1
|
Medina Escobar A, Pringsheim T, Gautreau S, Rivera-Duarte JD, Amorelli G, Cornejo-Olivas M, Rossi M. Epidemiology of Huntington's Disease in Latin America: A Systematic Review and Meta-Analysis. Mov Disord 2024; 39:1907-1921. [PMID: 39044616 DOI: 10.1002/mds.29929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Latin America has played a crucial role in advancing our understanding of Huntington's disease (HD). However, previous global reviews include limited data from Latin America. It is possible that English-based medical search engines may not capture all the relevant studies. METHODS We searched databases in Spanish, Portuguese, and English. The names of every country in Latin America in English-based search engines were used to ensure we found any study that had molecular ascertainment and provided general epidemiological information or subpopulation data. Additionally, we contacted experts across the region. RESULTS The search strategy yielded 791 citations; 24 studies met inclusion criteria, representing 12 of 36 countries. The overall pooled prevalence was 0.64 per 100,000 (prediction interval, 0.06-7.22); for cluster regions, it was 54 per 100,000 (95% CI, 34.79-84.92); for juvenile HD, it was 8.7% (prediction interval, 5.12-14.35), and 5.9% (prediction interval, 2.72-13.42) for late-onset HD. The prevalence was higher for Mexico, Peru, and Brazil. However, there were no significant differences between Central America and the Caribbean versus South America. CONCLUSION The prevalence of HD appears to be similar across Latin America. However, we infer that our findings are underestimates, in part because of limited research and underdiagnosis of HD because of limited access to molecular testing and the availability of neurologists and movement disorders specialists. Future research should focus on identifying pathways to improve access to molecular testing and education and understanding differences among different ancestral groups in Latin America. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alex Medina Escobar
- Moncton Interdisciplinary Neurodegenerative Diseases Clinic, Horizon Health Network, Moncton, New Brunswick, Canada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Alberta, Canada
| | - Sylvia Gautreau
- Moncton Interdisciplinary Neurodegenerative Diseases Clinic, Horizon Health Network, Moncton, New Brunswick, Canada
| | - Jose D Rivera-Duarte
- Laboratorio de Hidrobiología, Departamento de Ecología y Recursos Naturales, Escuela de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Ciudad Universitaria, Tegucigalpa, Honduras
| | - Gabriel Amorelli
- The Ottawa Health Research Institute, Ottawa University, Ottawa, Ontario, Canada
| | - Mario Cornejo-Olivas
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Malco Rossi
- Servicio de Movimientos Anormales, Departamento de Neurología, FLENI, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Vadlamani N, Ibrahimli S, Khan FA, Castillo JA, Amaravadi KSS, Nalisetty P, Khan S. Efficacy and Safety of Tetrabenazine in Reducing Chorea and Improving Motor Function in Individuals With Huntington's Disease: A Systematic Review. Cureus 2024; 16:e71476. [PMID: 39544557 PMCID: PMC11560395 DOI: 10.7759/cureus.71476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that causes chorea and motor dysfunction due to a mutation in the Huntingtin (HTT) gene. Tetrabenazine (TBZ) is used to treat HD-related chorea, but its efficacy and safety require further investigation. This systematic review aims to assess the efficacy and safety of TBZ in reducing chorea and improving motor function in HD patients. A comprehensive search was conducted across multiple sources, including PubMed, PubMed Central, Cochrane Library, Wiley Library, and Google Scholar. Medical subject heading (MeSH) terms were used to enhance search precision. Narrative reviews, clinical practice guidelines, open-label trials, and observational studies were included. Data synthesis followed Cochrane's recommendations for narrative synthesis. Evidence from narrative reviews, clinical guidelines, and trials consistently supports TBZ's efficacy in reducing chorea and improving motor function in HD patients. However, potential side effects like sedation and depression have been noted. This review underscores TBZ's positive impact but emphasizes cautious consideration of associated risks, informing clinical management and further research directions.
Collapse
Affiliation(s)
- Nandini Vadlamani
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sabina Ibrahimli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farees Ahmad Khan
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jason A Castillo
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
3
|
Hwang YS, Jo S, Kim GH, Lee JY, Ryu HS, Oh E, Lee SH, Kim YS, Chung SJ. Clinical and Genetic Characteristics Associated With Survival Outcome in Late-Onset Huntington's Disease in South Korea. J Clin Neurol 2024; 20:394-401. [PMID: 38627228 PMCID: PMC11220345 DOI: 10.3988/jcn.2023.0329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE The onset of Huntington's disease (HD) usually occurs before the age of 50 years, and the median survival time from onset is 15 years. We investigated survival in patients with late-onset HD (LoHD) (age at onset ≥60 years) and the associations of the number of mutant CAG repeats and age at onset (AAO) with survival in patients with HD. METHODS Patients with genetically confirmed HD at six referral centers in South Korea between 2000 and 2020 were analyzed retrospectively. Baseline demographic, clinical, and genetic characteristics and the survival status as at December 2020 were collected. RESULTS Eighty-seven patients were included, comprising 26 with LoHD (AAO=68.77±5.91 years, mean±standard deviation; 40.54±1.53 mutant CAG repeats) and 61 with common-onset HD (CoHD) (AAO=44.12±8.61 years, 44.72±4.27 mutant CAG repeats). The ages at death were 77.78±7.46 and 53.72±10.86 years in patients with LoHD and CoHD, respectively (p<0.001). The estimated survival time was 15.21±2.49 years for all HD patients, and 10.74±1.95 and 16.15±2.82 years in patients with LoHD and CoHD, respectively. More mutant CAG repeats and higher AAO were associated with shorter survival (hazard ratio [HR]=1.05, 95% confidence interval [CI]=1.01-1.09, p=0.019; and HR=1.17, 95% CI=1.03-1.31, p=0.013; respectively) for all HD patients. The LoHD group showed no significant factors associated with survival after disease onset, whereas the number of mutant CAG repeats had a significant effect (HR=1.12, 95% CI=1.01-1.23, p=0.034) in the CoHD group. CONCLUSIONS Survival after disease onset was shorter in patients with LoHD than in those with CoHD. More mutant CAG repeats and higher AAO were associated with shorter survival in patients with HD.
Collapse
Affiliation(s)
- Yun Su Hwang
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetic Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University Medical College, Seoul, Korea
| | - Ho-Sung Ryu
- Department of Neurology, Kyungpook National University Hospital, Daegu, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
| | - Seung-Hwan Lee
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Korea
| | - Young Seo Kim
- Department of Neurology, Wonkwang University School of Medicine, Iksan, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Considine CM, Rossetti MA, Anderson K, Del Bene VA, Anderson SA, Celka AS, Edmondson MC, Sheese ALN, Piccolino A, Teixeira AL, Stout JC. Huntington study group's neuropsychology working group position on best practice recommendations for the clinical neuropsychological evaluation of patients with Huntington disease. Clin Neuropsychol 2024; 38:984-1006. [PMID: 37849335 DOI: 10.1080/13854046.2023.2267789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Objective: Neuropsychological evaluation is critical to detection and management of cognitive and neuropsychiatric changes associated with Huntington disease (HD). Accurate assessment of non-motor complications of HD is critical given the prominent impact on functional disability, frequently commensurate with or exceeding that of motor symptoms. The increasing emphasis on developing disease-modifying therapies targeting cognitive decline in HD requires consensus on clinical neuropsychological assessment methods. The Neuropsychology Working Group (NPWG) of the Huntington Study Group (HSG) sought to provide evidence and consensus-based, practical guidelines for the evaluation of cognitive and neuropsychiatric symptoms associated with HD. Method: The NPWG recruited a multi-disciplinary group of neuropsychologists, neurologists, and psychiatrists to inform best practices in assessing, diagnosing, and treating the non-motor symptoms in HD. A review was circulated among the NPWG, and in an iterative process informed by reviewed literature, best practices in neuropsychological evaluation of patients with HD were identified. Results: A brief review of the available literature and rational for a clinical consensus battery is offered. Conclusion: Clinical neuropsychologists are uniquely positioned to both detect and characterize the non-motor symptoms in HD, and further, provide neurologists and allied health professions with clinically meaningful information that impacts functional outcomes and quality of life. The NPWG provides guidance on best practices to clinical neuropsychologists in this statement. A companion paper operationalizing clinical application of previous research-based non-motor diagnostic criteria for HD is forthcoming, which also advises on non-motor symptom screening methods for the non-neuropsychologist working with HD.
Collapse
Affiliation(s)
- Ciaran M Considine
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Agustina Rossetti
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kendra Anderson
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sharlet A Anderson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Andrea S Celka
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | | | - Amelia L Nelson Sheese
- Department of Neurological Sciences, University of Nebraska Medical Center College of Medicine, Omaha, NE, USA
| | - Adam Piccolino
- Psychology, Piccolino Psychological Services, Burnsville, MN, USA
| | - Antonio L Teixeira
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, and School of Psychological Science, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
6
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
7
|
Kolachana S, Motwani K, Sakiani S. Gastrointestinal Hemorrhage and Diffuse Bowel Dilation in Huntington Disease. ACG Case Rep J 2024; 11:e01255. [PMID: 38179262 PMCID: PMC10766219 DOI: 10.14309/crj.0000000000001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition associated with pathologic involvement beyond the striatum including involvement of the autonomic nervous system. Bowel dysfunction is found in patients with HD, but the exact mechanism is poorly understood and not well reported. Patients may be affected with problems such as dysphagia, weight loss, nutritional deficiencies, esophagitis, and gastritis. Lower bowel symptoms are more prevalent with longer disease course. We present a case of a patient with late-stage HD who presents with severe esophagitis causing gastrointestinal hemorrhage, significant dysmotility including chronic dysphagia requiring gastrostomy tube, and chronic small bowel and colonic ileus.
