1
|
Roger AL, Biswas DD, Huston ML, Le D, Bailey AM, Pucci LA, Shi Y, Robinson-Hamm J, Gersbach CA, ElMallah MK. Respiratory characterization of a humanized Duchenne muscular dystrophy mouse model. Respir Physiol Neurobiol 2024; 326:104282. [PMID: 38782084 PMCID: PMC11472894 DOI: 10.1016/j.resp.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.
Collapse
Affiliation(s)
- Angela L Roger
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Davina Le
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Aidan M Bailey
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Logan A Pucci
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Yihan Shi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Mai K ElMallah
- Department of Pediatrics, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Noel L, Planchon C, Van den Bergh PYK, Brichard SM, Abou-Samra M. The Adiponectin Receptor Agonist, ALY688: A Promising Therapeutic for Fibrosis in the Dystrophic Muscle. Cells 2023; 12:2101. [PMID: 37626911 PMCID: PMC10453606 DOI: 10.3390/cells12162101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most devastating myopathies, where severe inflammation exacerbates disease progression. Previously, we demonstrated that adiponectin (ApN), a hormone with powerful pleiotropic effects, can efficiently improve the dystrophic phenotype. However, its practical therapeutic application is limited. In this study, we investigated ALY688, a small peptide ApN receptor agonist, as a potential novel treatment for DMD. Four-week-old mdx mice were subcutaneously treated for two months with ALY688 and then compared to untreated mdx and wild-type mice. In vivo and ex vivo tests were performed to assess muscle function and pathophysiology. Additionally, in vitro tests were conducted on human DMD myotubes. Our results showed that ALY688 significantly improved the physical performance of mice and exerted potent anti-inflammatory, anti-oxidative and anti-fibrotic actions on the dystrophic muscle. Additionally, ALY688 hampered myonecrosis, partly mediated by necroptosis, and enhanced the myogenic program. Some of these effects were also recapitulated in human DMD myotubes. ALY688's protective and beneficial properties were mainly mediated by the AMPK-PGC-1α axis, which led to suppression of NF-κβ and TGF-β. Our results demonstrate that an ApN mimic may be a promising and effective therapeutic prospect for a better management of DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
- Neuromuscular Reference Center, Department of Neurology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium;
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Maria A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Peter Y. K. Van den Bergh
- Neuromuscular Reference Center, Department of Neurology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium;
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| |
Collapse
|
3
|
Muraine L, Bensalah M, Butler-Browne G, Bigot A, Trollet C, Mouly V, Negroni E. Update on anti-fibrotic pharmacotherapies in skeletal muscle disease. Curr Opin Pharmacol 2023; 68:102332. [PMID: 36566666 DOI: 10.1016/j.coph.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Fibrosis, defined as an excessive accumulation of extracellular matrix, is the end point of a defective regenerative process, unresolved inflammation and/or chronic damage. Numerous muscle disorders (MD) are characterized by high levels of fibrosis associated with muscle wasting and weakness. Fibrosis alters muscle homeostasis/regeneration and fiber environment and may interfere with gene and cell therapies. Slowing down or reversing fibrosis is a crucial therapeutic goal to maintain muscle identity in the context of therapies. Several pathways are implicated in the modulation of the fibrotic progression and multiple therapeutic compounds targeting fibrogenic signals have been tested in MDs, mostly in the context of Duchenne Muscular Dystrophy. In this review, we present an up-to-date overview of pharmacotherapies that have been tested to reduce fibrosis in the skeletal muscle.
Collapse
Affiliation(s)
- Laura Muraine
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Mona Bensalah
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
4
|
Shah MNA, Yokota T. Restoring Dystrophin Expression by Skipping Exons 6 and 8 in Neonatal Dystrophic Dogs. Methods Mol Biol 2023; 2587:107-124. [PMID: 36401026 DOI: 10.1007/978-1-0716-2772-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the mutations in the DMD gene resulting in no dystrophin production. Skipping DMD exons using phosphorodiamidate morpholino oligomers (PMOs) is an emerging treatment strategy that can restore the reading frame of the mutated gene and produce truncated but functional dystrophin protein. To date, four PMOs, including eteplirsen, casimersen, viltolarsen, and golodirsen, have been conditionally approved by the FDA for the treatment of DMD. Since degeneration of muscle fibers and irreversible fibrosis occur from childhood, the earlier treatment is preferred. The canine X-linked muscular dystrophy in Japan (CXMDj), a dog model of DMD, produces no dystrophin and exhibits a severe phenotype similar to human patients from early childhood. As such, CXMDj, which harbors a splice site mutation in intron 6, is a useful model for examining the long-term effects of early PMO treatment. In this chapter, we describe the systemic delivery of a cocktail of four PMOs that can successfully induce multiple exon skipping (exons 6-9) in neonatal dystrophic dogs. We also describe the procedures to evaluate the efficacy and toxicity, including clinical grading of dystrophic dogs, ELISA-based quantification of PMOs, histology, RT-PCR, and western blotting.
Collapse
Affiliation(s)
- Md Nur Ahad Shah
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Muscular Dystrophy Canada Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
6
|
Seixas MLGA, Mitre LP, Shams S, Lanzuolo GB, Bartolomeo CS, Silva EA, Prado CM, Ureshino R, Stilhano RS. Unraveling Muscle Impairment Associated With COVID-19 and the Role of 3D Culture in Its Investigation. Front Nutr 2022; 9:825629. [PMID: 35223956 PMCID: PMC8867096 DOI: 10.3389/fnut.2022.825629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been considered a public health emergency, extensively investigated by researchers. Accordingly, the respiratory tract has been the main research focus, with some other studies outlining the effects on the neurological, cardiovascular, and renal systems. However, concerning SARS-CoV-2 outcomes on skeletal muscle, scientific evidence is still not sufficiently strong to trace, treat and prevent possible muscle impairment due to the COVID-19. Simultaneously, there has been a considerable amount of studies reporting skeletal muscle damage in the context of COVID-19. Among the detrimental musculoskeletal conditions associated with the viral infection, the most commonly described are sarcopenia, cachexia, myalgia, myositis, rhabdomyolysis, atrophy, peripheral neuropathy, and Guillain-Barré Syndrome. Of note, the risk of developing sarcopenia during or after COVID-19 is relatively high, which poses special importance to the condition amid the SARS-CoV-2 infection. The yet uncovered mechanisms by which musculoskeletal injury takes place in COVID-19 and the lack of published methods tailored to study the correlation between COVID-19 and skeletal muscle hinder the ability of healthcare professionals to provide SARS-CoV-2 infected patients with an adequate treatment plan. The present review aims to minimize this burden by both thoroughly exploring the interaction between COVID-19 and the musculoskeletal system and examining the cutting-edge 3D cell culture techniques capable of revolutionizing the study of muscle dynamics.
