1
|
Prudinnik DS, Kussanova A, Vorobjev IA, Tikhonov A, Ataullakhanov FI, Barteneva NS. Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Aging Dis 2025:AD.2024.0526. [PMID: 39012672 DOI: 10.14336/ad.2024.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is interrelated with changes in red blood cell parameters and functionality. In this article, we focus on red blood cells (RBCs) and provide a review of the known changes associated with the characterization of RBC deformability in aging and related pathologies. The biophysical parameters complement the commonly used biochemical parameters and may contribute to a better understanding of the aging process. The power of the deformability measurement approach is well established in clinical settings. Measuring RBCs' deformability has the advantage of relative simplicity, and it reflects the complex effects developing in erythrocytes during aging. However, aging and related pathological conditions also promote heterogeneity of RBC features and have a certain impact on the variance in erythrocyte cell properties. The possible applications of deformability as an early biophysical biomarker of pathological states are discussed, and modulating PIEZO1 as a therapeutic target is suggested. The changes in RBCs' shape can serve as a proxy for deformability evaluation, leveraging single-cell analysis with imaging flow cytometry and artificial intelligence algorithms. The characterization of biophysical parameters of RBCs is in progress in humans and will provide a better understanding of the complex dynamics of aging.
Collapse
Affiliation(s)
- Dmitry S Prudinnik
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aigul Kussanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alexander Tikhonov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Shayor AA, Kabir ME, Rifath MSA, Rashid AB, Oh KW. A Synergistic Overview between Microfluidics and Numerical Research for Vascular Flow and Pathological Investigations. SENSORS (BASEL, SWITZERLAND) 2024; 24:5872. [PMID: 39338617 PMCID: PMC11435959 DOI: 10.3390/s24185872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Vascular diseases are widespread, and sometimes such life-threatening medical disorders cause abnormal blood flow, blood particle damage, changes to flow dynamics, restricted blood flow, and other adverse effects. The study of vascular flow is crucial in clinical practice because it can shed light on the causes of stenosis, aneurysm, blood cancer, and many other such diseases, and guide the development of novel treatments and interventions. Microfluidics and computational fluid dynamics (CFDs) are two of the most promising new tools for investigating these phenomena. When compared to conventional experimental methods, microfluidics offers many benefits, including lower costs, smaller sample quantities, and increased control over fluid flow and parameters. In this paper, we address the strengths and weaknesses of computational and experimental approaches utilizing microfluidic devices to investigate the rheological properties of blood, the forces of action causing diseases related to cardiology, provide an overview of the models and methodologies of experiments, and the fabrication of devices utilized in these types of research, and portray the results achieved and their applications. We also discuss how these results can inform clinical practice and where future research should go. Overall, it provides insights into why a combination of both CFDs, and experimental methods can give even more detailed information on disease mechanisms recreated on a microfluidic platform, replicating the original biological system and aiding in developing the device or chip itself.
Collapse
Affiliation(s)
- Ahmed Abrar Shayor
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Emamul Kabir
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Md Sartaj Ahamed Rifath
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Kwang W Oh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Murali A, Sarkar RR. Dynamic cellular responses to gravitational forces: Exploring the impact on white blood cell(s). BIOMICROFLUIDICS 2024; 18:054112. [PMID: 39445310 PMCID: PMC11495877 DOI: 10.1063/5.0216617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
In recent years, the allure of space exploration and human spaceflight has surged, yet the effects of microgravity on the human body remain a significant concern. Immune and red blood cells rely on hematic or lymphatic streams as their primary means of transportation, posing notable challenges under microgravity conditions. This study sheds light on the intricate dynamics of cell behavior when suspended in bio-fluid under varying gravitational forces. Utilizing the dissipative particle dynamics approach, blood and white blood cells were modeled, with gravity applied as an external force along the vertical axis, ranging from 0 to 2 g in parameter sweeps. The results revealed discernible alterations in the cell shape and spatial alignment in response to gravity, quantified through metrics such as elongation and deformation indices, pitch angle, and normalized center of mass. Statistical analysis using the Mann-Whitney U test underscored clear distinctions between microgravity (<1 g) and hypergravity (>1 g) samples compared to normal gravity (1 g). Furthermore, the examination of forces exerted on the solid, including drag, shear stress, and solid forces, unveiled a reduction in the magnitude as the gravitational force increased. Additional analysis through dimensionless numbers unveiled the dominance of capillary and gravitational forces, which impacted cell velocity, leading to closer proximity to the wall and heightened viscous interaction with surrounding fluid particles. These interactions prompted shape alterations and reduced white blood cell area while increasing red blood cells. This study represents an effort in comprehending the effects of gravity on blood cells, offering insights into the intricate interplay between cellular dynamics and gravitational forces.
Collapse
Affiliation(s)
| | - Ram Rup Sarkar
- Author to whom correspondence should be addressed:. Telephone: +91-20-2590 3040; +91-20-2590 2161
| |
Collapse
|
4
|
Jain A, Sharma R, Gautam L, Shrivastava P, Singh KK, Vyas SP. Biomolecular interactions between Plasmodium and human host: A basis of targeted antimalarial therapy. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:401-419. [PMID: 38519002 DOI: 10.1016/j.pharma.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Malaria is one of the serious health concerns worldwide as it remains a clinical challenge due to the complex life cycle of the malaria parasite and the morphological changes it undergoes during infection. The malaria parasite multiplies rapidly and spreads in the population by changing its alternative hosts. These various morphological stages of the parasite in the human host cause clinical symptoms (anemia, fever, and coma). These symptoms arise due to the preprogrammed biology of the parasite in response to the human pathophysiological response. Thus, complete elimination becomes one of the major health challenges. Although malaria vaccine(s) are available in the market, they still contain to cause high morbidity and mortality. Therefore, an approach for eradication is needed through the exploration of novel molecular targets by tracking the epidemiological changes the parasite adopts. This review focuses on the various novel molecular targets.
Collapse
Affiliation(s)
- Anamika Jain
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, M.P., 474005, India.
| | - Laxmikant Gautam
- Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228, India
| | - Priya Shrivastava
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Suresh P Vyas
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India.
| |
Collapse
|
5
|
Jin X, Zhang Y, Wang D, Zhang X, Li Y, Wang D, Liang Y, Wang J, Zheng L, Song H, Zhu X, Liang J, Ma J, Gao J, Tong J, Shi L. Metabolite and protein shifts in mature erythrocyte under hypoxia. iScience 2024; 27:109315. [PMID: 38487547 PMCID: PMC10937114 DOI: 10.1016/j.isci.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
As the only cell type responsible for oxygen delivery, erythrocytes play a crucial role in supplying oxygen to hypoxic tissues, ensuring their normal functions. Hypoxia commonly occurs under physiological or pathological conditions, and understanding how erythrocytes adapt to hypoxia is fundamental for exploring the mechanisms of hypoxic diseases. Additionally, investigating acute and chronic mountain sickness caused by plateaus, which are naturally hypoxic environments, will aid in the study of hypoxic diseases. In recent years, increasingly developed proteomics and metabolomics technologies have become powerful tools for studying mature enucleated erythrocytes, which has significantly contributed to clarifying how hypoxia affects erythrocytes. The aim of this article is to summarize the composition of the cytoskeleton and cytoplasmic proteins of hypoxia-altered erythrocytes and explore the impact of hypoxia on their essential functions. Furthermore, we discuss the role of microRNAs in the adaptation of erythrocytes to hypoxia, providing new perspectives on hypoxia-related diseases.
Collapse
Affiliation(s)
- Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
6
|
Clarkin-Breslin RC, Brainard BM. Point-of-care and traditional erythrocyte sedimentation rate, point-of-care rheometry, and cell-free DNA concentration in dogs with or without systemic inflammation. J Vet Diagn Invest 2024; 36:177-186. [PMID: 38372154 DOI: 10.1177/10406387241226971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
RBC aggregation and deformability characteristics are altered by inflammatory, microcirculatory, and hemorheologic disease. These changes can be indirectly evaluated using the erythrocyte sedimentation rate (ESR). Newer point-of-care devices employ syllectometry to evaluate RBC rheology, which can give information beyond the ESR. We evaluated 2 point-of-care rheometers (iSED and MIZAR; Alcor Scientific) in 52 dogs presented to a university teaching hospital. Whole blood samples were analyzed for correlation between the ESR using the Westergren (ESRw) method (measured at 1 h and 24 h) and the predicted ESR using iSED. Plasma fibrinogen and cell-free DNA concentrations were also measured as probable markers of inflammation. The iSED-predicted ESR was positively correlated to the ESRw method at 1 h (r = 0.74; p < 0.001) and 24 h (r = 0.62; p < 0.001). Comparing dogs with or without inflammation (defined as plasma fibrinogen concentration >3.5 g/L [350 mg/dL]), significant differences were seen in the MIZAR parameters of base point, amplitude, integral, and half-time. Median cell-free DNA concentrations were higher in the group of dogs with inflammation (117 [range: 51-266] ng/mL vs. 82.7 [range: 19-206] ng/mL; p = 0.024). The iSED-predicted ESR is a good predictor of the ESRw and was obtained more rapidly. Rheometric parameters measured by MIZAR may be useful in detecting inflammation and monitoring secondary morphologic and functional changes in canine RBCs.
