1
|
Shi R, Yu S, Larbi A, Pin Ng T, Lu Y. Specific and cumulative infection burden and mild cognitive impairment and dementia: A population-based study. Brain Behav Immun 2024; 121:155-164. [PMID: 39043350 DOI: 10.1016/j.bbi.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Infection by pathogenic microbes is widely hypothesized to be a risk factor for the development of neurocognitive disorders and dementia, but evidence remains limited. We analyzed the association of seropositivity to 11 common pathogens and cumulative infection burden with neurocognitive disorder (mild cognitive impairment and dementia) in a population-based cohort of 475 older individuals (mean age = 67.6 y) followed up over 3-5 years for the risk of MCI-dementia. Specific seropositivities showed a preponderance of positive trends of association with MCI-dementia, including for Plasmodium, H. pylori, and RSV (p < 0.05), as well as Chickungunya, HSV-2, CMV and EBV (p > 0.05), while HSV-1 and HHV-6 showed equivocal or no associations, and Dengue and VZV showed negative associations (p < 0.05) with MCI-dementia. High infection burden (5 + cumulated infections) was significantly associated with an increased MCI-dementia risk in comparison with low infection burden (1-3 cumulative infections), adjusted for age, sex, and education. Intriguingly, for a majority (8 of 11) of pathogens, levels of antibody titers were significantly lower in those with MCI-dementia compared to cognitive normal individuals. Based on our observations, we postulate that individuals who are unable to mount strong immunological responses to infection by diverse microorganisms, and therefore more vulnerable to infection by greater numbers of different microbial pathogens or repeated infections to the same pathogen in the course of their lifetime are more likely to develop MCI or dementia. This hypothesis should be tested in more studies.
Collapse
Affiliation(s)
- Rong Shi
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China; Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Anis Larbi
- Biology of Aging Laboratory, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tze Pin Ng
- Gerontology Research Programme, Department of Psychological Medicine, National University Health System, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yanxia Lu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
2
|
Lu Y. Response Letter to "Cumulative infection burden, cognitive impairment and dementia". Brain Behav Immun 2024; 123:606. [PMID: 39306258 DOI: 10.1016/j.bbi.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 10/17/2024] Open
Affiliation(s)
- Yanxia Lu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
3
|
Shen CY, Li CP, Chang HC, Gau SY. Cumulative infection burden, cognitive impairment and dementia. Brain Behav Immun 2024; 123:288-289. [PMID: 39306259 DOI: 10.1016/j.bbi.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024] Open
Affiliation(s)
- Chun-Yu Shen
- Division of Hematology/Medical Oncology, Department of Medicine, Tungs' Taichung MetroHarbor Hospital, Taiwan
| | - Chen-Pi Li
- Department of Nursing & Tungs' Taichung MetroHarbor Hospital, Taiwan
| | - Hui-Chin Chang
- Evidence-based Medicine Center, Chung Shan Medical University Hospital, Taichung, Taiwan; Library, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Shuo-Yan Gau
- Department and Graduate Institute of Business Administration, National Taiwan University, Taipei, Taiwan; Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; Orthopedics Department, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
4
|
Drakes N, Kondrikova G, Pytel D, Hamlett ED. Unveiling the Intricate Link Between Anaerobe Niche and Alzheimer Disease Pathogenesis. J Infect Dis 2024; 230:S117-S127. [PMID: 39255391 DOI: 10.1093/infdis/jiae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Dysbiosis within microbiomes has been increasingly implicated in many systemic illnesses, such as cardiovascular disease, metabolic syndrome, respiratory infections, and Alzheimer disease (Ad). The correlation between Ad and microbial dysbiosis has been repeatedly shown, yet the etiologic cause of microbial dysbiosis remains elusive. From a neuropathology perspective, abnormal (often age-related) changes in the brain, associated structures, and bodily lumens tend toward an accumulation of oxygen-depleted pathologic structures, which are anaerobically selective niches. These anaerobic environments may promote progressive change in the microbial community proximal to the brain and thus deserve further investigation. In this review, we identify and explore what is known about the anaerobic niche near or associated with the brain and the anaerobes that it is harbors. We identify the anaerobe stakeholders within microbiome communities and the impacts on the neurodegenerative processes associated with Ad. Chronic oral dysbiosis in anaerobic dental pockets and the composition of the gut microbiota from fecal stool are the 2 largest anaerobic niche sources of bacterial transference to the brain. At the blood-brain barrier, cerebral atherosclerotic plaques are predominated by anaerobic species intimately associated with the brain vasculature. Focal cerebritis/brain abscess and corpora amylacea may also establish chronic anaerobic niches in direct proximity to brain parenchyma. In exploring the anaerobic niche proximal to the brain, we identify research opportunities to explore potential sources of microbial dysbiosis associated with Ad.