Collapse
Affiliation(s)
- Maria Luiza G. A. Seixas
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Lucas Pari Mitre
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gabriel Barbugian Lanzuolo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Eduardo A. Silva
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Carla Maximo Prado
- Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Ureshino
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- *Correspondence: Roberta Sessa Stilhano
| |
Collapse
|
7
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
8
|
A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping. Int J Mol Sci 2021; 22:ijms222313065. [PMID: 34884867 PMCID: PMC8657897 DOI: 10.3390/ijms222313065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.
Collapse
|
9
|
Hayward GC, Caceres D, Copeland EN, Baranowski BJ, Mohammad A, Whitley KC, Fajardo VA, MacPherson REK. Characterization of Alzheimer's disease-like neuropathology in Duchenne's muscular dystrophy using the DBA/2J mdx mouse model. FEBS Open Bio 2021; 12:154-162. [PMID: 34668666 PMCID: PMC8727939 DOI: 10.1002/2211-5463.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder caused by a mutation in the dystrophin gene. In addition to muscle pathology, some patients with DMD will exhibit cognitive impairments with severity being linked to age and type of genetic mutation. Likewise, some studies have shown that mdx mice display impairments in spatial memory compared with wild‐type (WT) controls, while others have not observed any such effect. Most studies have utilized the traditional C57BL/10 (C57) mdx mouse, which exhibits a mild disease phenotype. Recently, the DBA/2J (D2) mdx mouse has emerged as a more severe and perhaps clinically relevant DMD model; however, studies examining cognitive function in these mice are limited. Thus, in this study we examined cognitive function in age‐matched C57 and D2 mdx mice along with their respective WT controls. Our findings show that 8‐ to 12‐week‐old C57 mdx mice did not display any differences in exploration time when challenged with a novel object recognition test. Conversely, age‐matched D2 mdx mice spent less time exploring objects in total as a well as less time exploring the novel object, suggestive of impaired recognition memory. Biochemical analyses of the D2 mdx brain revealed higher soluble amyloid precursor protein β (APPβ) and APP in the prefrontal cortex of mdx mice compared with WT, and lower soluble APPα in the hippocampus, suggestive of a shift towards amyloidogenesis and a similar pathogenesis to Alzheimer's disease. Furthermore, our study demonstrates the utility of the D2 mdx model in studying cognitive impairment.
Collapse
Affiliation(s)
| | - Daniela Caceres
- Faculty of Medicine, University of del Rosario, Bogota, Colombia
| | - Emily N Copeland
- Department of Kinesiology, Brock University, St. Catharines, Canada
| | | | - Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, Canada
| | | | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Canada
| | | |
Collapse
|
10
|
Licandro SA, Crippa L, Pomarico R, Perego R, Fossati G, Leoni F, Steinkühler C. The pan HDAC inhibitor Givinostat improves muscle function and histological parameters in two Duchenne muscular dystrophy murine models expressing different haplotypes of the LTBP4 gene. Skelet Muscle 2021; 11:19. [PMID: 34294164 PMCID: PMC8296708 DOI: 10.1186/s13395-021-00273-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the search of genetic determinants of Duchenne muscular dystrophy (DMD) severity, LTBP4, a member of the latent TGF-β binding protein family, emerged as an important predictor of functional outcome trajectories in mice and humans. Nonsynonymous single-nucleotide polymorphisms in LTBP4 gene associate with prolonged ambulation in DMD patients, whereas an in-frame insertion polymorphism in the mouse LTBP4 locus modulates disease severity in mice by altering proteolytic stability of the Ltbp4 protein and release of transforming growth factor-β (TGF-β). Givinostat, a pan-histone deacetylase inhibitor currently in phase III clinical trials for DMD treatment, significantly reduces fibrosis in muscle tissue and promotes the increase of the cross-sectional area (CSA) of muscles in mdx mice. In this study, we investigated the activity of Givinostat in mdx and in D2.B10 mice, two mouse models expressing different Ltbp4 variants and developing mild or more severe disease as a function of Ltbp4 polymorphism. METHODS Givinostat and steroids were administrated for 15 weeks in both DMD murine models and their efficacy was evaluated by grip strength and run to exhaustion functional tests. Histological examinations of skeletal muscles were also performed to assess the percentage of fibrotic area and CSA increase. RESULTS Givinostat treatment increased maximal normalized strength to levels that were comparable to those of healthy mice in both DMD models. The effect of Givinostat in both grip strength and exhaustion tests was dose-dependent in both strains, and in D2.B10 mice, Givinostat outperformed steroids at its highest dose. The in vivo treatment with Givinostat was effective in improving muscle morphology in both mdx and D2.B10 mice by reducing fibrosis. CONCLUSION Our study provides evidence that Givinostat has a significant effect in ameliorating both muscle function and histological parameters in mdx and D2.B10 murine models suggesting a potential benefit also for patients with a poor prognosis LTBP4 genotype.
