Colorado Anschutz Medical Campus, CU Alzheimer’s and Cognition Center, Aurora, Colorado
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
20
|
Bangen KJ, Thomas KR, Sanchez DL, Edmonds EC, Weigand AJ, Delano-Wood L, Bondi MW. Entorhinal Perfusion Predicts Future Memory Decline, Neurodegeneration, and White Matter Hyperintensity Progression in Older Adults. J Alzheimers Dis 2021; 81:1711-1725. [PMID: 33967041 DOI: 10.3233/jad-201474] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been linked to increased risk for Alzheimer's disease (AD). However, whether altered CBF contributes to AD risk by accelerating cognitive decline remains unclear. It also remains unclear whether reductions in CBF accelerate neurodegeneration and development of small vessel cerebrovascular disease. OBJECTIVE To examine associations between CBF and trajectories of memory performance, regional brain atrophy, and global white matter hyperintensity (WMH) volume. METHOD 147 Alzheimer's Disease Neuroimaging Initiative participants free of dementia underwent arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure CBF and serial neuropsychological and structural MRI examinations. Linear mixed effects models examined 5-year rate of change in memory and 4-year rate of change in regional brain atrophy and global WMH volumes as a function of baseline regional CBF. Entorhinal and hippocampal CBF were examined in separate models. RESULTS Adjusting for demographic characteristics, pulse pressure, apolipoprotein E ɛ4 positivity, cerebrospinal fluid p-tau/Aβ ratio, and neuronal metabolism (i.e., fluorodeoxyglucose standardized uptake value ratio), lower baseline entorhinal CBF predicted faster rates of decline in memory as well as faster entorhinal thinning and WMH progression. Hippocampal CBF did not predict cognitive or brain structure trajectories. CONCLUSION Findings highlight the importance of early cerebrovascular dysfunction in AD risk and suggest that entorhinal CBF as measured by noninvasive ASL MRI is a useful biomarker predictive of future cognitive decline and of risk of both.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Danielle L Sanchez
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J Weigand
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|
21
|
Duan W, Sehrawat P, Balachandrasekaran A, Bhumkar AB, Boraste PB, Becker JT, Kuller LH, Lopez OL, Gach HM, Dai W. Cerebral Blood Flow Is Associated with Diagnostic Class and Cognitive Decline in Alzheimer's Disease. J Alzheimers Dis 2021; 76:1103-1120. [PMID: 32597803 DOI: 10.3233/jad-200034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reliable cerebral blood flow (CBF) biomarkers using a noninvasive imaging technique are sought to facilitate early diagnosis and intervention in early Alzheimer's disease (AD). OBJECTIVE We aim to identify brain regions in which CBF values are affected and related to cognitive decline in early AD using a large cohort. METHODS Perfusion MRIs using continuous arterial spin labeling were acquired at 1.5 T in 58 normal controls (NC), 50 mild cognitive impairments (MCI), and 40 AD subjects from the Cardiovascular Health Study Cognition Study. Regional absolute CBF and normalized CBF (nCBF) values, without and with correction of partial volume effects, were compared across three groups. Association between regional CBF values and Modified Mini-Mental State Examination (3MSE) were investigated by multiple linear regression analyses adjusted for cardiovascular risk factors. RESULTS After correcting for partial volume effects and cardiovascular risk factors, ADs exhibited decreased nCBF with the strongest reduction in the bilateral posterior cingulate & precuneus region (p < 0.001) compared to NCs, and the strongest reduction in the bilateral superior medial frontal region (p < 0.001) compared to MCIs. MCIs exhibited the strongest nCBF decrease in the left hippocampus and nCBF increase in the right inferior frontal and insular region. The 3MSE scores within the symptomatic subjects were significantly associated with nCBF in the bilateral posterior and middle cingulate and parietal (p < 0.001), bilateral superior medial frontal (p < 0.001), bilateral temporoparietal (p < 0.02), and right hippocampus (p = 0.02) regions. CONCLUSION Noninvasive perfusion MRI can detect functional changes across diagnostic class and serve as a staging biomarker of cognitive status.
Collapse
Affiliation(s)
- Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - Parshant Sehrawat
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | | | - Ashish B Bhumkar
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - Paresh B Boraste
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| | - James T Becker
- Departments of Psychiatry, Psychology, and Neurology, University of Pittsburgh, PA, USA
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, PA, USA
| | - H Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University, Saint Louis, MO, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
22
|
Thomas KR, Osuna JR, Weigand AJ, Edmonds EC, Clark AL, Holmqvist S, Cota IH, Wierenga CE, Bondi MW, Bangen KJ. Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline. J Cereb Blood Flow Metab 2021; 41:1001-1012. [PMID: 32615887 PMCID: PMC8054731 DOI: 10.1177/0271678x20935171] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
Although cerebral blood flow (CBF) alterations are associated with Alzheimer's disease (AD), CBF patterns across prodromal stages of AD remain unclear. Therefore, we investigated patterns of regional CBF in 162 Alzheimer's Disease Neuroimaging Initiative participants characterized as cognitively unimpaired (CU; n = 80), objectively-defined subtle cognitive decline (Obj-SCD; n = 31), or mild cognitive impairment (MCI; n = 51). Arterial spin labeling MRI quantified regional CBF in a priori regions of interest: hippocampus, inferior temporal gyrus, inferior parietal lobe, medial orbitofrontal cortex, and rostral middle frontal gyrus. Obj-SCD participants had increased hippocampal and inferior parietal CBF relative to CU and MCI participants and increased inferior temporal CBF relative to MCI participants. CU and MCI groups did not differ in hippocampal or inferior parietal CBF, but CU participants had increased inferior temporal CBF relative to MCI participants. There were no CBF group differences in the two frontal regions. Thus, we found an inverted-U pattern of CBF signal across prodromal AD stages in regions susceptible to early AD pathology. Hippocampal and inferior parietal hyperperfusion in Obj-SCD may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain cognitive functioning relative to MCI participants, yet is also reflective of early cognitive inefficiencies that distinguish Obj-SCD from CU participants.
Collapse
Affiliation(s)
- Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jessica R Osuna
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J Weigand
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra L Clark
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sophia Holmqvist
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Isabel H Cota
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Christina E Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
23
|
Hays CC, Zlatar ZZ, Meloy MJ, Osuna J, Liu TT, Galasko DR, Wierenga CE. Anterior Cingulate Structure and Perfusion is Associated with Cerebrospinal Fluid Tau among Cognitively Normal Older Adult APOEɛ4 Carriers. J Alzheimers Dis 2021; 73:87-101. [PMID: 31743999 DOI: 10.3233/jad-190504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evidence suggests the ɛ4 allele of the apolipoprotein E (APOE) gene may accelerate an age-related process of cortical thickening and cerebral blood flow (CBF) reduction in the anterior cingulate cortex (ACC). Although the neural basis of this association remains unclear, evidence suggests it might reflect early neurodegenerative processes. However, to date, associations between cerebrospinal fluid (CSF) biomarkers of neurodegeneration, such as CSF tau, and APOE-related alterations in ACC cortical thickness (CTH) and CBF have yet to be explored. The current study explored the interaction of CSF tau and APOE genotype (ɛ4+, ɛ4-) on FreeSurfer-derived CTH and arterial spin labeling MRI-measured resting CBF in the ACC (caudal ACC [cACC] and rostral ACC [rACC]) among a sample of 45 cognitively normal older adults. Secondary analyses also examined associations between APOE, CTH/CBF, and cognitive performance. In the cACC, higher CSF tau was associated with higher CTH and lower CBF in ɛ4+, whereas these relationships were not evident in ɛ4-. In the rACC, higher CSF tau was associated with higher CTH for both ɛ4+ and ɛ4-, and with lower CBF only in ɛ4+. Significant interactions of CSF tau and APOE on CTH/CBF were not observed in two posterior reference regions implicated in Alzheimer's disease. Secondary analyses revealed a negative relationship between cACC CTH and executive functioning in ɛ4+ and a positive relationship in ɛ4-. Findings suggest the presence of an ɛ4-related pattern of increased CTH and reduced CBF in the ACC that is associated with biomarkers of neurodegeneration and subtle decrements in cognition.