Collapse
Affiliation(s)
- Rachel C Clarkin-Breslin
- Department of Small Animal Medicine and Surgery, University of Georgia Veterinary Teaching Hospital, Athens, GA, USA
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, University of Georgia Veterinary Teaching Hospital, Athens, GA, USA
| |
Collapse
|
7
|
Obeagu EI. Red blood cells as biomarkers and mediators in complications of diabetes mellitus: A review. Medicine (Baltimore) 2024; 103:e37265. [PMID: 38394525 PMCID: PMC11309633 DOI: 10.1097/md.0000000000037265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Red blood cells (RBCs), traditionally recognized for their oxygen transport role, have garnered increasing attention for their significance as crucial contributors to the pathophysiology of diabetes mellitus. In this comprehensive review, we elucidate the multifaceted roles of RBCs as both biomarkers and mediators in diabetes mellitus. Amidst the intricate interplay of altered metabolic pathways and the diabetic milieu, RBCs manifest distinct alterations in their structure, function, and lifespan. The chronic exposure to hyperglycemia induces oxidative stress, leading to modifications in RBC physiology and membrane integrity. These modifications, including glycation of hemoglobin (HbA1c), establish RBCs as invaluable biomarkers for assessing glycemic control over extended periods. Moreover, RBCs serve as mediators in the progression of diabetic complications. Their involvement in vascular dysfunction, hemorheological changes, and inflammatory pathways contributes significantly to diabetic microangiopathy and associated complications. Exploring the therapeutic implications, this review addresses potential interventions targeting RBC abnormalities to ameliorate diabetic complications. In conclusion, comprehending the nuanced roles of RBCs as biomarkers and mediators in diabetes mellitus offers promising avenues for enhanced diagnostic precision, therapeutic interventions, and improved patient outcomes. This review consolidates the current understanding and emphasizes the imperative need for further research to harness the full potential of RBC-related insights in the realm of diabetes mellitus.
Collapse
|
8
|
Li Z, Xue L, Yang J, Wuttke S, He P, Lei C, Yang H, Zhou L, Cao J, Sinelshchikova A, Zheng G, Guo J, Lin J, Lei Q, Brinker CJ, Liu K, Zhu W. Synthetic Biohybrids of Red Blood Cells and Cascaded-Enzymes@ Metal-Organic Frameworks for Hyperuricemia Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305126. [PMID: 38054350 PMCID: PMC10837374 DOI: 10.1002/advs.202305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 12/07/2023]
Abstract
Hyperuricemia, caused by an imbalance between the rates of production and excretion of uric acid (UA), may greatly increase the mortality rates in patients with cardiovascular and cerebrovascular diseases. Herein, for fast-acting and long-lasting hyperuricemia treatment, armored red blood cell (RBC) biohybrids, integrated RBCs with proximal, cascaded-enzymes of urate oxidase (UOX) and catalase (CAT) encapsulated within ZIF-8 framework-based nanoparticles, have been fabricated based on a super-assembly approach. Each component is crucial for hyperuricemia treatment: 1) RBCs significantly increase the circulation time of nanoparticles; 2) ZIF-8 nanoparticles-based superstructure greatly enhances RBCs resistance against external stressors while preserving native RBC properties (such as oxygen carrying capability); 3) the ZIF-8 scaffold protects the encapsulated enzymes from enzymatic degradation; 4) no physical barrier exists for urate diffusion, and thus allow fast degradation of UA in blood and neutralizes the toxic by-product H2 O2 . In vivo results demonstrate that the biohybrids can effectively normalize the UA level of an acute hyperuricemia mouse model within 2 h and possess a longer elimination half-life (49.7 ± 4.9 h). They anticipate that their simple and general method that combines functional nanomaterials with living cell carriers will be a starting point for the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Liecong Xue
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Junxian Yang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000P. R. China
| | - Stefan Wuttke
- BCMaterialsBasque Center for MaterialsUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Peiying He
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Chuanyi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haowei Yang
- China National Tobacco CorporationNo.55 South Yuetan Boulevard Xicheng DistrictBeijing100045P. R. China
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | | | - Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jimin Guo
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiangguo Lin
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000P. R. China
| | - Qi Lei
- The Second Affiliated HospitalState Key Laboratory of Respiratory DiseaseGuangdong Provincial Key Laboratory of Allergy and Clinical ImmunologyGuangzhou Medical UniversityGuangzhou510260P.R. China
| | - C. Jeffrey Brinker
- Center for Micro‐Engineered Materials and the Department of Chemical and Biological EngineeringThe University of New MexicoAlbuquerqueNM87131USA
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for GeriatricsShenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen518020P. R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| |
Collapse
|
9
|
Kokkinidou D, Kaliviotis E, Shammas C, Anayiotos A, Kapnisis K. An in vivo investigation on the effects of stent implantation on hematological and hemorheological parameters. Clin Hemorheol Microcirc 2024; 87:39-53. [PMID: 38143339 DOI: 10.3233/ch-231921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Even though cardiovascular stenting is widely used for the treatment of coronary artery disease, information on how it can affect the hematological and hemorheological profile is scarce in the literature. Most of the work on this issue is based on theoretical or computational fluid dynamics models, lacking in-depth in vitro and in vivo experimental verification. OBJECTIVE This work investigates, in an in vivo setting, the effects of stenting and the implantation time-course on hematological and hemorheological parameters that could potentially compromise the device's functionality and longevity. METHODS Custom-made self-expanding nitinol stents were implanted in the common carotid artery of male CD1 mice. Whole blood samples were collected from control (non-stented) and stented animals at 5 and 10 weeks post-implantation. Hematological measurements and blood viscosity, red blood cell aggregation, and deformability were performed using standard techniques. RESULTS Implant-induced changes were observed in some of the hematological and hemorheological indices. Blood viscosity seems to have been negatively affected by an increased hematocrit and reduced RBC deformability, at 10 weeks post-implantation, despite a slight decrease in RBC aggregation. CONCLUSIONS Although the alterations observed may be the result of the peri-implant inflammatory response, the physiological consequences due to hemorheological changes need to be further investigated.
Collapse
Affiliation(s)
- D Kokkinidou
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - E Kaliviotis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - C Shammas
- BIOANALYSIS Clinical Laboratory, Limassol, Cyprus
| | - A Anayiotos
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - K Kapnisis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
10
|
Gumede N, Khathi A. The role of fibrinolysis in the development of prediabetes-associated coronary heart disease: a focus on the plasminogen activator inhibitor -1 and its potential use as a predictive marker in diet-induced prediabetes. Front Nutr 2023; 10:1256427. [PMID: 38024366 PMCID: PMC10652797 DOI: 10.3389/fnut.2023.1256427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases (CVD). However, the onset of T2DM is preceded by prediabetes, which is associated with sedentary lifestyles and consumption of high-calorie diets. Studies have shown that impaired glucose homeostasis creates an environment for developing T2DM-related complications. Using a high-fat-high-carbohydrate diet-induced prediabetes animal model, this study sought to assess the risk factors of coronary heart disease (CHD) in diet-induced prediabetes and identify biomarkers that can be used for early detection of prediabetes-associated CHD. Methods Male Sprague Dawley rats were randomly grouped into two groups and were kept on different diets for 20 weeks (n = 6 in each group). One group was fed standard rat chow to serve as a non-prediabetes (NPD) control, while the other group consumed a high-fat-high-carbohydrate diet to induce prediabetes (PD). Post induction, the homeostasis model assessment- insulin resistance (HOMA-IR) and glycated haemoglobin (HbA1c) was used to test for insulin resistance. Body weight, mean arterial pressure (MAP), resting heart rate (HR), inflammatory cytokines (C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6)), lipids (total cholesterol (TC), triglyceride (TG), lipoproteins (HDL, LDL, VLDL)), endothelial function (endothelial nitric oxide (eNOS), endothelin -1 (ET-1)), fibrinolysis (plasminogen activator inhibitor-1 (PAI-1)) were all measured to assess the risk of CHD. All data were expressed as means ± S.E.M. Statistical comparisons were performed with Graph Pad. Instat Software using Student's two-sided t-test. The Pearson correlation coefficient and linear regression were calculated to assess the association. The value of p < 0.05 was considered statistically significant. Results There was significant insulin resistance accompanied by significantly increased HbA1c and body weight in PD compared to NPD. Simultaneously, there was a significant increase in inflammatory cytokines in PD compared to NPD. This was accompanied by significantly increased TG and VLDL and endothelial dysfunction in PD. The association between HOMA-IR and PAI-1 was insignificantly positive in NPD, whereas a significantly strong positive association was observed in PD. Conclusion There is a positive correlation between insulin resistance and PAI-1 during prediabetes; therefore, suggesting that prediabetes increases the risk of developing vascular thrombosis. The current therefore study warrants further investigation on PAI-1 and other markers of fibrinolysis for the early detection of thrombosis and risk of CHD in prediabetes.
Collapse
Affiliation(s)
- Nompumelelo Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
11
|
Teległów A, Seremak J, Golec J, Marchewka J, Golec P, Marchewka U, Maciejczyk M, Golec E. The effect of sulfur baths on hemorheological properties of blood in patients with osteoarthritis. Sci Rep 2023; 13:7960. [PMID: 37198390 DOI: 10.1038/s41598-023-35264-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Balneotherapy is an effective treatment method in various diseases and commonly used treatment modality among patients with musculoskeletal disorders. Sulfur baths are known for healing properties however effect on rheological properties is unstudied. Thus the aim of our study was to determine the effect of sulfur balneotherapy on hemorheological blood indices. A total of 48 patients with osteoarthritis were enrolled to the study. Blood samples were collected twice, before and after 3-week time period. We evaluated complete blood count, fibrinogen, hs-CRP and blood rheology parameters such as elongation index (EI), half-time of total aggregation (T1/2) and aggregation index (AI) analyzed with the Lorrca Maxis. Mean age of studied cohort was 67 ± 5 years. After sulfur baths WBC count was significantly decreased is studied group (p = 0.021) as well as neutrophile count (p = 0.036). Red blood cell EIs were statistically higher after sulfur baths in shear stress ranging from 8.24 to 60.30 Pa. T1/2 was significantly higher (p = 0.031) and AI lower (p = 0.003) compared to baseline. No significant changes in fibrinogen and hs-CRP were observed. It is the first study that evaluate effect of sulfur balneotherapy on rheologic properties of blood. Sulfur water baths may improve erythrocyte deformability and aggregation parameters.
