1
|
Beach TG, Serrano GE, Zhang N, Driver-Dunckley ED, Sue LI, Shill HA, Mehta SH, Belden C, Tremblay C, Choudhury P, Atri A, Adler CH. Clinicopathological Heterogeneity of Lewy Body Diseases: The Profound Influence of Comorbid Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312864. [PMID: 39281742 PMCID: PMC11398443 DOI: 10.1101/2024.08.30.24312864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In recent years, proposals have been advanced to redefine or reclassify Lewy body disorders by merging the long-established entities of Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). These proposals reject the International DLB Consortium classification system that has evolved over three decades of consensus collaborations between neurologists, neuropsychologists and neuropathologists. While the Consortium's "one year rule" for separating PD and DLB has been criticized as arbitrary, it has been a pragmatic and effective tool for splitting the continuum between the two entities. In addition to the decades of literature supporting the non-homogeneity of PD and DLB, it has become increasingly apparent that Lewy body disorders may fundamentally differ in their etiology. Most PD subjects, as well as most clinically-presenting DLB subjects, might best be classified as having a "primary synucleinopathy" while most clinically-unidentified DLB subjects, who also have concurrent neuropathology-criteria AD (AD/DLB), as well as those with neuropathological AD and amygdala-predominant LBD insufficient for a DLB diagnosis, may best be classified as having a "secondary synucleinopathy. Importantly, the DLB Consortium recognized the importance of comorbid AD pathology by defining "Low", "Intermediate" and "High" subdivisions of DLB based on the relative brain stages of both Lewy body and AD pathology. If the one-year rule for separating PD from DLB, and for then dividing DLB into subtypes based on the presence and severity of comorbid AD pathology, is effective, then the divided groups should statistically differ in important ways. In this study we used the comprehensive clinicopathological database of the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND) to empirically test this hypothesis. Furthermore, we used multivariable statistical models to test the hypothesis that comorbid AD neuropathology is a major predictor of the presence and severity of postmortem Lewy synucleinopathy. The results confirm the clinicopathological heterogeneity of Lewy body disorders as well as the profound influence of comorbid AD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ
- Harvard & Brigham & Women's, Boston, MA
| | | |
Collapse
|
2
|
Janarthanam C, Clabaugh G, Wang Z, Melvin BR, Scheibe I, Jin H, Anantharam V, Urbauer RJB, Urbauer JL, Ma J, Kanthasamy A, Huang X, Donadio V, Zou W, Kanthasamy AG. High-Yield α-Synuclein Purification and Ionic Strength Modification Pivotal to Seed Amplification Assay Performance and Reproducibility. Int J Mol Sci 2024; 25:5988. [PMID: 38892177 PMCID: PMC11172462 DOI: 10.3390/ijms25115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Alpha-synuclein seed amplification assays (αSyn-SAAs) have emerged as promising diagnostic tools for Parkinson's disease (PD) by detecting misfolded αSyn and amplifying the signal through cyclic shaking and resting in vitro. Recently, our group and others have shown that multiple biospecimens, including CSF, skin, and submandibular glands (SMGs), can be used to seed the aggregation reaction and robustly distinguish between patients with PD and non-disease controls. The ultrasensitivity of the assay affords the ability to detect minute quantities of αSyn in peripheral tissues, but it also produces various technical challenges of variability. To address the problem of variability, we present a high-yield αSyn protein purification protocol for the efficient production of monomers with a low propensity for self-aggregation. We expressed wild-type αSyn in BL21 Escherichia coli, lysed the cells using osmotic shock, and isolated αSyn using acid precipitation and fast protein liquid chromatography (FPLC). Following purification, we optimized the ionic strength of the reaction buffer to distinguish the fluorescence maximum (Fmax) separation between disease and healthy control tissues for enhanced assay performance. Our protein purification protocol yielded high quantities of αSyn (average: 68.7 mg/mL per 1 L of culture) and showed highly precise and robust αSyn-SAA results using brain, skin, and SMGs with inter-lab validation.
Collapse
Affiliation(s)
- Chelva Janarthanam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Griffin Clabaugh
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Bradley R. Melvin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA;
| | - Ileia Scheibe
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Ramona J. B. Urbauer
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; (R.J.B.U.); (J.L.U.)
| | - Jeffrey L. Urbauer
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; (R.J.B.U.); (J.L.U.)
| | - Jiyan Ma
- Chinese Institute for Brain Research, Beijing 102206, China;
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, Complex Operational Unit Clinica Neurologica, 40138 Bologna, Italy;
| | - Wenquan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Anumantha G. Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| |
Collapse
|
3
|
Mu L, Chen J, Li J, Nyirenda T, Hegland KW, Beach TG. Mechanisms of Swallowing, Speech and Voice Disorders in Parkinson's Disease: Literature Review with Our First Evidence for the Periperal Nervous System Involvement. Dysphagia 2024:10.1007/s00455-024-10693-3. [PMID: 38498201 DOI: 10.1007/s00455-024-10693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The majority of patients with Parkinson's disease (PD) develop swallowing, speech, and voice (SSV) disorders. Importantly, swallowing difficulty or dysphagia and related aspiration are life-threatening conditions for PD patients. Although PD treatments have significant therapeutic effects on limb motor function, their effects on SSV disorders are less impressive. A large gap in our knowledge is that the mechanisms of SSV disorders in PD are poorly understood. PD was long considered to be a central nervous system disorder caused by the death of dopaminergic neurons in the basal ganglia. Aggregates of phosphorylated α-synuclein (PAS) underlie PD pathology. SSV disorders were thought to be caused by the same dopaminergic problem as those causing impaired limb movement; however, there is little evidence to support this. The pharynx, larynx, and tongue play a critical role in performing upper airway (UA) motor tasks and their dysfunction results in disordered SSV. This review aims to provide an overview on the neuromuscular organization patterns, functions of the UA structures, clinical features of SSV disorders, and gaps in knowledge regarding the pathophysiology underlying SSV disorders in PD, and evidence supporting the hypothesis that SSV disorders in PD could be associated, at least in part, with PAS damage to the peripheral nervous system controlling the UA structures. Determining the presence and distribution of PAS lesions in the pharynx, larynx, and tongue will facilitate the identification of peripheral therapeutic targets and set a foundation for the development of new therapies to treat SSV disorders in PD.
Collapse
Affiliation(s)
- Liancai Mu
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
| | - Jingming Chen
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Jing Li
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Themba Nyirenda
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Karen Wheeler Hegland
- Upper Airway Dysfunction Laboratory, M.A. Program in Communication Sciences & Disorders, Department of Speech, Language and Hearing Sciences, College of Public Health and Health Professions, University of Florida, 1225 Center Dr., Gainesville, FL, 32611, USA
| | - Thomas G Beach
- Director of Neuroscience, Director of Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 West Santa Fe Dr, Sun City, AZ, 85351, USA
| |
Collapse
|
4
|
Ebina J, Mizumura S, Morioka H, Shibukawa M, Nagasawa J, Yanagihashi M, Hirayama T, Ishii N, Kobayashi Y, Inaba A, Orimo S, Kano O. Clinical characteristics of patients with Parkinson's disease with reduced 123I-metaiodobenzylguanidine uptake in the major salivary glands and heart. J Neurol Sci 2024; 458:122932. [PMID: 38401301 DOI: 10.1016/j.jns.2024.122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Parkinson's disease (PD) shows cardiac sympathetic denervation (SD) in 123I-metaiodobezylguanidine (MIBG) scintigraphy. Recently, SD in the major salivary glands (MSG-SD) was introduced as a possible radiological feature of PD. OBJECTIVE To identify the clinical characteristics of patients with PD with reduced MSG and cardiac MIBG uptake (dual-SD) compared with those with reduced MSG or cardiac MIBG uptake only (single-SD). METHODS We recruited 90 patients with PD and 30 controls and evaluated their non-motor (e.g., hyposmia, autonomic dysfunction) and motor (e.g., Movement Disorder Society-Unified Parkinson's Disease Rating Scale) features. We also assessed MIBG uptake in the MSG and heart using a quantitative semi-automatic method, and compared MIBG uptakes between PD and controls. We set cut-off values for optimal sensitivity and specificity, and compared the clinical characteristics of patients with PD between dual- and single-SD groups. RESULTS MSG and cardiac MIBG uptakes were significantly reduced in PD. Sixty-one patients had dual-SD, 25 had single-SD, and four had non-SD. In patients with PD with normal cardiac SD, 76.5% (13/17) of whom showed abnormalities only in MSG-SD. When clinical characteristics were compared between the dual-SD and single-/non-SD groups, patients in the dual-SD group were older and had more severe hyposmia and autonomic dysfunction, except motor features. Multiple logistic regression analysis identified age as an important confounder. CONCLUSIONS Patients with PD with dual-SD have more severe non-motor features than other patients. Autonomic dysfunction might progress independently from dopaminergic degeneration. Furthermore, our findings indicate that aging is a crucial factor in PD progression.