Collapse
Affiliation(s)
- Chelsea C Hays
- VA San Diego Healthcare System, San Diego, CA, USA.,SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA.,SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - M J Meloy
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Jessica Osuna
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| | - Douglas R Galasko
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Christina E Wierenga
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA.,SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| |
Collapse
|
24
|
Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2021; 14:618986. [PMID: 33536876 PMCID: PMC7849053 DOI: 10.3389/fncel.2020.618986] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with continual decline in cognition and ability to perform routine functions such as remembering familiar places or understanding speech. For decades, amyloid beta (Aβ) was viewed as the driver of AD, triggering neurodegenerative processes such as inflammation and formation of neurofibrillary tangles (NFTs). This approach has not yielded therapeutics that cure the disease or significant improvements in long-term cognition through removal of plaques and Aβ oligomers. Some researchers propose alternate mechanisms that drive AD or act in conjunction with amyloid to promote neurodegeneration. This review summarizes the status of AD research and examines research directions including and beyond Aβ, such as tau, inflammation, and protein clearance mechanisms. The effect of aging on microvasculature is highlighted, including its contribution to reduced blood flow that impairs cognition. Microvascular alterations observed in AD are outlined, emphasizing imaging studies of capillary malfunction. The review concludes with a discussion of two therapies to protect tissue without directly targeting Aβ for removal: (1) administration of growth factors to promote vascular recovery in AD; (2) inhibiting activity of a calcium-permeable ion channels to reduce microglial activation and restore cerebral vascular function.
Collapse
Affiliation(s)
- Joe Steinman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Mak E, Dounavi ME, Low A, Carter SF, McKiernan E, Williams GB, Jones PS, Carriere I, Muniz GT, Ritchie K, Ritchie C, Su L, O'Brien JT. Proximity to dementia onset and multi-modal neuroimaging changes: The prevent-dementia study. Neuroimage 2021; 229:117749. [PMID: 33454416 DOI: 10.1016/j.neuroimage.2021.117749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND First-degree relatives of people with dementia (FH+) are at increased risk of developing Alzheimer's disease (AD). Here, we investigate "estimated years to onset of dementia" (EYO) as a surrogate marker of preclinical disease progression and assess its associations with multi-modal neuroimaging biomarkers. METHODS 89 FH+ participants in the PREVENT-Dementia study underwent longitudinal MR imaging over 2 years. EYO was calculated as the difference between the parental age of dementia diagnosis and the current age of the participant (mean EYO = 23.9 years). MPRAGE, ASL and DWI data were processed using Freesurfer, FSL-BASIL and DTI-TK. White matter lesion maps were segmented from FLAIR scans. The SPM Sandwich Estimator Toolbox was used to test for the main effects of EYO and interactions between EYO, Time, and APOE-ε4+. Threshold free cluster enhancement and family wise error rate correction (TFCE FWER) was performed on voxelwise statistical maps. RESULTS There were no significant effects of EYO on regional grey matter atrophy or white matter hyperintensities. However, a shorter EYO was associated with lower white matter Fractional Anisotropy and elevated Mean/Radial Diffusivity, particularly in the corpus callosum (TFCEFWERp < 0.05). The influence of EYO on white matter deficits were significantly stronger compared to that of normal ageing. APOE-ε4 carriers exhibited hyperperfusion with nearer proximity to estimated onset in temporo-parietal regions. There were no interactions between EYO and time, suggesting that EYO was not associated with accelerated imaging changes in this sample. CONCLUSIONS Amongst cognitively normal midlife adults with a family history of dementia, a shorter hypothetical proximity to dementia onset may be associated with incipient brain abnormalities, characterised by white matter disruptions and perfusion abnormalities, particularly amongst APOE-ε4 carriers. Our findings also confer biological validity to the construct of EYO as a potential stage marker of preclinical progression in the context of sporadic dementia. Further clinical follow-up of our longitudinal sample would provide critical validation of these findings.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK.
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Elizabeth McKiernan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Guy B Williams
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Isabelle Carriere
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | | | - Karen Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK; INSERM and University of Montpellier, Montpellier, France
| | - Craig Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| |
Collapse
|
26
|
Hays CC, Zlatar ZZ, Meloy MJ, Bondi MW, Gilbert PE, Liu T, Helm JL, Wierenga CE. Interaction of APOE, cerebral blood flow, and cortical thickness in the entorhinal cortex predicts memory decline. Brain Imaging Behav 2021; 14:369-382. [PMID: 32048144 DOI: 10.1007/s11682-019-00245-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ε4 allele of the apolipoprotein E (APOE) gene, a risk factor for cognitive decline, is associated with alterations in medial temporal lobe (MTL) structure and function, yet little research has been dedicated to understanding how these alterations might interact to negatively impact cognition. To bridge this gap, the present study employed linear regression models to determine the extent to which APOE genotype (ε4+, ε4-) modifies interactive effects of baseline arterial spin labeling MRI-measured cerebral blood flow (CBF) and FreeSurfer-derived cortical thickness/volume (CT/Vo) in two MTL regions of interest (entorhinal cortex, hippocampus) on memory change in 98 older adults who were cognitively normal at baseline. Baseline entorhinal CBF was positively associated with memory change, but only among ε4 carriers with lower entorhinal CT. Similarly, baseline entorhinal CT was positively associated with memory change, but only among ε4 carriers with lower entorhinal CBF. Findings suggest that APOE ε4 carriers may experience concomitant alterations in neurovascular function and morphology in the MTL that interact to negatively affect cognition prior to the onset of overt clinical symptoms. Results also suggest the presence of distinct multimodal neural signatures in the entorhinal cortex that may signal relative risk for cognitive decline among this group, perhaps reflecting different stages of cerebrovascular compensation (early effective vs. later ineffective).