Collapse
Affiliation(s)
- Aneta Teległów
- Department of Health Promotion, Institute of Basic Sciences, University of Physical Education in Krakow, 31-571, Kraków, Poland.
| | | | - Joanna Golec
- Institute of Clinical Rehabilitation, University of Physical Education in Krakow, 31-571, Kraków, Poland
| | - Jakub Marchewka
- Institute of Clinical Rehabilitation, University of Physical Education in Krakow, 31-571, Kraków, Poland
- 5th Military Clinical Hospital, 30-901, Kraków, Poland
| | - Piotr Golec
- Individual Healthcare Centre, Kraków, Poland
| | | | - Marcin Maciejczyk
- Institute of Biomedical Sciences, University of Physical Education in Krakow, 31-571, Kraków, Poland
| | - Edward Golec
- Institute of Clinical Rehabilitation, University of Physical Education in Krakow, 31-571, Kraków, Poland
| |
Collapse
|
12
|
Babaki M, Fedosov DA, Gholivand A, Opdam J, Tuinier R, Lettinga MP. Competition between deformation and free volume quantified by 3D image analysis of red blood cell. Biophys J 2023; 122:1646-1658. [PMID: 36964658 PMCID: PMC10183325 DOI: 10.1016/j.bpj.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/14/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
Cells in living organisms are subjected to mechanical strains caused by external forces like overcrowding, resulting in strong deformations that affect cell function. We study the interplay between deformation and crowding of red blood cells (RBCs) in dispersions of nonabsorbing rod-like viruses. We identify a sequence of configurational transitions of RBC doublets, including configurations that can only be induced by long-ranged attraction: highly fluctuating T-shaped and face-to-face configurations at low, and doublets approaching a complete spherical configuration at high, rod concentrations. Complementary simulations are used to explore different energy contributions to deformation as well as the stability of RBC doublet configurations. Our advanced analysis of 3D reconstructed confocal images of RBC doublets quantifies the depletion interaction and the resulting deformation energy. Thus, we introduce a noninvasive, high-throughput platform that is generally applicable to investigate the mechanical response of biological cells to external forces and characterize their mechanical properties.
Collapse
Affiliation(s)
- Mehrnaz Babaki
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, Jülich, Germany; Laboratory for Soft Matter and Biophysics, KU Leuven, Leuven, Belgium
| | - Dmitry A Fedosov
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Amirreza Gholivand
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, Jülich, Germany; Laboratory for Soft Matter and Biophysics, KU Leuven, Leuven, Belgium
| | - Joeri Opdam
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Minne Paul Lettinga
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, Jülich, Germany; Laboratory for Soft Matter and Biophysics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Omura M, Yagi K, Nagaoka R, Hasegawa H. Contrast analysis in ultrafast ultrasound blood flow imaging of jugular vein. J Med Ultrason (2001) 2023; 50:131-141. [PMID: 36757634 PMCID: PMC10955029 DOI: 10.1007/s10396-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/25/2022] [Indexed: 02/10/2023]
Abstract
PURPOSE The contrasts of flowing blood in in vitro experiments using porcine blood and in vivo measurements of human jugular veins were analyzed to demonstrate that the hemorheological property was dependent on the shear rate. METHODS Blood samples (45% hematocrit) suspended in saline or plasma were compared with examine the difference in viscoelasticity. Ultrafast plane-wave imaging at an ultrasonic center frequency of 7.5 MHz was performed on different steady flows in a graphite-agar phantom. Also, in vivo measurement was performed in young, healthy subjects and patients with diabetes. A spatiotemporal matrix of beamformed radio-frequency data was used for the singular value decomposition (SVD) clutter filter. The clutter-filtered B-mode image was calculated as the amplitude envelope normalized at the first frame in the diastolic phase to evaluate contrast. The shear rate was estimated as the velocity gradient perpendicular to the lateral axis. RESULTS Although nonaggregated erythrocytes at a high shear rate exhibited a low echogenicity, the echogenicity in the plasma sample overall increased due to erythrocyte aggregation at a low shear rate. In addition, the frequency of detection of specular components, defined as components beyond twice the standard deviation of a contrast map obtained from a clutter-filtered B-mode image, increased in the porcine blood at a high shear rate and the venous blood in healthy subjects versus patients with diabetes. CONCLUSION The possibility of characterizing hemorheological properties dependent on the shear rate and diabetes condition was indicated using ultrafast plane-wave imaging with an SVD-based clutter filter.
Collapse
Affiliation(s)
- Masaaki Omura
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 93008555, Japan.
| | - Kunimasa Yagi
- School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 9200293, Japan
| | - Ryo Nagaoka
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 93008555, Japan
| | - Hideyuki Hasegawa
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 93008555, Japan.
| |
Collapse
|
14
|
Mardyła M, Teległów A, Ptaszek B, Jekiełek M, Mańko G, Marchewka J. Effects of Rowing on Rheological Properties of Blood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5159. [PMID: 36982070 PMCID: PMC10049505 DOI: 10.3390/ijerph20065159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to analyze the selected hematological and rheological indices in female rowers during the competitive season. The study included 10 female rowers (aged 21.2 ± 2.6) and the control group consisted of 10 woman of corresponding age (non-athletes). The examination of athletes took place two times: at the beginning of the season during high endurance low intensity training period in January (baseline) and at the end of the competitive season in October (after). Blood samples taken from all woman were analyzed for hematological and rheological parameters. The training period of rowers during the 10 months resulted in decrease in red blood cell count and RBC deformability, in contrast to an improvement in some rheological functions such a decrease in fibrinogen concentration, plasma viscosity and aggregation index. The training program practice in rowing modulated some hematological and rheological indices. Some of them positively influenced the cardiovascular system and reduced potential risks connected with hard training and dehydration, but others may have followed from overtraining or not enough relaxation time between training units.
Collapse
Affiliation(s)
- Mateusz Mardyła
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Aneta Teległów
- Department of Health Promotion, Institute of Basic Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Bartłomiej Ptaszek
- Institute of Applied Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland
| | - Małgorzata Jekiełek
- Department of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Collegium Medicum, 31-008 Krakow, Poland
| | - Grzegorz Mańko
- Department of Biomechanics and Kinesiology, Institute of Physiotherapy, Jagiellonian University Collegium Medicum, 31-126 Krakow, Poland
- ORNR “Krzeszowice”, Rehabilitation Center, Daszyńskiego 1, 32-065 Krzeszowice, Poland
| | - Jakub Marchewka
- Department of Rehabilitation in Traumatology, Institute of Clinical Rehabilitation, University of Physical Education in Krakow, 31-571 Krakow, Poland
| |
Collapse
|
15
|
Scanning Electron and Atomic Force Microscopic Analysis of Erythrocytes in a Cohort of Atopic Asthma Patients—A Pilot Study. HEMATO 2023. [DOI: 10.3390/hemato4010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Background: Non-communicable diseases are often associated with chronic inflammation, placing patients suffering from these conditions at a higher risk of thrombosis and other complications. The pathophysiology of asthma and/or atopic asthma is also linked to chronic inflammation, which consequently may alter blood parameters including erythrocyte structure and function. Methodology: The objective of this study was to evaluate differences in erythrocytes between patients with atopic asthma (n = 30) and healthy individuals (n = 30) by evaluating routine haematological parameters; structures and axial ratios of erythrocytes using light microscopy; erythrocyte membrane elasticity using atomic force microscopy; and erythrocyte ultrastructure using scanning electron microscopy. Results: The haematological findings of healthy participants and patients suffering from asthma were within normal clinical ranges together with significantly higher levels of circulating monocytes (p = 0.0066), erythrocytes (p = 0.0004), haemoglobin (p = 0.0057), and haematocrit (p = 0.0049) in asthma patients. The analysis of eosin-stained erythrocytes by light microscopy showed more echinocytes, acanthocytes, and ovalocytes compared to controls and a significant difference in axial ratios (p < 0.0001). Atomic force microscopy findings showed reduced erythrocyte membrane elasticity in asthmatic erythrocytes (p = 0.001). Ultrastructural differences in erythrocytes were visible in the asthma group compared to controls. Conclusion: Altered erythrocyte ultrastructural morphology and a significant change in the haematological profile are evident in atopic asthma and may influence common complications associated with asthma. The impact of these changes on the physiological mechanisms of coagulation and the pathophysiology of asthma needs to be further elucidated.
Collapse
|
16
|
Omura M, Yagi K, Nagaoka R, Yoshida K, Yamaguchi T, Hasegawa H. Effect of Clutter Filter in High-Frame-Rate Ultrasonic Backscatter Coefficient Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:2639. [PMID: 36904843 PMCID: PMC10007061 DOI: 10.3390/s23052639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
High-frame-rate imaging with a clutter filter can clearly visualize blood flow signals and provide more efficient discrimination with tissue signals. In vitro studies using clutter-less phantom and high-frequency ultrasound suggested a possibility of evaluating the red blood cell (RBC) aggregation by analyzing the frequency dependence of the backscatter coefficient (BSC). However, in in vivo applications, clutter filtering is required to visualize echoes from the RBC. This study initially evaluated the effect of the clutter filter for ultrasonic BSC analysis for in vitro and preliminary in vivo data to characterize hemorheology. Coherently compounded plane wave imaging at a frame rate of 2 kHz was carried out in high-frame-rate imaging. Two samples of RBCs suspended by saline and autologous plasma for in vitro data were circulated in two types of flow phantoms without or with clutter signals. The singular value decomposition was applied to suppress the clutter signal in the flow phantom. The BSC was calculated using the reference phantom method, and it was parametrized by spectral slope and mid-band fit (MBF) between 4-12 MHz. The velocity distribution was estimated by the block matching method, and the shear rate was estimated by the least squares approximation of the slope near the wall. Consequently, the spectral slope of the saline sample was always around four (Rayleigh scattering), independently of the shear rate, because the RBCs did not aggregate in the solution. Conversely, the spectral slope of the plasma sample was lower than four at low shear rates but approached four by increasing the shear rate, because the aggregations were presumably dissolved by the high shear rate. Moreover, the MBF of the plasma sample decreased from -36 to -49 dB in both flow phantoms with increasing shear rates, from approximately 10 to 100 s-1. The variation in the spectral slope and MBF in the saline sample was comparable to the results of in vivo cases in healthy human jugular veins when the tissue and blood flow signals could be separated.