Collapse
Affiliation(s)
- Sindhura Kolachana
- Department of Medicine, University of Maryland Medical Center, Baltimore, MD
| | - Kiran Motwani
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD
| | - Sasan Sakiani
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Considine CM, Rossetti MA, Del Bene VA, Anderson K, Anderson SA, Celka AS, Edmondson MC, Nelson‐Sheese AL, Piccolino A, Teixeira AL, Stout JC. Huntington Study Group's Neuropsychology Working Group: Implementing Non-Motor Diagnostic Criteria. Mov Disord Clin Pract 2023; 10:1714-1724. [PMID: 38094638 PMCID: PMC10715363 DOI: 10.1002/mdc3.13910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2024] Open
Abstract
Background The clinical diagnosis of manifest Huntington's disease (HD) relies on a high level of clinical confidence (99% confidence) of HD-consistent motor signs. Longitudinal data have reliably identified cognitive and behavioral dysfunction predating clinical motor diagnosis by up to 15 years. Reliance on motor signs to establish a diagnosis of HD increases risk of early misdiagnosis or delayed diagnosis. Clinical neuropsychologists are uniquely positioned to advise on the clinical application of the Movement Disorder Society Task Force's recently proposed non-motor diagnostic criteria for HD. Objectives To provide (1) a recommended clinical approach toward non-motor diagnostic criteria in persons with HD and facilitation of accurate diagnosis; (2) recommended practices for medical treatment providers to screen and longitudinally monitor non-motor signs of HD. Methods The Huntington Study Group re-established the Neuropsychology Working Group, then recruited a multi-disciplinary group of neuropsychologists, neurologists, and psychiatrists to conduct an unstructured literature review and discuss expert opinions on practice, to facilitate an informal consensus opinion to accomplish the objectives. Results The opinion and an example protocol for medical treatment providers to screen, monitor, and triage non-motor signs and symptoms of Huntington's disease is provided. Conclusions Clinical diagnosis of non-motor HD is empirically justified and clinically important. Screening and triage by non-neuropsychologist clinicians can aid in detecting and monitoring non-motor Huntington's disease manifestation. The Neuropsychology Working Group consensus advances good clinical practice, clinical research, and quality of life. A companion position paper presenting the details of our consensus opinion regarding evidence-based guidelines for neuropsychological practice is forthcoming.
Collapse
Affiliation(s)
- Ciaran M. Considine
- Department of NeurologyVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - M. Agustina Rossetti
- Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Victor A. Del Bene
- Department of NeurologyUniversity of Alabama at Birmingham Heersink School of MedicineBirminghamAlabamaUSA
| | - Kendra Anderson
- Department of Neurology, McGovern Medical School UT HealthThe University of Texas Health Science CenterHoustonTexasUSA
| | - Sharlet A. Anderson
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Andrea S. Celka
- Department of NeurologyUniversity of Alabama at Birmingham Heersink School of MedicineBirminghamAlabamaUSA
| | | | - Amelia L. Nelson‐Sheese
- Department of Neurological SciencesUniversity of Nebraska Medical Center College of MedicineOmahaNebraskaUSA
| | | | - Antonio L. Teixeira
- Department of Neurology, McGovern Medical School UT HealthThe University of Texas Health Science CenterHoustonTexasUSA
| | - Julie C. Stout
- Turner Institute for Brain and Mental Health, and School of Psychological ScienceMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Browning S, Holland S, Wellwood I, Bilney B. Spatiotemporal Gait Parameters in Adults With Premanifest and Manifest Huntington's Disease: A Systematic Review. J Mov Disord 2023; 16:307-320. [PMID: 37558234 PMCID: PMC10548085 DOI: 10.14802/jmd.23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/15/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE To systematically review and critically evaluate literature on spatiotemporal gait deviations in individuals with premanifest and manifest Huntington's Disease (HD) in comparison with healthy cohorts. METHODS We conducted a systematic review, guided by the Joanna Briggs Institute's Manual for Evidence Synthesis and pre-registered with the International Prospective Register of Systematic Reviews. Eight electronic databases were searched. Studies comparing spatiotemporal footstep parameters in adults with premanifest and manifest HD to healthy controls were screened, included and critically appraised by independent reviewers. Data on spatiotemporal gait changes and variability were extracted and synthesised. Meta-analysis was performed on gait speed, cadence, stride length and stride length variability measures. RESULTS We screened 2,721 studies, identified 1,245 studies and included 25 studies (total 1,088 participants). Sample sizes ranged from 14 to 96. Overall, the quality of the studies was assessed as good, but reporting of confounding factors was often unclear. Meta-analysis found spatiotemporal gait deviations in participants with HD compared to healthy controls, commencing in the premanifest stage. Individuals with premanifest HD walk significantly slower (-0.17 m/s; 95% confidence interval [CI] [-0.22, -0.13]), with reduced cadence (-6.63 steps/min; 95% CI [-10.62, -2.65]) and stride length (-0.09 m; 95% CI [-0.13, -0.05]). Stride length variability was also increased in premanifest cohorts by 2.18% (95% CI [0.69, 3.68]), with these changes exacerbated in participants with manifest disease. CONCLUSION Findings suggest individuals with premanifest and manifest HD display significant spatiotemporal footstep deviations. Clinicians could monitor individuals in the premanifest stage of disease for gait changes to identify the onset of Huntington's symptoms.
Collapse
Affiliation(s)
- Sasha Browning
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| | - Stephanie Holland
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| | - Ian Wellwood
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| | - Belinda Bilney
- Faculty of Health Sciences, Australian Catholic University, Ballarat, Australia
| |
Collapse
|
10
|
Loi SM, Tsoukra P, Sun E, Chen Z, Wibawa P, Biase MD, Farrand S, Eratne D, Kelso W, Evans A, Walterfang M, Velakoulis D. Survival in Huntington's disease and other young-onset dementias. Int J Geriatr Psychiatry 2023; 38:e5913. [PMID: 37062919 PMCID: PMC10946957 DOI: 10.1002/gps.5913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVES To compare survival and risk factors associated with mortality in common young-onset dementias (YOD) including Huntington's disease. METHODS This retrospective cohort study included inpatients from an Australian specialist neuropsychiatry service, over 20 years. Dementia diagnoses were based on consensus criteria and Huntington's disease (HD) was confirmed genetically. Mortality and cause of death were determined using linkage to the Australian Institute of Health and Welfare National Death Index. RESULTS There were 386 individuals with YOD included. The dementia types included frontotemporal dementia (FTD) (24.5%), HD (21.2%) and Alzheimer's disease (AD) (20.5%). 63% (n = 243) individuals had died. The longest median survival was for those who had HD, 18.8 years from symptom onset and with a reduced mortality risk compared to AD and FTD (hazard ratio 0.5). Overall, people with YOD had significantly increased mortality, of 5-8 times, compared to the general population. Females with a YOD had higher standardised mortality ratio compared to males (9.3 vs. 4.9) overall. The most frequent cause of death in those with HD was reported as HD, with other causes of death in the other YOD-subtypes related to dementia and mental/behavioural disorders. DISCUSSION This is the first Australian study to investigate survival and risk factors of mortality in people with YOD. YOD has a significant risk of death compared to the general population. Our findings provide useful clinical information for people affected by YOD as well as future planning and service provision.
Collapse
Affiliation(s)
- Samantha M. Loi
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Emily Sun
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Zhibin Chen
- School of Public Health and Preventive MedicineMonash UniversityClaytonVictoriaAustralia
| | - Pierre Wibawa
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Maria di Biase
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
| | - Sarah Farrand
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Dhamidhu Eratne
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Wendy Kelso
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Andrew Evans
- Department of MedicineRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Mark Walterfang
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Dennis Velakoulis
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
11
|
Jeyakumar N, Hilmer SN, Teixeira-Pinto A, Loy CT. Frailty and Associated Environmental Factors Only Have Small Effects on Age of Onset in Huntington's Disease. J Huntingtons Dis 2023; 12:355-361. [PMID: 38007671 DOI: 10.3233/jhd-230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Over one third of age of onset variation in Huntington's disease is unexplained by CAG repeat length. In Alzheimer's disease, frailty partly modulates the relationship between neuropathology and dementia. OBJECTIVE We investigated whether a multi-domain frailty index, reflecting non-genetic factors in Huntington's disease, similarly modulates the relationship between CAG repeat length and age of onset. METHODS We created a frailty index assessing comorbidities, substance abuse, polypharmacy, and education. We applied multiple linear regression models to 2,741 subjects with manifest Huntington's disease from the Enroll-HD cohort study, including 729 subjects with late-onset (post-60 years) disease, using frailty index or constituent item scores and CAG repeat length as independent variables. We used actual and "residual" ages of onset (difference between actual and CAG-based predicted onset) as dependent variables, the latter offsetting the increased time available to accumulate comorbidities in older subjects. RESULTS Higher frailty index scores were associated with significantly lower residual ages of onset in the late-onset subgroup (p = 0.03), though the effect was small (R2 = 0.27 with frailty as a predictor vs. 0.26 without). Number of comorbidities was also associated with significantly lower residual ages of onset in the late-onset subgroup (p = 0.04). Drug abuse and smoking were associated with significantly earlier ages of onset in the whole cohort (p < 0.01, p = 0.02) and late-onset subgroup (p < 0.01, p = 0.03). CONCLUSIONS The impact of non-genetic factors on age of onset, assessed using a frailty index or separately, in Huntington's disease is limited.