Collapse
Affiliation(s)
- Chelsea C Hays
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., MC 151B, San Diego, CA, 9216, USA.,SDSU/UCSD Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, Suite 103, San Diego, CA, 92120, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - M J Meloy
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., MC 151B, San Diego, CA, 9216, USA.,Department of Psychiatry, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Mark W Bondi
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., MC 151B, San Diego, CA, 9216, USA.,SDSU/UCSD Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, Suite 103, San Diego, CA, 92120, USA.,Department of Psychiatry, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Paul E Gilbert
- SDSU/UCSD Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, Suite 103, San Diego, CA, 92120, USA.,Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Thomas Liu
- Department of Radiology, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jonathan L Helm
- SDSU/UCSD Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, Suite 103, San Diego, CA, 92120, USA.,Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christina E Wierenga
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., MC 151B, San Diego, CA, 9216, USA. .,SDSU/UCSD Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, Suite 103, San Diego, CA, 92120, USA. .,Department of Psychiatry, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
27
|
Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, Shu N, Han Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer's disease. Mol Neurodegener 2020; 15:55. [PMID: 32962744 PMCID: PMC7507636 DOI: 10.1186/s13024-020-00395-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Subjective cognitive decline (SCD) is regarded as the first clinical manifestation in the Alzheimer’s disease (AD) continuum. Investigating populations with SCD is important for understanding the early pathological mechanisms of AD and identifying SCD-related biomarkers, which are critical for the early detection of AD. With the advent of advanced neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), accumulating evidence has revealed structural and functional brain alterations related to the symptoms of SCD. In this review, we summarize the main imaging features and key findings regarding SCD related to AD, from local and regional data to connectivity-based imaging measures, with the aim of delineating a multimodal imaging signature of SCD due to AD. Additionally, the interaction of SCD with other risk factors for dementia due to AD, such as age and the Apolipoprotein E (ApoE) ɛ4 status, has also been described. Finally, the possible explanations for the inconsistent and heterogeneous neuroimaging findings observed in individuals with SCD are discussed, along with future directions. Overall, the literature reveals a preferential vulnerability of AD signature regions in SCD in the context of AD, supporting the notion that individuals with SCD share a similar pattern of brain alterations with patients with mild cognitive impairment (MCI) and dementia due to AD. We conclude that these neuroimaging techniques, particularly multimodal neuroimaging techniques, have great potential for identifying the underlying pathological alterations associated with SCD. More longitudinal studies with larger sample sizes combined with more advanced imaging modeling approaches such as artificial intelligence are still warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Sino-Britain Centre for Cognition and Ageing Research, Southwest University, Chongqing, China
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
28
|
Sanchez DL, Thomas KR, Edmonds EC, Bondi MW, Bangen KJ. Regional Hypoperfusion Predicts Decline in Everyday Functioning at Three-Year Follow-Up in Older Adults without Dementia. J Alzheimers Dis 2020; 77:1291-1304. [PMID: 32831202 DOI: 10.3233/jad-200490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increasing evidence indicates that cerebrovascular dysfunction may precede cognitive decline in aging and Alzheimer's disease (AD). Reduced cerebral blood flow (CBF) is associated with cognitive impairment in older adults. However, less is known regarding the association between CBF and functional decline, and whether CBF predicts functional decline beyond cerebrovascular and metabolic risk factors. OBJECTIVE To examine the association between regional CBF and functional decline in nondemented older adults. METHOD One hundred sixty-six (N = 166) participants without dementia from the Alzheimer's Disease Neuroimaging Initiative underwent neuropsychological testing and neuroimaging. Pulsed arterial spin labeling magnetic resonance imaging was acquired to quantify resting CBF. Everyday functioning was measured using the Functional Assessment Questionnaire at baseline and annual follow-up visit across three years. RESULTS Adjusting for age, education, sex, cognitive status, depression, white matter hyperintensity volume, cerebral metabolism, and reference (precentral) CBF, linear mixed effects models showed that lower resting CBF at baseline in the medial temporal, inferior temporal, and inferior parietal lobe was significantly associated with accelerated decline in everyday functioning. Results were similar after adjusting for conventional AD biomarkers, including cerebrospinal fluid (CSF) amyloid-β (Aβ) and hyperphosphorylated tau (p-tau) and apolipoprotein E (APOE) ɛ4 positivity. Individuals who later converted to dementia had lower resting CBF in the inferior temporal and parietal regions compared to those who did not. CONCLUSION Lower resting CBF in AD vulnerable regions including medial temporal, inferior temporal, and inferior parietal lobes predicted faster rates of decline in everyday functioning. CBF has utility as a biomarker in predicting functional declines in everyday life and conversion to dementia.
Collapse
Affiliation(s)
- Danielle L Sanchez
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
29
|
McKiernan EF, Mak E, Dounavi ME, Wells K, Ritchie C, Williams G, Su L, O'Brien J. Regional hyperperfusion in cognitively normal APOE ε4 allele carriers in mid-life: analysis of ASL pilot data from the PREVENT-Dementia cohort. J Neurol Neurosurg Psychiatry 2020; 91:861-866. [PMID: 32586852 DOI: 10.1136/jnnp-2020-322924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Regional cerebral hypoperfusion is characteristic of Alzheimer's disease (AD). Previous studies report conflicting findings in cognitively normal individuals at high risk of AD. Understanding early preclinical perfusion alterations may improve understanding of AD pathogenesis and lead to new biomarkers and treatment targets. METHODS 3T arterial spin labelling MRI scans from 162 participants in the PREVENT-Dementia cohort were analysed (cognitively normal participants aged 40-59, stratified by future dementia risk). Cerebral perfusion was compared vertex-wise according to APOE ε4 status and family history (FH). Correlations between individual perfusion, age and cognitive scores (COGNITO battery) were explored. RESULTS Regional hyperperfusion was found in APOE ε4+group (left cingulate and lateral frontal and parietal regions p<0.01, threshold-free cluster enhancement, TFCE) and in FH +group (left temporal and parietal regions p<0.01, TFCE). Perfusion did not correlate with cognitive test scores. CONCLUSIONS Regional cerebral hyperperfusion in individuals at increased risk of AD in mid-life may be a very early marker of functional brain change related to AD. Increased perfusion may reflect a functional 'compensation' mechanism, offsetting the effects of early neural damage or may itself be risk factor for accelerating spread of degenerative pathology.
Collapse
Affiliation(s)
| | - Elijah Mak
- Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Katie Wells
- The Centre for Mental Health, Imperial College, London, UK
| | - Craig Ritchie
- Centre for Dementia Prevention, University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, Edinburgh, UK
| | - Guy Williams
- Wolfson Brain Imaging Centre, Cambridge University, Cambridge, UK
| | - Li Su
- Psychiatry, University of Cambridge, Cambridge, UK
| | - John O'Brien
- Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Bracko O, Njiru BN, Swallow M, Ali M, Haft-Javaherian M, Schaffer CB. Increasing cerebral blood flow improves cognition into late stages in Alzheimer's disease mice. J Cereb Blood Flow Metab 2020; 40:1441-1452. [PMID: 31495298 PMCID: PMC7308509 DOI: 10.1177/0271678x19873658] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease is associated with a 20-30% reduction in cerebral blood flow. In the APP/PS1 mouse model of Alzheimer's disease, inhibiting neutrophil adhesion using an antibody against the neutrophil specific protein Ly6G was recently shown to drive rapid improvements in cerebral blood flow that was accompanied by an improvement in performance on short-term memory tasks. Here, in a longitudinal aging study, we assessed how far into disease development a single injection of anti-Ly6G treatment can acutely improve short-term memory function. We found that APP/PS1 mice as old as 15-16 months had improved performance on the object replacement and Y-maze tests of spatial and working short-term memory, measured at one day after anti-Ly6G treatment. APP/PS1 mice at 17-18 months of age or older did not show acute improvements in cognitive performance, although we did find that capillary stalls were still reduced and cerebral blood flow was still increased by 17% in 21-22-months-old APP/PS1 mice given anti-Ly6G antibody. These data add to the growing body of evidence suggesting that cerebral blood flow reductions are an important contributing factor to the cognitive dysfunction associated with neurodegenerative disease. Thus, interfering with neutrophil adhesion could be a new therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver Bracko
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brendah N Njiru
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Madisen Swallow
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Muhammad Ali
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mohammad Haft-Javaherian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Alfini AJ, Weiss LR, Nielson KA, Verber MD, Smith JC. Resting Cerebral Blood Flow After Exercise Training in Mild Cognitive Impairment. J Alzheimers Dis 2020; 67:671-684. [PMID: 30636734 DOI: 10.3233/jad-180728] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exercise training has been associated with greater cerebral blood flow (CBF) in cognitively normal older adults (CN). Alterations in CBF, including compensatory perfusion in the prefrontal cortex, may facilitate changes to the brain's neural infrastructure. OBJECTIVE To examine the effects of a 12-week aerobic exercise intervention on resting CBF and cognition in CN and those with mild cognitive impairment (MCI). We hypothesized individuals with MCI (versus CN) would exhibit greater whole brain CBF at baseline and that exercise would mitigate these differences. We also expected CBF changes to parallel cognitive improvements. METHODS Before and after a 12-week exercise intervention, 18 CN and 17 MCI participants (aged 61-88) underwent aerobic fitness testing, neuropsychological assessment, and an MRI scan. Perfusion-weighted images were collected using a GE 3T MR system. Repeated measures analyses of covariance were used to test within- and between-group differences over time, followed by post-hoc analyses to examine links between CBF changes and cognitive improvement. RESULTS At baseline, individuals with MCI (versus CN) exhibited significantly elevated perfusion in the left insula. Twelve weeks of aerobic exercise reversed this discrepancy. Additionally, exercise improved working memory (measured by the Rey Auditory Verbal Learning Test) and verbal fluency (measured by the Controlled Oral Word Association Test) and differentially altered CBF depending on cognitive status. Among those with MCI, decreased CBF in the left insula and anterior cingulate cortex was associated with improved verbal fluency. CONCLUSIONS Exercise training alters CBF and improves cognitive performance in older adults with and without cognitive impairment. Future studies must evaluate the mediating effects of CBF on the association between exercise training and cognition.