Collapse
Affiliation(s)
- NyEmma Drakes
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Biology, College of Charleston
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Poland
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| |
Collapse
|
5
|
Lee JW, Kim M, Kim H, Kim S, Um YH, Wang SM, Lim HK, Lee CU, Kang DW. Impact of multiple infections on risk of incident dementia according to subjective cognitive decline status: a nationwide population-based cohort study. Front Aging Neurosci 2024; 16:1410185. [PMID: 39286460 PMCID: PMC11402823 DOI: 10.3389/fnagi.2024.1410185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Background The interrelation between infections, subjective cognitive decline (SCD), and dementia development is recognized, but not fully understood. This study explored the combined effect of specific infections and SCD on the risk of dementia. Objectives To assess the influence of Helicobacter pylori, herpes simplex virus, varicella-zoster virus, and human papillomavirus on dementia risk in individuals with varying cognitive statuses, especially focusing on those with and without SCD. Methods A cohort of 1,100,540 participants aged 66 years from the Korean National Health Insurance Service was divided into cognitively preserved (CP, n = 825,405) and SCD (n = 275,135) groups. This study analyzed the effects of single, dual, and triple infections on the risk of overall dementia, Alzheimer's disease (AD), and vascular dementia (VaD) using incidence rates and hazard ratios. Results The SCD group consistently showed a doubled risk of dementia, particularly AD, regardless of the number of infections. In the initial data, both the presence and number of infections, especially in the CP group, were associated with an increased dementia incidence and risk; however, this correlation disappeared after adjusting for covariates, hinting at a possible protective effect. Conclusion Our findings emphasize that, while SCD is a steadfast risk factor for dementia, the role of infections is layered, subject to various influences, and requires more comprehensive exploration to fully understand their impact on dementia development.
Collapse
Affiliation(s)
- Jung-Won Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mina Kim
- Department of Data Science, Hanmi Pharm. Co., Ltd., Seoul, Republic of Korea
| | - Hoseob Kim
- Department of Data Science, Hanmi Pharm. Co., Ltd., Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Hroudová J, Fišar Z. Alzheimer's disease approaches - Focusing on pathology, biomarkers and clinical trial candidates. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111069. [PMID: 38917881 DOI: 10.1016/j.pnpbp.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The strategy for the development of new drugs for Alzheimer's disease (AD) recognizes that an effective therapy requires early therapeutic intervention and a multifactorial approach that considers the individual initiators of AD development. Current knowledge of AD includes the understanding of pathophysiology, risk factors, biomarkers, and the evolving patterns of biomarker abnormalities. This knowledge is essential in identifying potential molecular targets for new drug development. This review summarizes promising AD drug candidates, many of which are currently in phase 2 or 3 clinical trials. New agents are classified according to the Common Alzheimer's Disease Research Ontology (CADRO). The main targets of new drugs for AD are processes related to amyloid beta and tau neurotoxicity, neurotransmission, inflammation, metabolism and bioenergetics, synaptic plasticity, and oxidative stress. These interventions are aimed at preventing disease onset and slowing or eliminating disease progression. The efficacy of pharmacotherapy may be enhanced by combining these drugs with other treatments, antioxidants, and dietary supplements. Ongoing research into AD pathophysiology, risk factors, biomarkers, and the dynamics of biomarker abnormalities may contribute to the understanding of AD and offer hope for effective therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