Collapse
Affiliation(s)
| | - Luca Crippa
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Flavio Leoni
- Preclinical Development, Italfarmaco S.p.A., Milan, Italy
| | | |
Collapse
|
11
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Mortreux M, Sanchez B, Kapur K, Rutkove SB. Estimating myofiber cross-sectional area and connective tissue deposition with electrical impedance myography: A study in D2-mdx mice. Muscle Nerve 2021; 63:941-950. [PMID: 33759456 PMCID: PMC8883327 DOI: 10.1002/mus.27240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/19/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Surface electrical impedance myography (sEIM) has the potential for providing information on muscle composition and structure noninvasively. We sought to evaluate its use to predict myofiber size and connective tissue deposition in the D2-mdx model of Duchenne muscular dystrophy (DMD). METHODS We applied a prediction algorithm, the least absolute shrinkage and selection operator, to select specific EIM measurements obtained with surface and ex vivo EIM data from D2-mdx and wild-type (WT) mice (analyzed together or separately). We assessed myofiber cross-sectional area histologically and hydroxyproline (HP), a surrogate measure for connective tissue content, biochemically. RESULTS Using WT and D2-mdx impedance values together in the algorithm, sEIM gave average root-mean-square errors (RMSEs) of 26.6% for CSA and 45.8% for HP, which translate into mean errors of ±363 μm2 for a mean CSA of 1365 μm2 and of ±1.44 μg HP/mg muscle for a mean HP content of 3.15 μg HP/mg muscle. Stronger predictions were obtained by analyzing sEIM data from D2-mdx animals alone (RMSEs of 15.3% for CSA and 34.1% for HP content). Predictions made using ex vivo EIM data from D2-mdx animals alone were nearly equivalent to those obtained with sEIM data (RMSE of 16.59% for CSA), and slightly more accurate for HP (RMSE of 26.7%). DISCUSSION Surface EIM combined with a predictive algorithm can provide estimates of muscle pathology comparable to values obtained using ex vivo EIM, and can be used as a surrogate measure of disease severity and progression and response to therapy.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Kush Kapur
- Department of Neurology, Boston Childrenʼs Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Botzenhart UU, Keil C, Tsagkari E, Zeidler-Rentzsch I, Gredes T, Gedrange T. Influence of botulinum toxin A on craniofacial morphology after injection into the right masseter muscle of dystrophin deficient (mdx-) mice. Ann Anat 2021; 236:151715. [PMID: 33675949 DOI: 10.1016/j.aanat.2021.151715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Severe craniofacial and dental abnormalities, typical for patients with progressive Duchenne muscular dystrophy (DMD), are an exellcent demonstration of Melvin L. Moss "functional matrix theory", highlighting the influence of muscle tissue on craniofacial growth and morphology. However, the currently best approved animal model for investigation of this interplay is the mdx-mouse, which offers only a limited time window for research, due to the ability of muscle regeneration, in contrast to the human course of the disease. The aim of this study was to evaluate craniofacial morphology after BTX-A induced muscle paralysis in C57Bl- and mdx-mice, to prove the suitability of BTX-A intervention to inhibit muscle regeneration in mdx-mice and thus, mimicking the human course of the DMD disease. METHODS Paralysis of the right masseter muscle was induced in 100 days old C57Bl- and mdx-mice by a single specific intramuscular BTX-A injection. Mice skulls were obtained at 21 days and 42 days after BTX-A injection and 3D radiological evaluation was performed in order to measure various craniofacial dimensions in the sagittal, transversal and vertical plane. Statstical analysis were performed using SigmaStat®Version 3.5. In case of normal distribution, unpaired t-test and otherwise the Mann-Whitney-U test was applied. A statistical significance was given in case of p ≤ 0.05. RESULTS In contrast to C57Bl-mice, in mdx-mice, three weeks after BTX-A treatment a significant decrease of skull dimensions was noted in most of the measurements followed by a significant increase at the second investigation period. CONCLUSIONS BTX-A can induce changes in craniofacial morphology and presumably partially inhibit muscle regeneration in mdx-mice, but cannot completely intensify craniofacial effects elicited by dystrophy. Further research is necessary in order to fully understand muscle-bone interplay after BTX-A injection into dystrophic muscles.
Collapse
Affiliation(s)
| | - Christiane Keil
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Eirini Tsagkari
- Department of Orthodontics, Faculty of Dentistry School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ines Zeidler-Rentzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gredes
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gedrange
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| |
Collapse
|
13
|
Bal NC, Gupta SC, Pant M, Sopariwala DH, Gonzalez-Escobedo G, Turner J, Gunn JS, Pierson CR, Harper SQ, Rafael-Fortney JA, Periasamy M. Is Upregulation of Sarcolipin Beneficial or Detrimental to Muscle Function? Front Physiol 2021; 12:633058. [PMID: 33732165 PMCID: PMC7956958 DOI: 10.3389/fphys.2021.633058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy metabolism. Interestingly, SLN expression is significantly upregulated both during muscle development and in several disease states. However, the significance of altered SLN expression in muscle patho-physiology is not completely understood. We have previously shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and can promote oxidative metabolism and exercise capacity. In contrast, some studies have suggested that SLN upregulation in disease states is deleterious for muscle function and ablation of SLN can be beneficial. In this perspective article, we critically examine both published and some new data to determine the relevance of SLN expression to disease pathology. The new data presented in this paper show that SLN levels are induced in muscle during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. We also present data showing that SLN expression is significantly upregulated in different types of muscular dystrophies including myotubular myopathy. These data taken together reveal that upregulation of SLN expression in muscle disease is progressive and increases with severity. Therefore, we suggest that increased SLN expression should not be viewed as the cause of the disease; rather, it is a compensatory response to meet the higher energy demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative metabolism to meet higher energy demand in muscle.
Collapse
Affiliation(s)
- Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Subash C Gupta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meghna Pant
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Danesh H Sopariwala
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Geoffrey Gonzalez-Escobedo
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Joanne Turner
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John S Gunn
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH, United States
| | - Scott Q Harper
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
14
|
Abstract
Fibrosis in skeletal muscle is the natural tissue response to persistent damage and chronic inflammatory states, cursing with altered muscle stem cell regenerative functions and increased activation of fibrogenic mesenchymal stromal cells. Exacerbated deposition of extracellular matrix components is a characteristic feature of human muscular dystrophies, neurodegenerative diseases affecting muscle and aging. The presence of fibrotic tissue not only impedes normal muscle contractile functions but also hampers effective gene and cell therapies. There is a lack of appropriate experimental models to study fibrosis. In this chapter, we highlight recent developments on skeletal muscle fibrosis in mice and expand previously described methods by our group to exacerbate and accelerate fibrosis development in murine muscular dystrophy models and to study the presence of fibrosis in muscle samples. These methods will help understand the molecular and biological mechanisms involved in muscle fibrosis and to identify novel therapeutic strategies to limit the progression of fibrosis in muscular dystrophy.