Collapse
Affiliation(s)
- Alfonso J Alfini
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lauren R Weiss
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Kristy A Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, USA.,Department of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew D Verber
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
32
|
de la Torre JC, Olmo AD, Valles S. Can mild cognitive impairment be stabilized by showering brain mitochondria with laser photons? Neuropharmacology 2019; 171:107841. [PMID: 31704275 DOI: 10.1016/j.neuropharm.2019.107841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
There is now substantial evidence that cerebral blood flow (CBF) declines with age. From age 20 to 60, CBF is estimated to dip about 16% and continues to drop at a rate of 0.4%/year. This CBF dip will slowly reduce oxygen/glucose delivery to brain thus lowering ATP energy production needed by brain cells to perform normal activities. Reduced ATP production from mitochondrial loss or damage in the wear-and-tear of aging worsens when vascular risk factors (VRF) to Alzheimer's disease develop that can accelerate both age-decline CBF and mitochondrial deficiency to a level where mild cognitive impairment (MCI) develops. To date, no pharmacological or any other treatment has been successful in reversing, stabilizing or delaying MCI. For the first time in medical interventions, a non-pharmacological, non-invasive, well-tolerated, easy to perform, free of significant side effects and cost-effective treatment may achieve what virtually all AD treatments in the past have been unable to accomplish. This intervention uses transcranial infrared brain stimulation (TIBS), a form of photobiomodulation (PBM). PBM is a bioenergetic non-ionizing, therapeutic approach using low level light emission from laser or light emitting diodes. PBM has been used in a number of neurological conditions including Parkinson's disease, depression, traumatic brain injury, and stroke with diverse reported benefits. This brief review examines the impact of reduced energy supply stemming from chronic brain hypoperfusion in the aging brain. In this context, the use of TIBS is planned in a randomized, placebo-controlled study of MCI patients to be done at our University Clinic. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712, USA; Department of Physiology, University of Valencia, Valencia, 46010, Spain.
| | - Antonio Del Olmo
- Neurology Section, Hospital Universitario Dr. Peset, Valencia, 46017, Spain
| | - Soraya Valles
- Department of Physiology, University of Valencia, Valencia, 46010, Spain
| |
Collapse
|
33
|
APOE modifies the interaction of entorhinal cerebral blood flow and cortical thickness on memory function in cognitively normal older adults. Neuroimage 2019; 202:116162. [PMID: 31493534 DOI: 10.1016/j.neuroimage.2019.116162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The ε4 allele of the apolipoprotein E (APOE) gene increases risk for cognitive decline in normal and pathologic aging. However, precisely how APOE ε4 exerts its negative impact on cognition is poorly understood. The present study aimed to determine whether APOE genotype (ε4+ vs. ε4-) modifies the interaction of medial temporal lobe (MTL) resting cerebral blood flow (CBF) and brain structure (cortical thickness [CT], volume [Vo]) on verbal memory performance. METHODS Multiple linear regression models were employed to investigate relationships between APOE genotype, arterial spin labeling MRI-measured CBF and FreeSurfer-based CT and Vo in four MTL regions of interest (left and right entorhinal cortex and hippocampus), and verbal memory performance among a sample of 117 cognitively normal older adults (41 ε4+, 76 ε4-) between the ages of 64 and 89 (mean age = 73). RESULTS Results indicated that APOE genotype modified the interaction of CBF and CT on memory in the left entorhinal cortex, such that the relationship between entorhinal CBF and memory was negative (lower CBF was associated with better memory) in non-carriers with higher entorhinal CT, positive (higher CBF was associated with better memory) in non-carriers with lower entorhinal CT, and negative (higher CBF was associated with worse memory) in ε4 carriers with lower entorhinal CT. CONCLUSIONS Findings suggest that older adult APOE ε4 carriers may experience vascular dysregulation and concomitant morphological alterations in the MTL that interact to negatively affect memory even in the absence overt clinical symptoms, providing potential insight into the mechanistic link between APOE ε4 and detriments in cognition. Moreover, findings suggest a distinct multimodal neural signature in ε4 carriers (higher CBF and lower CT in the entorhinal cortex) that could aid in the identification of candidates for future clinical trials aimed at preventing or slowing cognitive decline. Differential findings with respect to ε4 carriers and non-carriers are discussed in the context of neurovascular compensation.
Collapse
|
34
|
de la Torre J. The Vascular Hypothesis of Alzheimer's Disease: A Key to Preclinical Prediction of Dementia Using Neuroimaging. J Alzheimers Dis 2019; 63:35-52. [PMID: 29614675 DOI: 10.3233/jad-180004] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The vascular hypothesis of Alzheimer's disease (VHAD) was proposed 24 years ago from observations made in our laboratory using aging rats subjected to chronic brain hypoperfusion. In recent years, VHAD has become a mother-lode to numerous neuroimaging studies targeting cerebral hemodynamic changes, particularly brain hypoperfusion in elderly patients at risk of developing Alzheimer's disease (AD). There is a growing consensus among neuroradiologists that brain hypoperfusion is likely involved in the pathogenesis of AD and that disturbed cerebral blood flow (CBF) can serve as a key biomarker for predicting conversion of mild cognitive impairment to AD. The use of cerebral hypoperfusion as a preclinical predictor of AD is becoming decisive in stratifying low and high risk patients that may develop cognitive decline and for assessing the effectiveness of therapeutic interventions. There is currently an international research drive from neuroimaging groups to seek new perspectives that can broaden our understanding of AD and improve lifestyle. Diverse neuroimaging methods are currently being used to monitor normal and dyscognitive brain activity. Some techniques are very powerful and can detect, diagnose, quantify, prognose, and predict cognitive decline before AD onset, even from a healthy cognitive state. Multimodal imaging offers new insights in the treatment and prevention of cognitive decline during advanced aging and better understanding of the functional and structural organization of the human brain. This review discusses the impact the VHAD and CBF are having on the neuroimaging technology that can usher practical strategies to help prevent AD.