Collapse
Affiliation(s)
| | - Sarah N Hilmer
- The Kolling Institute, The University of Sydney, Sydney, Australia
| | | | - Clement T Loy
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
12
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
13
|
Coenzyme Q10: Role in Less Common Age-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11112293. [DOI: 10.3390/antiox11112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this article we have reviewed the potential role of coenzyme Q10 (CoQ10) in the pathogenesis and treatment of a number of less common age-related disorders, for many of which effective therapies are not currently available. For most of these disorders, mitochondrial dysfunction, oxidative stress and inflammation have been implicated in the disease process, providing a rationale for the potential therapeutic use of CoQ10, because of its key roles in mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. Disorders reviewed in the article include multi system atrophy, progressive supranuclear palsy, sporadic adult onset ataxia, and pulmonary fibrosis, together with late onset versions of Huntington’s disease, Alexander disease, lupus, anti-phospholipid syndrome, lysosomal storage disorders, fibromyalgia, Machado-Joseph disease, acyl-CoA dehydrogenase deficiency, and Leber’s optic neuropathy.
Collapse
|
14
|
Sun E, Kang M, Wibawa P, Tsoukra V, Chen Z, Farrand S, Eratne D, Kelso W, Evans A, Walterfang M, Velakoulis D, Loi SM. Huntington's disease: Mortality and risk factors in an Australian cohort. J Neurol Sci 2022; 442:120437. [PMID: 36179426 DOI: 10.1016/j.jns.2022.120437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION There has not been any examination of the risk factors associated with mortality in Huntington's Disease (HD) in an Australian cohort. METHOD This retrospective study included inpatients admitted to a specialist neuropsychiatry service in Melbourne, Australia. HD status was based on genetic testing. Risk factors included age of onset, CAG repeat length and neuroimaging. Mortality data was acquired through the Australian Institute of Health and Welfare National Death Index. RESULTS The cohort included 83 participants, with 44 (53%) deceased. The median age of death was 59 years and median survival was 18.8 years from onset age (median 41.0 years). CAG repeat length (median 44.0, IQR 42.5, 47.0) was inversely correlated with age of onset (r = -0.73) and age at death (r = -0.80) but was not correlated with mortality status. There was no difference in functional and cognitive assessments, nor brain volumes, in the alive group compared to the deceased group. There were more people who were alive who had a positive family history of a psychiatric condition (p = 0.006) or dementia (p = 0.009). Standardised mortality ratios demonstrated a 5.9× increased risk of death for those with HD compared to the general population. CONCLUSIONS This is the first study to examine risk factors of mortality in HD in an Australian cohort. Median survival in our cohort is consistent with previous studies in HD, and markedly reduced compared to the general Australian population. CAG repeat length was not associated with mortality suggesting that non-genetic factors contribute to mortality status and warrant further investigation.
Collapse
Affiliation(s)
- Emily Sun
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Matthew Kang
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Pierre Wibawa
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Vivian Tsoukra
- Department of Neurology, Evaggelismos Hospital, Athens, Greece
| | - Zhibin Chen
- School of Public Health and Preventive Medicine, Monash University, Clayton 3168, Australia.
| | - Sarah Farrand
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Dhamidhu Eratne
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Psychiatry, The University of Melbourne, Grattan Street, Parkville 3052, Australia; Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia.
| | - Wendy Kelso
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Andrew Evans
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Mark Walterfang
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Psychiatry, The University of Melbourne, Grattan Street, Parkville 3052, Australia; Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia.
| | - Dennis Velakoulis
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Psychiatry, The University of Melbourne, Grattan Street, Parkville 3052, Australia.
| | - Samantha M Loi
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Psychiatry, The University of Melbourne, Grattan Street, Parkville 3052, Australia.
| |
Collapse
|
15
|
Using a Clinical Formulation to Understand Psychological Distress in People Affected by Huntington’s Disease: A Descriptive, Evidence-Based Model. J Pers Med 2022; 12:jpm12081222. [PMID: 35893316 PMCID: PMC9332789 DOI: 10.3390/jpm12081222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is an inherited, life-limiting neurodegenerative condition. People with HD experience changes in cognitive, motor and emotional functioning, and can also, mainly at later stages, exhibit behaviours that professionals and carers might find distressing such as hitting others, throwing objects, swearing or making inappropriate comments. While clinical formulation (an individualised approach used by mental health professionals to describe an individual’s difficulties) is a helpful tool to conceptualise patients’ wellbeing, a specific formulation framework has not yet been developed for HD. However, evidence has shown that formulation can help guide clinical interventions and increase consistency of approach across multi-disciplinary teams, refine risk management, and improve staff or carers’ empathic skills and understanding of complex presentations. As a consequence, this paper proposes a new clinical formulation model for understanding distress among people with HD, based on a biopsychosocial framework. More specifically, this includes key elements centring on an individual’s past experience and personal narratives, as well as anticipatory cognitions and emotions about the future. In-depth discussions regarding the components of the model and their importance in HD formulations are included, and a fictional yet representative case example is presented to illustrate their application within the context of personalised care.
Collapse
|
16
|
In vitro fertilization with preimplantation genetic testing for monogenetic diseases versus unassisted conception with prenatal diagnosis for Huntington disease: a cost-effectiveness analysis. Fertil Steril 2022; 118:56-64. [PMID: 35618525 DOI: 10.1016/j.fertnstert.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate if in vitro fertilization (IVF) with preimplantation genetic testing for monogenic disease is cost effective for heterozygous individuals with Huntington disease vs. unassisted conception with prenatal diagnosis. DESIGN Cost-effectiveness analysis in a theoretical cohort of 3,851 couples, where one individual is heterozygous for Huntington disease. SETTING N/A. PATIENTS/ANIMALS None. INTERVENTION In vitro fertilization preimplantation genetic testing for couples attempting conception. MAIN OUTCOME MEASURES Outcomes included cost and quality-adjusted life years (QALYs) for both parents in addition to secondary outcomes of procedure-related loss, spontaneous abortion, termination of pregnancy, and early/normal/late-onset Huntington disease. A willingness-to-pay threshold was set at $100,000/QALY. RESULTS In vitro fertilization preimplantation genetic testing is lower in cost and higher in effectiveness compared to unassisted conception with prenatal diagnosis among couples with one heterozygous Huntington disease individual, making it the dominant strategy. In vitro fertilization preimplantation genetic testing was associated with 77 more QALYs and a cost savings of $46,394,268. All measured outcomes were lower in the IVF preimplantation genetic testing strategy, including 39 fewer procedure-related losses, 39 fewer spontaneous abortions, and 462 fewer terminations of pregnancy. Most notably, in our theoretical cohort of couples, IVF preimplantation genetic testing resulted in 1,079 fewer Huntington disease-affected offspring. Our results were robust over a wide range of assumptions. CONCLUSION In vitro fertilization preimplantation genetic testing is a cost-effective conception strategy compared to unassisted conception with prenatal diagnosis when one individual is heterozygous for Huntington disease. Not only can morbidity and mortality incurred by Huntington disease be mitigated for the offspring with the use of IVF preimplantation genetic testing, but this study demonstrates the cost-effectiveness of using IVF preimplantation genetic testing for those with Huntington disease.
Collapse
|
17
|
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C. Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Curr Neuropharmacol 2022; 20:1116-1143. [PMID: 34852742 PMCID: PMC9886821 DOI: 10.2174/1570159x19666211201094608] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Bruno
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,Address correspondence to this author at the Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 Piso 10, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, Tel: +54 11 5285 3380; E-mail:
| |
Collapse
|
18
|
Pham Nguyen TP, Bravo L, Gonzalez-Alegre P, Willis AW. Geographic Barriers Drive Disparities in Specialty Center Access for Older Adults with Huntington's Disease. J Huntingtons Dis 2022; 11:81-89. [PMID: 35253771 DOI: 10.3233/jhd-210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's Disease Society of America Centers of Excellence (HDSA COEs) are primary hubs for Huntington's disease (HD) research opportunities and accessing new treatments. Data on the extent to which HDSA COEs are accessible to individuals with HD, particularly those older or disabled, are lacking. OBJECTIVE To describe persons with HD in the U.S. Medicare program and characterize this population by proximity to an HDSA COE. METHODS We conducted a cross-sectional study of Medicare beneficiaries ages ≥65 with HD in 2017. We analyzed data on benefit entitlement, demographics, and comorbidities. QGis software and Google Maps Interface were employed to estimate the distance from each patient to the nearest HDSA COE, and the proportion of individuals residing within 100 miles of these COEs at the state level. RESULTS Among 9,056 Medicare beneficiaries with HD, 54.5% were female, 83.0% were white; 48.5% were ≥65 years, but 64.9% originally qualified for Medicare due to disability. Common comorbidities were dementia (32.4%) and depression (35.9%), and these were more common in HD vs. non-HD patients. Overall, 5,144 (57.1%) lived within 100 miles of a COE. Race/ethnicity, sex, age, and poverty markers were not associated with below-average proximity to HDSA COEs. The proportion of patients living within 100 miles of a center varied from < 10% (16 states) to > 90% (7 states). Most underserved states were in the Mountain and West Central divisions. CONCLUSION Older Medicare beneficiaries with HD are frequently disabled and have a distinct comorbidity profile. Geographical, rather than sociodemographic factors, define the HD population with limited access to HDSA COEs.