Collapse
Affiliation(s)
- Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
15
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteome-wide Changes in the mdx-4cv Spleen due to Pathophysiological Cross Talk with Dystrophin-Deficient Skeletal Muscle. iScience 2020; 23:101500. [PMID: 32916630 PMCID: PMC7490529 DOI: 10.1016/j.isci.2020.101500] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy is primarily characterized by progressive muscle wasting due to deficiency in the membrane cytoskeletal protein dystrophin but is also associated with body-wide cellular disturbances in a variety of non-muscle tissues. In this study, we have focused on the comparative proteomic analysis of the spleen and established considerable changes in this crucial secondary lymphoid organ from the genetic mdx-4cv mouse model of dystrophinopathy. An apparent short isoform of dystrophin and associated glycoproteins were identified in spleen by mass spectrometry but appear not be affected in muscular dystrophy. In contrast, the mdx-4cv spleen showed significant proteome-wide changes in other protein species that are involved in metabolism, signaling, and cellular architecture. Since the spleen plays a key role in the immune response, these proteomic alterations may reflect pathophysiological cross talk between the lymphoid system and dystrophic muscles, which are affected by both fiber degeneration and inflammation.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare W23F2H6, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare W23F2H6, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare W23F2H6, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland
| |
Collapse
|
16
|
Molecular Diagnosis and Novel Therapies for Neuromuscular Diseases. J Pers Med 2020; 10:jpm10030129. [PMID: 32947786 PMCID: PMC7564006 DOI: 10.3390/jpm10030129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
With the development of novel targeted therapies, including exon skipping/inclusion and gene replacement therapy, the field of neuromuscular diseases has drastically changed in the last several years. Until 2016, there had been no FDA-approved drugs to treat Duchenne muscular dystrophy (DMD), the most common muscular dystrophy. However, several new personalized therapies, including antisense oligonucleotides eteplirsen for DMD exon 51 skipping and golodirsen and viltolarsen for DMD exon 53 skipping, have been approved in the last 4 years. We are witnessing the start of a therapeutic revolution in neuromuscular diseases. However, the studies also made clear that these therapies are still far from a cure. Personalized genetic medicine for neuromuscular diseases faces several key challenges, including the difficulty of obtaining appropriate cell and animal models and limited its applicability. This Special Issue “Molecular Diagnosis and Novel Therapies for Neuromuscular/Musculoskeletal Diseases” highlights key areas of research progress that improve our understanding and the therapeutic outcomes of neuromuscular diseases in the personalized medicine era.
Collapse
|
17
|
Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy: Exploration of Steroid-Sparing Agents. Int J Mol Sci 2020; 21:ijms21134596. [PMID: 32605223 PMCID: PMC7369834 DOI: 10.3390/ijms21134596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described. This could create new opportunities for testing in DMD animal models and/or clinical trials, possibly leading to smaller glucocorticoids dosage regimens for DMD patients.
Collapse
|
18
|
Heterogenetic parabiosis between healthy and dystrophic mice improve the histopathology in muscular dystrophy. Sci Rep 2020; 10:7075. [PMID: 32341395 PMCID: PMC7184587 DOI: 10.1038/s41598-020-64042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 11/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease, characterized by mutations in the X-linked dystrophin, that has several therapeutic options but no curative treatment. Transplantation of muscle progenitor cells for treatment of DMD has been widely investigated; however, its application is hindered by limited cell survival due to the harmful dystrophic microenvironment. An alternative approach to utilize progenitor cells and circulatory factors and to improve the dystrophic muscle pathology and microenvironment is through parabiotic pairing, where mice are surgically sutured to create a joint circulatory system. Parabiotic mice were generated by surgically joining wild type (WT) mice expressing green fluorescent protein (GFP) with mdx mice. These mice developed a common circulation (approximately 50% green cells in the blood of mdx mice) 2-weeks after parabiotic pairing. We observed significantly improved dystrophic muscle pathology, including decreased inflammation, necrotic fibers and fibrosis in heterogenetic parabionts. Importantly, the GFP + cells isolated from the mdx mice (paired with GFP mice) underwent myogenic differentiation in vitro and expressed markers of mesenchymal stem cells and macrophages, which may potentially be involved in the improvement of dystrophic muscle pathology. These observations suggest that changing the dystrophic microenvironment can be a new approach to treat DMD.
Collapse
|
19
|
Abou-Samra M, Selvais CM, Boursereau R, Lecompte S, Noel L, Brichard SM. AdipoRon, a new therapeutic prospect for Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2020; 11:518-533. [PMID: 31965757 PMCID: PMC7113498 DOI: 10.1002/jcsm.12531] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/23/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adiponectin (ApN) is a hormone known to exhibit insulin-sensitizing, fat-burning, and anti-inflammatory properties in several tissues, including the skeletal muscle. Duchenne muscular dystrophy (DMD) is a devastating disease characterized by dystrophin deficiency with subsequent chronic inflammation, myofiber necrosis, and impaired regeneration. Previously, we showed that transgenic up-regulation of ApN could significantly attenuate the dystrophic phenotype in mdx mice (model of DMD). Recently, an orally active ApN receptor agonist, AdipoRon, has been identified. This synthetic small molecule has the advantage of being more easily produced and administrable than ApN. The aim of this study was to investigate the potential effects of AdipoRon on the dystrophic muscle. METHODS Four-week-old mdx mice (n = 6-9 per group) were orally treated with AdipoRon (mdx-AR) for 8 weeks and compared with untreated (mdx) mice and to control (wild-type) mice. In vivo functional tests were carried out to measure the global force and endurance of mice. Ex vivo biochemical and molecular analyses were performed to evaluate the pathophysiology of the skeletal muscle. Finally, in vitro tests were conducted on primary cultures of healthy and DMD human myotubes. RESULTS AdipoRon treatment mitigated oxidative stress (-30% to 45% for 4-hydroxy-2-nonenal and peroxiredoxin 3, P < 0.0001) as well as inflammation in muscles of mdx mice (-35% to 65% for interleukin 1 beta, tumour necrosis factor alpha, and cluster of differentiation 68, a macrophage maker, P < 0.0001) while increasing the anti-inflammatory cytokine, interleukin 10 (~5-fold, P < 0.0001). AdipoRon also improved the myogenic programme as assessed by a ~2-fold rise in markers of muscle proliferation and differentiation (P < 0.01 or less vs. untreated mdx). Plasma lactate dehydrogenase and creatine kinase were reduced by 30-40% in mdx-AR mice, reflecting less sarcolemmal damage (P < 0.0001). When compared with untreated mdx mice, mdx-AR mice exhibited enhanced physical performance with an increase in both muscle force and endurance and a striking restoration of the running capacity during eccentric exercise. AdipoRon mainly acted through ApN receptor 1 by increasing AMP-activated protein kinase signalling, which led to repression of nuclear factor-kappa B, up-regulation of utrophin (a dystrophin analogue), and a switch towards an oxidative and more resistant fibre phenotype. The effects of AdipoRon were then recapitulated in human DMD myotubes. CONCLUSIONS These results demonstrate that AdipoRon exerts several beneficial effects on the dystrophic muscle. This molecule could offer promising therapeutic prospect for managing DMD or other muscle and inflammatory disorders.