Collapse
Affiliation(s)
- Junya Ebina
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Sunao Mizumura
- Department of Radiology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Harumi Morioka
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Mari Shibukawa
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Junpei Nagasawa
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Masaru Yanagihashi
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Takehisa Hirayama
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Nobutomo Ishii
- Central Radiology Division, Department of Radiology, Toho University Omori Medical Center, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Radiological Technology, Kanto Central Hospital, 6-25-1, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Akira Inaba
- Department of Neurology, Kanto Central Hospital, 6-25-1, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Satoshi Orimo
- Kamiyoga Setagaya Street Clinic, 6-31-15, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Adler CH, Serrano GE, Shill HA, Driver-Dunckley E, Mehta SH, Zhang N, Glass M, Sue LI, Intorcia A, Beach TG. Symmetry of synuclein density in autopsied Parkinson's disease submandibular glands. Neurosci Lett 2024; 825:137702. [PMID: 38395191 PMCID: PMC10942751 DOI: 10.1016/j.neulet.2024.137702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Peripheral tissue biopsy in Parkinson's disease (PD) may be valuable for clinical care, biomarker validation, and as research enrollment criteria. OBJECTIVE Determine whether submandibular gland pathologic alpha-synuclein (aSyn) density is symmetrical and whether previous needle biopsy caused tissue damage. METHODS Thirty autopsy-confirmed PD cases having fixed submandibular gland tissue from one side and frozen submandibular gland tissue from the contralateral side were studied. Tissue was stained for phosphorylated aSyn and density (0-4 semiquantitative scale) was determined. Three previously biopsied cases were also assessed for tissue damage at subsequent autopsy. RESULTS Mean (SD) age was 80.9 (5.5) years and disease duration 12.5 (9.3). Submandibular gland aSyn staining had a mean score of 2.13 for both the initially fixed and the initially frozen submandibular glands. The correlation between aSyn density of the two sides was r = 0.63. Correlation of aSyn density, in the originally fixed submandibular gland, with disease duration was good (r = 0.49, p =.006). No permanent tissue damage was found in the three previously biopsied cases. CONCLUSIONS This study found good correlation between aSyn density in both submandibular glands of patients with PD and found no evidence of significant tissue damage in previously biopsied subjects.
Collapse
Affiliation(s)
- Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Shyamal H Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michael Glass
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Lucia I Sue
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Anthony Intorcia
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
6
|
Contini C, Fadda L, Lai G, Masala C, Olianas A, Castagnola M, Messana I, Iavarone F, Bizzarro A, Masullo C, Solla P, Defazio G, Manconi B, Diaz G, Cabras T. A top-down proteomic approach reveals a salivary protein profile able to classify Parkinson's disease with respect to Alzheimer's disease patients and to healthy controls. Proteomics 2024; 24:e2300202. [PMID: 37541286 DOI: 10.1002/pmic.202300202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with motor and non-motor symptoms. Diagnosis is complicated by lack of reliable biomarkers. To individuate peptides and/or proteins with diagnostic potential for early diagnosis, severity and discrimination from similar pathologies, the salivary proteome in 36 PD patients was investigated in comparison with 36 healthy controls (HC) and 35 Alzheimer's disease (AD) patients. A top-down platform based on HPLC-ESI-IT-MS allowed characterizing and quantifying intact peptides, small proteins and their PTMs (overall 51). The three groups showed significantly different protein profiles, PD showed the highest levels of cystatin SA and antileukoproteinase and the lowest of cystatin SN and some statherin proteoforms. HC exhibited the lowest abundance of thymosin β4, short S100A9, cystatin A, and dimeric cystatin B. AD patients showed the highest abundance of α-defensins and short oxidized S100A9. Moreover, different proteoforms of the same protein, as S-cysteinylated and S-glutathionylated cystatin B, showed opposite trends in the two pathological groups. Statherin, cystatins SA and SN classified accurately PD from HC and AD subjects. α-defensins, histatin 1, oxidized S100A9, and P-B fragments were the best classifying factors between PD and AD patients. Interestingly statherin and thymosin β4 correlated with defective olfactory functions in PD patients. All these outcomes highlighted implications of specific proteoforms involved in the innate-immune response and inflammation regulation at oral and systemic level, suggesting a possible panel of molecular and clinical markers suitable to recognize subjects affected by PD.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Laura Fadda
- Department of Medical Sciences and Public Health, Institute of Neurology, Cagliari, Italy
| | - Greca Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Carla Masala
- Department of Biomedical Sciences University of Cagliari, Cittadella Univ. Monserrato, Monserrato, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Massimo Castagnola
- Proteomics Laboratory. European Center for Brain Research, (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Irene Messana
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Rome, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Alessandra Bizzarro
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Department of Geriatrics, Orthopaedics and Rheumatology, Rome, Italy
| | - Carlo Masullo
- Department of Neuroscience, Neurology Section, Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | - Paolo Solla
- Neurological Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Institute of Neurology, Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Giacomo Diaz
- Department of Biomedical Sciences University of Cagliari, Cittadella Univ. Monserrato, Monserrato, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
7
|
Zheng Y, Li S, Yang C, Yu Z, Jiang Y, Feng T. Comparison of biospecimens for α-synuclein seed amplification assays in Parkinson's disease: A systematic review and network meta-analysis. Eur J Neurol 2023; 30:3949-3967. [PMID: 37573472 DOI: 10.1111/ene.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND AND PURPOSE Alpha-synuclein seed amplification assays (α-syn SAAs) are promising diagnostic methods for Parkinson's disease (PD) and other synucleinopathies. However, there is limited consensus regarding the diagnostic and differential diagnostic performance of α-syn SAAs on biofluids and peripheral tissues. METHODS A comprehensive research was performed in PubMed, Web of Science, Embase and Cochrane Library. Meta-analysis was performed using a random-effects model. A network meta-analysis based on an ANOVA model was conducted to compare the relative accuracy of α-syn SAAs with different specimens. RESULTS The pooled sensitivity and specificity of α-syn SAAs in distinguishing PD from healthy controls or non-neurodegenerative neurological controls were 0.91 (95% confidence interval [CI] 0.89-0.92) and 0.95 (95% CI 0.94-0.96) for cerebrospinal fluid (CSF); 0.91 (95% CI 0.86-0.94) and 0.92 (95% CI 0.87-0.95) for skin; 0.80 (95% CI 0.66-0.89) and 0.87 (95% CI 0.69-0.96) for submandibular gland; 0.44 (95% CI 0.30-0.59) and 0.92 (95% CI 0.79-0.98) for gastrointestinal tract; 0.79 (95% CI 0.70-0.86) and 0.88 (95% CI 0.77-0.95) for saliva; and 0.51 (95% CI 0.39-0.62) and 0.91 (95% CI 0.84-0.96) for olfactory mucosa (OM). The pooled sensitivity and specificity were 0.91 (95% CI 0.89-0.93) and 0.50 (95% CI 0.44-0.55) for CSF, 0.92 (95% CI 0.83-0.97) and 0.22 (95% CI 0.06-0.48) for skin, and 0.55 (95% CI 0.42-0.68) and 0.50 (95% CI 0.35-0.65) for OM in distinguishing PD from multiple system atrophy. The pooled sensitivity and specificity were 0.92 (95% CI 0.89-0.94) and 0.84 (95% CI 0.73-0.91) for CSF, 0.92 (95% CI 0.83-0.97) and 0.88 (95% CI 0.64-0.99) for skin and 0.63 (95% CI 0.52-0.73) and 0.86 (95% CI 0.64-0.97) for OM in distinguishing PD from progressive supranuclear palsy. The pooled sensitivity and specificity were 0.94 (95% CI 0.90-0.97) and 0.95 (95% CI 0.77-1.00) for CSF and 0.94 (95% CI 0.84-0.99) and 0.86 (95% CI 0.42-1.00) for skin in distinguishing PD from corticobasal degeneration. CONCLUSIONS α-Synuclein SAAs of CSF, skin, saliva, submandibular gland, gastrointestinal tract and OM are promising diagnostic assays for PD, with CSF and skin α-syn SAAs demonstrating higher diagnostic performance.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Ying Jiang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