Collapse
Affiliation(s)
- Masaaki Omura
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Kunimasa Yagi
- School of Medicine, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Ryo Nagaoka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Hideyuki Hasegawa
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
17
|
A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion. Commun Biol 2023; 6:192. [PMID: 36801914 PMCID: PMC9938206 DOI: 10.1038/s42003-023-04560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Erythrocytes are deformable cells that undergo progressive biophysical and biochemical changes affecting the normal blood flow. Fibrinogen, one of the most abundant plasma proteins, is a primary determinant for changes in haemorheological properties, and a major independent risk factor for cardiovascular diseases. In this study, the adhesion between human erythrocytes is measured by atomic force microscopy (AFM) and its effect observed by micropipette aspiration technique, in the absence and presence of fibrinogen. These experimental data are then used in the development of a mathematical model to examine the biomedical relevant interaction between two erythrocytes. Our designed mathematical model is able to explore the erythrocyte-erythrocyte adhesion forces and changes in erythrocyte morphology. AFM erythrocyte-erythrocyte adhesion data show that the work and detachment force necessary to overcome the adhesion between two erythrocytes increase in the presence of fibrinogen. The changes in erythrocyte morphology, the strong cell-cell adhesion and the slow separation of the two cells are successfully followed in the mathematical simulation. Erythrocyte-erythrocyte adhesion forces and energies are quantified and matched with experimental data. The changes observed on erythrocyte-erythrocyte interactions may give important insights about the pathophysiological relevance of fibrinogen and erythrocyte aggregation in hindering microcirculatory blood flow.
Collapse
|
18
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Weber-Fishkin S, Seidner HS, Gunter G, Frame MD. Erythrocyte aggregation in sudden flow arrest is linked to hyperthermia, hypoxemia, and band 3 availability. J Thromb Haemost 2022; 20:2284-2292. [PMID: 35841276 DOI: 10.1111/jth.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Erythrocyte aggregation is a phenomenon that is commonly found in several pathological disease states: stroke, myocardial infarction, thermal burn injury, and COVID-19. Erythrocyte aggregation is characterized by rouleaux, closely packed stacks of cells, forming three-dimensional structures. Healthy blood flow monodisperses the red blood cells (RBCs) throughout the vasculature; however, in select pathological conditions, involving hyperthermia and hypoxemia, rouleaux formation remains and results in occlusion of microvessels with decreased perfusion. OBJECTIVES Our objective is to address the kinetics of rouleaux formation with sudden cessation of flow in variable temperature and oxygen conditions. METHODS RBCs used in this in vitro system were obtained from healthy human donors. Using a vertical stop-flow system aligned with a microscope, images were acquired and analyzed for increased variation in grayscale to indicate increased aggregation. The onset of aggregation after sudden cessation of flow was determined at proscribed temperatures (37-49°C) and oxygen (0%, 10%), and in the presence and absence of 4, 4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). Both autologous and homologous plasma were tested. RESULTS RBCs in autologous plasma aggregate faster and with a higher magnitude with both hyperthermia and hypoxemia. Preventing deoxyhemoglobin from binding to band 3 with DIDS (dissociates the cytoskeleton from the membrane) fully blocks aggregation. Further, RBC aggregation magnitude is greater in autologous plasma. CONCLUSIONS We show that the C-terminal domain of band 3 plays a pivotal role in RBC aggregation. Further, aggregation is enhanced by hyperthermia and hypoxemia.
Collapse
Affiliation(s)
- Samantha Weber-Fishkin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Harrison S Seidner
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Geoffrey Gunter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Mary D Frame
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
20
|
Nitric oxide bioavailability for red blood cell deformability in the microcirculation: A review of recent progress. Nitric Oxide 2022; 129:25-29. [PMID: 36184009 DOI: 10.1016/j.niox.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
Abstract
The rheological properties of red blood cells (RBCs) play an important role in their microcirculation. RBCs can elastically deform in response to mechanical forces to pass through narrow vessels for effective gas exchange in peripheral tissues. Decreased RBC deformability is observed in lifestyle-related diseases such as diabetes mellitus, hypercholesterolemia, and hypertension, which are pathological conditions linked to increased oxidative stress and decreased nitric oxide (NO) bioavailability. Redox-sensitive cysteine residues on RBC cytoskeletal proteins, such as α- and β-spectrins, responsible for membrane flexibility, are affected by prolonged oxidative stress, leading to reversible and irreversible oxidative modifications and decreased RBC deformability. However, endogenously, and exogenously generated NO protects RBC membrane flexibility from further oxidative modification by shielding redox-sensitive cysteine residues with a glutathione cap. Recent studies have shown that nitrate-rich diets and moderate exercise can enhance NO production to increase RBC deformability by increasing the interplay between RBCs and vascular endothelium-mediated NO bioavailability for microcirculation. This review focuses on the molecular mechanism of RBC- and non-RBC-mediated NO generation, and how diet- and exercise-derived NO exert prophylactic effects against decreased RBC deformability in lifestyle-related diseases with vascular endothelial dysfunction.
Collapse
|
21
|
Taheri RA, Razaghi R, Bahramifar A, Morshedi M, Mafi M, Karimi A. Interaction of the Blood Components with Ascending Thoracic Aortic Aneurysm Wall: Biomechanical and Fluid Analyses. Life (Basel) 2022; 12:1296. [PMID: 36143333 PMCID: PMC9503674 DOI: 10.3390/life12091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is an asymptomatic localized dilation of the aorta that is prone to rupture with a high rate of mortality. While diameter is the main risk factor for rupture assessment, it has been shown that the peak wall stress from finite element (FE) simulations may contribute to refinement of clinical decisions. In FE simulations, the intraluminal boundary condition is a single-phase blood flow that interacts with the thoracic aorta (TA). However, the blood is consisted of red blood cells (RBCs), white blood cells (WBCs), and plasma that interacts with the TA wall, so it may affect the resultant stresses and strains in the TA, as well as hemodynamics of the blood. METHODS In this study, discrete elements were distributed in the TA lumen to represent the blood components and mechanically coupled using fluid-structure interaction (FSI). Healthy and aneurysmal human TA tissues were subjected to axial and circumferential tensile loadings, and the hyperelastic mechanical properties were assigned to the TA and ATAA FE models. RESULTS The ATAA showed larger tensile and shear stresses but smaller fluid velocity compared to the ATA. The blood components experienced smaller shear stress in interaction with the ATAA wall compared to TA. The computational fluid dynamics showed smaller blood velocity and wall shear stress compared to the FSI. CONCLUSIONS This study is a first proof of concept, and future investigations will aim at validating the novel methodology to derive a more reliable ATAA rupture risk assessment considering the interaction of the blood components with the TA wall.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahdi Morshedi
- Department of Surgery, Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Majid Mafi
- Biomedical Engineering Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
22
|
Leterrier C, Pullarkat PA. Mechanical role of the submembrane spectrin scaffold in red blood cells and neurons. J Cell Sci 2022; 135:276327. [PMID: 35972759 DOI: 10.1242/jcs.259356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrins are large, evolutionarily well-conserved proteins that form highly organized scaffolds on the inner surface of eukaryotic cells. Their organization in different cell types or cellular compartments helps cells withstand mechanical challenges with unique strategies depending on the cell type. This Review discusses our understanding of the mechanical properties of spectrins, their very distinct organization in red blood cells and neurons as two examples, and the contribution of the scaffolds they form to the mechanical properties of these cells.
Collapse
Affiliation(s)
- Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR 7051, NeuroCyto, Marseille 13005, France
| | | |
Collapse
|
23
|
Lu T, Lee CH, Anvari B. Morphological Characteristics, Hemoglobin Content, and Membrane Mechanical Properties of Red Blood Cell Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18219-18232. [PMID: 35417121 PMCID: PMC9926936 DOI: 10.1021/acsami.2c03472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Red blood cell (RBC)-based systems are under extensive development as platforms for the delivery of various biomedical agents. While the importance of the membrane biochemical characteristics in relation to circulation kinetics of RBC delivery systems has been recognized, the membrane mechanical properties of such carriers have not been extensively studied. Using optical methods in conjunction with image analysis and mechanical modeling, we have quantified the morphological and membrane mechanical characteristics of RBC-derived microparticles containing the near-infrared cargo indocyanine green (ICG). We find that these particles have a significantly lower surface area, volume, and deformability as compared to normal RBCs. The residual hemoglobin has a spatially distorted distribution in the particles. The membrane bending modulus of the particles is about twofold higher as compared to normal RBCs and exhibits greater resistance to flow. The induced increase in the viscous characteristics of the membrane is dominant over the elastic and entropic effects of ICG. Our results suggest that changes to the membrane mechanical properties are a result of impaired membrane-cytoskeleton attachment in these particles. We provide a mechanistic explanation to suggest that the compromised membrane-cytoskeleton attachment and altered membrane compositional and structural asymmetry induce curvature changes to the membrane, resulting in mechanical remodeling of the membrane. These findings highlight the importance of membrane mechanical properties as an important criterion in the design and engineering of future generations of RBC-based delivery systems to achieve prolonged circulation.
Collapse
Affiliation(s)
- Thompson Lu
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
24
|
Matthews K, Lamoureux ES, Myrand-Lapierre ME, Duffy SP, Ma H. Technologies for measuring red blood cell deformability. LAB ON A CHIP 2022; 22:1254-1274. [PMID: 35266475 DOI: 10.1039/d1lc01058a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human red blood cells (RBCs) are approximately 8 μm in diameter, but must repeatedly deform through capillaries as small as 2 μm in order to deliver oxygen to all parts of the body. The loss of this capability is associated with the pathology of many diseases, and is therefore a potential biomarker for disease status and treatment efficacy. Measuring RBC deformability is a difficult problem because of the minute forces (∼pN) that must be exerted on these cells, as well as the requirements for throughput and multiplexing. The development of technologies for measuring RBC deformability date back to the 1960s with the development of micropipette aspiration, ektacytometry, and the cell transit analyzer. In the past 10 years, significant progress has been made using microfluidics by leveraging the ability to precisely control fluid flow through microstructures at the size scale of individual RBCs. These technologies have now surpassed traditional methods in terms of sensitivity, throughput, consistency, and ease of use. As a result, these efforts are beginning to move beyond feasibility studies and into applications to enable biomedical discoveries. In this review, we provide an overview of both traditional and microfluidic techniques for measuring RBC deformability. We discuss the capabilities of each technique and compare their sensitivity, throughput, and robustness in measuring bulk and single-cell RBC deformability. Finally, we discuss how these tools could be used to measure changes in RBC deformability in the context of various applications including pathologies caused by malaria and hemoglobinopathies, as well as degradation during storage in blood bags prior to blood transfusions.