Collapse
Affiliation(s)
- Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, Brussels, Belgium
| | - Camille M Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, Brussels, Belgium
| | - Raphael Boursereau
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, Brussels, Belgium
| | - Sophie Lecompte
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, Brussels, Belgium
| | - Sonia M Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Lim KRQ, Nguyen Q, Dzierlega K, Huang Y, Yokota T. CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy. Genes (Basel) 2020; 11:genes11030342. [PMID: 32213923 PMCID: PMC7141101 DOI: 10.3390/genes11030342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disorder most commonly caused by mutations disrupting the reading frame of the dystrophin (DMD) gene. DMD codes for dystrophin, which is critical for maintaining the integrity of muscle cell membranes. Without dystrophin, muscle cells receive heightened mechanical stress, becoming more susceptible to damage. An active body of research continues to explore therapeutic treatments for DMD as well as to further our understanding of the disease. These efforts rely on having reliable animal models that accurately recapitulate disease presentation in humans. While current animal models of DMD have served this purpose well to some extent, each has its own limitations. To help overcome this, clustered regularly interspaced short palindromic repeat (CRISPR)-based technology has been extremely useful in creating novel animal models for DMD. This review focuses on animal models developed for DMD that have been created using CRISPR, their advantages and disadvantages as well as their applications in the DMD field.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Kasia Dzierlega
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Yiqing Huang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1102
| |
Collapse
|
21
|
Razzoli M, Lindsay A, Law ML, Chamberlain CM, Southern WM, Berg M, Osborn J, Engeland WC, Metzger JM, Ervasti JM, Bartolomucci A. Social stress is lethal in the mdx model of Duchenne muscular dystrophy. EBioMedicine 2020; 55:102700. [PMID: 32192914 PMCID: PMC7251247 DOI: 10.1016/j.ebiom.2020.102700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin. Severe and ultimately lethal, DMD progresses relatively slowly in that patients become wheelchair bound only around age twelve with a survival expectancy reaching the third decade of life. Methods The mildly-affected mdx mouse model of DMD, and transgenic DysΔMTB-mdx and Fiona-mdx mice expressing dystrophin or utrophin, respectively, were exposed to either mild (scruffing) or severe (subordination stress) stress paradigms and profiled for their behavioral and physiological responses. A subgroup of mdx mice exposed to subordination stress were pretreated with the beta-blocker metoprolol. Findings Subordination stress caused lethality in ∼30% of mdx mice within 24 h and ∼70% lethality within 48 h, which was not rescued by metoprolol. Lethality was associated with heart damage, waddling gait and hypo-locomotion, as well as marked up-regulation of the hypothalamus-pituitary-adrenocortical axis. A novel cardiovascular phenotype emerged in mdx mice, in that scruffing caused a transient drop in arterial pressure, while subordination stress caused severe and sustained hypotension with concurrent tachycardia. Transgenic expression of dystrophin or utrophin in skeletal muscle protected mdx mice from scruffing and social stress-induced responses including mortality. Interpretation We have identified a robust new stress phenotype in the otherwise mildly affected mdx mouse that suggests relatively benign handling may impact the outcome of behavioural experiments, but which should also expedite the knowledge-based therapy development for DMD. Funding Greg Marzolf Jr. Foundation, Summer's Wish Fund, NIAMS, Muscular Dystrophy Association, University of Minnesota and John and Cheri Gunvalson Trust.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Angus Lindsay
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Michelle L Law
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William M Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Madeleine Berg
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - John Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William C Engeland
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States.
| |
Collapse
|
22
|
Abstract
Skeletal muscle fibres are multinucleated cells that contain postmitotic nuclei (i.e. they are no longer able to divide) and perform muscle contraction. They are formed by fusion of muscle precursor cells, and grow into elongating myofibres by the addition of further precursor cells, called satellite cells, which are also responsible for regeneration following injury. Skeletal muscle regeneration occurs in most muscular dystrophies in response to necrosis of muscle fibres. However, the complex environment within dystrophic skeletal muscle, which includes inflammatory cells, fibroblasts and fibro-adipogenic cells, together with the genetic background of the in vivo model and the muscle being studied, complicates the interpretation of laboratory studies on muscular dystrophies. Many genes are expressed in satellite cells and in other tissues, which makes it difficult to determine the molecular cause of various types of muscular dystrophies. Here, and in the accompanying poster, we discuss our current knowledge of the cellular mechanisms that govern the growth and regeneration of skeletal muscle, and highlight the defects in satellite cell function that give rise to muscular dystrophies. Summary: The mechanisms of skeletal muscle development, growth and regeneration are described. We discuss whether these processes are dysregulated in inherited muscle diseases and identify pathways that may represent therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK .,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Terence Partridge
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK.,Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
23
|
Wasala NB, Chen SJ, Duan D. Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opin Drug Discov 2020; 15:443-456. [PMID: 32000537 DOI: 10.1080/17460441.2020.1718100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is an X-linked handicapping disease due to the loss of an essential muscle protein dystrophin. Dystrophin-null animals have been extensively used to study disease mechanisms and to develop experimental therapeutics. Despite decades of research, however, treatment options for DMD remain very limited.Areas covered: High-throughput high-content screening and precision medicine offer exciting new opportunities. Here, the authors review animal models that are suitable for these studies.Expert opinion: Nonmammalian models (worm, fruit fly, and zebrafish) are particularly attractive for cost-effective large-scale drug screening. Several promising lead compounds have been discovered using these models. Precision medicine for DMD aims at developing mutation-specific therapies such as exon-skipping and genome editing. To meet these needs, models with patient-like mutations have been established in different species. Models that harbor hotspot mutations are very attractive because the drugs developed in these models can bring mutation-specific therapies to a large population of patients. Humanized hDMD mice carry the entire human dystrophin gene in the mouse genome. Reagents developed in the hDMD mouse-based models are directly translatable to human patients.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Shi-Jie Chen
- Department of Physics, The University of Missouri, Columbia, MO, USA.,Department of Biochemistry, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Dowling P, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic and cell biological profiling of the renal phenotype of the mdx-4cv mouse model of Duchenne muscular dystrophy. Eur J Cell Biol 2019; 99:151059. [PMID: 31776009 DOI: 10.1016/j.ejcb.2019.151059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
The X-linked inherited muscle wasting disease Duchenne muscular dystrophy, which is caused by primary abnormalities in the membrane cytoskeletal protein dystrophin, is a multi-system disorder. Highly progressive forms of dystrophinopathy are associated with a complex secondary pathophysiology, including renal dysfunction. It was therefore of interest to carry out a systematic survey of potential proteome-wide changes in the kidney of the established mdx-4cv mouse model of dystrophinopathy. Of 5878 mass spectrometrically identified kidney proteins, 82 versus 142 proteins were shown to be decreased or increased, respectively, in association with muscular dystrophy. The most decreased versus increased protein species are the ACSM3 isoform of mitochondrial acyl-coenzyme A synthetase and the FABP1 isoform of fatty acid binding protein, respectively. Both proteomic findings were verified by immunofluorescence microscopy and immunoblot analysis. Interestingly, haematoxylin/eosin staining indicated diffuse whitish deposits in the mdx-4cv kidney, and an increased intensity of Sudan Black labelling of kidney cells revealed ectopic fat deposition. Although the proteomic results and cell biological findings do not demonstrate a direct functional link between increased FABP1 and fat accumulation, the results suggest that the up-regulation of FABP1 may be related to abnormal fat metabolism. This makes FABP1 potentially a novel pathobiochemical indicator for studying kidney abnormalities in the mdx-4cv model of dystrophinopathy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth W23F2H6, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth W23F2H6, Co. Kildare, Ireland.