8
|
Gu SC, Shi R, Gao C, Yuan XL, Wu Y, Liu ZG, Wang CD, Zhao SR, Chen X, Yuan CX, Ye Q. Autonomic function and motor subtypes in Parkinson's disease: a multicentre cross-sectional study. Sci Rep 2023; 13:14548. [PMID: 37666916 PMCID: PMC10477326 DOI: 10.1038/s41598-023-41662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/30/2022] [Indexed: 09/06/2023] Open
Abstract
Autonomic symptoms (AS) are critical in Parkinson's disease (PD). We aimed to determine the relative significance of clinical factors allowing predictions about incidence of AS, and examine AS profiles among PD patients by motor subtype and its relation to AS. The cross-sectional data of a multicentre sample, including 714 PD patients and 194 healthy controls from Parkinson's Progression Marker Initiative study and Pingchan granule study were analyzed, stratified by PD subtypes [postural instability and gait disturbances (PIGD), tremor dominant (TD), and indeterminate] and domain autonomic dysfunction. Compared with healthy controls, PD patients scored higher in the total Scales for Outcomes in Parkinson's Disease-Autonomic dysfunction score and in several domain scores in particular, and there was a significant overlap in domain AS. Risk factors of individual domain autonomic dysfunction were heterogeneous. PIGD and indeterminate were the predominant subtypes in pupillomotor and thermoregulatory symptoms. TD and indeterminate were more likely to suffer from cardiovascular problem. The odd in sexual dysfunction was significant for PIGD. Gastrointestinal and urinary symptoms seemed not to be associated with a specific subtype. Our study demonstrated that AS were highly heterogeneous and 3 subtypes differed in autonomic performance, providing clues to understand mechanisms underlying AS in PD.
Collapse
Affiliation(s)
- Si-Chun Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Rong Shi
- Department of Emergency, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Chen Gao
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Xiao-Lei Yuan
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - You Wu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chang-De Wang
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Shao-Rong Zhao
- Department of Neurology, Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Can-Xing Yuan
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| | - Qing Ye
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| |
Collapse
|
9
|
Ebina J, Mizumura S, Ishii N, Kobayashi Y, Shibukawa M, Morioka H, Nagasawa J, Yanagihashi M, Hirayama T, Kawabe K, Orimo S, Kano O. Reduced 123I-MIBG uptake in the parotid and submandibular glands in patients with Parkinson's disease identified using a quantitative semi-automatic method. J Neurol 2023; 270:4385-4392. [PMID: 37222842 DOI: 10.1007/s00415-023-11770-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES To analyze 123I-metaiodobenzylguanidine (MIBG) uptake in the parotid and submandibular glands in patients with Parkinson's disease (PD) in comparison with controls, and to compare MIBG uptake between those glands and the myocardium. Furthermore, we aimed to identify the relationships between clinical features and MIBG uptake. METHODS We recruited 77 patients with PD and 21 age-matched controls. We assessed MIBG scintigraphy in the major salivary glands and myocardium. We calculated the MIBG uptake ratio in the parotid glands/mediastinum (P/M), submandibular glands/mediastinum (S/M), and heart/mediastinum (H/M) using a quantitative semi-automatic method. We investigated the correlations between MIBG uptake and clinical features. RESULTS The P/M and H/M ratios in the early and delayed phases were significantly reduced in PD patients compared to controls, while the delayed phase S/M ratio was reduced in PD patients compared to controls. The P/M ratio correlated with the S/M ratio, while neither the P/M nor S/M ratio correlated with the H/M ratio. Between PD patients and controls, sensitivity and specificity were 54.8% and 59.1% for the delayed phase P/M ratio, while sensitivity and specificity were 59.5% and 61.0% for the delayed phase S/M ratio, respectively. Furthermore, sensitivity and specificity for the delayed phase H/M ratio were 85.7% and 79.2, respectively. CONCLUSION MIBG uptake in the parotid and submandibular glands was reduced in patients with PD. Furthermore, sympathetic denervation in the major salivary glands and myocardium might progress independently. Our findings suggest a new aspect of the pathological distribution of PD.
Collapse
Affiliation(s)
- Junya Ebina
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan
| | - Sunao Mizumura
- Department of Radiology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Nobutomo Ishii
- Central Radiology Division, Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Radiological Technology, Kanto Central Hospital, Tokyo, Japan
| | - Mari Shibukawa
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan
| | - Harumi Morioka
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan
| | - Junpei Nagasawa
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan
| | - Masaru Yanagihashi
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan
| | - Takehisa Hirayama
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan
| | - Kiyokazu Kawabe
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan
| | | | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Hamsafar Y, Chen Q, Borowsky AD, Beach TG, Serrano GE, Sue LI, Adler CH, Walker DG, Dugger BN. Biochemical analyses of tau and other neuronal markers in the submandibular gland and frontal cortex across stages of Alzheimer disease. Neurosci Lett 2023; 810:137330. [PMID: 37330193 PMCID: PMC11006283 DOI: 10.1016/j.neulet.2023.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Hyperphosphorylation of the microtubule-associated protein tau is hypothesized to lead to the development of neurofibrillary tangles in select brain regions during normal aging and in Alzheimer disease (AD). The distribution of neurofibrillary tangles is staged by its involvement starting in the transentorhinal regions of the brain and in final stages progress to neocortices. However, it has also been determined neurofibrillary tangles can extend into the spinal cord and select tau species are found in peripheral tissues and this may be depended on AD disease stage. To further understand the relationships of peripheral tissues to AD, we utilized biochemical methods to evaluate protein levels of total tau and phosphorylated tau (p-tau) as well as other neuronal proteins (i.e., tyrosine hydroxylase (TH), neurofilament heavy chain (NF-H), and microtubule-associated protein 2 (MAP2)) in the submandibular gland and frontal cortex of human cases across different clinicopathological stages of AD (n = 3 criteria not met or low, n = 6 intermediate, and n = 9 high likelihood that dementia is due to AD based on National Institute on Aging-Reagan criteria). We report differential protein levels based on the stage of AD, anatomic specific tau species, as well as differences in TH and NF-H. In addition, exploratory findings were made of the high molecular weight tau species big tau that is unique to peripheral tissues. Although sample sizes were small, these findings are, to our knowledge, the first comparison of these specific protein changes in these tissues.