7
|
Chen R, Xie Y, Chang Z, Hu W, Han Z. Integration of single-cell sequencing with machine learning and Mendelian randomization analysis identifies the NAP1L1 gene as a predictive biomarker for Alzheimer's disease. Front Aging Neurosci 2024; 16:1406160. [PMID: 38988327 PMCID: PMC11233722 DOI: 10.3389/fnagi.2024.1406160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Background The most effective approach to managing Alzheimer's disease (AD) lies in identifying reliable biomarkers for AD to forecast the disease in advance, followed by timely early intervention for patients. Methods Transcriptomic data on peripheral blood mononuclear cells (PBMCs) from patients with AD and the control group were collected, and preliminary data processing was completed using standardized analytical methods. PBMCs were initially segmented into distinct subpopulations, and the divisions were progressively refined until the most significantly altered cell populations were identified. A combination of high-dimensional weighted gene co-expression analysis (hdWGCNA), cellular communication, pseudotime analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis was used to conduct single-cell transcriptomics analysis and identify key gene modules from them. Genes were screened using machine learning (ML) in the key gene modules, and internal and external dataset validations were performed using multiple ML methods to test predictive performance. Finally, bidirectional Mendelian randomization (MR) analysis, regional linkage analysis, and the Steiger test were employed to analyze the key gene. Result A significant decrease in non-classical monocytes was detected in PMBC of AD patients. Subsequent analyses revealed the inherent connection of non-classical monocytes to AD, and the NAP1L1 gene identified within its gene module appeared to exhibit some association with AD as well. Conclusion The NAP1L1 gene is a potential predictive biomarker for AD.
Collapse
Affiliation(s)
- Runming Chen
- Department of Neurology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Yujun Xie
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ze Chang
- Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenyue Hu
- Department of Neurology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Zhenyun Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Douros A, Ante Z, Fallone CA, Azoulay L, Renoux C, Suissa S, Brassard P. Clinically apparent Helicobacter pylori infection and the risk of incident Alzheimer's disease: A population-based nested case-control study. Alzheimers Dement 2024; 20:1716-1724. [PMID: 38088512 PMCID: PMC10984501 DOI: 10.1002/alz.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 03/16/2024]
Abstract
INTRODUCTION Our population-based study assessed whether clinically apparent Helicobacter pylori infection (CAHPI) is associated with the risk of Alzheimer's disease (AD). METHODS We assembled a population-based cohort of all dementia-free subjects in the United Kingdom's Clinical Practice Research Datalink (UK CPRD), aged ≥50 years (1988-2017). Using a nested case-control approach, we matched each newly developed case of AD with 40 controls. Conditional logistic regression estimated odds ratios (ORs) with 95% confidence intervals (CIs) of AD associated with CAHPI compared with no CAHPI during ≥2 years before the index date. We also used salmonellosis as a negative control exposure. RESULTS Among 4,262,092 dementia-free subjects, 40,455 developed AD after a mean 11 years of follow-up. CAHPI was associated with an increased risk of AD (OR, 1.11; 95% CI, 1.01-1.21) compared with no CAHPI. Salmonellosis was not associated with the risk of AD (OR, 1.03; 95% CI, 0.82-1.29). DISCUSSION CAHPI was associated with a moderately increased risk of AD. HIGHLIGHTS CAHPI was associated with an 11% increased risk of AD in subjects aged ≥50 years. The increase in the risk of AD reached a peak of 24% a decade after CAHPI onset. There was no major effect modification by age or sex. Sensitivity analyses addressing several potential biases led to consistent results.