Collapse
Affiliation(s)
- Thanh Phuong Pham Nguyen
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology Translational Center for Excellence for Neuroepidemiology and Neurological Outcomes Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Licia Bravo
- Xavier University of Louisiana, New Orleans, LA, USA.,Penn Access Summer Scholars Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular & Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Allison W Willis
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology Translational Center for Excellence for Neuroepidemiology and Neurological Outcomes Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Leonard Davis Institute of Health Economics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Mukherjee S. Immune gene network of neurological diseases: Multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Heliyon 2021; 7:e08518. [PMID: 34926857 PMCID: PMC8649734 DOI: 10.1016/j.heliyon.2021.e08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Neurological diseases, such as MS, AD, PD and HD, are a major health concern of the elderly population, but still therapeutic options are limited. Recent advances in genomic sequencing and bioinformatics, present an opportunity to understand mechanisms of these diseases for identification of therapeutic targets. Several studies have shown association of immune dysfunction with immune system mediated neurological disease, MS, as well as neurodegenerative diseases (AD, PD and HD). However, similarities and differences in role of the immune system, immune pathways and immune cell types in these diseases remains unknown. In this study, immune cell type signature genes in gene networks associated with neurological diseases, MS, AD, PD and HD was investigated using meta-analysis and bioinformatics methods. Application of Weighted Gene Co-expression Network Analysis (WGCNA) on publicly available gene expression datasets (microarray and RNA-seq) revealed a ModArray_04 module (microarray) or ModRNAseq_06 module (RNA-seq), significantly associated with MS, AD, PD and HD. Hypergeometric enrichment test revealed significant enrichment of immune cell type genes in these neurological disease modules. This study demonstrates that immune system mediated neurological disease, MS and neurodegenerative diseases (AD, PD and HD), share a common gene network characterized by immune cell type signature genes (microglia, monocytes and macrophages) and are probable targets for therapeutic intervention. In summary, this work shows a connection between MS, a disease where the role of the immune system and inflammation is established, and neurodegenerative diseases (AD, PD and HD) where the role of inflammation is still a hypothesis.
Collapse
|
20
|
Cavallo M, Sergi A, Pagani M. Cognitive and social cognition deficits in Huntington's disease differ between the prodromal and the manifest stages of the condition: A scoping review of recent evidence. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2021; 61:214-241. [PMID: 34651307 DOI: 10.1111/bjc.12337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/02/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Huntington's disease (HD) is a dramatic neurodegenerative disorder encompassing severe motor symptoms coupled to significant cognitive and social cognition deficits. However, it is not clear whether and how patients' neuropsychological profile changes between the prodromal and the manifest stages of the condition. The aim of the present in-depth review is to consider cognitive and social cognition impairment in HD patients by differentiating deficits arising before diagnosis from those evident from the manifest phase onwards. METHODS Electronic databases were searched between January 1st , 2010 and December 31st , 2020 by using multiple combinations of keywords related to the investigation of neuropsychological profile in HD for preliminary search, and by defining strict selection criteria for studies to be included. RESULTS Forty-two studies were included. Evidence suggests that the neuropsychological profile in HD reflects a complex pathological spectrum of deficits. It includes impairment in the realms of executive functions, memory, attention, information processing, and social cognition. Interestingly, patients' profiles differ significantly between the manifest and the prodromal stages of their condition, not only in quantitative terms but also from a qualitative point of view. CONCLUSIONS Researchers and clinicians should thus include in clinical routine timely and specific neuropsychological assessments in order to monitor patients' cognitive status as time goes by, with the ultimate goal to implement effective clinical management strategies. PRACTITIONER POINTS The neuropsychological profile in HD encompasses a complex pathological spectrum of deficits. Patients' profiles differ significantly between the manifest and the prodromal stages of their condition. Clinicians should include in everyday practice a timely and specific neuropsychological assessment. Detecting patients' cognitive status during the early stages of the condition already can contribute significantly to implement effective clinical management strategies.
Collapse
Affiliation(s)
- Marco Cavallo
- Faculty of Psychology, eCampus University, Novedrate, Italy.,Clinical Psychology Service, Saint George Foundation, Cavallermaggiore, Italy
| | | | - Marco Pagani
- Institute of Cognitive Sciences and Technology, CNR, Rome, Italy.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Anil M, Mason SL, Barker RA. The Clinical Features and Progression of Late-Onset Versus Younger-Onset in an Adult Cohort of Huntington's Disease Patients. J Huntingtons Dis 2021; 9:275-282. [PMID: 32675419 PMCID: PMC7683085 DOI: 10.3233/jhd-200404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder that typically manifests between the ages of 30 and 50 years. However, the disease can present at any age, and phenotypic differences between younger and later-onset patients have received limited attention. Objective: To compare clinical features of late- (>70 years of age) and younger-onset (<30 years of age) HD patients. Methods: Patients presenting to our regional NHS HD clinic with new-onset manifest HD diagnosed over the age of 70 years (LoHD) (n = 18) were compared with a younger cohort who developed disease under the age of 30 years (YoHD) (n = 12). Rate of progression over time on standard cognitive and motor measures was compared. Results: At first clinic presentation, both groups had the same total UHDRS scores. However, the LoHD group had higher chorea scores (F (1,28) = 6.52, p = 0.016), while the YoHD group had more dystonia (F (1,28) = 8.69, p = 0.006) and eye movement abnormalities (F (1,28) = 16.991, p < 0.001). The YoHD group also had a greater rate of motor progression, especially for bulbar measures (F (1, 28) = 6.96, p = 0.013) and bradykinesia (F (1, 28) = 7.99, p = 0.009). No differences were found in the rate of cognitive change (F (1,21) = 1.727, p = 0.203) nor functional capacity (F (1,28) = 1.388, p = 0.249) between the groups. Conclusion: Phenotypic differences between YoHD and LoHD patients were found in terms of initial presentation and rate of motor progression. This has implications for therapeutic trials involving HD patients of different ages, given their different clinical features and progression.
Collapse
Affiliation(s)
- Megha Anil
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sarah L Mason
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Muroni A, Murru MR, Ulgheri L, Sechi M, Ercoli T, Marrosu F, Scaglione CL, Bentivoglio AR, Petracca M, Soliveri P, Cocco E, Cuccu S, Deriu M, Zuccato C, Defazio G. Geographic differences in the incidence of Huntington's disease in Sardinia, Italy. Neurol Sci 2021; 42:5177-5181. [PMID: 33792825 DOI: 10.1007/s10072-021-05217-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The frequency of Huntington's disease (HD) may vary considerably, with higher estimates in non-Asian populations. We have recently examined the prevalence of HD in the southern part of Sardinia, a large Italian Mediterranean island that is considered a genetic isolate. We observed regional microgeographic differences in the prevalence of HD across the study area similar to those recently reported in other studies conducted in European countries. To explore the basis for this variability, we undertook a study of the incidence of HD in Sardinia over a 10-year period, 2009 to 2018. METHODS Our research was conducted in the 5 administrative areas of Sardinia island. Case patients were ascertained through multiple sources in Sardinia and Italy. RESULTS During the incidence period 53 individuals were diagnosed with clinically manifested HD. The average annual incidence rate 2009-2018 was 2.92 per 106 persons-year (95% CI, 2.2 to 3.9). The highest incidence rate was observed in South Sardinia (6.3; 95% CI, 4.2-9.5). This rate was significantly higher (p<0.01) than the rates from Cagliari, Oristano, and Sassari provinces but did not significantly differ (p = 0.38) from the Nuoro rate. CONCLUSIONS The overall incidence of HD in Sardinia is close to the correspondent estimates in Mediterranean countries. Our findings highlight also the possibility of local microgeographic variations in the epidemiology of HD that might reflect several factors, including a possible founder effect in the rural areas of South Sardinia and Nuoro.