Collapse
Affiliation(s)
- Kerryn Matthews
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Erik S Lamoureux
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marie-Eve Myrand-Lapierre
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- British Columbia Institute of Technology, Vancouver, BC, Canada
| | - Hongshen Ma
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
25
|
Red Blood Cell Morphodynamics in Patients with Polycythemia Vera and Stroke. Int J Mol Sci 2022; 23:ijms23042247. [PMID: 35216363 PMCID: PMC8880197 DOI: 10.3390/ijms23042247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Polycythemia vera (PV) is a Ph-negative myeloproliferative neoplasm (MPN) which is characterized by erythrocytosis and a high incidence of thrombotic complications, including stroke. The study aimed to evaluate red blood cell (RBC) morphodynamic properties in PV patients and their possible association with stroke. We enrolled 48 patients with PV in this cross-sectional study, 13 of which have a history of ischemic stroke. The control group consisted of 90 healthy subjects. RBC deformability and aggregation analysis were performed using a laser-assisted optical rotational red cell analyzer. The following parameters were calculated: aggregation amplitude (Amp), RBC rouleaux formation time constant (Tf), time of formation of three-dimensional aggregates (Ts), aggregation index (AI), rate of complete disaggregation (y-dis), and the maximal elongation of RBC (EImax). Statistical analysis was performed with the R programming language. There were significant differences in RBCs morphodynamics features between patients with PV and the control group. Lower EImax (0.47 (0.44; 0.51) vs. 0.51 (0.47; 0.54), p < 0.001) and γ-dis (100 (100; 140) vs. 140 (106; 188) s−1, p < 0.001) along with higher amplitude (10.1 (8.6; 12.2) vs. 7.7 (6.6; 9.2), p < 0.001) was seen in patients with PV compared with control. A statistically significant difference between PV patients with and without stroke in aggregation amplitude was found (p = 0.03). A logistic regression model for stroke was built based on RBC morphodynamics which performed reasonably well (p = 0.01). RBC alterations may be associated with overt cerebrovascular disease in PV, suggesting a possible link between erythrocyte morphodynamics and increased risk of stroke.
Collapse
|
26
|
Xie Y, Liu X. Multifunctional manipulation of red blood cells using optical tweezers. JOURNAL OF BIOPHOTONICS 2022; 15:e202100315. [PMID: 34773382 DOI: 10.1002/jbio.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Serving as natural vehicles to deliver oxygen throughout the whole body, red blood cells (RBCs) have been regarded as important indicators for biomedical analysis and clinical diagnosis. Various diseases can be induced due to the dysfunction of RBCs. Hence, a flexible tool is required to perform precise manipulation and quantitative characterization of their physiological mechanisms and viscoelastic properties. Optical tweezers have emerged as potential candidates due to their noncontact manipulation and femtonewton-precision measurements. This review aimed to highlight the recent advances in the multifunctional manipulation of RBCs using optical tweezers, including controllable deformation, dynamic stretching, RBC aggregation, blood separation and Raman characterization. Further, great attentions have been focused on the precise assembly of functional biophotonics devices with trapped RBCs, and a brief overview was offered for the growing interests to manipulate RBCs in vivo.
Collapse
Affiliation(s)
- Yanzheng Xie
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Lazarova E, Gulbis B. Influence of diabetes and hypercholesterolemia on laboratory methods for hereditary spherocytosis diagnosis. J Clin Lab Anal 2022; 36:e24248. [PMID: 35080062 PMCID: PMC8906011 DOI: 10.1002/jcla.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/05/2021] [Accepted: 12/18/2021] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Hereditary spherocytosis (HS) is characterized by decreased erythrocyte deformability resulting in hemolytic anemia. This is a heterogeneous disease regarding underlying protein deficiency, disease severity, age at diagnosis and clinical course. Although largely considered as pediatric disease, HS could be initially diagnosed also in elder patients as a result of gallstones or splenomegaly fortuitous finding. Concurrently, common adulthood metabolic disorders like diabetes or dyslipidemia are also known to impair RBC rheology and deformability. Therefore, we aimed to investigate if these diseases affect the screening and diagnostic tools used for HS diagnosis. METHODS We applied our workflow for HS diagnosis on 95 pathological samples: 29 patients with diabetes, 20 with hypercholesterolemia, 17 with dyslipidemia, 6 with hypertriglyceridemia, 23 with metabolic syndrome (MS). Thus, a total of 73 samples were analyzed by automated reticulocyte analysis, 52 by cryohemolysis test, and 41 by ektacytometry osmoscan analysis as we used two out of the three tests for each individual sample. RESULTS Applying our screening algorithm based on automated reticulocyte indices, a total of 4 samples (4.2%): one sample (5%) from the diabetes group and three samples (16.7%) from the MS group, positioned into the HS zone. However, no significant difference was found between any of the pathological groups and the controls for the cryohemolysis test or the osmoscan. CONCLUSION While diabetes and hypercholesterolemia are pathologic conditions known to present with decreased erythrocyte deformability and disturbed rheology, their possible concomitant presence with HS would not interfere with the screening and confirmatory laboratory methods.
Collapse
Affiliation(s)
- Elena Lazarova
- Laboratory of Hereditary RBC pathologies, Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles- Universitair laboratorium Brussel, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Béatrice Gulbis
- Laboratory of Hereditary RBC pathologies, Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles- Universitair laboratorium Brussel, Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
28
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
McBurney MI, Tintle NL, Harris WS. Omega-3 index is directly associated with a healthy red blood cell distribution width. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102376. [PMID: 34839221 DOI: 10.1016/j.plefa.2021.102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Low red blood cell (RBC) membrane content of EPA and DHA, i.e., the omega-3 index (O3I), and elevated RBC distribution width (RDW) are risk factors for all-cause mortality. O3I and RDW are related with membrane fluidity and deformability. Our objective was to determine if there is a relationship between O3I and RDW in healthy adults. Subjects without inflammation or anemia, and with values for O3I, RDW, high-sensitivity C-reactive protein (CRP), body mass index (BMI), age and sex were identified (n = 25,485) from a clinical laboratory dataset of > 45,000 individuals. RDW was inversely associated with O3I in both sexes before and after (both p < 0.00001) adjusting models for sex, age, BMI and CRP. Stratification by sex revealed a sex-O3I interaction with the RDW-O3I slope (p < 0.00066) being especially steep in females with O3I ≤ 5.6%. In healthy adults of both sexes, the data suggested that an O3I of > 5.6% may help maintain normal RBC structural and functional integrity.
Collapse
Affiliation(s)
- Michael I McBurney
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, United States of America.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL 60612, United States of America
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD 57106, United States of America; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, United States of America
| |
Collapse
|
30
|
Besedina NA, Skverchinskaya EA, Ivanov AS, Kotlyar KP, Morozov IA, Filatov NA, Mindukshev IV, Bukatin AS. Microfluidic Characterization of Red Blood Cells Microcirculation under Oxidative Stress. Cells 2021; 10:cells10123552. [PMID: 34944060 PMCID: PMC8700079 DOI: 10.3390/cells10123552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Microcirculation is one of the basic functional processes where the main gas exchange between red blood cells (RBCs) and surrounding tissues occurs. It is greatly influenced by the shape and deformability of RBCs, which can be affected by oxidative stress induced by different drugs and diseases leading to anemia. Here we investigated how in vitro microfluidic characterization of RBCs transit velocity in microcapillaries can indicate cells damage and its correlation with clinical hematological analysis. For this purpose, we compared an SU-8 mold with an Si-etched mold for fabrication of PDMS microfluidic devices and quantitatively figured out that oxidative stress induced by tert-Butyl hydroperoxide splits all RBCs into two subpopulations of normal and slow cells according to their transit velocity. Obtained results agree with the hematological analysis showing that such changes in RBCs velocities are due to violations of shape, volume, and increased heterogeneity of the cells. These data show that characterization of RBCs transport in microfluidic devices can directly reveal violations of microcirculation caused by oxidative stress. Therefore, it can be used for characterization of the ability of RBCs to move in microcapillaries, estimating possible side effects of cancer chemotherapy, and predicting the risk of anemia.
Collapse
Affiliation(s)
- Nadezhda A. Besedina
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
| | - Elisaveta A. Skverchinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint-Petersburg, Russia; (E.A.S.); (I.V.M.)
| | - Alexander S. Ivanov
- Institute of Physics and Mechanics, Peter the Great Saint-Petersburg Polytechnic University, 195251 Saint-Petersburg, Russia;
| | - Konstantin P. Kotlyar
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
- Institute for Analytical Instrumentation of the RAS, 190103 Saint-Petersburg, Russia
| | - Ivan A. Morozov
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
| | - Nikita A. Filatov
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
| | - Igor V. Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint-Petersburg, Russia; (E.A.S.); (I.V.M.)
| | - Anton S. Bukatin
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
- Institute for Analytical Instrumentation of the RAS, 190103 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
31
|
Lopes R, Costa M, Ferreira M, Gameiro P, Fernandes S, Catarino C, Santos-Silva A, Paiva-Martins F. Caffeic acid phenolipids in the protection of cell membranes from oxidative injuries. Interaction with the membrane phospholipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183727. [PMID: 34400139 DOI: 10.1016/j.bbamem.2021.183727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
Caffeic acid (CA) has demonstrated a strong intracellular antioxidant ability by scavenging ROS, contributing to the maintenance of cell membrane structural integrity and to reduce oxidative injuries in other cell components. Nevertheless, caffeic acid has limited usage, due to its hydrophilic character. In this work, the introduction of alkyl chains in the caffeic acid molecule by esterification (methyl - C1, ethyl - C2, butyl - C4, hexyl - C6, octyl - C8 and hexadecyl - C16), significantly increased its lipophilicity. All caffeates tested showed a much higher protective activity than caffeic acid against red blood cells (RBCs) AAPH-induced oxidative stress; this protection was heavily dependent on the length of the alkyl chain of the esters, and on their concentration. At 2.5 and 5 μM, the more lipophilic compounds (C8 and C16) showed a remarkable antioxidant activity, inhibiting hemolysis; probably, their better location within the membrane leads to a better antioxidative protection; however, at 50 μM, the more hydrophilic compounds (C1-C4) showed a better activity against hemolysis than the more lipophilic ones (C8-C16). At this higher concentration, the better interaction of the more lipophilic compounds with the membrane seems to cause changes in RBC membrane fluidity, disturbing membrane integrity. Our data show that the antioxidant activity of these compounds could play an important role for the protection of different tissues and organs, by protecting cell membranes from oxidative injuries.