Collapse
Affiliation(s)
- Yamah Hamsafar
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA
| | - Qian Chen
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr., Sun City, AZ 95351, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr., Sun City, AZ 95351, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr., Sun City, AZ 95351, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA
| | - Douglas G Walker
- School of Life Sciences and Biodesign Institute, Arizona State University, 1151 S. Forest Ave., Tempe, AZ 85281, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA.
| |
Collapse
|
11
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
From protein biomarkers to proteomics in dementia with Lewy Bodies. Ageing Res Rev 2023; 83:101771. [PMID: 36328346 DOI: 10.1016/j.arr.2022.101771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Dementia with Lewy Bodies (DLB) is the second most common neurodegenerative dementia. Despite considerable research progress, there remain gaps in our understanding of the pathophysiology and there is no disease-modifying treatment. Proteomics is a powerful tool to elucidate complex biological pathways across heterogenous conditions. This review summarizes the widely used proteomic methods and presents evidence for protein dysregulation in the brain and peripheral tissues in DLB. Proteomics of post-mortem brain tissue shows that DLB shares common features with other dementias, such as synaptic dysfunction, but retains a unique protein signature. Promising diagnostic biomarkers are being identified in cerebrospinal fluid (CSF), blood, and peripheral tissues, such as serum Heart-type fatty acid binding protein. Research is needed to track these changes from the prodromal stage to established dementia, with standardized workflows to ensure replicability. Identifying novel protein targets in causative biological pathways could lead to the development of new targeted therapeutics or the stratification of participants for clinical trials.
Collapse
|
13
|
Li J, Luo H, Zheng H, Duan S, Zhao T, Yuan Y, Liu Y, Zhang X, Wang Y, Yang J, Xu Y. Clinical application of prion-like seeding in α-synucleinopathies: Early and non-invasive diagnosis and therapeutic development. Front Mol Neurosci 2022; 15:975619. [PMID: 36299857 PMCID: PMC9588983 DOI: 10.3389/fnmol.2022.975619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The accumulation and deposition of misfolded α-synuclein (α-Syn) aggregates in the brain is the central event in the pathogenesis of α-synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and multiple-system atrophy. Currently, the diagnosis of these diseases mainly relies on the recognition of advanced clinical manifestations. Differential diagnosis among the various α-synucleinopathies subtypes remains challenging. Misfolded α-Syn can template its native counterpart into the same misfolded one within or between cells, behaving as a prion-like seeding. Protein-misfolding cyclic amplification and real-time quaking-induced conversion are ultrasensitive protein amplification assays initially used for the detection of prion diseases. Both assays showed high sensitivity and specificity in detection of α-synucleinopathies even in the pre-clinical stage recently. Herein, we collectively reviewed the prion-like properties of α-Syn and critically assessed the detection techniques of α-Syn-seeding activity. The progress of test tissues, which tend to be less invasive, is presented, particularly nasal swab, which is now widely known owing to the global fight against coronavirus disease 2019. We highlight the clinical application of α-Syn seeding in early and non-invasive diagnosis. Moreover, some promising therapeutic perspectives and clinical trials targeting α-Syn-seeding mechanisms are presented.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Jing Yang,
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- Yuming Xu,
| |
Collapse
|
14
|
Alpha-synuclein and tau are abundantly expressed in the ENS of the human appendix and monkey cecum. PLoS One 2022; 17:e0269190. [PMID: 35687573 PMCID: PMC9187115 DOI: 10.1371/journal.pone.0269190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein (α-syn) proteinopathy in the neurons of the Enteric Nervous System (ENS) is proposed to have a critical role in Parkinson's disease (PD) onset and progression. Interestingly, the ENS of the human appendix harbors abundant α-syn and appendectomy has been linked to a decreased risk and delayed onset of PD, suggesting that the appendix may influence PD pathology. Common marmosets and rhesus macaques lack a distinct appendix (a narrow closed-end appendage with a distinct change in diameter at the junction with the cecum), yet the cecal microanatomy of these monkeys is similar to the human appendix. Sections of human appendix (n = 3) and ceca from common marmosets (n = 4) and rhesus macaques (n = 3) were evaluated to shed light on the microanatomy and the expression of PD-related proteins. Analysis confirmed that the human appendix and marmoset and rhesus ceca present thick walls comprised of serosa, muscularis externa, submucosa, and mucosa plus abundant lymphoid tissue. Across all three species, the myenteric plexus of the ENS was located within the muscularis externa with nerve fibers innervating all layers of the appendix/ceca. Expression of α-syn and tau in the appendix/cecum was present within myenteric ganglia and along nerve fibers of the muscularis externa and mucosa in all species. In the myenteric ganglia α-syn, p-α-syn, tau and p-tau immunoreactivities (ir) were not significantly different across species. The percent area above threshold of α-syn-ir and tau-ir in the nerve fibers of the muscularis externa and mucosa were greater in the human appendix than in the NHP ceca (α-syn-ir p<0.05; tau-ir p<0.05). Overall, this study provides critical translational evidence that the common marmoset and rhesus macaque ceca are remarkably similar to the human appendix and, thus, that these NHP species are suitable for studying the development of PD linked to α-syn and tau pathological changes in the ENS.
Collapse
|
15
|
Signaevsky M, Marami B, Prastawa M, Tabish N, Iida MA, Zhang XF, Sawyer M, Duran I, Koenigsberg DG, Bryce CH, Chahine LM, Mollenhauer B, Mosovsky S, Riley L, Dave KD, Eberling J, Coffey CS, Adler CH, Serrano GE, White CL, Koll J, Fernandez G, Zeineh J, Cordon-Cardo C, Beach TG, Crary JF. Antemortem detection of Parkinson's disease pathology in peripheral biopsies using artificial intelligence. Acta Neuropathol Commun 2022; 10:21. [PMID: 35164870 PMCID: PMC8842941 DOI: 10.1186/s40478-022-01318-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 01/22/2023] Open
Abstract
The diagnosis of Parkinson's disease (PD) is challenging at all stages due to variable symptomatology, comorbidities, and mimicking conditions. Postmortem assessment remains the gold standard for a definitive diagnosis. While it is well recognized that PD manifests pathologically in the central nervous system with aggregation of α-synuclein as Lewy bodies and neurites, similar Lewy-type synucleinopathy (LTS) is additionally found in the peripheral nervous system that may be useful as an antemortem biomarker. We have previously found that detection of LTS in submandibular gland (SMG) biopsies is sensitive and specific for advanced PD; however, the sensitivity is suboptimal especially for early-stage disease. Further, visual microscopic assessment of biopsies by a neuropathologist to identify LTS is impractical for large-scale adoption. Here, we trained and validated a convolutional neural network (CNN) for detection of LTS on 283 digital whole slide images (WSI) from 95 unique SMG biopsies. A total of 8,450 LTS and 35,066 background objects were annotated following an inter-rater reliability study with Fleiss Kappa = 0.72. We used transfer learning to train a CNN model to classify image patches (151 × 151 pixels at 20× magnification) with and without the presence of LTS objects. The trained CNN model showed the following performance on image patches: sensitivity: 0.99, specificity: 0.99, precision: 0.81, accuracy: 0.99, and F-1 score: 0.89. We further tested the trained network on 1230 naïve WSI from the same cohort of research subjects comprising 42 PD patients and 14 controls. Logistic regression models trained on features engineered from the CNN predictions on the WSI resulted in sensitivity: 0.71, specificity: 0.65, precision: 0.86, accuracy: 0.69, and F-1 score: 0.76 in predicting clinical PD status, and 0.64 accuracy in predicting PD stage, outperforming expert neuropathologist LTS density scoring in terms of sensitivity but not specificity. These findings demonstrate the practical utility of a CNN detector in screening for LTS, which can translate into a computational tool to facilitate the antemortem tissue-based diagnosis of PD in clinical settings.