| |
Collapse
|
25
|
Meyers TA, Townsend D. Cardiac Pathophysiology and the Future of Cardiac Therapies in Duchenne Muscular Dystrophy. Int J Mol Sci 2019; 20:E4098. [PMID: 31443395 PMCID: PMC6747383 DOI: 10.3390/ijms20174098] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease featuring skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. Historically, respiratory failure has been the leading cause of mortality in DMD, but recent improvements in symptomatic respiratory management have extended the life expectancy of DMD patients. With increased longevity, the clinical relevance of heart disease in DMD is growing, as virtually all DMD patients over 18 year of age display signs of cardiomyopathy. This review will focus on the pathophysiological basis of DMD in the heart and discuss the therapeutic approaches currently in use and those in development to treat dystrophic cardiomyopathy. The first section will describe the aspects of the DMD that result in the loss of cardiac tissue and accumulation of fibrosis. The second section will discuss cardiac small molecule therapies currently used to treat heart disease in DMD, with a focus on the evidence supporting the use of each drug in dystrophic patients. The final section will outline the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, or repair. There are several new and promising therapeutic approaches that may protect the dystrophic heart, but their limitations suggest that future management of dystrophic cardiomyopathy may benefit from combining gene-targeted therapies with small molecule therapies. Understanding the mechanistic basis of dystrophic heart disease and the effects of current and emerging therapies will be critical for their success in the treatment of patients with DMD.
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Permittivity of ex vivo healthy and diseased murine skeletal muscle from 10 kHz to 1 MHz. Sci Data 2019; 6:37. [PMID: 31000708 PMCID: PMC6472406 DOI: 10.1038/s41597-019-0045-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
A better understanding of the permittivity property of skeletal muscle is essential for the development of new diagnostic tools and approaches for neuromuscular evaluation. However, there remain important knowledge gaps in our understanding of this property in healthy and diseased skeletal muscle, which hinder its translation into clinical application. Here, we report the permittivity of gastrocnemius muscle in healthy wild type mice and murine models of spinal muscular atrophy, muscular dystrophy, diabetes, amyotrophic lateral sclerosis and in a model of myofiber hypertrophy. Data were measured ex vivo from 10 kHz to 1 MHz using the four-electrode impedance technique. Additional quantitative histology information were obtained. Ultimately, the normative data reported will offer the scientific community the opportunity to develop more accurate models for the validation and prediction of experimental observations in both pre-clinical and clinical neuromuscular disease research. Design Type(s) | physiological data analysis objective • strain comparison design • ex vivo design | Measurement Type(s) | permittivity property | Technology Type(s) | impedance analyzer | Factor Type(s) | temporal_instant • frequency • Mouse Model • experimental condition | Sample Characteristic(s) | Mus musculus • skeletal muscle tissue |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
27
|
Maruyama R, Aoki Y, Takeda S, Yokota T. In Vivo Evaluation of Multiple Exon Skipping with Peptide-PMOs in Cardiac and Skeletal Muscles in Dystrophic Dogs. Methods Mol Biol 2019; 1828:365-379. [PMID: 30171554 DOI: 10.1007/978-1-4939-8651-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exon skipping is an emerging approach to treating Duchenne muscular dystrophy (DMD), one of the most common lethal genetic disorders. Exon skipping uses synthetic antisense oligonucleotides (AONs) to splice out frame-disrupting exon(s) of DMD mRNA to restore the reading frame of the gene products and produce truncated yet functional proteins. The FDA conditionally approved the first exon-skipping AON, called eteplirsen (brand name ExonDys51), targeting exon 51 of the DMD gene, in late 2016. Using a cocktail of AONs, multiple exons can be skipped, which can theoretically treat 80-90% of patients with DMD. Although the success of multiple exon skipping in a DMD dog model has made a significant impact on the development of therapeutics for DMD, unmodified AONs such as phosphorodiamidate morpholino oligomers (PMOs) have little efficacy in cardiac muscles. Here, we describe our technique of intravenous injection of a cocktail of peptide-conjugated PMOs (PPMOs) to skip multiple exons, exons 6 and 8, in both skeletal and cardiac muscles in dystrophic dogs and the evaluation of the efficacy and toxicity.