Collapse
Affiliation(s)
- Antonios Douros
- Department of MedicineMcGill UniversityMontrealQuebecCanada
- Department of EpidemiologyBiostatistics, and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Centre for Clinical Epidemiology, Lady Davis InstituteMontrealQuebecCanada
- Institute of Clinical Pharmacology and ToxicologyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Zharmaine Ante
- Centre for Clinical Epidemiology, Lady Davis InstituteMontrealQuebecCanada
| | - Carlo A. Fallone
- Department of MedicineMcGill UniversityMontrealQuebecCanada
- Division of GastroenterologyMcGill University Health CenterMcGill UniversityMontrealQuebecCanada
| | - Laurent Azoulay
- Department of EpidemiologyBiostatistics, and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Centre for Clinical Epidemiology, Lady Davis InstituteMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
| | - Christel Renoux
- Department of EpidemiologyBiostatistics, and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Centre for Clinical Epidemiology, Lady Davis InstituteMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Samy Suissa
- Department of MedicineMcGill UniversityMontrealQuebecCanada
- Department of EpidemiologyBiostatistics, and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Centre for Clinical Epidemiology, Lady Davis InstituteMontrealQuebecCanada
| | - Paul Brassard
- Department of MedicineMcGill UniversityMontrealQuebecCanada
- Department of EpidemiologyBiostatistics, and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Centre for Clinical Epidemiology, Lady Davis InstituteMontrealQuebecCanada
| |
Collapse
|
9
|
Fišar Z, Hroudová J. CoQ 10 and Mitochondrial Dysfunction in Alzheimer's Disease. Antioxidants (Basel) 2024; 13:191. [PMID: 38397789 PMCID: PMC10885987 DOI: 10.3390/antiox13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The progress in understanding the pathogenesis and treatment of Alzheimer's disease (AD) is based on the recognition of the primary causes of the disease, which can be deduced from the knowledge of risk factors and biomarkers measurable in the early stages of the disease. Insights into the risk factors and the time course of biomarker abnormalities point to a role for the connection of amyloid beta (Aβ) pathology, tau pathology, mitochondrial dysfunction, and oxidative stress in the onset and development of AD. Coenzyme Q10 (CoQ10) is a lipid antioxidant and electron transporter in the mitochondrial electron transport system. The availability and activity of CoQ10 is crucial for proper mitochondrial function and cellular bioenergetics. Based on the mitochondrial hypothesis of AD and the hypothesis of oxidative stress, the regulation of the efficiency of the oxidative phosphorylation system by means of CoQ10 can be considered promising in restoring the mitochondrial function impaired in AD, or in preventing the onset of mitochondrial dysfunction and the development of amyloid and tau pathology in AD. This review summarizes the knowledge on the pathophysiology of AD, in which CoQ10 may play a significant role, with the aim of evaluating the perspective of the pharmacotherapy of AD with CoQ10 and its analogues.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic;
| | | |
Collapse
|
10
|
Janbek J, Laursen TM, Frimodt-Møller N, Magyari M, Haas JG, Lathe R, Waldemar G. Risk of Major Types of Dementias Following Hospital-Diagnosed Infections and Autoimmune Diseases. J Alzheimers Dis 2024; 98:1503-1514. [PMID: 38640163 DOI: 10.3233/jad-231349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Population-based studies have shown an increased risk of dementia after infections, but weaker links were reported for autoimmune diseases. Evidence is scarce for whether the links may be modified by the dementia or exposure subtype. Objective We aimed to investigate the association between infections and/or autoimmune diseases and rates of major types of dementias in the short- and long terms. Methods Nationwide nested case-control study of dementia cases (65+ years) diagnosed in Denmark 2016-2020 and dementia-free controls. Exposures were hospital-diagnosed infections and autoimmune diseases in the preceding 35 years. Two groups of dementia cases were those diagnosed in memory clinics (MC) and those diagnosed outside memory clinics (non-memory clinic cases, NMC). Results In total, 26,738 individuals were MC and 12,534 were NMC cases. Following any infection, the incidence rate ratio (IRR) for MC cases was 1.23 (95% CI 1.20-1.27) and 1.70 for NMC cases (1.62-1.76). Long-term increased rates were seen for vascular dementia and NMC cases. IRRs for autoimmune diseases were overall statistically insignificant. Conclusions Cases with vascular dementia and not Alzheimer's disease, and a subgroup of cases identified with poorer health have increased long-term risk following infections. Autoimmune diseases were not associated with any type of dementia. Notably increased risks (attributed to the short term) and for NMC cases may indicate that immunosenescence rather than de novo infection explains the links. Future focus on such groups and on the role of vascular pathology will explain the infection-dementia links, especially in the long term.