Collapse
|
16
|
Sakashita Y, Matsubara T, Takata T, Tanei ZI, Motoda A, Yamazaki M, Kawakami I, Sengoku R, Saito Y, Arai T, Yamada M, Murayama S. Lewy pathology of the submandibular gland in Lewy body disease: A report of autopsy cases. Neuropathology 2021; 41:476-483. [PMID: 34676614 DOI: 10.1111/neup.12772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023]
Abstract
Accumulation of phosphorylated α-synuclein in the central and peripheral nervous systems is a histological hallmark of Lewy body disease (LBD), including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and LB-related pure autonomic failure. The submandibular gland is employed as a biopsy site for detecting Lewy pathology; however, the incidence of Lewy pathology in this region in autopsy-proven LBD cases at all stages from an aged Japanese cohort remains unclear. To validate the utility of Lewy pathology of the submandibular gland as a diagnostic biomarker for LBD, we investigated the submandibular gland Lewy pathology in autopsied patients. To determine the specificity, we prospectively evaluated the submandibular gland in 64 consecutive autopsied patients. To determine the sensitivity, we retrospectively assessed the submandibular gland in 168 consecutive autopsied patients who had prodromal or clinical LBD. In the prospective study, Lewy pathology was found in 21 of 64 patients, and nine of those 21 patients had the submandibular gland Lewy pathology. No Lewy pathology was found in 43 patients without CNS Lewy pathology, giving a specificity of 100%. In the retrospective study, Lewy pathology of the submandibular gland was detected in 126 of 168 patients. The sensitivity was 89.1% in PD and 75.4% in DLB. The sensitivity increased with disease progression. These findings support the utility of the submandibular gland biopsy for the pathological diagnosis of LBD.
Collapse
Affiliation(s)
- Yasuhiro Sakashita
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tomoyasu Matsubara
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tadayuki Takata
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of General Internal Medicine, Kagawa University Faculty of Medicine, Miki, Japan
| | - Zen-Ichi Tanei
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuko Motoda
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mikihiro Yamazaki
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ito Kawakami
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Renpei Sengoku
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Ganguly U, Singh S, Pal S, Prasad S, Agrawal BK, Saini RV, Chakrabarti S. Alpha-Synuclein as a Biomarker of Parkinson's Disease: Good, but Not Good Enough. Front Aging Neurosci 2021; 13:702639. [PMID: 34305577 PMCID: PMC8298029 DOI: 10.3389/fnagi.2021.702639] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder of the elderly, presenting primarily with symptoms of motor impairment. The disease is diagnosed most commonly by clinical examination with a great degree of accuracy in specialized centers. However, in some cases, non-classical presentations occur when it may be difficult to distinguish the disease from other types of degenerative or non-degenerative movement disorders with overlapping symptoms. The diagnostic difficulty may also arise in patients at the early stage of PD. Thus, a biomarker could help clinicians circumvent such problems and help them monitor the improvement in disease pathology during anti-parkinsonian drug trials. This review first provides a brief overview of PD, emphasizing, in the process, the important role of α-synuclein in the pathogenesis of the disease. Various attempts made by the researchers to develop imaging, genetic, and various biochemical biomarkers for PD are then briefly reviewed to point out the absence of a definitive biomarker for this disorder. In view of the overwhelming importance of α-synuclein in the pathogenesis, a detailed analysis is then made of various studies to establish the biomarker potential of this protein in PD; these studies measured total α-synuclein, oligomeric, and post-translationally modified forms of α-synuclein in cerebrospinal fluid, blood (plasma, serum, erythrocytes, and circulating neuron-specific extracellular vesicles) and saliva in combination with certain other proteins. Multiple studies also examined the accumulation of α-synuclein in various forms in PD in the neural elements in the gut, submandibular glands, skin, and the retina. The measurements of the levels of certain forms of α-synuclein in some of these body fluids or their components or peripheral tissues hold a significant promise in establishing α-synuclein as a definitive biomarker for PD. However, many methodological issues related to detection and quantification of α-synuclein have to be resolved, and larger cross-sectional and follow-up studies with controls and patients of PD, parkinsonian disorders, and non-parkinsonian movement disorders are to be undertaken.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Soumya Pal
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Suvarna Prasad
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Bimal K. Agrawal
- Department of General Medicine, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| |
Collapse
|
18
|
Beach TG, Adler CH, Sue LI, Shill HA, Driver-Dunckley E, Mehta SH, Intorcia AJ, Glass MJ, Walker JE, Arce R, Nelson CM, Serrano GE. Vagus Nerve and Stomach Synucleinopathy in Parkinson's Disease, Incidental Lewy Body Disease, and Normal Elderly Subjects: Evidence Against the "Body-First" Hypothesis. JOURNAL OF PARKINSONS DISEASE 2021; 11:1833-1843. [PMID: 34151862 PMCID: PMC10082635 DOI: 10.3233/jpd-212733] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Braak and others have proposed that Lewy-type α-synucleinopathy in Parkinson's disease (PD) may arise from an exogenous pathogen that passes across the gastric mucosa and then is retrogradely transported up the vagus nerve to the medulla. OBJECTIVE We tested this hypothesis by immunohistochemically staining, with a method specific for p-serine 129 α-synuclein (pSyn), stomach and vagus nerve tissue from an autopsy series of 111 normal elderly subjects, 33 with incidental Lewy body disease (ILBD) and 53 with PD. METHODS Vagus nerve samples were taken adjacent to the carotid artery in the neck. Stomach samples were taken from the gastric body, midway along the greater curvature. Formalin-fixed paraffin-embedded sections were immunohistochemically stained for pSyn, shown to be highly specific and sensitive for α-synuclein pathology. RESULTS Median disease duration for the PD group was 13 years. In the vagus nerve none of the 111 normal subjects had pSyn in the vagus, while 12/26 ILBD (46%) and 32/36 PD (89%) subjects were pSyn-positive. In the stomach none of the 102 normal subjects had pSyn while 5/30 (17%) ILBD and 42/52 (81%) of PD subjects were pSyn-positive. CONCLUSION As there was no pSyn in the vagus nerve or stomach of subjects without brain pSyn, these results support initiation of pSyn in the brain. The presence of pSyn in the vagus nerve and stomach of a subset of ILBD cases indicates that synucleinopathy within the peripheral nervous system may occur, within a subset of individuals, at preclinical stages of Lewy body disease.
Collapse
Affiliation(s)
| | - Charles H Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | - Shyamal H Mehta
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | | | | - Richard Arce
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | |
Collapse
|
19
|
Figura M, Sitkiewicz E, Świderska B, Milanowski Ł, Szlufik S, Koziorowski D, Friedman A. Proteomic Profile of Saliva in Parkinson's Disease Patients: A Proof of Concept Study. Brain Sci 2021; 11:brainsci11050661. [PMID: 34070185 PMCID: PMC8158489 DOI: 10.3390/brainsci11050661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder. It affects many organs. Lewy bodies—a histopathological “hallmark” of PD—are detected in about 75% of PD submandibular gland samples. We hypothesize that saliva can be a source of biomarkers of PD. The aim of the study was to evaluate and compare the salivary proteome of PD patients and healthy controls (HC). Salivary samples from 39 subjects (24 PD patients, mean age 61.6 ± 8.2; 15 HC, mean age 60.9 ± 6.7) were collected. Saliva was collected using RNA-Pro-Sal kits. Label-free LC-MS/MS mass spectrometry was performed to characterize the proteome of the saliva. IPA analysis of upstream inhibitors was performed. A total of 530 proteins and peptides were identified. We observed lower concentrations of S100-A16, ARP2/3, and VPS4B in PD group when compared to HC. We conclude that the salivary proteome composition of PD patients is different than that of healthy controls. We observed a lower concentration of proteins involved in inflammatory processes, exosome formation, and adipose tissue formation. The variability of expression of proteins between the two groups needs to be considered.
Collapse
Affiliation(s)
- Monika Figura
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
- Correspondence:
| | - Ewa Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (B.Ś.)