Collapse
Affiliation(s)
- Jack de la Torre
- Department of Psychology, University of Texas, Austin, Austin, TX, USA
| |
Collapse
|
35
|
Staffaroni AM, Cobigo Y, Elahi FM, Casaletto KB, Walters SM, Wolf A, Lindbergh CA, Rosen HJ, Kramer JH. A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure. Hum Brain Mapp 2019; 40:3522-3533. [PMID: 31062904 PMCID: PMC6693488 DOI: 10.1002/hbm.24613] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral perfusion declines across the lifespan and is altered in the early stages of several age-related neuropathologies. Little is known, however, about the longitudinal evolution of perfusion in healthy older adults, particularly when perfusion is quantified using magnetic resonance imaging with arterial spin labeling (ASL). The objective was to characterize longitudinal perfusion in typically aging adults and elucidate associations with cognition and brain structure. Adults who were functionally intact at baseline (n = 161, ages 47-89) underwent ASL imaging to quantify whole-brain gray matter perfusion; a subset (n = 136) had repeated imaging (average follow-up: 2.3 years). Neuropsychological testing at each visit was summarized into executive function, memory, and processing speed composites. Global gray matter volume, white matter microstructure (mean diffusivity), and white matter hyperintensities were also quantified. We assessed baseline associations among perfusion, cognition, and brain structure using linear regression, and longitudinal relationships using linear mixed effects models. Greater baseline perfusion, particularly in the left dorsolateral prefrontal cortex and right thalamus, was associated with better executive functions. Greater whole-brain perfusion loss was associated with worsening brain structure and declining processing speed. This study helps validate noninvasive MRI-based perfusion imaging and underscores the importance of cerebral blood flow in cognitive aging.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Yann Cobigo
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Samantha M. Walters
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Amy Wolf
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Cutter A. Lindbergh
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| |
Collapse
|
36
|
Suri S, Topiwala A, Chappell MA, Okell TW, Zsoldos E, Singh-Manoux A, Kivimäki M, Mackay CE, Ebmeier KP. Association of Midlife Cardiovascular Risk Profiles With Cerebral Perfusion at Older Ages. JAMA Netw Open 2019; 2:e195776. [PMID: 31225888 PMCID: PMC6593638 DOI: 10.1001/jamanetworkopen.2019.5776] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Importance Poor cardiovascular health is an established risk factor for dementia, but little is known about its association with brain physiology in older adults. Objective To examine the association of cardiovascular risk factors, measured repeatedly during a 20-year period, with cerebral perfusion at older ages. Design, Setting, and Participants In this longitudinal cohort study, individuals were selected from the Whitehall II Imaging Substudy. Participants were included if they had no clinical diagnosis of dementia, had no gross brain structural abnormalities on magnetic resonance imaging scans, and had received pseudocontinuous arterial spin labeling magnetic resonance imaging. Cardiovascular risk was measured at 5-year intervals across 5 phases from September 1991 to October 2013. Arterial spin labeling scans were acquired between April 2014 and December 2014. Data analysis was performed from June 2016 to September 2018. Exposures Framingham Risk Score (FRS) for cardiovascular disease, comprising age, sex, high-density lipoprotein cholesterol level, total cholesterol level, systolic blood pressure, use of antihypertensive medications, cigarette smoking, and diabetes, was assessed at 5 visits. Main Outcomes and Measures Cerebral blood flow (CBF; in milliliters per 100 g of tissue per minute) was quantified with pseudocontinuous arterial spin labeling magnetic resonance imaging. Results Of 116 adult participants, 99 (85.3%) were men. At the first examination, mean (SD) age was 47.1 (5.0) years; at the last examination, mean (SD) age was 67.4 (4.9) years. Mean (SD) age at MRI scan was 69.3 (5.0) years. Log-FRS increased with time (B = 0.058; 95% CI, 0.044 to 0.072; P < .001). Higher cumulative FRS over the 20-year period (measured as the integral of the rate of change of log-FRS) was associated with lower gray matter CBF (B = -0.513; 95% CI -0.802 to -0.224; P < .001) after adjustment for age, sex, education, socioeconomic status, cognitive status, arterial transit time, use of statins, and weekly alcohol consumption. Voxelwise analyses revealed that this association was significant in 39.6% of gray matter regions, including the posterior cingulate, precuneus, lateral parietal cortex, occipital cortex, hippocampi, and parahippocampal gyrus. The strength of the association of higher log-FRS with lower CBF decreased progressively from the first examination (R2 = 0.253; B = -10.816; 99% CI -18.375 to -3.257; P < .001) to the last (R2 = 0.188; B = -7.139; 99% CI -14.861 to 0.582; P = .02), such that the most recent FRS measurement at mean (SD) age 67.4 (4.9) years was not significantly associated with CBF with a Bonferroni-corrected P < .01 . Conclusions and Relevance Cardiovascular risk in midlife was significantly associated with lower gray matter perfusion at older ages, but this association was not significant for cardiovascular risk in later life. This finding could inform the timing of cardiovascular interventions so as to be optimally effective.
Collapse
Affiliation(s)
- Sana Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Anya Topiwala
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Enikő Zsoldos
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Archana Singh-Manoux
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Université Paris Descartes, Paris, France
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Clare E. Mackay
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Huang Q, Cao X, Chai X, Wang X, Xu L, Xiao C. Three-dimensional pseudocontinuous arterial spin labeling and susceptibility-weighted imaging associated with clinical progression in amnestic mild cognitive impairment and Alzheimer's disease. Medicine (Baltimore) 2019; 98:e15972. [PMID: 31169728 PMCID: PMC6571427 DOI: 10.1097/md.0000000000015972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the value of 3-dimensional pseudocontinuous arterial spin labeling (3D-pcASL) and susceptibility-weighted imaging (SWI) for the early disease-sensitive markers of conversion from amnestic MCI (aMCI) to Alzheimer disease (AD) in this process. METHODS Forty patients with aMCI and AD respectively were recruited in the study, and 40 healthy subjects were taken as controls. Data were recorded using 3T MR scanner. We assessed the cerebral blood flow (CBF) in 11 different regions of interest, and counted number of microhemorrhages (MB) in 3 regions of brain lobes, bilateral basal ganglia/thalamus, and brain stem/cerebellum, and then investigated correlations between Montreal Cognitive Assessment (MoCA) scores, CBF, and susceptibility-weighted imaging (SWI) features in these 3 groups. RESULTS The results revealed that for AD patients, the MoCA scores and CBF values in frontal gray matter (FGM), occipital gray matter (OGM), temporal gray matter (TGM), parietal gray matter (PGM), hippocampus, anterior cingulate cortex (ACC), precuneus, posterior cingulate cortex (PCC), precuneus, basal ganglia and thalamus decreased compared with aMCI patients and control group, and significant difference was revealed among the 3 groups. While in cerebellum, statistical significance was only found between AD patients and control group. On SWI, the average numbers of hemorrhage in regions of lobes for AD patients were significantly higher than aMCI patients and control group. The same results occurred in the bilateral basal ganglia/thalamus. We further found the MoCA score was positively correlated with CBF, but negatively correlated with hypointense signal on SWI. CONCLUSION 3D-pCASL and SWI have promising potential to be biomarkers for conversion from aMCI to AD in this process.