Collapse
Affiliation(s)
- Janet Janbek
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Thomas Munk Laursen
- Department of Economics and Business Economics, National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Melinda Magyari
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | - Jürgen G Haas
- Division of Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
11
|
Janbek J, Laursen TM, Frimodt-Møller N, Magyari M, Haas JG, Lathe R, Waldemar G. Hospital-Diagnosed Infections, Autoimmune Diseases, and Subsequent Dementia Incidence. JAMA Netw Open 2023; 6:e2332635. [PMID: 37676660 PMCID: PMC10485730 DOI: 10.1001/jamanetworkopen.2023.32635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Importance Systemic inflammation has been suggested to explain reported associations between infections and dementia. Associations between autoimmune diseases and dementia also suggest a role for peripheral systemic inflammation. Objective To investigate the associations of infections and autoimmune diseases with subsequent dementia incidence and to explore potential shared signals presented by the immune system in the 2 conditions. Design, Setting, and Participants This nationwide, population-based, registry-based cohort study was conducted between 1978 and 2018 (40-year study period). All Danish residents born 1928 to 1953, alive and in Denmark on January 1, 1978, and at age 65 years were included. Persons with prior registered dementia and those with HIV infections were excluded. Data were analyzed between May 2022 and January 2023. Exposures Hospital-diagnosed infections and autoimmune diseases. Main Outcomes and Measures All-cause dementia, defined as the date of a first registered dementia diagnosis after age 65 years in the registries. Poisson regression with person-years at risk as an offset variable was used to analyze time to first dementia diagnosis. Results A total of 1 493 896 individuals (763 987 women [51%]) were followed for 14 093 303 person-years (677 147 [45%] with infections, 127 721 [9%] with autoimmune diseases, and 75 543 [5%] with dementia). Among individuals with infections, 343 504 (51%) were men, whereas among those with autoimmune diseases, 77 466 (61%) were women. The dementia incidence rate ratio (IRR) following any infection was 1.49 (95% CI, 1.47-1.52) and increased along with increasing numbers of infections in a dose-dependent manner. Dementia rates were increased for all infection sites in the short term, but not always in the long term. The dementia IRR following any autoimmune disease was 1.04 (95% CI, 1.01-1.06), but no dose-dependent increase was observed, and only a few autoimmune conditions showed increased IRRs for dementia. Conclusions and Relevance These findings may point toward a role for infection-specific processes in the development of dementia, rather than general systemic inflammation, as previously hypothesized. Assessing these 2 conditions in a single setting may allow for additional insights into their roles in dementia and for hypotheses on possible underlying mechanisms.
Collapse
Affiliation(s)
- Janet Janbek
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Thomas Munk Laursen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital– Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Melinda Magyari
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital–Rigshospitalet, Glostrup, Denmark
| | - Jürgen G. Haas
- Division of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Piotrowski SL, Tucker A, Jacobson S. The elusive role of herpesviruses in Alzheimer's disease: current evidence and future directions. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:253-266. [PMID: 38013835 PMCID: PMC10474380 DOI: 10.1515/nipt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 11/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. While pathologic hallmarks, such as extracellular beta-amyloid plaques, are well-characterized in affected individuals, the pathogenesis that causes plaque formation and eventual cognitive decline is not well understood. A recent resurgence of the decades-old "infectious hypothesis" has garnered increased attention on the potential role that microbes may play in AD. In this theory, it is thought that pathogens such as viruses may act as seeds for beta-amyloid aggregation, ultimately leading to plaques. Interest in the infectious hypothesis has also spurred further investigation into additional characteristics of viral infection that may play a role in AD progression, such as neuroinflammation, latency, and viral DNA integration. While a flurry of research in this area has been recently published, with herpesviruses being of particular interest, the role of pathogens in AD remains controversial. In this review, the insights gained thus far into the possible role of herpesviruses in AD are summarized. The challenges and potential future directions of herpesvirus research in AD and dementia are also discussed.