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (B.Ś.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| | - Andrzej Friedman
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (S.S.); (D.K.); (A.F.)
| |
Collapse
|
20
|
Al-Qassabi A, Tsao TS, Racolta A, Kremer T, Cañamero M, Belousov A, Santana MA, Beck RC, Zhang H, Meridew J, Pugh J, Lian F, Robida MD, Ritter M, Czech C, Beach TG, Pestic-Dragovich L, Taylor KI, Zago W, Tang L, Dziadek S, Postuma RB. Immunohistochemical Detection of Synuclein Pathology in Skin in Idiopathic Rapid Eye Movement Sleep Behavior Disorder and Parkinsonism. Mov Disord 2021; 36:895-904. [PMID: 33232556 PMCID: PMC10123546 DOI: 10.1002/mds.28399] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent studies reported abnormal alpha-synuclein deposition in biopsy-accessible sites of the peripheral nervous system in Parkinson's disease (PD). This has considerable implications for clinical diagnosis. Moreover, if deposition occurs early, it may enable tissue diagnosis of prodromal PD. OBJECTIVE The aim of this study was to develop and test an automated bright-field immunohistochemical assay of cutaneous pathological alpha-synuclein deposition in patients with idiopathic rapid eye movement sleep behavior disorder, PD, and atypical parkinsonism and in control subjects. METHODS For assay development, postmortem skin biopsies were taken from 28 patients with autopsy-confirmed Lewy body disease and 23 control subjects. Biopsies were stained for pathological alpha-synuclein in automated stainers using a novel dual-immunohistochemical assay for serine 129-phosphorylated alpha-synuclein and pan-neuronal marker protein gene product 9.5. After validation, single 3-mm punch skin biopsies were taken from the cervical 8 paravertebral area from 79 subjects (28 idiopathic rapid eye movement sleep behavior disorder, 20 PD, 10 atypical parkinsonism, and 21 control subjects). Raters blinded to clinical diagnosis assessed the biopsies. RESULTS The immunohistochemistry assay differentiated alpha-synuclein pathology from nonpathological-appearing alpha-synuclein using combined phosphatase and protease treatments. Among autopsy samples, 26 of 28 Lewy body samples and none of the 23 controls were positive. Among living subjects, punch biopsies were positive in 23 (82%) subjects with idiopathic rapid eye movement sleep behavior disorder, 14 (70%) subjects with PD, 2 (20%) subjects with atypical parkinsonism, and none (0%) of the control subjects. After a 3-year follow-up, eight idiopathic rapid eye movement sleep behavior disorder subjects phenoconverted to defined neurodegenerative syndromes, in accordance with baseline biopsy results. CONCLUSION Even with a single 3-mm punch biopsy, there is considerable promise for using pathological alpha-synuclein deposition in skin to diagnose both clinical and prodromal PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ahmed Al-Qassabi
- Department of Neurology, McGill University–Montreal General Hospital, Montreal, Quebec, Canada
- Sultan Qaboos University Hospital, Muscat
| | | | | | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marta Cañamero
- Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - Anton Belousov
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | | | | - Judith Pugh
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | - Fangru Lian
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | | | - Mirko Ritter
- Roche Centralised and Point of Care Solutions, Penzberg, Germany
| | - Christian Czech
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kirsten I. Taylor
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Wagner Zago
- Prothena Biosciences Inc., South San Francisco, California, USA
| | - Lei Tang
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | - Sebastian Dziadek
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ronald B. Postuma
- Department of Neurology, McGill University–Montreal General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- CARSM, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
21
|
Cardiac electrical remodeling and neurodegenerative diseases association. Life Sci 2020; 267:118976. [PMID: 33387579 DOI: 10.1016/j.lfs.2020.118976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/01/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Cardiac impairment contributes significantly to the mortality associated with several neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), primarily recognized as brain pathologies. These diseases may be caused by aggregation of a misfolded protein, most often, in the brain, although new evidence also reveals peripheral abnormalities. After characterization of the cardiac involvement in neurodegenerative diseases, several studies concentrated on elucidating the cause of the impaired cardiac function. However, most of the current knowledge is focused on the mechanical aspects of the heart rather than the electrical disturbances. The main objective of this review is to summarize the most recent advances in the elucidation of cardiac electrical remodeling in the neurodegenerative environment. We aimed to determine a crosstalk between the heart and the brain in three neurodegenerative conditions: AD, PD, and HD. We found that the most studies demonstrated important alterations in the electrocardiogram (ECG) of patients with neurodegeneration and in animal models of the conditions. We also showed that little is described when considering excitability disruptions in cardiomyocytes, for example, action potential impairments. It is a matter of contention whether central nervous system abnormalities or the peripheral ones increase the risk of heart diseases in patients with neurodegenerative conditions. To determine this notion, there is a need for new heart studies focusing specifically on the cardiac electrophysiology (e.g., ECG and cardiomyocyte excitability). This review could serve as an important guide in designing novel accurate approaches targeting the heart in neuronal conditions.
Collapse
|
22
|
Lamotte G, Holmes C, Sullivan P, Lenka A, Goldstein DS. Cardioselective peripheral noradrenergic deficiency in Lewy body synucleinopathies. Ann Clin Transl Neurol 2020; 7:2450-2460. [PMID: 33216462 PMCID: PMC7732242 DOI: 10.1002/acn3.51243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Lewy body (LB) synucleinopathies such as Parkinson’s disease (PD) entail profound cardiac norepinephrine deficiency. The status of sympathetic noradrenergic innervation at other extracranial sites has been unclear. Although in vivo neuroimaging studies have indicated a cardioselective noradrenergic lesion, no previous study has surveyed peripheral organs for norepinephrine contents in LB diseases. We reviewed 18F‐dopamine (18F‐DA) positron emission tomographic images and postmortem neurochemical data across several body organs of controls and patients with the LB synucleinopathies PD and pure autonomic failure (PAF) and the non‐LB synucleinopathy multiple system atrophy (MSA). Methods 18F‐DA–derived radioactivity in the heart, liver, spleen, pancreas, stomach, kidneys, thyroid, and submandibular glands were analyzed from 145 patients with LB synucleinopathies (112 PD, 33 PAF), 74 controls, and 85 MSA patients. In largely separate cohorts, postmortem tissue norepinephrine data were reviewed for heart, liver, spleen, pancreas, kidney, thyroid, submandibular gland, and sympathetic ganglion tissue from 38 PD, 2 PAF, and 5 MSA patients and 35 controls. Results Interventricular septal 18F‐DA–derived radioactivity was decreased in the LB synucleinopathy group compared to the control and MSA groups (P < 0.0001 each). The LB and non‐LB groups did not differ in liver, spleen, pancreas, stomach, or kidney 18F‐DA–derived radioactivity. The LB synucleinopathy group had markedly decreased apical myocardial norepinephrine, but normal tissue norepinephrine in other organs. The MSA group had normal tissue norepinephrine in all examined organs. Interpretation By in vivo sympathetic neuroimaging and postmortem neurochemistry peripheral noradrenergic deficiency in LB synucleinopathies is cardioselective. MSA does not involve peripheral noradrenergic deficiency.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Clinical Neurosciences Program (CNP), Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA.,Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| | - Courtney Holmes
- Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| | - Patricia Sullivan
- Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| | - Abhishek Lenka
- Department of Neurology, Medstar Georgetown University Hospital, Washington, District of Columbia, USA
| | - David S Goldstein
- Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Heras-Garvin A, Stefanova N. From Synaptic Protein to Prion: The Long and Controversial Journey of α-Synuclein. Front Synaptic Neurosci 2020; 12:584536. [PMID: 33071772 PMCID: PMC7536368 DOI: 10.3389/fnsyn.2020.584536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since its discovery 30 years ago, α-synuclein (α-syn) has been one of the most studied proteins in the field of neuroscience. Dozens of groups worldwide have tried to reveal not only its role in the CNS but also in other organs. α-syn has been linked to several processes essential in brain homeostasis such as neurotransmitter release, synaptic function, and plasticity. However, despite the efforts made in this direction, the main function of α-syn is still unknown. Moreover, α-syn became a protein of interest for neurologists and neuroscientists when mutations in its gene were found associated with Parkinson's disease (PD) and even more when α-syn protein deposits were observed in the brain of PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) patients. At present, the abnormal accumulation of α-syn constitutes one of the pathological hallmarks of these disorders, also referred to as α-synucleinopathies, and it is used for post-mortem diagnostic criteria. Whether α-syn aggregation is cause or consequence of the pathogenic events underlying α-synucleinopathies remains unclear and under discussion. Recently, different in vitro and in vivo studies have shown the ability of pathogenic α-syn to spread between cells, not only within the CNS but also from peripheral locations such as the gut, salivary glands, and through the olfactory network into the CNS, inducing abnormal misfolding of endogenous α-syn and leading to neurodegeneration and motor and cognitive impairment in animal models. Thus, it has been suggested that α-syn should be considered a prion protein. Here we present an update of what we know about α-syn function, aggregation and spreading, and its role in neurodegeneration. We also discuss the rationale and findings supporting the hypothetical prion nature of α-syn, its weaknesses, and future perspectives for research and the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Wakabayashi K. Where and how alpha-synuclein pathology spreads in Parkinson's disease. Neuropathology 2020; 40:415-425. [PMID: 32750743 DOI: 10.1111/neup.12691] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
25
|
Merchant KM, Cedarbaum JM, Brundin P, Dave KD, Eberling J, Espay AJ, Hutten SJ, Javidnia M, Luthman J, Maetzler W, Menalled L, Reimer AN, Stoessl AJ, Weiner DM. A Proposed Roadmap for Parkinson's Disease Proof of Concept Clinical Trials Investigating Compounds Targeting Alpha-Synuclein. JOURNAL OF PARKINSONS DISEASE 2020; 9:31-61. [PMID: 30400107 PMCID: PMC6398545 DOI: 10.3233/jpd-181471] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The convergence of human molecular genetics and Lewy pathology of Parkinson's disease (PD) have led to a robust, clinical-stage pipeline of alpha-synuclein (α-syn)-targeted therapies that have the potential to slow or stop the progression of PD and other synucleinopathies. To facilitate the development of these and earlier stage investigational molecules, the Michael J. Fox Foundation for Parkinson's Research convened a group of leaders in the field of PD research from academia and industry, the Alpha-Synuclein Clinical Path Working Group. This group set out to develop recommendations on preclinical and clinical research that can de-risk the development of α-syn targeting therapies. This consensus white paper provides a translational framework, from the selection of animal models and associated end-points to decision-driving biomarkers as well as considerations for the design of clinical proof-of-concept studies. It also identifies current gaps in our biomarker toolkit and the status of the discovery and validation of α-syn-associated biomarkers that could help fill these gaps. Further, it highlights the importance of the emerging digital technology to supplement the capture and monitoring of clinical outcomes. Although the development of disease-modifying therapies targeting α-syn face profound challenges, we remain optimistic that meaningful strides will be made soon toward the identification and approval of disease-modifying therapeutics targeting α-syn.