Collapse
Affiliation(s)
- Rafaela Lopes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Mariana Ferreira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Paula Gameiro
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Sara Fernandes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Cristina Catarino
- REQUIMTE/UCIBIO, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Alice Santos-Silva
- REQUIMTE/UCIBIO, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, Porto, Portugal.
| |
Collapse
|
32
|
Qiang Y, Liu J, Dao M, Du E. In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia. LAB ON A CHIP 2021; 21:3458-3470. [PMID: 34378625 PMCID: PMC8440480 DOI: 10.1039/d1lc00598g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that alone can weaken cell mechanical deformability. The effects of cyclic hypoxia on cellular biomechanics have yet to be fully investigated. As the oxygen affinity of hemoglobin plays a key role in the biological function and mechanical performance of RBCs, the repeated transitions of hemoglobin between its R (high oxygen tension) and T (low oxygen tension) states may impact their mechanical behavior. The present study focuses on developing a novel microfluidic-based assay for characterization of the effects of cyclic hypoxia on cell biomechanics. The capability of this assay is demonstrated by a longitudinal study of individual RBCs in health and sickle cell disease subjected to cyclic hypoxia conditions of various durations and levels of low oxygen tension. The viscoelastic properties of cell membranes are extracted from tensile stretching and relaxation processes of RBCs induced by the electrodeformation technique. Results demonstrate that cyclic hypoxia alone can significantly reduce cell deformability, similar to the fatigue damage accumulated through cyclic mechanical loading. RBCs affected by sickle cell disease are less deformable (significantly higher membrane shear modulus and viscosity) than normal RBCs. The fatigue resistance of sickle RBCs to the cyclic hypoxia challenge is significantly inferior to that of normal RBCs, and this trend is more significant in mature erythrocytes of sickle cells. When the oxygen affinity of sickle hemoglobin is enhanced by anti-sickling drug treatment of 5-hydroxymethyl-2-furfural (5-HMF), sickle RBCs show ameliorated resistance to fatigue damage induced by cyclic hypoxia. These results indicate an important biophysical mechanism underlying RBC senescence in which the cyclic hypoxia challenge alone can lead to mechanical degradation of the RBC membrane. We envision that the application of this assay can be further extended to RBCs in other blood diseases and other cell types.
Collapse
Affiliation(s)
- Yuhao Qiang
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd., Boca Raton, Florida, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts, USA.
| | - Jia Liu
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd., Boca Raton, Florida, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts, USA.
| | - E Du
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd., Boca Raton, Florida, USA.
| |
Collapse
|
33
|
López-Canizales AM, Angulo-Molina A, Garibay-Escobar A, Silva-Campa E, Mendez-Rojas MA, Santacruz-Gómez K, Acosta-Elías M, Castañeda-Medina B, Soto-Puebla D, Álvarez-Bajo O, Burgara-Estrella A, Pedroza-Montero M. Nanoscale Changes on RBC Membrane Induced by Storage and Ionizing Radiation: A Mini-Review. Front Physiol 2021; 12:669455. [PMID: 34149450 PMCID: PMC8213202 DOI: 10.3389/fphys.2021.669455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
The storage lesions and the irradiation of blood cellular components for medical procedures in blood banks are events that may induce nanochanges in the membrane of red blood cells (RBCs). Alterations, such as the formation of pores and vesicles, reduce flexibility and compromise the overall erythrocyte integrity. This review discusses the alterations on erythrocytic lipid membrane bilayer through their characterization by confocal scanning microscopy, Raman, scanning electron microscopy, and atomic force microscopy techniques. The interrelated experimental results may address and shed light on the correlation of biomechanical and biochemical transformations induced in the membrane and cytoskeleton of stored and gamma-irradiated RBC. To highlight the main advantages of combining these experimental techniques simultaneously or sequentially, we discuss how those outcomes observed at micro- and nanoscale cell levels are useful as biomarkers of cell aging and storage damage.
Collapse
Affiliation(s)
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Miguel A. Mendez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas, Puebla, Mexico
| | | | - Mónica Acosta-Elías
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | - Diego Soto-Puebla
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Osiris Álvarez-Bajo
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | |
Collapse
|
34
|
Rahman MH, Wong CHN, Lee MM, Chan MK, Ho YP. Efficient encapsulation of functional proteins into erythrocytes by controlled shear-mediated membrane deformation. LAB ON A CHIP 2021; 21:2121-2128. [PMID: 34002198 DOI: 10.1039/d0lc01077d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Red blood cells (RBCs) are attractive carriers of biomolecular payloads due to their biocompatibility and the ability to shelter their encapsulated cargo. Commonly employed strategies to encapsulate payloads into RBCs, such as hypotonic shock, membrane fusion or electroporation, often suffer from low throughput and unrecoverable membrane impairment. This work describes an investigation of a method to encapsulate protein payloads into RBCs by controlling membrane deformation either transiently or extendedly in a microfluidic channel. Under the optimized conditions, the loading efficiency of enhanced green fluorescent protein into mouse RBCs increased was about 2.5- and 4-fold compared to that with osmotic entrapment using transient and extended deformation, respectively. Significantly, mouse RBCs loaded with human arginase exhibit higher enzymatic activity and membrane integrity compared to their counterparts loaded by osmotic entrapment. These features together with the fact that this shear-mediated encapsulation strategy allows loading with physiological buffers highlight the key advantages of this approach compared to traditional osmotic entrapment.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. and Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chung Hong Nathaniel Wong
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Marianne M Lee
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Michael K Chan
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. and Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
35
|
Turpin C, Catan A, Meilhac O, Bourdon E, Canonne-Hergaux F, Rondeau P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int J Mol Sci 2021; 22:ijms22115843. [PMID: 34072544 PMCID: PMC8198892 DOI: 10.3390/ijms22115843] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.
Collapse
Affiliation(s)
- Chloé Turpin
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Aurélie Catan
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Centre Hospitalier Universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | | | - Philippe Rondeau
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Correspondence: ; Tel.: +262(0)-2-62-93-88-43; Fax: +262-(0)-2-62-93-88-01
| |
Collapse
|
36
|
Briole A, Podgorski T, Abou B. Molecular rotors as intracellular probes of red blood cell stiffness. SOFT MATTER 2021; 17:4525-4537. [PMID: 33949619 DOI: 10.1039/d1sm00321f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The deformability of red blood cells is an essential parameter that controls the rheology of blood as well as its circulation in the body. Characterizing the rigidity of the cells and their heterogeneity in a blood sample is thus a key point in the understanding of occlusive phenomena, particularly in the case of erythrocytic diseases in which healthy cells coexist with pathological cells. However, measuring intracellular rheology in small biological compartments requires the development of specific techniques. We propose a technique based on molecular rotors - viscosity-sensitive fluorescent probes - to evaluate the above key point. DASPI molecular rotor has been identified with spectral fluorescence properties decoupled from those of hemoglobin, the main component of the cytosol. After validation of the rotor as a viscosity probe in model fluids, we showed by confocal microscopy that, in addition to binding to the membrane, the rotor penetrates spontaneously and uniformly into red blood cells. Experiments on red blood cells whose rigidity is varied with temperature, show that molecular rotors can detect variations in their overall rigidity. A simple model allowed us to separate the contribution of the cytosol from that of the membrane, allowing a qualitative determination of the variation of cytosol viscosity with temperature, consistent with independent measurements of the viscosity of hemoglobin solutions. Our experiments show that the rotor can be used to study the intracellular rheology of red blood cells at the cellular level, as well as the heterogeneity of this stiffness in a blood sample. This opens up new possibilities for biomedical applications, diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Alice Briole
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS - Université de Paris, 75013 Paris, France.
| | - Thomas Podgorski
- Laboratoire Rhéologie et Procédés, UMR 5520 CNRS-UGA-G.INP - Domaine Universitaire, BP 53 38041 Grenoble Cedex 9, France.
| | - Bérengère Abou
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS - Université de Paris, 75013 Paris, France.
| |
Collapse
|
37
|
Gutierrez M, Shamoun M, Seu KG, Tanski T, Kalfa TA, Eniola-Adefeso O. Characterizing bulk rigidity of rigid red blood cell populations in sickle-cell disease patients. Sci Rep 2021; 11:7909. [PMID: 33846383 PMCID: PMC8041827 DOI: 10.1038/s41598-021-86582-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/11/2021] [Indexed: 01/25/2023] Open
Abstract
In this work, we utilized a parameterization model of ektacytometry to quantify the bulk rigidity of the rigid red blood cell (RBC) population in sickle cell disease (SCD) patients. Current ektacytometry techniques implement laser diffraction viscometry to estimate the RBC deformability in a whole blood sample. However, the diffraction measurement is an average of all cells present in the measured sample. By coupling an existing parameterization model of ektacytometry to an artificially rigid RBC model, we formulated an innovative system for estimating the average rigidity of the rigid RBC population in SCD blood. We demonstrated that this method could more accurately determine the bulk stiffness of the rigid RBC populations. This information could potentially help develop the ektacytometry technique as a tool for assessing disease severity in SCD patients, offering novel insights into the disease pathology and treatment.