Collapse
Affiliation(s)
- Stacey L. Piotrowski
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Allison Tucker
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Walker KA, Le Page LM, Terrando N, Duggan MR, Heneka MT, Bettcher BM. The role of peripheral inflammatory insults in Alzheimer's disease: a review and research roadmap. Mol Neurodegener 2023; 18:37. [PMID: 37277738 PMCID: PMC10240487 DOI: 10.1186/s13024-023-00627-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Peripheral inflammation, defined as inflammation that occurs outside the central nervous system, is an age-related phenomenon that has been identified as a risk factor for Alzheimer's disease. While the role of chronic peripheral inflammation has been well characterized in the context of dementia and other age-related conditions, less is known about the neurologic contribution of acute inflammatory insults that take place outside the central nervous system. Herein, we define acute inflammatory insults as an immune challenge in the form of pathogen exposure (e.g., viral infection) or tissue damage (e.g., surgery) that causes a large, yet time-limited, inflammatory response. We provide an overview of the clinical and translational research that has examined the connection between acute inflammatory insults and Alzheimer's disease, focusing on three categories of peripheral inflammatory insults that have received considerable attention in recent years: acute infection, critical illness, and surgery. Additionally, we review immune and neurobiological mechanisms which facilitate the neural response to acute inflammation and discuss the potential role of the blood-brain barrier and other components of the neuro-immune axis in Alzheimer's disease. After highlighting the knowledge gaps in this area of research, we propose a roadmap to address methodological challenges, suboptimal study design, and paucity of transdisciplinary research efforts that have thus far limited our understanding of how pathogen- and damage-mediated inflammatory insults may contribute to Alzheimer's disease. Finally, we discuss how therapeutic approaches designed to promote the resolution of inflammation may be used following acute inflammatory insults to preserve brain health and limit progression of neurodegenerative pathology.
Collapse
Affiliation(s)
- Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging. Baltimore, Baltimore, MD, USA.
| | - Lydia M Le Page
- Departments of Physical Therapy and Rehabilitation Science, and Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Cell Biology and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute On Aging. Baltimore, Baltimore, MD, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Brianne M Bettcher
- Behavioral Neurology Section, Department of Neurology, University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
15
|
Hospital-treated infections in early- and mid-life and risk of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis: A nationwide nested case-control study in Sweden. PLoS Med 2022; 19:e1004092. [PMID: 36107840 PMCID: PMC9477309 DOI: 10.1371/journal.pmed.1004092] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Experimental observations have suggested a role of infection in the etiology of neurodegenerative disease. In human studies, however, it is difficult to disentangle whether infection is a risk factor or rather a comorbidity or secondary event of neurodegenerative disease. To this end, we examined the risk of 3 most common neurodegenerative diseases in relation to previous inpatient or outpatient episodes of hospital-treated infections. METHODS AND FINDINGS We performed a nested case-control study based on several national registers in Sweden. Cases were individuals newly diagnosed with Alzheimer's disease (AD), Parkinson's disease (PD), or amyotrophic lateral sclerosis (ALS) during 1970 to 2016 in Sweden, identified from the National Patient Register. For each case, 5 controls individually matched to the case on sex and year of birth were randomly selected from the general population. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) with adjustment for potential confounders, including sex, year of birth, area of residence, educational attainment, family history of neurodegenerative disease, and Charlson comorbidity index. Infections experienced within 5 years before diagnosis of neurodegenerative disease were excluded to reduce the influence of surveillance bias and reverse causation. The analysis included 291,941 AD cases (median age at diagnosis: 76.2 years; male: 46.6%), 103,919 PD cases (74.3; 55.1%), and 10,161 ALS cases (69.3; 56.8%). A hospital-treated infection 5 or more years earlier was associated with an increased risk of AD (OR = 1.16, 95% CI: 1.15 to 1.18, P < 0.001) and PD (OR = 1.04, 95% CI: 1.02 to 1.06, P < 0.001). Similar results were observed for bacterial, viral, and other infections and among different sites of infection including gastrointestinal and genitourinary infections. Multiple infections before age 40 conveyed the greatest risk of AD (OR = 2.62, 95% CI: 2.52 to 2.72, P < 0.001) and PD (OR = 1.41, 95% CI: 1.29 to 1.53, P < 0.001). The associations were primarily due to AD and PD diagnosed before 60 years (OR = 1.93, 95% CI: 1.89 to 1.98 for AD, P < 0.001; OR = 1.29, 95% CI: 1.22 to 1.36 for PD, P < 0.001), whereas no association was found for those diagnosed at 60 years or older (OR = 1.00, 95% CI: 0.98 to 1.01 for AD, P = 0.508; OR = 1.01, 95% CI: 0.99 to 1.03 for PD, P = 0.382). No association was observed for ALS (OR = 0.97, 95% CI: 0.92 to 1.03, P = 0.384), regardless of age at diagnosis. Excluding infections experienced within 10 years before diagnosis of neurodegenerative disease confirmed these findings. Study limitations include the potential misclassification of hospital-treated infections and neurodegenerative diseases due to incomplete coverage of the National Patient Register, as well as the residual confounding from unmeasured risk or protective factors for neurodegenerative diseases. CONCLUSIONS Hospital-treated infections, especially in early- and mid-life, were associated with an increased risk of AD and PD, primarily among AD and PD cases diagnosed before 60 years. These findings suggest that infectious events may be a trigger or amplifier of a preexisting disease process, leading to clinical onset of neurodegenerative disease at a relatively early age. However, due to the observational nature of the study, these results do not formally prove a causal link.
Collapse
|
16
|
Zhao J, Zhao D, Wang J, Luo X, Guo R. Inflammation—Cause or consequence of late onset Alzheimer’s disease or both? A review of the evidence. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221095383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence suggests that inflammation is involved in the development of late onset Alzheimer’s disease (LOAD). However, it is not clear whether inflammation is a cause or consequence, or both. The aim of this paper is to review the relationship between inflammation and LOAD. We also review the effect of anti-inflammation on the risk of LOAD to further elucidate the relationship between inflammation and LOAD.
Collapse
Affiliation(s)
- Jinrong Zhao
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Dong Zhao
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Jinpei Wang
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Xiaoe Luo
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Rui Guo
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| |
Collapse
|
17
|
Wu X, Yang H, He S, Xia T, Chen D, Zhou Y, Liu J, Liu M, Sun Z. Adult Vaccination as a Protective Factor for Dementia: A Meta-Analysis and Systematic Review of Population-Based Observational Studies. Front Immunol 2022; 13:872542. [PMID: 35592323 PMCID: PMC9110786 DOI: 10.3389/fimmu.2022.872542] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Common vaccinations may have impacts on dementia risk, but current evidence is inconsistent. We therefore investigated the association between vaccinations and dementia risk by systematic review and meta-analysis approach. Methods We conducted an extensive search of PubMed, Embase, Cochrane Library, and Web of Science to identify studies that compared the risk of dementia in vaccinated versus unvaccinated populations. The adjusted hazard ratio (HR) and corresponding 95% confidence intervals (CIs) were pooled as measures. Results Of the 9124 records initially retrieved, 17 studies with 1857134 participants were included in our analysis. The overall pooled results showed that vaccinations were associated with a 35% lower dementia risk (HR=0.65, 95% CI: 0.60-0.71, Poverall effect < 0.001; I2 = 91.8%, Pheterogeneity<0.001). All types of vaccination were associated with a trend toward reduced dementia risk, with rabies (HR=0.43), tetanus & diphtheria & pertussis (Tdap) (HR=0.69), herpes zoster (HR=0.69), influenza (HR=0.74), hepatitis A (HR=0.78), typhoid (HR=0.80), and hepatitis B (HR=0.82) vaccinations being significant. Individuals with more full vaccination types and more annual influenza vaccinations were less likely to develop dementia. Gender and age had no effect on this association. Conclusion Routine adult vaccinations are associated with a significant reduction in dementia risk and may be an effective strategy for dementia prevention. Further research is needed to elucidate the causal effects of this association and the underlying mechanisms.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haixia Yang