Collapse
Affiliation(s)
- Antonella Muroni
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, 09124, Cagliari, Italy.
| | - Maria R Murru
- Multiple Sclerosis Centre, Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Lucia Ulgheri
- S.S.D. di Genetica e Biologia dello Sviluppo, University Hospital, Sassari, Italy
| | - Margherita Sechi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Cesa L Scaglione
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Martina Petracca
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paola Soliveri
- Unit of Neurology I, Parkinson and Movement Disorders Unit, Fondazione IRCSS Istituto Neurologico Carlo Basta, Milan, Italy.,Parkinson Institute - CTO, Milan, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Centre, Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefania Cuccu
- Multiple Sclerosis Centre, Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Marcello Deriu
- Neurology Service, Nostra Signora della Mercede Hospital, ATS Sardegna, San Gavino Monreale, Italy
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Giovanni Defazio
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, 09124, Cagliari, Italy.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Abstract
ABSTRACT Huntington disease is a rare genetic disorder characterized by motor, cognitive, and psychiatric impairments. Although the typical patient has a positive family history and initially presents with chorea between ages 30 and 50 years, some patients do not have a typical presentation. Healthcare providers should know when to refer patients to neurology for testing for Huntington disease. The earlier the diagnosis is made, the earlier the patient and patient's family can receive education about the expected disease trajectory. A multidisciplinary approach is required to mitigate symptoms as the disease progresses. Although no cure exists, ongoing research is targeting genotypic abnormalities in hopes of finding a permanent treatment for Huntington disease.
Collapse
Affiliation(s)
- Jennifer de la Cruz
- Jennifer de la Cruz is director of clinical education and a clinical assistant professor in the PA program at Mercer University in Atlanta, Ga. Joseph Hwang was a student in the PA program at Mercer University when this article was written, and now practices at Urgent Care of Oconee in Watkinsville, Ga. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | |
Collapse
|
24
|
Despotov K, Zádori D, Veres G, Jakab K, Gárdián G, Tóth E, Kincses TZ, Vécsei L, Ajtay A, Bereczki D, Klivényi P. Genetic epidemiological characteristics of a Hungarian subpopulation of patients with Huntington's disease. BMC Neurol 2021; 21:79. [PMID: 33602179 PMCID: PMC7890867 DOI: 10.1186/s12883-021-02089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background Recent advances in therapeutic options may prevent deterioration related to Huntington’s disease (HD), even at the pre-symptomatic stage. Be that as it may, a well-characterized patient population is essential for screening and monitoring outcome. Accordingly, the aim of this study was to describe the characteristics of a Hungarian subpopulation of HD patients and mutation carriers diagnosed at the University of Szeged. Methods We conducted a search for International Classification of Diseases (ICD) code G10H0 in the local medical database for the period of 1 January 1998 to 31 December 2018. Results We identified 90 HD cases (male: 45, female: 45) and 34 asymptomatic carriers (male: 15, female: 19). The median age of onset was 45 years (range: 16–79). There were 3 cases of juvenile onset (3.3%), and 7 of late disease onset (7.8%). The median repeat length was 43 (range: 36–70) for the pathological and 19 for the non-pathological alleles (range: 9–35). 17.5% of the pathological alleles were in the decreased penetrance range, while 7% of non-pathological alleles were intermediate. Conclusions The genetic and clinical features of the population examined in the present study were in line with the previous Hungarian study, as well as with international literature. The exceptions were the higher ratio of reduced penetrance and intermediate alleles. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02089-9.
Collapse
Affiliation(s)
- Katalin Despotov
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Dénes Zádori
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Gábor Veres
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Katalin Jakab
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Gabriella Gárdián
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Eszter Tóth
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary
| | - András Ajtay
- Department of Neurology, Semmelweis University, Budapest, Hungary.,MTA-SE Neuroepidemiological Research Group, Budapest, Hungary
| | - Dániel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary.,MTA-SE Neuroepidemiological Research Group, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, 6 Semmelweis Street, Szeged, 6725, Hungary.
| |
Collapse
|
25
|
Vicente E, Ruiz de Sabando A, García F, Gastón I, Ardanaz E, Ramos-Arroyo MA. Validation of diagnostic codes and epidemiologic trends of Huntington disease: a population-based study in Navarre, Spain. Orphanet J Rare Dis 2021; 16:77. [PMID: 33568143 PMCID: PMC7877055 DOI: 10.1186/s13023-021-01699-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is great heterogeneity on geographic and temporary Huntington disease (HD) epidemiological estimates. Most research studies of rare diseases, including HD, use health information systems (HIS) as data sources. This study investigates the validity and accuracy of national and international diagnostic codes for HD in multiple HIS and analyses the epidemiologic trends of HD in the Autonomous Community of Navarre (Spain). METHODS HD cases were ascertained by the Rare Diseases Registry and the reference Medical Genetics Centre of Navarre. Positive predictive values (PPV) and sensitivity with 95% confidence intervals (95% CI) were estimated. Overall and 9-year periods (1991-2017) HD prevalence, incidence and mortality rates were calculated, and trends were assessed by Joinpoint regression. RESULTS Overall PPV and sensitivity of combined HIS were 71.8% (95% CI: 59.7, 81.6) and 82.2% (95% CI: 70.1, 90.4), respectively. Primary care data was a more valuable resource for HD ascertainment than hospital discharge records, with 66% versus 50% sensitivity, respectively. It also had the highest number of "unique to source" cases. Thirty-five per cent of HD patients were identified by a single database and only 4% by all explored sources. Point prevalence was 4.94 (95% CI: 3.23, 6.65) per 100,000 in December 2017, and showed an annual 6.1% increase from 1991 to 1999. Incidence and mortality trends remained stable since 1995-96, with mean annual rates per 100,000 of 0.36 (95% CI: 0.27, 0.47) and 0.23 (95% CI: 0.16, 0.32), respectively. Late-onset HD patients (23.1%), mean age at onset (49.6 years), age at death (66.6 years) and duration of disease (16.7 years) were slightly higher than previously reported. CONCLUSION HD did not experience true temporary variations in prevalence, incidence or mortality over 23 years of post-molecular testing in our population. Ascertainment bias may largely explain the worldwide heterogeneity in results of HD epidemiological estimates. Population-based rare diseases registries are valuable instruments for epidemiological studies on low prevalence genetic diseases, like HD, as long as they include validated data from multiple HIS and genetic/family information.
Collapse
Affiliation(s)
- Esther Vicente
- Community Health Observatory Section, Instituto de Salud Pública y Laboral de Navarra, IdiSNA (Navarre Institute for Health Research), Pamplona, Spain.
- Department of Health Sciences, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.
| | - Ainara Ruiz de Sabando
- Department of Health Sciences, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
- Fundación Miguel Servet-Navarrabiomed, IdiSNA, Pamplona, Spain
| | - Fermín García
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - Itziar Gastón
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - Eva Ardanaz
- Community Health Observatory Section, Instituto de Salud Pública y Laboral de Navarra, IdiSNA (Navarre Institute for Health Research), Pamplona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - María A Ramos-Arroyo
- Department of Health Sciences, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| |
Collapse
|
26
|
Volpi E, Terenzi F, Bagnoli S, Latorraca S, Nacmias B, Sorbi S, Piacentini S, Ferrari C. Late-onset Huntington disease: An Italian cohort. J Clin Neurosci 2021; 86:58-63. [PMID: 33775347 DOI: 10.1016/j.jocn.2020.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG expansion greater than 35 triplets in the IT-15 gene, with a clinical onset usually in the forties. Late-onset form of HD is defined as disease onset after the age of 59 years. The aim of the present study is to investigate the clinical-demographic features of Late-onset HD population (LoHD) in comparison to Classic-onset patients (CoHD). We analyzed a well-characterized Italian cohort of 127 HD patients, identifying 25.2% of LoHD cases. The mean age of onset was 65.9 and the mean length of pathological allele was 42.2. The 53.1% of LoHD patients had no family history of HD. No significant differences were observed in terms of gender, type of symptoms at disease onset, and clinical performance during the follow-up visits. The non-pathological allele resulted longer among LoHD patients. There is evidence that longer non-pathological allele is associated with a higher volume of basal ganglia, suggesting a possible protective role even in the onset of HD. In conclusion, LoHD patients in this Italian cohort were frequent, representing a quarter of total cases, and showed clinical features comparable to CoHD subjects. Due to the small sample size, further studies are needed to evaluate the influence of non-pathological alleles on disease onset.
Collapse
Affiliation(s)
- Eleonora Volpi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| | - Federica Terenzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | | | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Silvia Piacentini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
27
|
Ishihara L, Oliveri D, Wild EJ. Neuropsychiatric comorbidities in Huntington's and Parkinson's Disease: A United States claims database analysis. Ann Clin Transl Neurol 2021; 8:126-137. [PMID: 33217173 PMCID: PMC7818185 DOI: 10.1002/acn3.51252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Huntington's disease is a rare, genetic, neurodegenerative disease characterized by a triad of cognitive, behavioral, and motor symptoms. The condition gradually results in increasing disability, loss of independence, and ultimately death. Our objective was to use United States claims data (which offer valuable insight into the natural history of disease) to compare the prevalent comorbidities of people with Huntington's disease against matched controls with Parkinson's disease or with no major neurodegenerative diseases (general population controls). We also assess medication use in people with Huntington's disease. METHODS This was a retrospective, observational study using data from the IBM MarketScan® Databases. Cases and controls were matched 1:1, and comorbidities were analyzed in each group during 2017. Medications were also assessed in the Huntington's disease cohort. Eligible cases had ≥ 2 diagnostic codes for Huntington's disease; controls had ≥ 2 codes for Parkinson's disease (with no record of Huntington's disease), or, for general population controls, no record of Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, or dementia. RESULTS A total of 587 matched individuals were assessed in each cohort. Depression and anxiety were more common in Huntington's disease versus Parkinson's disease (odds ratios: 1.51 and 1.16, respectively). Other conditions more common in Huntington's disease included dementia, communication/speech problems, dysphagia, and falls. The use of antidepressant (59.9%) and antipsychotic (39.5%) medications was frequent among Huntington's disease cases. INTERPRETATION These data highlight the prevalence of psychiatric, cognitive, communication, swallowing, and mobility problems in people with Huntington's disease, underscoring the need for holistic expert care of these individuals.