Collapse
Affiliation(s)
- Rika Maruyama
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Endowed Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion. Methods Mol Biol 2019; 1828:79-90. [PMID: 30171536 DOI: 10.1007/978-1-4939-8651-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antisense-mediated exon skipping and exon inclusion have proven to be powerful tools for treating neuromuscular diseases. The approval of Exondys 51 (eteplirsen) and Spinraza (nusinersen) for the treatment of patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) was the most noteworthy accomplishment in 2016. Exon skipping uses short DNA-like molecules called antisense oligonucleotides (AONs) to correct the disrupted reading frame, allowing the production of functional quasi-dystrophin proteins, and ameliorate the progression of the disease. Exon inclusion for SMA employs an AON targeting an intronic splice silencer site to include an exon which is otherwise spliced out. Recently, these strategies have also been explored in many other genetic disorders, including dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy; MM, limb-girdle muscular dystrophy type 2B; LGMD2B, and distal myopathy with anterior tibial onset; DMAT), laminin α2 chain (merosin)-deficient congenital muscular dystrophy (MDC1A), sarcoglycanopathy (e.g., limb-girdle muscular dystrophy type 2C; LGMD2C), and Fukuyama congenital muscular dystrophy (FCMD). A major challenge in exon skipping and exon inclusion is the difficulty in designing effective AONs. The mechanism of mRNA splicing is highly complex, and the efficacy of AONs is often unpredictable. We will discuss the design of effective AONs for exon skipping and exon inclusion in this chapter.
Collapse
|
29
|
Gaglianone RB, Santos AT, Bloise FF, Ortiga-Carvalho TM, Costa ML, Quirico-Santos T, da Silva WS, Mermelstein C. Reduced mitochondrial respiration and increased calcium deposits in the EDL muscle, but not in soleus, from 12-week-old dystrophic mdx mice. Sci Rep 2019; 9:1986. [PMID: 30760802 PMCID: PMC6374364 DOI: 10.1038/s41598-019-38609-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an important role in providing ATP for muscle contraction. Muscle physiology is compromised in Duchenne muscular dystrophy (DMD) and several studies have shown the involvement of bioenergetics. In this work we investigated the mitochondrial physiology in fibers from fast-twitch muscle (EDL) and slow-twitch muscle (soleus) in the mdx mouse model for DMD and in control C57BL/10J mice. In our study, multiple mitochondrial respiratory parameters were investigated in permeabilized muscle fibers from 12-week-old animals, a critical age where muscle regeneration is observed in the mdx mouse. Using substrates of complex I and complex II from the electron transport chain, ADP and mitochondrial inhibitors, we found in the mdx EDL, but not in the mdx soleus, a reduction in coupled respiration suggesting that ATP synthesis is affected. In addition, the oxygen consumption after addition of complex II substrate is reduced in mdx EDL; the maximal consumption rate (measured in the presence of uncoupler) also seems to be reduced. Mitochondria are involved in calcium regulation and we observed, using alizarin stain, calcium deposits in mdx muscles but not in control muscles. Interestingly, more calcium deposits were found in mdx EDL than in mdx soleus. These data provide evidence that in 12-week-old mdx mice, calcium is accumulated and mitochondrial function is disturbed in the fast-twitch muscle EDL, but not in the slow-twitch muscle soleus.
Collapse
Affiliation(s)
- Rhayanna B Gaglianone
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anderson Teixeira Santos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Fonseca Bloise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tania Maria Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Wagner Seixas da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
30
|
Skeletal muscle fibrosis: an overview. Cell Tissue Res 2018; 375:575-588. [DOI: 10.1007/s00441-018-2955-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
|
31
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
32
|
Bozycki L, Łukasiewicz K, Matryba P, Pikula S. Whole-body clearing, staining and screening of calcium deposits in the mdx mouse model of Duchenne muscular dystrophy. Skelet Muscle 2018; 8:21. [PMID: 30025544 PMCID: PMC6053777 DOI: 10.1186/s13395-018-0168-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a fatal, X-linked genetic disorder. Although DMD is the most common form of muscular dystrophy, only two FDA-approved drugs were developed to delay its progression. In order to assess therapies for treating DMD, several murine models have recently been introduced. As the wide variety of murine models enlighten mechanisms underlying DMD pathology, the question on how to monitor the progression of the disease within the entire musculoskeletal system still remains to be answered. One considerable approach to monitor such progression is histological evaluation of calcium deposits within muscle biopsies. Although accurate, histology is limited to small tissue area and cannot be utilized to evaluate systemic progression of DMD. Therefore, we aimed to develop a methodology suitable for rapid and high-resolution screening of calcium deposits within the entire murine organism. Methods Procedures were performed on adult male C57BL/10-mdx and adult male C57BL mice. Animals were sacrificed, perfused, paraformaldehyde-fixed, and subjected to whole-body clearing using optimized perfusion-based CUBIC protocol. Next, cleared organisms were stained with alizarin red S to visualize calcium deposits and subjected to imaging. Results Study revealed presence of calcium deposits within degenerated muscles of the entire C57BL/10-mdx mouse organism. Calcified deposits were observed within skeletal muscles of the forelimb, diaphragm, lumbar region, pelvic region, and hindlimb. Calcified deposits found in quadriceps femoris, triceps brachii, and spinalis pars lumborum were characterized. Analysis of cumulative frequency distribution showed different distribution characteristics of calcified deposits in quadriceps femoris muscle in comparison to triceps brachii and spinalis pars lumborum muscles (p < 0.001) and quadriceps femoris vs spinalis pars lumborum (p < 0.001). Differences between the number of calcified deposits in selected muscles, their volume, and average volume were statistically significant. Conclusions In aggregate, we present new methodology to monitor calcium deposits in situ in the mouse model of Duchenne muscular dystrophy. Sample imaging with the presented setup is feasible and applicable for whole-organ/body imaging. Accompanied by the development of custom-made LSFM apparatus, it allows targeted and precise characterization of calcium deposits in cleared muscles. Hence, presented approach might be broadly utilized to monitor degree to which muscles of the entire organism are affected by the necrosis and how is it altered by the treatment or physical activity of the animal. We believe that this would be a valuable tool for studying organs alternations in a wide group of animal models of muscle dystrophy and bone-oriented diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0168-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukasz Bozycki
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paweł Matryba
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097, Warsaw, Poland
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
33
|
Abstract
During the past 10 years, antisense oligonucleotide-mediated exon skipping and splice modulation have proven to be powerful tools for correction of mRNA splicing in genetic diseases. In 2016, the US Food and Drug Administration (FDA)-approved Exondys 51 (eteplirsen) and Spinraza (nusinersen), the first exon skipping and exon inclusion drugs, to treat patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), respectively. The exon skipping of DMD mRNA aims to restore the disrupted reading frame using antisense oligonucleotides (AONs), allowing the production of truncated but partly functional dystrophin proteins, and slow down the progression of the disease. This approach has also been explored in several other genetic disorders, including laminin α2 chain-deficient congenital muscular dystrophy, dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy and limb-girdle muscular dystrophy type 2B), sarcoglycanopathy (limb-girdle muscular dystrophy type 2C), and Fukuyama congenital muscular dystrophy. Antisense-mediated exon skipping is also a powerful tool to examine the function of genes and exons. A significant challenge in exon skipping is how to design effective AONs. The mechanism of mRNA splicing is highly complex with many factors involved. The selection of target sites, the length of AONs, the AON chemistry, and the melting temperature versus the RNA strand play important roles. A cocktail of AONs can be employed to skip multiples exons. In this chapter, we discuss the design of effective AONs for exon skipping.