Collapse
Affiliation(s)
- Qingling Huang
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China
| | - Xuan Cao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, USA
| | - Xue Chai
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China
| | - Xiao Wang
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China
| | - Ligang Xu
- Department of Neurology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
38
|
Fazlollahi A, Calamante F, Liang X, Bourgeat P, Raniga P, Dore V, Fripp J, Ames D, Masters CL, Rowe CC, Connelly A, Villemagne VL, Salvado O. Increased cerebral blood flow with increased amyloid burden in the preclinical phase of alzheimer's disease. J Magn Reson Imaging 2019; 51:505-513. [PMID: 31145515 DOI: 10.1002/jmri.26810] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) is an emerging MRI technique for noninvasive measurement of cerebral blood flow (CBF) that has been used to show hemodynamic changes in the brains of people with Alzheimer's disease (AD). CBF changes have been measured using positron emission tomography (PET) across the AD spectrum, but ASL showed limited success in measuring CBF variations in the preclinical phase of AD, where amyloid β (Aβ) plaques accumulate in the decades prior to symptom onset. PURPOSE To investigate the relationship between CBF measured by multiphase-pseudocontinuous-ASL (MP-PCASL) and Aβ burden as measured by 11 C-PiB PET imaging in a study of cognitively normal (CN) subjects age over 65. STUDY TYPE Cross-sectional. POPULATION Forty-six CN subjects including 33 with low levels of Aβ burden and 13 with high levels of Aβ. FIELD STRENGTH/SEQUENCE 3T/3D MP-PCASL. ASSESSMENT The MP-PCASL method was chosen because it has a high signal-to-noise ratio. Furthermore, the data were analyzed using an efficient processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, and partial volume effect correction. STATISTICAL TESTS General Linear Model. RESULTS In CN subjects positive for Aβ burden (n = 13), we observed a positive correlation between CBF and Aβ burden in the hippocampus, amygdala, caudate (P < 0.01), frontal, temporal, and insula (P < 0.05). DATA CONCLUSION To the best of our knowledge, this is the first study using MP-PCASL in the study of AD, and the results suggest a potential compensatory hemodynamic mechanism that protects against pathology in the early stages of AD. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:505-513.
Collapse
Affiliation(s)
| | - Fernando Calamante
- University of Sydney, Sydney Imaging and School of Aerospace, Mechanical and Mechatronic Engineering, Sydney, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia.,Florey Department of Neuroscience & Mental Health, University of Melbourne, Australia
| | - Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | | | | | - Vincent Dore
- CSIRO Health and Biosecurity, Brisbane, Australia.,Austin Health, Heidelberg, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Brisbane, Australia
| | - David Ames
- University of Melbourne, Parkville, Australia
| | - Colin L Masters
- Florey Department of Neuroscience & Mental Health, University of Melbourne, Australia.,University of Melbourne, Parkville, Australia
| | - Christopher C Rowe
- Austin Health, Heidelberg, Australia.,University of Melbourne, Parkville, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia.,Florey Department of Neuroscience & Mental Health, University of Melbourne, Australia
| | - Victor L Villemagne
- Austin Health, Heidelberg, Australia.,University of Melbourne, Parkville, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, Brisbane, Australia.,CSIRO Data61, Sydney, Australia
| | | |
Collapse
|
39
|
Wang J, Peng G, Liu P, Tan X, Luo B. Regulating effect of CBF on memory in cognitively normal older adults with different ApoE genotype: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cogn Neurodyn 2019; 13:513-518. [PMID: 31741688 DOI: 10.1007/s11571-019-09536-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein E (ApoE) ε4 allele and cerebral blood flow (CBF) changes are related to the increased risk of cognitive impairment independently. However, whether there are interactions between ApoE ε4 and CBF on memory performance in older adults with normal cognition remains unknown. This study determined whether the association between CBF and memory performance could be moderated by ApoE ε4 within a sample of cognitively normal older adults from the ADNI. 62 participants, including 23 with ApoE ε4 (ApoE ε4+) and 39 without ApoE ε4 (ApoE ε4-), underwent resting CBF measurement and memory testing. CBF was measured by arterial spin labeling MRI and memory performance was evaluated by the Rey Auditory Verbal Learning Test. By using linear regression models, CBF was negatively associated with memory function in ApoE ε4+ group, whereas positively in ApoE ε4- group by contrast. This study suggests that different CBF-memory relationships can be detected in cognitively normal ApoE ε4 carriers compared to ApoE ε4 non-carriers. Associations between hyperperfusion and worse memory performance in ApoE ε4 carriers may reflect vascular and/or cellular dysfunction.
Collapse
Affiliation(s)
- Junyang Wang
- 1Department of Neurology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Guoping Peng
- 1Department of Neurology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Ping Liu
- 1Department of Neurology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Xufei Tan
- 1Department of Neurology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Benyan Luo
- 1Department of Neurology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Brain Science, Hangzhou, 310003 China
| | | |
Collapse
|
40
|
Sheikh-Bahaei N, Manavaki R, Sajjadi SA, Priest AN, O’Brien JT, Gillard JH. Correlation of Lobar Cerebral Microbleeds with Amyloid, Perfusion, and Metabolism in Alzheimer’s Disease. J Alzheimers Dis 2019; 68:1489-1497. [DOI: 10.3233/jad-180443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine of USC, University of Southern California, USA
| | - Roido Manavaki
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - S. Ahmad Sajjadi
- Department of Neurology, University of California Irvine, CA, USA
| | - Andrew N. Priest
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - John T. O’Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jonathan H. Gillard
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
41
|
Bangen KJ, Werhane ML, Weigand AJ, Edmonds EC, Delano-Wood L, Thomas KR, Nation DA, Evangelista ND, Clark AL, Liu TT, Bondi MW. Reduced Regional Cerebral Blood Flow Relates to Poorer Cognition in Older Adults With Type 2 Diabetes. Front Aging Neurosci 2018; 10:270. [PMID: 30250430 PMCID: PMC6139361 DOI: 10.3389/fnagi.2018.00270] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases risk for dementia, including Alzheimer's disease (AD). Many previous studies of brain changes underlying cognitive impairment in T2DM have applied conventional structural magnetic resonance imaging (MRI) to detect macrostructural changes associated with cerebrovascular disease such as white matter hyperintensities or infarcts. However, such pathology likely reflects end-stage manifestations of chronic decrements in cerebral blood flow (CBF). MRI techniques that measure CBF may (1) elucidate mechanisms that precede irreversible parenchymal damage and (2) serve as a marker of risk for cognitive decline. CBF measured with arterial spin labeling (ASL) MRI may be a useful marker of perfusion deficits in T2DM and related conditions. We examined associations among T2DM, CBF, and cognition in a sample of 49 well-characterized nondemented older adults. Along with a standard T1-weighted scan, a pseudocontinuous ASL sequence optimized for older adults (by increasing post-labeling delays to allow more time for the blood to reach brain tissue) was obtained on a 3T GE scanner to measure regional CBF in FreeSurfer derived regions of interest. Participants also completed a neuropsychological assessment. Results showed no significant differences between individuals with and without T2DM in terms of cortical thickness or regional brain volume. However, adjusting for age, sex, comorbid vascular risk factors, and reference CBF (postcentral gyrus) older adults with T2DM demonstrated reduced CBF in the hippocampus, and inferior temporal, inferior parietal, and frontal cortices. Lower CBF was associated with poorer memory and executive function/processing speed. When adjusting for diabetes, the significant associations between lower regional CBF and poorer executive function/processing speed remained. Results demonstrate that CBF is reduced in older adults with T2DM, and suggest that CBF alterations likely precede volumetric changes. Notably, relative to nondiabetic control participants, those with T2DM showed lower CBF in predilection sites for AD pathology (medial temporal lobe and inferior parietal regions). Findings augment recent research suggesting that perfusion deficits may underlie cognitive decrements frequently observed among older adults with T2DM. Results also suggest that CBF measured with ASL MRI may reflect an early and important marker of risk of cognitive impairment in T2DM and related conditions.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Madeleine L Werhane
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Alexandra J Weigand
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Lisa Delano-Wood
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Kelsey R Thomas
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | | | - Alexandra L Clark
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Thomas T Liu
- Department of Radiology and Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
42
|
Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:395-413. [PMID: 30229130 PMCID: PMC6140335 DOI: 10.1016/j.trci.2018.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is caused by a cascade of changes to brain integrity. Neuroimaging biomarkers are important in diagnosis and monitoring the effects of interventions. As memory impairments are among the first symptoms of AD, the relationship between imaging findings and memory deficits is important in biomarker research. The most established magnetic resonance imaging (MRI) finding is hippocampal atrophy, which is related to memory decline and currently used as a diagnostic criterion for AD. While the medial temporal lobes are impacted early by the spread of neurofibrillary tangles, other networks and regional changes can be found quite early in the progression. Atrophy in several frontal and parietal regions, cortical thinning, and white matter alterations correlate with memory deficits in early AD. Changes in activation and connectivity have been detected by functional MRI (fMRI). Task-based fMRI studies have revealed medial temporal lobe hypoactivation, parietal hyperactivation, and frontal hyperactivation in AD during memory tasks, and activation patterns of these regions are also altered in preclinical and prodromal AD. Resting state fMRI has revealed alterations in default mode network activity related to memory in early AD. These studies are limited in part due to the historic inclusion of patients who had suspected AD but likely did not have the disorder. Modern biomarkers allow for more diagnostic certainty, allowing better understanding of neuroimaging markers in true AD, even in the preclinical stage. Larger patient cohorts, comparison of candidate imaging biomarkers to more established biomarkers, and inclusion of more detailed neuropsychological batteries to assess multiple aspects of memory are needed to better understand the memory deficit in AD and help develop new biomarkers. This article reviews MRI findings related to episodic memory impairments in AD and introduces a new study with multimodal imaging and comprehensive neuropsychiatric evaluation to overcome current limitations.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jessica Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
43
|
Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2018; 187:209-225. [PMID: 29793062 DOI: 10.1016/j.neuroimage.2018.05.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Brain aging and associated neurodegeneration constitute a major societal challenge as well as one for the neuroimaging community. A full understanding of the physiological mechanisms underlying neurodegeneration still eludes medical researchers, fuelling the development of in vivo neuroimaging markers. Hence it is increasingly recognized that our understanding of neurodegenerative processes likely will depend upon the available information provided by imaging techniques. At the same time, the imaging techniques are often developed in response to the desire to observe certain physiological processes. In this context, functional MRI (fMRI), which has for decades provided information on neuronal activity, has evolved into a large family of techniques well suited for in vivo observations of brain physiology. Given the rapid technical advances in fMRI in recent years, this review aims to summarize the physiological basis of fMRI observations in healthy aging as well as in age-related neurodegeneration. This review focuses on in-vivo human brain imaging studies in this review and on disease features that can be imaged using fMRI methods. In addition to providing detailed literature summaries, this review also discusses future directions in the study of brain physiology using fMRI in the clinical setting.
Collapse
Affiliation(s)
- J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
44
|
Beishon L, Haunton VJ, Panerai RB, Robinson TG. Cerebral Hemodynamics in Mild Cognitive Impairment: A Systematic Review. J Alzheimers Dis 2018; 59:369-385. [PMID: 28671118 DOI: 10.3233/jad-170181] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The incidence of dementia is projected to rise over the coming decades, but with no sensitive diagnostic tests available. Vascular pathology precedes the deposition of amyloid and is an attractive early target. OBJECTIVE The aim of this review was to investigate the use of cerebral hemodynamics and oxygenation as a novel biomarker for mild cognitive impairment (MCI), focusing on transcranial Doppler ultrasonography (TCD) and near-infrared spectroscopy (NIRS). METHODS 2,698 articles were identified from Medline, Embase, PsychINFO, and Web of Science databases. 306 articles were screened and quality assessed independently by two reviewers; 26 met the inclusion criteria. Meta-analyses were performed for each marker with two or more studies and limited heterogeneity. RESULTS Eleven studies were TCD, 8 NIRS, 5 magnetic resonance imaging, and 2 positron/single photon emission tomography. Meta-analyses showed reduced tissue oxygenation index, cerebral blood flow and velocity, with higher pulsatility index, phase and cerebrovascular resistance in MCI compared to controls. The majority of studies found reduced CO2 reactivity in MCI, with mixed findings in neuroactivation studies. CONCLUSION Despite small sample sizes and heterogeneity, meta-analyses demonstrate clear abnormalities in cerebral hemodynamic and oxygenation parameters, even at an early stage of cognitive decline. Further work is required to investigate the use of cerebral hemodynamic and oxygenation parameters as a sensitive biomarker for dementia.
Collapse
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Biomedical Research Unit in Cardiovascular Disease, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Biomedical Research Unit in Cardiovascular Disease, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Biomedical Research Unit in Cardiovascular Disease, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
45
|
Subjective Cognitive Decline Modifies the Relationship Between Cerebral Blood Flow and Memory Function in Cognitively Normal Older Adults. J Int Neuropsychol Soc 2018; 24:213-223. [PMID: 28974274 PMCID: PMC5837810 DOI: 10.1017/s135561771700087x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Subjective cognitive decline (SCD), or self-reported cognitive decline despite normal neuropsychological test performance, is a risk factor for objective cognitive decline and Alzheimer's disease (AD). While brain mechanisms contributing to SCD are not well defined, studies show associations with vascular risk factors and altered cerebral blood flow (CBF), raising the hypothesis that those with SCD might be experiencing vascular dysregulation, or a disruption in the normal relationship between CBF and cognition. We examined whether the association between CBF and verbal memory performance differs between those with SCD (SCD+) and those without SCD (SCD-). METHODS Linear mixed-effects models were used to investigate whether the voxel-wise relationship between arterial spin labeling (ASL) MRI-measured CBF and verbal memory performance was modified by SCD among a group of 70 cognitively normal older adults (35 SCD+, 35 SCD-; mean age=72) matched on age, gender, and symptoms of depression. RESULTS Results indicated that the SCD- group exhibited positive associations between verbal memory and CBF within the posterior cingulate cortex, middle temporal gyrus, and inferior frontal gyrus, whereas the SCD+ group displayed negative associations between verbal memory and CBF within the posterior cingulate cortex, middle temporal gyrus, hippocampus, fusiform gyrus, and inferior frontal gyrus. CONCLUSIONS Findings suggest that, while higher CBF is supportive of memory function in those without SCD, higher CBF may no longer support memory function in those presenting with SCD, perhaps reflecting neurovascular dysregulation. (JINS, 2018, 24, 213-223).
Collapse
|
46
|
Lou W, Shi L, Wong A, Chu WCW, Mok VCT, Wang D. Changes of Cerebral Perfusion and Functional Brain Network Organization in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2018; 54:397-409. [PMID: 27567823 DOI: 10.3233/jad-160201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disruptions of the functional brain network and cerebral blood flow (CBF) have been revealed in patients with mild cognitive impairment (MCI). However, the neurophysiological mechanism of hypoperfusion as well as the reorganization of the intrinsic whole brain network due to the neuropathology of MCI are still unclear. In this study, we aimed to investigate the changes of CBF and the whole brain network organization in MCI by using a multimodal MRI approach. Resting state ASL MRI and BOLD MRI were used to evaluate disruptions of CBF and underlying functional connectivity in 27 patients with MCI and 35 cognitive normal controls (NC). The eigenvector centrality mapping (ECM) was used to assess the whole brain network reorganization in MCI, and a seed-based ECM approach was proposed to reveal the contributions of the whole brain network on the ECM alterations. Significantly decreased perfusion in the posterior parietal cortex as well as its connectivity within the default mode network and occipital cortex were found in the MCI group compared to the NC group. The ECM analysis revealed decreased EC in the middle cingulate cortex, parahippocampal gyrus, medial frontal gyrus, and increased EC in the right calcarine sulcus, superior temporal gyrus, and supplementary motor area in the MCI group. The results of this study indicate that there are deficits in cerebral blood flow and functional connectivity in the default mode network, and that sensory-processing networks might play a compensatory role to make up for the decreased connections in MCI.