Collapse
Affiliation(s)
| | | | - Edward J. Wild
- Huntington’s Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
28
|
Ranganathan M, Kostyk SK, Allain DC, Race JA, Daley AM. Age of onset and behavioral manifestations in Huntington's disease: An Enroll-HD cohort analysis. Clin Genet 2020; 99:133-142. [PMID: 33020896 DOI: 10.1111/cge.13857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
Huntington's disease is associated with motor, cognitive and behavioral dysfunction. Behavioral symptoms may present before, after, or simultaneously with clinical disease manifestation. The relationship between age of onset and behavioral symptom presentation and severity was explored using the Enroll-HD database. Manifest individuals (n = 4469) were initially divided into three groups for preliminary analysis: early onset (<30 years; n = 479); mid-adult onset (30-59 years; n = 3478); and late onset (>59 years; n = 512). Incidence of behavioral symptoms reported at onset was highest in those with early onset symptoms at 26% (n = 126), compared with 19% (n = 678) for mid-adult onset and 11% (n = 56) for late onset (P < 0.0001). Refined analysis, looking across the continuum of ages rather than between categorical subgroups found that a one-year increase in age of onset was associated with a 5.6% decrease in the odds of behavioral symptoms being retrospectively reported as the presenting symptom (P < 0.0001). By the time of study enrollment, the odds of reporting severe behavioral symptoms decreased by 5.5% for each one-year increase in reported age of onset. Exploring environmental, genetic and epigenetic factors that affect age of onset and further characterizing types and severity of behavioral symptoms may improve treatment and understanding of Huntington's disease's impact on affected individuals.
Collapse
Affiliation(s)
- Megha Ranganathan
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sandra K Kostyk
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Dawn C Allain
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan A Race
- Division of Biostatistics, The Ohio State University, Columbus, Ohio, USA.,Eli Lilly and Company, Design Hub-Immunology Division, Indianapolis, Indiana, USA
| | - Allison M Daley
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
29
|
Kimura H. Hydrogen sulfide signalling in the CNS - Comparison with NO. Br J Pharmacol 2020; 177:5031-5045. [PMID: 32860641 DOI: 10.1111/bph.15246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) together with polysulfides (H2 Sn , n > 2) are signalling molecules like NO with various physiological roles including regulation of neuronal transmission, vascular tone, inflammation and oxygen sensing. H2 S and H2 Sn diffuse to the target proteins for S-sulfurating their cysteine residues that induces the conformational changes to alter the activity. On the other hand, 3-mercaptopyruvate sulfurtransferase transfers sulfur from a substrate 3-mercaptopyruvate to the cysteine residues of acceptor proteins. A similar mechanism has also been identified in S-nitrosylation. S-sulfuration and S-nitrosylation by enzymes proceed only inside the cell, while reactions induced by H2 S, H2 Sn and NO even extend to the surrounding cells. Disturbance of signalling by these molecules as well as S-sulfuration and S-nitrosylation causes many nervous system diseases. This review focuses on the signalling by H2 S and H2 Sn with S-sulfuration comparing to that of NO with S-nitrosylation and discusses on their roles in physiology and pathophysiology.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| |
Collapse
|
30
|
Does pallidal neuromodulation influence cognitive decline in Huntington's disease? J Neurol 2020; 268:613-622. [PMID: 32886253 DOI: 10.1007/s00415-020-10206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder associated with motor, psychiatric and cognitive deterioration over time. To date, Continuous Electrical Neuromodulation (CEN) of the globus pallidus internus (GPi) has been reported to improve chorea but little is known about cognitive progression in these patients. We propose to examine CEN impact on expected cognitive decline throughout long-term neuropsychological assessment of a cohort of HD patients. METHOD 13 consecutive HD patients underwent GPi neuromodulation between January 2008 and February 2019. Over a 5-year follow-up period, they received systematic pre- and post-operative assessment according to the existing protocol in our unit. The main outcome measure was the total score obtained on the Mattis Dementia Rating Scale (MDRS) as an indicator of global cognitive function. RESULTS Chorea decreased in all patients postoperatively with a mean improvement of 56% despite disease progression over time, according to previous studies. Moreover we found that the global cognitive profile of HD patients treated with CEN was stable during the first 3 years of treatment. CONCLUSION We report an unexpected positive influence of GPi continuous electrical neuromodulation on the progression of global cognitive functioning in operated HD patients. This is the most important group of patients treated with this method to our knowledge whatever the sample size remains small. This result provides promising evidence of GPi-CEN efficacy not only in reducing chorea, but also in delaying cognitive decline in HD patients operated at an early stage of the disease.
Collapse
|
31
|
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 2020; 41:2656-2688. [PMID: 32656818 DOI: 10.1002/med.21706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
32
|
Kwa L, Larson D, Yeh C, Bega D. Influence of Age of Onset on Huntington's Disease Phenotype. Tremor Other Hyperkinet Mov (N Y) 2020; 10:21. [PMID: 32775035 PMCID: PMC7394225 DOI: 10.5334/tohm.536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Background Older patients with Huntington's disease (HD) are often thought to have a slower progressing disease course with less behavioral symptoms than younger patients. However, phenotypic differences based on age of onset have not been well characterized in a large HD population. This study will determine the difference in manifestations and disease progression between patients with young, typical, and late onset adult HD at different stages of disease. Methods Data obtained from Enroll-HD. Adults with manifest HD were included. Age groups were defined as young onset (YO: 20-29 years), typical onset (TO: 30-59 years), and late onset (LO: 60+ years). Subjects were categorized by TFC score, from Stage I (least severe) to Stage V (most severe). Motor, cognitive, and behavioral symptoms were analyzed. Descriptive statistics and Bonferroni p-value correction for pairwise comparison were calculated. Results 7,311 manifest HD participants were included (612 YO, 5,776 TO, and 923 LO). The average decline in TFC score from baseline to second visit (1.5-2.5 years) was significantly faster for YO (-1.75 points) compared to TO (-1.23 points, p = 0.0105) or LO (-0.97 points, p = 0.0017). Motor deficits were worse for LO participants at early stages of HD, and worse for YO participants at advanced stages. YO and TO participants had greater burden of behavioral symptoms at early stages of disease compared to LO. Discussion YO is predictive of a faster functional decline for adults with HD when compared to those with TO and LO. Motor and behavioral manifestations differ based on age of onset. Highlights This study compares HD manifestations while controlling for disease severity, detailing robust phenotypic differences by age of onset alone. These findings have implications for the clinical management of HD symptoms and have the possibility to improve prognostic and treatment precision.
Collapse
Affiliation(s)
- Lauren Kwa
- Northwestern University Feinberg School of Medicine, US
| | - Danielle Larson
- Northwestern University Feinberg School of Medicine, Department of Neurology, US
| | - Chen Yeh
- Department of Preventive Medicine-Biostatistics, Northwestern University Feinberg School of Medicine, US
| | - Danny Bega
- Northwestern University Feinberg School of Medicine, Department of Neurology, US
| |
Collapse
|
33
|
Sabogal-Guáqueta AM, Marmolejo-Garza A, de Pádua VP, Eggen B, Boddeke E, Dolga AM. Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms. Prog Neurobiol 2020; 190:101805. [PMID: 32335273 DOI: 10.1016/j.pneurobio.2020.101805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Microglia are the main innate immune cells of the central nervous system (CNS). Unlike neurons and glial cells, which derive from ectoderm, microglia migrate early during embryo development from the yolk-sac, a mesodermal-derived structure. Microglia regulate synaptic pruning during development and induce or modulate inflammation during aging and chronic diseases. Microglia are sensitive to brain injuries and threats, altering their phenotype and function to adopt a so-called immune-activated state in response to any perceived threat to the CNS integrity. Here, we present a short overview on the role of microglia in human neurodegenerative diseases and provide an update on the current model systems to study microglia, including cell lines, iPSC-derived microglia with an emphasis in their transcriptomic profile and integration into 3D brain organoids. We present various strategies to model and study their role in neurodegeneration providing a relevant platform for the development of novel and more effective therapies.