- The General Hospital of Western Theater Command, Chengdu, China
| | - Sixian He
- The General Hospital of Western Theater Command, Chengdu, China
| | - Ting Xia
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Diang Chen
- Clinical Medicine Teaching Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yexin Zhou
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Guangxi, China
| | - Jin Liu
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - MengSi Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Zhen Sun
- Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
18
|
Huang S, Wang YJ, Guo J. Biofluid Biomarkers of Alzheimer’s Disease: Progress, Problems, and Perspectives. Neurosci Bull 2022; 38:677-691. [PMID: 35306613 PMCID: PMC9206048 DOI: 10.1007/s12264-022-00836-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Since the establishment of the biomarker-based A-T-N (Amyloid/Tau/Neurodegeneration) framework in Alzheimer’s disease (AD), the diagnosis of AD has become more precise, and cerebrospinal fluid tests and positron emission tomography examinations based on this framework have become widely accepted. However, the A-T-N framework does not encompass the whole spectrum of AD pathologies, and problems with invasiveness and high cost limit the application of the above diagnostic methods aimed at the central nervous system. Therefore, we suggest the addition of an “X” to the A-T-N framework and a focus on peripheral biomarkers in the diagnosis of AD. In this review, we retrospectively describe the recent progress in biomarkers based on the A-T-N-X framework, analyze the problems, and present our perspectives on the diagnosis of AD.
Collapse
|
19
|
Tiwari D, Singh VK, Baral B, Pathak DK, Jayabalan J, Kumar R, Tapryal S, Jha HC. Indication of Neurodegenerative Cascade Initiation by Amyloid-like Aggregate-Forming EBV Proteins and Peptide in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:3957-3967. [PMID: 34609141 DOI: 10.1021/acschemneuro.1c00584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neurotropic potential of the Epstein-Barr virus (EBV) was demonstrated quite recently; however, the mechanistic details are yet to be explored. Therefore, the effects of EBV infection in the neural milieu remain underexplored. Previous reports have suggested the potential role of virus-derived peptides in seeding the amyloid-β aggregation cascade, which lies at the center of Alzheimer's disease (AD) pathophysiology. However, no such study has been undertaken to explore the role of EBV peptides in AD. In our research, ∼100 EBV proteins were analyzed for their aggregation proclivity in silico using bioinformatic tools, followed by the prediction of 20S proteasomal cleavage sites using online algorithms NetChop ver. 3.1 and Pcleavage, thereby mimicking the cellular proteasomal cleavage activity generating short antigenic peptides of viral origin. Our study reports a high aggregate-forming tendency of a 12-amino-acid-long (146SYKHVFLSAFVY157) peptide derived from EBV glycoprotein M (EBV-gM). The in vitro analysis of aggregate formation done using Congo red and Thioflavin-S assays demonstrated dose- and time-dependent kinetics. Thereafter, Raman spectroscopy was used to validate the formation of secondary structures (α helix, β sheets) in the aggregates. Additionally, cytotoxicity assay revealed that even a low concentration of these aggregates has a lethal effect on neuroblastoma cells. The findings of this study provide insights into the mechanistic role of EBV in AD and open up new avenues to explore in the future.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vikas Kumar Singh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Devesh Kumar Pathak
- Discipline of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Jesumony Jayabalan
- Nano Science Laboratory, MSS, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajesh Kumar
- Discipline of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suman Tapryal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|