Collapse
Affiliation(s)
- Wutao Lou
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Adrian Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR
| | - Winnie C W Chu
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Defeng Wang
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
47
|
Yang W, Chen X, Cohen DS, Rosin ER, Toga AW, Thompson PM, Huang X. Classification of MRI and psychological testing data based on support vector machine. Int J Clin Exp Med 2017; 10:16004-16026. [PMID: 29445429 PMCID: PMC5808983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive, and often fatal, brain disease that causes neurodegeneration, resulting in memory loss as well as other cognitive and behavioral problems. Here, we propose a novel multimodal method combining independent components from MRI measures and clinical assessments to distinguish Alzheimer's patients or mild cognitive impairment (MCI) subjects from healthy elderly controls. 70 AD subjects (mean age: 77.15 ± 6.2 years), 98 MCI subjects (mean age: 76.91 ± 5.7 years), and 150 HC subjects (mean age: 75.69 ± 3.8 years) were analyzed. Our method includes the following steps: pre-processing, estimating the number of independent components from the MR image data, extracting effective voxels for classification, and classification using a support vector machine (SVM)-based classifier. As a result, with regards to classifying AD from healthy controls, we achieved a classification accuracy of 97.7%, sensitivity of 99.2%, and specificity of 96.7%; for differentiating MCI from healthy controls, we achieved a classification accuracy of 87.8%, a sensitivity of 86.0%, and a specificity of 89.6; these results are better than those obtained with clinical measurements alone (accuracy of 79.5%, sensitivity of 74.0%, and specificity of 85.1%). We found that (1) both AD patients and MCI subjects showed brain tissue loss, but the volumes of gray matter loss in MCI subjects was far less, supporting the notion that MCI is a prodromal stage of AD; and (2) combining gray matter features from MRI and three commonly used measures of mental status, cognitive function improved classification accuracy, sensitivity, and specificity compared with classification using only independent components or clinical measurements.
Collapse
Affiliation(s)
- Wenlu Yang
- Department of Electrical Engineering, Information Engineering College, Shanghai Maritime University, Shanghai, China
| | - Xinyun Chen
- Department of Electrical Engineering, Information Engineering College, Shanghai Maritime University, Shanghai, China
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, The Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Laboratory of Neuro Imaging, The Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
48
|
Qualitative agreement and diagnostic performance of arterial spin labelling MRI and FDG PET-CT in suspected early-stage dementia. Clin Imaging 2017; 45:1-7. [DOI: 10.1016/j.clinimag.2017.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
|
49
|
Bangen KJ, Clark AL, Edmonds EC, Evangelista ND, Werhane ML, Thomas KR, Locano LE, Tran M, Zlatar ZZ, Nation DA, Bondi MW, Delano-Wood L. Cerebral Blood Flow and Amyloid-β Interact to Affect Memory Performance in Cognitively Normal Older Adults. Front Aging Neurosci 2017. [PMID: 28642699 PMCID: PMC5463038 DOI: 10.3389/fnagi.2017.00181] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cerebral blood flow (CBF) alterations and amyloid-β (Aβ) accumulation have been independently linked to cognitive deficits in older adults at risk for dementia. Less is known about how CBF and Aβ may interact to affect cognition in cognitively normal older adults. Therefore, we examined potential statistical interactions between CBF and Aβ status in regions typically affected in Alzheimer's disease (AD) within a sample of older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Sixty-two cognitively normal participants (mean age = 72 years) underwent neuroimaging and memory testing. Arterial spin labeling magnetic resonance imaging was used to quantify CBF and florbetapir PET amyloid imaging was used to measure Aβ deposition. Aβ status (i.e., positivity versus negativity) was determined based on established cutoffs (Landau et al., 2013). The Rey Auditory Verbal Learning Test was used to assess memory. Linear regression models adjusted for age, education, and sex, demonstrated significant interactions between CBF and Aβ status on memory performance. Among Aβ positive older adults, there were significant negative associations between higher CBF in hippocampus, posterior cingulate, and precuneus and poorer memory performance. In contrast, among Aβ negative older adults, there were no significant associations between CBF and cognition. Our findings extend previous CBF studies of dementia risk by reporting interactions between Aβ status and CBF on memory performance in a sample of well-characterized, cognitively normal older adults. Results suggest that differential CBF-cognition associations can be identified in healthy, asymptomatic Aβ positive older adults relative to Aβ negative individuals. Associations between higherCBF and poorer memory among Aβ positive older adults may reflect a cellular and/or vascular compensatory response to pathologic processes whereby higher CBF is needed to maintain normal memory abilities. Findings indicate that CBF and its associations with cognition may have utility as a reliable marker of brain function early in the AD process when interventions are likely to be beneficial.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San DiegoCA, United States.,Department of Psychiatry, University of California, San Diego, La JollaCA, United States
| | - Alexandra L Clark
- San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San DiegoCA, United States
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San DiegoCA, United States.,Department of Psychiatry, University of California, San Diego, La JollaCA, United States
| | | | - Madeleine L Werhane
- San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San DiegoCA, United States
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San DiegoCA, United States.,Psychology Service, VA San Diego Healthcare System, San DiegoCA, United States
| | - Lyzette E Locano
- Department of Psychology, San Diego State University, San DiegoCA, United States
| | - My Tran
- Department of Psychology, San Diego State University, San DiegoCA, United States
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La JollaCA, United States
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los AngelesCA, United States
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La JollaCA, United States.,Psychology Service, VA San Diego Healthcare System, San DiegoCA, United States
| | - Lisa Delano-Wood
- Research Service, VA San Diego Healthcare System, San DiegoCA, United States.,Department of Psychiatry, University of California, San Diego, La JollaCA, United States
| |
Collapse
|
50
|
Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the Early Detection and Progression of Alzheimer's Disease. Neurotherapeutics 2017; 14:35-53. [PMID: 27738903 PMCID: PMC5233625 DOI: 10.1007/s13311-016-0481-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The recent failures of potential disease-modifying drugs for Alzheimer's disease (AD) may reflect the fact that the enrolled participants in clinical trials are already too advanced to derive a clinical benefit. Thus, well-validated biomarkers for the early detection and accurate diagnosis of the preclinical stages of AD will be crucial for therapeutic advancement. The combinatorial use of biomarkers derived from biological fluids, such as cerebrospinal fluid (CSF), with advanced molecular imaging and neuropsychological testing may eventually achieve the diagnostic sensitivity and specificity necessary to identify people in the earliest stages of the disease when drug modification is most likely possible. In this regard, positive amyloid or tau tracer retention on positron emission tomography imaging, low CSF concentrations of the amyloid-β 1-42 peptide, high CSF concentrations in total tau and phospho-tau, mesial temporal lobe atrophy on magnetic resonance imaging, and temporoparietal/precuneus hypometabolism or hypoperfusion on 18F-fluorodeoxyglucose positron emission tomography have all emerged as biomarkers for the progression to AD. However, the ultimate AD biomarker panel will likely involve the inclusion of novel CSF and blood biomarkers more precisely associated with confirmed pathophysiologic mechanisms to improve its reliability for detecting preclinical AD. This review highlights advancements in biological fluid and imaging biomarkers that are moving the field towards achieving the goal of a preclinical detection of AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Natosha Mercado
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Irving E Vega
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|