Collapse
Affiliation(s)
- Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area-School of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vítor Passos de Pádua
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands; Neurology Department, Medical School, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bart Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
34
|
Rojas NG, Ziliani JE, Cesarini ME, Etcheverry JL, Da Prat GA, McCusker E, Gatto EM. Late Onset Huntington Disease: Phenotypic and Genotypic Characteristics of 10 Cases in Argentina. J Huntingtons Dis 2020; 8:195-198. [PMID: 31045517 DOI: 10.3233/jhd-180330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder that includes motor, psychiatric and cognitive manifestations with typical onset of symptoms is in the forties. A percentage of patients (4.4% - 11.5%) may be exceptions to this and manifest symptoms later (>60 years old). Diagnosis of Late onset HD (LoHD) can be a challenge, due to the low suspicion of the disease at this age. OBJECTIVE To review the genotype and phenotype of LoHD in an Argentinian cohort. METHODS We reviewed the medical records and genetic testing of a total of 95 individuals with clinical and molecular diagnosis of Huntington's disease, based on 2 institution's registry. RESULTS Among our HD cohort, 10 patients (10.52%) had LoHD, with variable results regarding family history. The average of repetitions of the expanded allele was 40 (range 38-44). All cases had mild motor symptoms at onset. CONCLUSIONS Late onset HD can be a diagnostic challenge, due to its slow progression, unawareness of manifestations among patients and in many cases, mild symptomatology that does not warrant medical attention.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Andrés Da Prat
- Instituto Neurociencias Buenos Aires (INEBA), Buenos Aires, Argentina.,Sanatorio de La Trinidad Mitre, Buenos Aires, Argentina
| | - Elizabeth McCusker
- The University of Sydney, School of Medicine Westmead and Neurology Department, Westmead Hospital, Sydney, NSW, Australia
| | - Emilia Mabel Gatto
- Instituto Neurociencias Buenos Aires (INEBA), Buenos Aires, Argentina.,Sanatorio de La Trinidad Mitre, Buenos Aires, Argentina
| |
Collapse
|
35
|
Capiluppi E, Romano L, Rebora P, Nanetti L, Castaldo A, Gellera C, Mariotti C, Macerollo A, Cislaghi MG. Late-onset Huntington's disease with 40-42 CAG expansion. Neurol Sci 2020; 41:869-876. [PMID: 31820322 PMCID: PMC7160095 DOI: 10.1007/s10072-019-04177-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/25/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a CAG expansion greater than 35 in the IT-15 gene. There is an inverse correlation between the number of pathological CAG and the age of onset. However, CAG repeats between 40 and 42 showed a wider onset variation. We aimed to investigate potential clinical differences between patients with age at onset ≥ 60 years (late onset-HD) and patients with age at onset between 30 and 59 years (common-onset HD) in a cohort of patients with the same CAG expansions (40-42). METHODS A retrospective analysis of 66 HD patients with 40-41-42 CAG expansion was performed. Patients were investigated with the Unified Huntington's Disease Rating Scale (subitems I-II-III and Total Functional Capacity, Functional Assessment and Stage of Disease). Data were analysed using χ2, Fisher's test, t test and Pearson's correlation coefficient. GENMOD analysis and Kaplan-Meier analysis were used to study the disease progression. RESULTS The age of onset ranged from 39 to 59 years in the CO subgroup, whereas the LO subgroup showed an age of onset from 60 to 73 years. No family history was reported in 31% of the late-onset in comparison with 20% in common-onset HD (p = 0.04). No difference emerged in symptoms of onset, in clinical manifestations and in progression of disease between the two groups. CONCLUSION There were no clinical differences between CO and LO subgroups with 40-42 CAG expansion. There is a need of further studies on environmental as well genetic variables modifying the age at onset.
Collapse
Affiliation(s)
| | - Luca Romano
- Department of Clinical Sciences "Luigi Sacco"- L. Sacco Hospital, University of Milan, Milan, Italy
| | - Paola Rebora
- Medical Statistics School, University of Milano-Bicocca, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Castaldo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonella Macerollo
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK.
- School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
| | - M Giuliana Cislaghi
- Department of Clinical Sciences "Luigi Sacco"- L. Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Zhu Y, Li C, Tao X, Brazill JM, Park J, Diaz-Perez Z, Zhai RG. Nmnat restores neuronal integrity by neutralizing mutant Huntingtin aggregate-induced progressive toxicity. Proc Natl Acad Sci U S A 2019; 116:19165-19175. [PMID: 31484760 PMCID: PMC6754563 DOI: 10.1073/pnas.1904563116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulative aggregation of mutant Huntingtin (Htt) is a primary neuropathological hallmark of Huntington's disease (HD). Currently, mechanistic understanding of the cytotoxicity of mutant Htt aggregates remains limited, and neuroprotective strategies combating mutant Htt-induced neurodegeneration are lacking. Here, we show that in Drosophila models of HD, neuronal compartment-specific accumulation of mutant Htt aggregates causes neurodegenerative phenotypes. In addition to the increase in the number and size, we discovered an age-dependent acquisition of thioflavin S+, amyloid-like adhesive properties of mutant Htt aggregates and a concomitant progressive clustering of aggregates with mitochondria and synaptic proteins, indicating that the amyloid-like adhesive property underlies the neurotoxicity of mutant Htt aggregation. Importantly, nicotinamide mononucleotide adenylyltransferase (NMNAT), an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase and neuroprotective factor, significantly mitigates mutant Htt-induced neurodegeneration by reducing mutant Htt aggregation through promoting autophagic clearance. Additionally, Nmnat overexpression reduces progressive accumulation of amyloid-like Htt aggregates, neutralizes adhesiveness, and inhibits the clustering of mutant Htt with mitochondria and synaptic proteins, thereby restoring neuronal function. Conversely, partial loss of endogenous Nmnat exacerbates mutant Htt-induced neurodegeneration through enhancing mutant Htt aggregation and adhesive property. Finally, conditional expression of Nmnat after the onset of degenerative phenotypes significantly delays the progression of neurodegeneration, revealing the therapeutic potential of Nmnat-mediated neuroprotection at advanced stages of HD. Our study uncovers essential mechanistic insights to the neurotoxicity of mutant Htt aggregation and describes the molecular basis of Nmnat-mediated neuroprotection in HD.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
37
|
FGF2 and dual agonist of NCAM and FGF receptor 1, Enreptin, rescue neurite outgrowth loss in hippocampal neurons expressing mutated huntingtin proteins. J Neural Transm (Vienna) 2019; 126:1493-1500. [PMID: 31501979 DOI: 10.1007/s00702-019-02073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
In the present study, we developed an in vitro model of Huntington disease (HD) by transfecting primary rat hippocampal neurons with plasmids coding for m-htt exon 1 with different number of CAG repeats (18, 50 and 115) and demonstrated the influence of the length of polyQ sequence on neurite elongation. We found that exogenously applied FGF2 significantly rescued the m-htt-induced loss of neurite outgrowth. Moreover, the Enreptin peptide, an FGFR1 and NCAM dual agonist, had a similar neuritogenic effect to FGF2 in clinically relevant m-htt 50Q-expressing neurons. This study has developed an in vitro model of primary hippocampal neurons transfected with m-htt-coding vectors that is a powerful tool to study m-htt-related effects on neuronal placticity.
Collapse
|
38
|
Ross CA, Reilmann R, Cardoso F, McCusker EA, Testa CM, Stout JC, Leavitt BR, Pei Z, Landwehrmeyer B, Martinez A, Levey J, Srajer T, Bang J, Tabrizi SJ. Movement Disorder Society Task Force Viewpoint: Huntington's Disease Diagnostic Categories. Mov Disord Clin Pract 2019; 6:541-546. [PMID: 31538087 PMCID: PMC6749806 DOI: 10.1002/mdc3.12808] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Christopher A. Ross
- Departments of Psychiatry, Neurology, Neuroscience, and Pharmacology and Huntington's Disease CenterJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ralf Reilmann
- George Huntington Institut, Head, European HD Network (EHDN) Huntington CenterUniversity of MunsterMunsterGermany
| | - Francisco Cardoso
- Department of Neurology in the Movement Disorders Unit, Neurology ServiceInternal Medicine Department of the Federal University of Minas GeraisBelo HorizonteMGBrazil
| | - Elizabeth A. McCusker
- Neurology Department, Huntington Disease ServiceWestmead Hospital and Sydney University Medical SchoolSydneyAustralia
| | | | - Julie C. Stout
- Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash UniversityVictoriaAustralia
| | - Blair R. Leavitt
- Department of Medical Genetics and Centre for Molecular Medicine and TherapeuticsThe University of British ColumbiaVancouverCanada
| | - Zhong Pei
- The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | | | | | - Jamie Levey
- Cure HD Initiative (CHDI) Management/CHDI FoundationPrincetonNJUSA
- European Huntington's Disease NetworkUniversity Hospital of UlmUlmGermany
| | | | - Jee Bang
- Departments of Neurology and Psychiatry, and Huntington's Disease CenterJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sarah J. Tabrizi
- Huntington's Disease Centre, University College LondonQueen Square Institute of NeurologyLondonUnited Kingdom
- UK Dementia Research InstituteUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
39
|
Abstract
Introduction: Huntington's disease (HD) is an inherited neurodegenerative condition for which there are no disease-modifying treatments. The availability of early genetic diagnosis makes HD an ideal candidate for early intervention. Growing understanding of pathogenesis has led to the identification of new therapeutic targets for which some compounds are now in clinical trials. Areas covered: A detailed review of medical databases and clinical trial registries was performed. Recent clinical trials aimed to establish disease-modification were included. Focus was assigned to RNA and DNA-based therapies aimed at lowering mutant huntingtin (mHTT) including antisense oligonucleotides (ASOs), RNA interference (RNAi), zinc finger proteins (ZFPs) and the CRISPR-Cas9 system. Modulation of mHTT and immunotherapies is also covered. Expert opinion: Targeting HD pathogenesis at its most proximal level is under intense investigation. ASOs are the only HTT-lowering strategy in clinical trials of manifest HD. Safety and efficacy of an allele specific vs. allele non-specific approach has yet to be established. Success will extend to premanifest carriers for which development of clinical and imaging biomarkers will be necessary. Scientific and technological advancement will bolster new methods of treatment delivery. Cumulative experience, collaborative research, and platforms such as ENROLL-HD will facilitate efficient and effective clinical trials.