Collapse
Affiliation(s)
- Mario Gutierrez
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark Shamoun
- Department of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katie Giger Seu
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tyler Tanski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodosia A Kalfa
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Bernecker C, Lima MARBF, Ciubotaru CD, Schlenke P, Dorn I, Cojoc D. Biomechanics of Ex Vivo-Generated Red Blood Cells Investigated by Optical Tweezers and Digital Holographic Microscopy. Cells 2021; 10:552. [PMID: 33806520 PMCID: PMC7998599 DOI: 10.3390/cells10030552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ex vivo-generated red blood cells are a promising resource for future safe blood products, manufactured independently of voluntary blood donations. The physiological process of terminal maturation from spheroid reticulocytes to biconcave erythrocytes has not been accomplished yet. A better biomechanical characterization of cultured red blood cells (cRBCs) will be of utmost interest for manufacturer approval and therapeutic application. Here, we introduce a novel optical tweezer (OT) approach to measure the deformation and elasticity of single cells trapped away from the coverslip. To investigate membrane properties dependent on membrane lipid content, two culture conditions of cRBCs were investigated, cRBCPlasma with plasma and cRBCHPL supplemented with human platelet lysate. Biomechanical characterization of cells under optical forces proves the similar features of native RBCs and cRBCHPL, and different characteristics for cRBCPlasma. To confirm these results, we also applied a second technique, digital holographic microscopy (DHM), for cells laid on the surface. OT and DHM provided related results in terms of cell deformation and membrane fluctuations, allowing a reliable discrimination between cultured and native red blood cells. The two techniques are compared and discussed in terms of application and complementarity.
Collapse
Affiliation(s)
- Claudia Bernecker
- Clinical Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (P.S.); (I.D.)
| | - Maria Augusta R. B. F. Lima
- CNR-IOM, National Research Council of Italy—Institute of Materials, Area Science Park, 34149 Trieste, Italy; (M.A.R.B.F.L.); (C.D.C.)
- Physics Department, University of Trieste, 34127 Trieste, Italy
| | - Catalin D. Ciubotaru
- CNR-IOM, National Research Council of Italy—Institute of Materials, Area Science Park, 34149 Trieste, Italy; (M.A.R.B.F.L.); (C.D.C.)
| | - Peter Schlenke
- Clinical Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (P.S.); (I.D.)
| | - Isabel Dorn
- Clinical Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (P.S.); (I.D.)
| | - Dan Cojoc
- CNR-IOM, National Research Council of Italy—Institute of Materials, Area Science Park, 34149 Trieste, Italy; (M.A.R.B.F.L.); (C.D.C.)
| |
Collapse
|
39
|
Venugopalan PL, Ghosh A. Investigating the Dynamics of the Magnetic Micromotors in Human Blood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:289-296. [PMID: 33351633 DOI: 10.1021/acs.langmuir.0c02881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field of micromotors has been growing exponentially with increased emphasis on biomedical applications, with various in vivo demonstrations of targeted drug delivery, biosensing, and gene delivery, among others. In parallel, these micromotors have been recently used for probing the rheological properties of both intra- and extracellular environments. Here, we demonstrate the application of magnetic micromotors for investigation of rheological properties of human blood. While there are several techniques to sense mechanical properties of blood, such as deformability of the red blood cells, this is the first experimental observation of using micromotors for these biophysical investigations. We hope that this will lead to a better understanding of the nature of interactions of micromotors with biological systems and expand the scope of micromotors for probing other related systems, such as interstitial fluids and other complex biological fluids.
Collapse
Affiliation(s)
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
40
|
Effect of Red Blood Cell Aging In Vivo on Their Aggregation Properties In Vitro: Measurements with Laser Tweezers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Red blood cell (RBC) aggregation highly influences hemorheology and blood microcirculation in the human body. The aggregation properties of RBCs can vary due to numerous factors, including RBC age. The aim of this work was to estimate in vitro the differences in the RBC aggregation properties of different RBC age populations in single-cell experiments using laser tweezers. RBCs from five healthy volunteers were separated into four subpopulations by Percoll density gradient centrifugation. Each subpopulation of the RBC was separately resuspended in autologous plasma or dextran 70 kDa (50 mg/mL). The aggregation force between the single cells was measured with holographic laser tweezers. The obtained data demonstrated an enhancement of RBC aggregation force in doublets with age: the older the cells, the higher the aggregation force. The obtained data revealed the differences between the aggregation and aggregability of RBC in dependence of the RBC in vivo age.
Collapse
|
41
|
Dybas J, Bulat K, Blat A, Mohaissen T, Wajda A, Mardyla M, Kaczmarska M, Franczyk-Zarow M, Malek K, Chlopicki S, Marzec KM. Age-related and atherosclerosis-related erythropathy in ApoE/LDLR -/- mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165972. [PMID: 32949768 DOI: 10.1016/j.bbadis.2020.165972] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 10/24/2022]
Abstract
In this work we applied a multimodal approach to define the age- and atherosclerosis-related biochemical and functional alterations in red blood cells (RBCs) in ApoE/LDLR-/- mice. Our results revealed that age-related changes in RBCs, such as decreases in RBC deformability and mean height, were more pronounced in ApoE/LDLR-/- mice than in age-matched control mice (C57BL/6J). The decreases in phospholipid content and level of lipid unsaturation were accompanied by an increase in cholesterol esters and esterified lipids in RBC membranes in aged C57BL/6J mice. The age-related decrease in the phospholipid content was more pronounced in ApoE/LDLR-/- mice. In contrast, the increase in the total lipid content in RBC membranes occurred only in ApoE/LDLR-/- mice with advanced atherosclerosis. The age-related alterations also included a decrease in the ratio of turns to α-helices in the secondary structure of hemoglobin (Hb) inside intact RBCs. On the other hand, an increase in the ratio of unordered conformations to α-helices of Hb was observed only in ApoE/LDLR-/- mice and occurred already at the age of 5-weeks. This was related to hypercholesterolemia and resulted in an increased oxygen-carrying capacity. In conclusion, progressive mechanical and functional alterations of RBCs in aged ApoE/LDLR-/- mice were more pronounced than in age-matched C57BL/6J mice. Although, several biochemical changes in RBCs in aged ApoE/LDLR-/- mice recapitulated age-dependent changes observed in control mice, some biochemical features of RBC membranes attributed to hypercholesterolemia were distinct and could contribute to the accelerated deterioration of RBC function in ApoE/LDLR-/- mice.
Collapse
Affiliation(s)
- Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Aneta Blat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Krakow, Poland
| | - Aleksandra Wajda
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Mateusz Mardyla
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Jagiellonian University, University School of Physical Education in Krakow, 78 Jana Pawła II St., 31-571 Krakow, Poland
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Magdalena Franczyk-Zarow
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531 Krakow, Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland.
| |
Collapse
|
42
|
Saadat A, Huyke DA, Oyarzun DI, Escobar PV, Øvreeide IH, Shaqfeh ESG, Santiago JG. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells. LAB ON A CHIP 2020; 20:2927-2936. [PMID: 32648561 DOI: 10.1039/d0lc00283f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reduced deformability of red blood cells (RBCs) can affect the hemodynamics of the microcirculation and reduce oxygen transport efficiency. It is also well known that reduced RBC deformability is a signature of various physical disorders, including sepsis, and that the primary determinant of RBC deformability is the membrane shear modulus. To measure the distribution of an individual's RBC shear modulus with high throughput, we a) developed a high-fidelity computational model of RBCs in confined microchannels to inform design decisions; b) created a novel experimental system combining microfluidic flow, imaging, and image analysis; and c) performed automated comparisons between measured quantities and numerical predictions to extract quantitative measures of the RBC shear modulus for each of thousands of cells. We applied our computational simulation platform to construct the appropriate deformability figure(s) of merit to quantify RBC stiffness based on an experimentally measured, steady-state cell shape in flow through a microchannel. In particular, we determined a shape parameter based on the second moment of the cell shape that is sensitive to the changes in the membrane stiffness and cell size. We then conducted microfluidic experiments and developed custom automated image processing codes to identify and track the position and shape of individual RBCs within micro-constrictions. The fabricated microchannels include a square cross-section imaging region (7 by 7 μm) and we applied order 10 kPa pressure differences to induce order 10 mm s-1 cell velocities. The combination of modeling, microfluidics, and imaging enables, for the first time, quantitative measurement of the shear moduli of thousands of RBCs in human blood samples. We demonstrate the high-throughput features by sensitive quantification of the changes in the distribution of RBC stiffness with aging. This combined measurement and computational platform is ultimately intended to diagnose blood cell disorders in patients.
Collapse
Affiliation(s)
- Amir Saadat
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Stephanou PS, Tsimouri IC. A constitutive hemorheological model addressing the deformability of red blood cells in Ringer solutions. SOFT MATTER 2020; 16:7585-7597. [PMID: 32812628 DOI: 10.1039/d0sm00974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Red blood cells (RBCs) can deform substantially, a feature that allows them to pass through capillaries that are narrower than the largest dimension of an undeformed RBC. Clearly, to understand how they transport through our microcirculation, we need a constitutive model able of accurately predicting the deformability of RBCs, which seems currently unavailable. To address this void, we herein propose a new model that accounts for the deformability of RBCs by modeling them as deformed droplets with a constant volume. To make sure the model is by construction thermodynamically admissible we employ non-equilibrium thermodynamics as our tool. Since RBCs are merely droplets with the inner fluid exhibiting a higher viscosity than that of the outer one, RBCs are described by a conformation tensor constrained to have a constant determinant (volume). The model predicts the second normal stress coefficient in steady-state simple shear flow to first shear thicken and then shear thin, which is an unexpected behavior; however, we cannot judge whether such a prediction is aphysical or not due to unavailable experimental rheological data in the literature. We show that the new model is capable of addressing the deformability of isolated (very low hematocrit) RBCs in simple shear and the shear viscosity of non-aggregating blood. As derived the model addresses only non-aggregating blood, but can very easily be generalized to account for aggregating blood.