Collapse
|
34
|
Pham TL, St-Pierre ME, Ravel-Chapuis A, Parks TEC, Langlois S, Penuela S, Jasmin BJ, Cowan KN. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy. J Cell Physiol 2018; 233:7057-7070. [PMID: 29744875 DOI: 10.1002/jcp.26629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/30/2018] [Indexed: 01/17/2023]
Abstract
Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles.
Collapse
Affiliation(s)
- Tammy L Pham
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Tara E C Parks
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Abstract
Introduction Duchenne Muscular Dystrophy is a genetic disease that is caused by a deficiency of dystrophin protein. Both Duchenne Muscular Dystrophy patients and dystrophic mice suffer from intestinal dysfunction. Methods The present study arose from a chance observation of differences in fecal output of dystrophic vs. normal mice during 20-minutes of forced continuous treadmill exercise. Here, we report on the effects of exercise on fecal output in two different dystrophic mutants and their normal background control strains. All fecal materials evacuated during exercise were counted, dried and weighed. Results Mice of both mutant dystrophic strains produced significantly more fecal material during the exercise bout than the relevant control strains. iscussion We propose that exercise--induced Colo--Rectal Activation Phenotype test could be used as a simple, highly sensitive, non-invasive biomarker to determine efficacy of dystrophin replacement therapies.
Collapse
Affiliation(s)
- Marie Nearing
- Children's National Health System, Children's Research Institute, Center for Genetic Medicine Research, Washington DC, United States
| | - James Novak
- Center for Genetic Medicine Research, Children's National Health System, Washington DC, United States
| | - Terence Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Medical Center, Washington DC, United States
| |
Collapse
|
36
|
Systemic Delivery of Morpholinos to Skip Multiple Exons in a Dog Model of Duchenne Muscular Dystrophy. Methods Mol Biol 2018; 1565:201-213. [PMID: 28364245 DOI: 10.1007/978-1-4939-6817-6_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs. Here, we describe the systemic delivery of a cocktail of PMOs to skip multiple exons in dystrophic dogs and the evaluation of the efficacies and toxicity in vivo.
Collapse
|
37
|
An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods Mol Biol 2018; 1828:31-55. [PMID: 30171533 DOI: 10.1007/978-1-4939-8651-4_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). Eteplirsen (brand name Exondys 51), is the first approved antisense therapy for DMD in the USA, and provides a treatment option for ~14% of all DMD patients, who are amenable to exon 51 skipping. Eteplirsen is granted accelerated approval and marketing authorization by the US Food and Drug Administration (FDA), on the condition that additional postapproval trials show clinical benefit. Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
Collapse
|
38
|
Insights into the Pathogenic Secondary Symptoms Caused by the Primary Loss of Dystrophin. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
39
|
Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy. J Pers Med 2017; 7:jpm7040013. [PMID: 29035327 PMCID: PMC5748625 DOI: 10.3390/jpm7040013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA) conditionally approved the first AO-based drug, eteplirsen (Exondys 51), developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.
Collapse
|
40
|
Carls C, Krajacic P. Bridging the Gap: An Osteopathic Primary Care–Centered Approach to Duchenne Muscular Dystrophy. J Osteopath Med 2017; 117:377-385. [DOI: 10.7556/jaoa.2017.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Duchenne muscular dystrophy (DMD) is a deadly and incurable disease typically diagnosed in early childhood. Presently, the delay between a caregiver's initial concern and the primary care physician obtaining creatine kinase levels—the most important screening test—is more than a year. It is imperative to diagnose DMD as soon as possible because early treatment has the potential to double the patient's lifespan. In addition, because of geographic and economic disadvantages, multidisciplinary DMD treatment centers are not readily available to all patients. Therefore, the challenge of early diagnosis and treatment coordination rests with the primary care physician. The present review provides osteopathic primary care physicians with current and relevant information regarding DMD diagnosis and management.
Collapse
|
41
|
Tichy ED, Mourkioti F. A new method of genotyping MDX 4CV mice by PCR-RFLP analysis. Muscle Nerve 2017; 56:522-524. [PMID: 28063157 DOI: 10.1002/mus.25566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The mdx4cv mouse is a common model to study Duchenne muscular dystrophy. The most used methodology to identify the genotype of these mice is Sanger DNA sequencing. METHODS Here, we provide a simple, cost-effective alternative approach to identify the wild-type, heterozygous, or homozygous/hemizygous genotypes of these mice, using commonly available laboratory equipment and reagents. RESULTS Our technique exploits a restriction fragment length polymorphism that is generated by the point mutation found in exon 53 of mdx4cv mice. CONCLUSIONS This technique can benefit laboratories that require complex breeding strategies involving mdx4cv mice. Muscle Nerve 56: 522-524, 2017.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Sci Rep 2016; 6:38371. [PMID: 27924830 PMCID: PMC5141435 DOI: 10.1038/srep38371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy, one of the most common lethal genetic disorders, is caused by mutations in the DMD gene and a lack of dystrophin protein. In most DMD patients and animal models, sporadic dystrophin-positive muscle fibres, called revertant fibres (RFs), are observed in otherwise dystrophin-negative backgrounds. RFs are thought to arise from skeletal muscle precursor cells and clonally expand with age due to the frequent regeneration of necrotic fibres. Here we examined the effects of genetic background on muscle regeneration and RF expansion by comparing dystrophin-deficient mdx mice on the C57BL/6 background (mdx-B6) with those on the DBA/2 background (mdx-DBA), which have a more severe phenotype. Interestingly, mdx-DBA muscles had significantly lower RF expansion than mdx-B6 in all age groups, including 2, 6, 12, and 18 months. The percentage of centrally nucleated fibres was also significantly lower in mdx-DBA mice compared to mdx-B6, indicating that less muscle regeneration occurs in mdx-DBA. Our study aligns with the model that RF expansion reflects the activity of precursor cells in skeletal muscles, and it serves as an index of muscle regeneration capacity.
Collapse
|