Collapse
Affiliation(s)
- Hassaan Bashir
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
40
|
Abstract
Background Huntington’s disease (HD) is a rare, genetic neurodegenerative disorder often presenting with emotional, cognitive and behavioral abnormalities before manifestation of disease defining motor symptoms. Cognitive impairment is a frequent clinical feature caused by different dementia subtypes. Imaging cortical and subcortical glucose metabolism via 18F-FDG PET/CT can help to discriminate the underlying disease. Case presentation The patient is a 54-year old man presenting with progressive cognitive impairment and mild orofacial dyskinesia. 18F-FDG PET/CT of the brain revealed a severe bilateral hypometabolism in the striatum. Following imaging Huntington’s disease was suspected and a molecular genetic testing confirmed the diagnosis. Conclusions Huntington’s disease is a rare but important differential diagnosis of cognitive impairment, especially before motor symptoms are manifest. 18F-FDG PET is capable to show early striatal dysfunction in HD even when structural imaging is normal. We conclude that, in cases with negative family history the HD characteristic metabolic pattern can lead to the diagnosis when no other dementia-suspected changes are present.
Collapse
|
41
|
Oosterloo M, Bijlsma EK, van Kuijk SM, Minkels F, de Die-Smulders CE. Clinical and genetic characteristics of late-onset Huntington's disease. Parkinsonism Relat Disord 2019; 61:101-105. [PMID: 30528461 DOI: 10.1016/j.parkreldis.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND The frequency of late-onset Huntington's disease (>59 years) is assumed to be low and the clinical course milder. However, previous literature on late-onset disease is scarce and inconclusive. OBJECTIVE Our aim is to study clinical characteristics of late-onset compared to common-onset HD patients in a large cohort of HD patients from the Registry database. METHODS Participants with late- and common-onset (30-50 years)were compared for first clinical symptoms, disease progression, CAG repeat size and family history. Participants with a missing CAG repeat size, a repeat size of ≤35 or a UHDRS motor score of ≤5 were excluded. RESULTS Of 6007 eligible participants, 687 had late-onset (11.4%) and 3216 (53.5%) common-onset HD. Late-onset (n = 577) had significantly more gait and balance problems as first symptom compared to common-onset (n = 2408) (P < .001). Overall motor and cognitive performance (P < .001) were worse, however only disease motor progression was slower (coefficient, -0.58; SE 0.16; P < .001) compared to the common-onset group. Repeat size was significantly lower in the late-onset (n = 40.8; SD 1.6) compared to common-onset (n = 44.4; SD 2.8) (P < .001). Fewer late-onset patients (n = 451) had a positive family history compared to common-onset (n = 2940) (P < .001). CONCLUSIONS Late-onset patients present more frequently with gait and balance problems as first symptom, and disease progression is not milder compared to common-onset HD patients apart from motor progression. The family history is likely to be negative, which might make diagnosing HD more difficult in this population. However, the balance and gait problems might be helpful in diagnosing HD in elderly patients.
Collapse
Affiliation(s)
- Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Mj van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Floor Minkels
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Christine Em de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands; GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
42
|
Maniati MS, Maniati M, Yousefi T, Ahmadi‐Ahangar A, Tehrani SS. New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases. J Cell Biochem 2019; 120:8908-8918. [DOI: 10.1002/jcb.28361] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Mohammad Saeed Maniati
- Student Research Committee, Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mahmood Maniati
- Department of English Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Alijan Ahmadi‐Ahangar
- Mobility Impairment Research Center, Babol University of Medical Sciences Babol Iran
| | - Sadra Samavarchi Tehrani
- Student Research Committee, Babol University of Medical Sciences Babol Iran
- Mobility Impairment Research Center, Babol University of Medical Sciences Babol Iran
| |
Collapse
|
43
|
Huntington's Disease in a Patient Misdiagnosed as Conversion Disorder. Case Rep Psychiatry 2018; 2018:3915657. [PMID: 29670796 PMCID: PMC5835269 DOI: 10.1155/2018/3915657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 12/05/2022] Open
Abstract
Huntington's disease (HD) is an inherited, progressive, and neurodegenerative neuropsychiatric disorder caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide in Interested Transcript (IT) 15 gene on chromosome 4. This pathology typically presents in individuals aged between 30 and 50 years and the age of onset is inversely correlated with the length of the CAG repeat expansion. It is characterized by chorea, cognitive deficits, and psychiatric symptoms. Usually the psychiatric disorders precede motor and cognitive impairment, Major Depressive Disorder and anxiety disorders being the most common presentations. We present a clinical case of a 65-year-old woman admitted to our Psychiatric Acute Unit. During the 6 years preceding the admission, the patient had clinical assessments made several times by different specialties that focused only on isolated symptoms, disregarding the syndrome as a whole. In the course of her last admission, the patient was referred to our Neuropsychiatric Team, which made the provisional diagnosis of late-onset Huntington's disease, later confirmed by genetic testing. This clinical vignette highlights the importance of a multidisciplinary approach to atypical clinical presentations and raises awareness for the relevance of investigating carefully motor symptoms in psychiatric patients.
Collapse
|
44
|
Solberg OK, Filkuková P, Frich JC, Feragen KJB. Age at Death and Causes of Death in Patients with Huntington Disease in Norway in 1986-2015. J Huntingtons Dis 2018; 7:77-86. [PMID: 29480207 PMCID: PMC5870025 DOI: 10.3233/jhd-170270] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The literature offers discrepant findings regarding age at death in individuals with Huntington disease (HD). OBJECTIVE To study the age at death and causes of death in males and females with a diagnosis of HD in Norway. METHODS Registry study of deaths in 1986-2015 using data from two national registries: the Norwegian Cause of Death Registry (NCDR) and the registry of the Centre for Rare Disorders (CRD), Oslo University Hospital. RESULTS Mean age at death for individuals with HD was found to be 63.9 years (NCDR) and 61.7 years (CRD), compared to a mean of 76.9 years in the general population (NCDR). There were no significant gender differences for age at death in individuals with HD. The significant increase in age at death within the general population from 1986 to 2015 was not observed in individuals with HD. In 73.5% of individuals with HD, the underlying cause of death was HD, followed by cardiovascular diseases, cancer and respiratory diseases. The most common immediate cause of death was respiratory diseases (44.2%). Suicide was a more common cause of death in the population with HD (2.3%) compared to the general population (1.3%). CONCLUSION The age at death of individuals with HD was stable over a period of 30 years and 13.3 years lower than in the general population. Longer life expectancy for females from the general population was not found in females with HD. Suicide was more common among individuals with HD compared to the general population.
Collapse
Affiliation(s)
| | - Petra Filkuková
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Jan C. Frich
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | | |
Collapse
|
45
|
McCusker EA, Loy CT. Huntington Disease: The Complexities of Making and Disclosing a Clinical Diagnosis After Premanifest Genetic Testing. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2017; 7:467. [PMID: 28975045 PMCID: PMC5623754 DOI: 10.7916/d8pk0tdd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022]
Abstract
The management of patients and families affected by Huntington disease (HD) is complicated by several factors, both practical and ethical. It can be difficult to determine the onset of clinically manifest HD (mHD). In addition, it can be challenging to decide when to disclose the diagnosis to the affected individual. Firstly, the features of HD, an incurable, inherited, neurocognitive disorder that often manifests in young adulthood, influence how the person presents and accepts a diagnosis. Secondly, a positive genetic test for HD may result in a genetic diagnosis, sometimes years before the development of clinical features and the diagnosis of mHD. Thirdly, observational studies of unaffected gene expansion carriers documented HD manifestations up to 10 years before the typical presentation for diagnosis. These developments may permit earlier genetic diagnosis and information regarding the patient’s likely status with respect to the development of clinical disease. Making the genetic diagnosis of HD and providing information regarding disease status, earlier rather than later, respects the person’s right to know and preserves honesty in the doctor/patient relationship. Conversely, delaying the diagnosis respects the right not to know, avoids potential discrimination, and permits the person to live a “normal” life for longer, in the context of a disease without cure. This discussion has implications for other inherited and neurocognitive disorders.
Collapse
Affiliation(s)
- Elizabeth A McCusker
- Huntington Disease Service, Neurology Department, Westmead Hopsital, Sydney, Australia.,University of Sydney Medical School, Sydney, Australia
| | - Clement T Loy
- Sydney School of Public Healththe University of Sydney, Sydney, Australia.,Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|