Collapse
Affiliation(s)
- Kalpana M Merchant
- Vincere Biosciences, Inc., and Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Patrik Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Jamie Eberling
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alberto J Espay
- UC Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Monica Javidnia
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Liliana Menalled
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alyssa N Reimer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
26
|
Beach TG, Adler CH, Zhang N, Serrano GE, Sue LI, Driver-Dunckley E, Mehta SH, Zamrini EE, Sabbagh MN, Shill HA, Belden CM, Shprecher DR, Caselli RJ, Reiman EM, Davis KJ, Long KE, Nicholson LR, Intorcia AJ, Glass MJ, Walker JE, Callan MM, Oliver JC, Arce R, Gerkin RC. Severe hyposmia distinguishes neuropathologically confirmed dementia with Lewy bodies from Alzheimer's disease dementia. PLoS One 2020; 15:e0231720. [PMID: 32320406 PMCID: PMC7176090 DOI: 10.1371/journal.pone.0231720] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/30/2020] [Indexed: 11/19/2022] Open
Abstract
Many subjects with neuropathologically-confirmed dementia with Lewy bodies (DLB) are never diagnosed during life, instead being categorized as Alzheimer's disease dementia (ADD) or unspecified dementia. Unrecognized DLB therefore is a critical impediment to clinical studies and treatment trials of both ADD and DLB. There are studies that suggest that olfactory function tests may be able to distinguish DLB from ADD, but few of these had neuropathological confirmation of diagnosis. We compared University of Pennsylvania Smell Identification Test (UPSIT) results in 257 subjects that went on to autopsy and neuropathological examination. Consensus clinicopathological diagnostic criteria were used to define ADD and DLB, as well as Parkinson's disease with dementia (PDD), with (PDD+AD) or without (PDD-AD) concurrent AD; a group with ADD and Lewy body disease (LBD) not meeting criteria for DLB (ADLB) and a clinically normal control group were also included. The subjects with DLB, PDD+AD and PDD-AD all had lower (one-way ANOVA p < 0.0001, pairwise Bonferroni p < 0.05) first and mean UPSIT scores than the ADD, ADLB or control groups. For DLB subjects with first and mean UPSIT scores less than 20 and 17, respectively, Firth logistic regression analysis, adjusted for age, gender and mean MMSE score, conferred statistically significant odds ratios of 17.5 and 18.0 for the diagnosis, vs ADD. For other group comparisons (PDD+AD and PDD-AD vs ADD) and UPSIT cutoffs of 17, the same analyses resulted in odds ratios ranging from 16.3 to 31.6 (p < 0.0001). To our knowledge, this is the largest study to date comparing olfactory function in subjects with neuropathologically-confirmed LBD and ADD. Olfactory function testing may be a convenient and inexpensive strategy for enriching dementia studies or clinical trials with DLB subjects, or conversely, reducing the inclusion of DLB subjects in ADD studies or trials.
Collapse
Affiliation(s)
- Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charles H. Adler
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | | | - Shayamal H. Mehta
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Edouard E. Zamrini
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, United States of America
| | - Holly A. Shill
- Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Christine M. Belden
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Kathryn J. Davis
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Kathy E. Long
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lisa R. Nicholson
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Anthony J. Intorcia
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael J. Glass
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jessica E. Walker
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael M. Callan
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Javon C. Oliver
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard Arce
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
27
|
Ashton NJ, Ide M, Zetterberg H, Blennow K. Salivary Biomarkers for Alzheimer's Disease and Related Disorders. Neurol Ther 2019; 8:83-94. [PMID: 31833026 PMCID: PMC6908535 DOI: 10.1007/s40120-019-00168-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
The search for accessible and cost-effective biomarkers to complement current cerebrospinal fluid (CSF) and imaging biomarkers in the accurate detection of Alzheimer disease (AD) and other common neurodegenerative disorders remains a challenging task. The advances in ultra-sensitive detection methods has highlighted blood biomarkers (e.g. amyloid-β and neurofilament light) as a valuable and realistic tool in a diagnostic or screening process. Saliva, however, is also a rich source of potential biomarkers for disease detection and offers several practical advantages over biofluids that are currently examined for neurodegenerative disorders. However, while this may be true for the general population, challenges in collecting saliva from an elderly population should be seriously considered. In this review, we begin by discussing how saliva is produced and how age-related conditions can modify saliva production and composition. We then focus on the data available which support the concept of salivary amyloid-β, tau species and novel biomarkers in detecting AD and alpha-synuclein (α-syn) in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK.