Collapse
Affiliation(s)
- Pavlos S Stephanou
- Department of Chemical Engineering, Cyprus University of Technology, PO Box 50329, 3603 Limassol, Cyprus.
| | - Ioanna Ch Tsimouri
- Department of Materials, Polymer Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
44
|
Elias M, Dutoya A, Laborde A, Lecestre A, Montis C, Caselli L, Berti D, Lonetti B, Roux C, Joseph P. Microfluidic characterization of biomimetic membrane mechanics with an on-chip micropipette. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Man Y, Kucukal E, An R, Watson QD, Bosch J, Zimmerman PA, Little JA, Gurkan UA. Microfluidic assessment of red blood cell mediated microvascular occlusion. LAB ON A CHIP 2020; 20:2086-2099. [PMID: 32427268 PMCID: PMC7473457 DOI: 10.1039/d0lc00112k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Abnormal red blood cell (RBC) deformability contributes to hemolysis, thrombophilia, inflammation, and microvascular occlusion in various circulatory diseases. A quantitative and objective assessment of microvascular occlusion mediated by RBCs with abnormal deformability would provide valuable insights into disease pathogenesis and therapeutic strategies. To that end, we present a new functional microfluidic assay, OcclusionChip, which mimics two key architectural features of the capillary bed in the circulatory system. First, the embedded micropillar arrays within the microchannel form gradient microcapillaries, from 20 μm down to 4 μm, which mimic microcapillary networks. These precisely engineered microcapillaries retain RBCs with impaired deformability, such that stiffer RBCs occlude the wider upstream microcapillaries, while less stiff RBCs occlude the finer downstream microcapillaries. Second, the micropillar arrays are coupled with two side passageways, which mimic the arteriovenous anastomoses that act as shunts in the capillary bed. These side microfluidic anastomoses prevent microchannel blockage, and enable versatility and testing of clinical blood samples at near-physiologic hematocrit levels. Further, we define a new generalizable parameter, Occlusion Index (OI), which is an indicative index of RBC deformability and the associated microcapillary occlusion. We demonstrate the promise of OcclusionChip in diverse pathophysiological scenarios that result in impaired RBC deformability, including mercury toxin, storage lesion, end-stage renal disease, malaria, and sickle cell disease (SCD). Hydroxyurea therapy improves RBC deformability and increases fetal hemoglobin (HbF%) in some, but not all, treated patients with SCD. HbF% greater than 8.6% has been shown to improve clinical outcomes in SCD. We show that OI associates with HbF% in 16 subjects with SCD. Subjects with higher HbF levels (HbF > 8.6%) displayed significantly lower OI (0.88% ± 0.10%, N = 6) compared with those with lower HbF levels (HbF ≤ 8.6%) who displayed greater OI (3.18% ± 0.34%, N = 10, p < 0.001). Moreover, hypoxic OcclusionChip assay revealed a significant correlation between hypoxic OI and subject-specific sickle hemoglobin (HbS) level in SCD. OcclusionChip enables versatile in vitro assessment of microvascular occlusion mediated by RBCs in a wide range of clinical conditions. OI may serve as a new parameter to evaluate the efficacy of treatments improving RBC deformability, including hemoglobin modifying drugs, anti-sickling agents, and genetic therapies.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Silva JAX, Albertini AVP, Fonseca CSM, Silva DCN, Carvalho VCO, Lima VLM, Fontes A, Costa EVL, Nogueira RA. Biomechanical and biochemical investigation of erythrocytes in late stage human leptospirosis. ACTA ACUST UNITED AC 2020; 53:e9268. [PMID: 32578717 PMCID: PMC7307891 DOI: 10.1590/1414-431x20209268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
Abstract
Leptospirosis is a zoonotic disease caused by bacteria of the genus
Leptospira, which can cause lipid changes in the
erythrocyte membrane. Optical tweezers were used to characterize rheological
changes in erythrocytes from patients with leptospirosis in the late stage.
Biochemical methods were also used for quantification of plasma lipid,
erythrocyte membrane lipid, and evaluation of liver function. Our data showed
that the mean elastic constant of erythrocytes from patients with leptospirosis
was around 67% higher than the control (healthy individuals), indicating that
patient’s erythrocytes were less elastic. In individuals with leptospirosis,
several alterations in relation to control were observed in the plasma lipids,
however, in the erythrocyte membrane, only phosphatidylcholine showed a
significant difference compared to control, increasing around 41%. With respect
to the evaluation of liver function of individuals with leptospirosis, there was
a significant increase in levels of alanine transaminase (154%) and aspartate
transaminase (150%), whereas albumin was 43.8% lower than control (P<0.01).
The lecithin-cholesterol acyltransferase fractional activity was 3.6 times lower
in individuals with leptospirosis than in the healthy individuals (P<0.01).
The decrease of the erythrocyte elasticity may be related to the changes of
erythrocyte membrane phospholipids composition caused by disturbances that occur
during human leptospirosis, with phosphatidylcholine being a strong candidate in
the erythrocyte rheological changes.
Collapse
Affiliation(s)
- J A X Silva
- Laboratório de Biofísica Teórico-Experimental e Computacional, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil.,Centro de Apoio è Pesquisa, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil
| | - A V P Albertini
- Laboratório de Biofísica Teórico-Experimental e Computacional, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil.,Centro de Apoio è Pesquisa, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil
| | - C S M Fonseca
- Laboratório de Química e Metabolismo de Lipídios e Lipoproteínas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - D C N Silva
- Colegiado de Ciências Biológicas, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - V C O Carvalho
- Laboratório de Química e Metabolismo de Lipídios e Lipoproteínas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - V L M Lima
- Laboratório de Química e Metabolismo de Lipídios e Lipoproteínas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - A Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - E V L Costa
- Laboratório de Biofísica Teórico-Experimental e Computacional, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil.,Centro de Apoio è Pesquisa, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil
| | - R A Nogueira
- Laboratório de Biofísica Teórico-Experimental e Computacional, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil.,Centro de Apoio è Pesquisa, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brasil
| |
Collapse
|
47
|
Zhu R, Avsievich T, Popov A, Meglinski I. Optical Tweezers in Studies of Red Blood Cells. Cells 2020; 9:E545. [PMID: 32111018 PMCID: PMC7140472 DOI: 10.3390/cells9030545] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Optical tweezers (OTs) are innovative instruments utilized for the manipulation of microscopic biological objects of interest. Rapid improvements in precision and degree of freedom of multichannel and multifunctional OTs have ushered in a new era of studies in basic physical and chemical properties of living tissues and unknown biomechanics in biological processes. Nowadays, OTs are used extensively for studying living cells and have initiated far-reaching influence in various fundamental studies in life sciences. There is also a high potential for using OTs in haemorheology, investigations of blood microcirculation and the mutual interplay of blood cells. In fact, in spite of their great promise in the application of OTs-based approaches for the study of blood, cell formation and maturation in erythropoiesis have not been fully explored. In this review, the background of OTs, their state-of-the-art applications in exploring single-cell level characteristics and bio-rheological properties of mature red blood cells (RBCs) as well as the OTs-assisted studies on erythropoiesis are summarized and presented. The advance developments and future perspectives of the OTs' application in haemorheology both for fundamental and practical in-depth studies of RBCs formation, functional diagnostics and therapeutic needs are highlighted.
Collapse
Affiliation(s)
- Ruixue Zhu
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Tatiana Avsievich
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Alexey Popov
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), 115409 Moscow, Russia
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
48
|
Asaro RJ, Zhu Q. Vital erythrocyte phenomena: what can theory, modeling, and simulation offer? Biomech Model Mechanobiol 2020; 19:1361-1388. [DOI: 10.1007/s10237-020-01302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
49
|
Abstract
In mineral flotation, rheological problems have limited the efficient upgrading of low-grade and complex ores. Since pulp and froth rheology are deemed to play different roles in influencing the separation performance, in this paper, a brief review on pulp and froth rheology in flotation is provided, with an objective of developing a basic understanding of rheology in flotation. The essential variables that affect the rheology of a flotation pulp and froth are discussed. The methods for measuring pulp and froth rheology are presented. The correlations of pulp and froth rheological properties to flotation performance are reviewed. Strategies that are currently used to mitigate the deleterious effects of problematic ores in flotation are also provided for flotation optimization. Research gaps are also proposed to highlight the need of further exploration of flotation rheology in future.
Collapse
|
50
|
Balogh G, Chakraborty P, Dugmonits KN, Péter M, Végh AG, Vígh L, Hermesz E. Sustained maternal smoking-associated changes in the physico-chemical properties of fetal RBC membranes might serve as early markers for vascular comorbidities. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158615. [PMID: 31926297 DOI: 10.1016/j.bbalip.2020.158615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Maternal smoking-induced congenital heart and microvascular defects are closely associated with the impaired functioning of the in-utero feto-placental circulation system. Current groundbreaking facts revealed intimate crosstalk between circulating red blood cells (RBCs) and the vascular endothelium. Thus, RBCs have become the protagonists under varied pathological and adverse pro-oxidative cellular stress conditions. We isolated and screened fetal RBCs from the arterial cord blood of neonates, born to non-smoking (RBC-NS) and smoking mothers (RBC-S), assuming that parameters of fetal RBCs are blueprints of conditions experienced in-utero. Using atomic force microscopy and mass spectrometry-based shotgun lipidomics in the RBC-S population we revealed induced membrane stiffness, loss in intrinsic plastic activities and several abnormalities in their membrane-lipid composition, that could consequently result in perturbed hemodynamic flow movements. Altogether, these features are indicative of the outcome of neonatal microvascular complications and suggest unavailability for the potential rescue mechanism in cases of vascular endothelium impairment due to altered membrane integrity and rheological properties.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Payal Chakraborty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Krisztina N Dugmonits
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|