| | - Mark Ide
- Periodontology, Centre for Host Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, UK
- Mucosal and Salivary Biology, Centre for Host Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
28
|
Manne S, Kondru N, Jin H, Anantharam V, Huang X, Kanthasamy A, Kanthasamy AG. α-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson's disease patients. Mov Disord 2019; 35:268-278. [PMID: 31758740 DOI: 10.1002/mds.27907] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Identification of a peripheral biomarker is a major roadblock in the diagnosis of PD. Immunohistological identification of p-serine 129 α-synuclein in the submandibular gland tissues of PD patients has been recently reported. OBJECTIVE We report on a proof-of-principle study for using an ultra-sensitive and specific, real-time quaking-induced conversion assay to detect pathological α-synuclein in the submandibular gland tissues of PD patients. METHODS The α-synuclein real-time quaking-induced conversion assay was used to detect and quantify pathological α-synuclein levels in PD, incidental Lewy body disease, and control submandibular gland tissues as well as in formalin-fixed paraffin-embedded sections. RESULTS We determined the quantitative seeding kinetics of pathological α-synuclein present in submandibular gland tissues from autopsied subjects using the α-synuclein real-time quaking-induced conversion assay. A total of 32 cases comprising 13 PD, 3 incidental Lewy body disease, and 16 controls showed 100% sensitivity and 94% specificity. Interestingly, both PD and incidental Lewy body disease tissues showed 100% concordance for elevated levels of pathological α-synuclein seeding activity compared to control tissues. End-point dilution kinetic analyses revealed that the submandibular gland had a wide dynamic range of pathological α-synuclein seeding activity. CONCLUSIONS Our results are the first to demonstrate the utility of using the real-time quaking-induced conversion assay on peripherally accessible submandibular gland tissues and formalin-fixed paraffin-embedded tissue sections to detect PD-related pathological changes with high sensitivity and specificity. Additionally, the detection of seeding activity from incidental Lewy body disease cases containing immunohistochemically undetected pathological α-synuclein demonstrates the α-synuclein real-time quaking-induced conversion assay's potential utility for identifying prodromal PD in submandibular gland tissues. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sireesha Manne
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Naveen Kondru
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Xuemei Huang
- Department of Neurology and Pharmacology, Neurosurgery, Radiology, and Kinesiology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
29
|
Adler CH, Serrano GE, Zhang N, Hinni ML, Lott DG, Mehta SH, Sue LI, Intorcia A, Beach TG. Feasibility of repeat and bilateral submandibular gland needle biopsies in Parkinson's disease. Parkinsonism Relat Disord 2019; 68:69-72. [PMID: 31621624 PMCID: PMC9979781 DOI: 10.1016/j.parkreldis.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Submandibular gland (SMG) biopsies detect pathological alpha-synuclein (aSyn) in patients with Parkinson's disease (PD). The objectives of this study were to determine 1) the feasibility of performing a second SMG biopsy in previously biopsied patients, 2) the feasibility of doing bilateral SMG biopsies, 3) laterality of aSyn density, 4) whether aSyn density changes over time. METHODS Seven PD patients (6 males) previously having positive unilateral SMG biopsies underwent bilateral needle biopsies. Staining with a validated antibody to pathologic p-serine 129 aSyn was performed. RESULTS Mean age at time of second biopsy was 76 years and mean time between biopsies was 4.1 years. Five subjects had sufficient SMG tissue bilaterally and two only unilaterally for a total of 12/14 glands biopsied having sufficient tissue, all 7 subjects having sufficient tissue on at least one side, and all 12 glands being aSyn positive. There was a 4x increase in aSyn density on average in the repeat biopsy, with 5 subjects having an increase, one no change, and one a decrease in density. Side effects were similar to previous reports; mainly bruising, swelling, slight bleeding. CONCLUSIONS This is the first published study of bilateral transcutaneous needle biopsies of the SMG in living patients with PD which showed better tissue acquisition and a change in aSyn density over time. While further study is needed, there is potential for SMG biopsies to serve as a tissue biomarker for PD disease progression and potentially as a peripheral outcome measure for anti-aSyn treatment.
Collapse
Affiliation(s)
- Charles H. Adler
- Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Scottsdale, AZ, USA,Corresponding author. Department of Neurology, Mayo Clinic Arizona, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA. (C.H. Adler)
| | | | - Nan Zhang
- Department of Biostatistics, Mayo Clinic College of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | | | - David G. Lott
- Department of Otolaryngology, Mayo Clinic, Phoenix, AZ, USA
| | - Shyamal H. Mehta
- Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | |
Collapse
|
30
|
Adler CH, Beach TG, Zhang N, Shill HA, Driver-Dunckley E, Caviness JN, Mehta SH, Sabbagh MN, Serrano GE, Sue LI, Belden CM, Powell J, Jacobson SA, Zamrini E, Shprecher D, Davis KJ, Dugger BN, Hentz JG. Unified Staging System for Lewy Body Disorders: Clinicopathologic Correlations and Comparison to Braak Staging. J Neuropathol Exp Neurol 2019; 78:891-899. [PMID: 31504679 PMCID: PMC6751070 DOI: 10.1093/jnen/nlz080] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was designed to correlate clinical findings with the extent of pathologic a-synuclein (aSyn) in the brain using the Unified Staging System for Lewy Body disorders (USSLB). Data from 280 cases from the Arizona Study of Aging and Neurodegenerative Disorders are presented. Each case had a complete USSLB staging and at least 1 full research clinical assessment, including subspecialty neurologist-administered movement and cognitive evaluation. Of the 280, 25.7% were cognitively normal, 8.6% had mild cognitive impairment, and 65.7% had dementia. All cases could be categorized into 1 of 5 USSLB stages (8.6% stage I-olfactory bulb only; 15.4% IIa-brainstem predominant; 13.6% IIb-limbic predominant; 31.8% III-brainstem and limbic; and 30.7% IV-neocortical) yet using the Braak staging system 70 cases (25.3%) could not be classified. Those with USSLB stages III and IV died at a younger age. Multiple measures of motor parkinsonism, cognitive impairment, hyposmia, and probable RBD were significantly correlated with increasing USSLB stage. We conclude that the USSLB is the most comprehensive staging system for all Lewy body disorders and allows for categorization and ranking of all brains with significant correlations to many motor and nonmotor clinical signs and symptoms.
Collapse
Affiliation(s)
- Charles H Adler
- Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, Arizona
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona
| | | | - Erika Driver-Dunckley
- Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, Arizona
| | - John N Caviness
- Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, Arizona
| | - Shyamal H Mehta
- Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, Arizona
| | - Marwan N Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Lucia I Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Christine M Belden
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, Arizona
| | - Jessica Powell
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, Arizona
| | | | - Edward Zamrini
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, Arizona
| | - David Shprecher
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, Arizona
| | - Kathryn J Davis
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, Arizona
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California
| | - Joseph G Hentz
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
31
|
Nihashi T, Ito K, Terasawa T. Diagnostic accuracy of DAT-SPECT and MIBG scintigraphy for dementia with Lewy bodies: an updated systematic review and Bayesian latent class model meta-analysis. Eur J Nucl Med Mol Imaging 2019; 47:1984-1997. [PMID: 31423561 DOI: 10.1007/s00259-019-04480-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Imperfect clinical reference standards can preclude accurately estimating the diagnostic accuracy of DAT-SPECT and MIBG myocardial scintigraphy for diagnosing DLB. To investigate the validity of unadjusted accuracy, we updated our previous meta-analysis. METHODS Literature search was updated to March 18, 2018. We also examined published systematic review reports. Two investigators extracted data and rated study validity using the QUADAS-2 tool. We performed a Bayesian latent class model meta-analysis accounting for imperfect reference standards. RESULTS We evaluated 27 studies including 2236 patients. With the exception of two DAT-SPECT studies that involved postmortem neuropathological verification, studies were susceptible to bias from imperfect reference standards. Compared with the unadjusted accuracy estimates, the adjusted sensitivity values were similar, whereas the adjusted specificity values were generally lower for detecting α-synuclein pathology in the brain. The adjusted summary sensitivity and specificity were 0.86 (95% credible interval [CrI], 0.76-0.95) and 0.81 (CrI, 0.70-0.92), and 0.93 (CrI, 0.74-1.00) and 0.75 (CI, 0.47-0.94) for visual and semi-quantitative assessments of DAT-SPECT, respectively; 0.92 (CrI, 0.81-0.99) and 0.80 (CrI, 0.67-0.93), and 0.87 (CrI, 0.74-0.98) and 0.80 (CrI, 0.69-0.93), for delayed- and early-phase scans of MIBG scintigraphy, respectively. When diagnosing the typical clinical syndrome, the adjusted accuracy values were similar to the unadjusted estimates. The adjusted sensitivity and specificity were 0.89 (CrI, 0.75-0.98) and 0.87 (CrI, 0.72-0.97), and 0.97 (CrI, 0.78-1.0) and 0.70 (CrI, 0.43-0.92) for visual and semi-quantitative assessments of DAT-SPECT, respectively; and 0.93 (CrI, 0.81-0.98) and 0.90 (CrI, 0.73-0.97), and 0.85 (CrI, 0.66-0.96) and 0.96 (95% CI, 0.83-1.0) for delayed- and early-phase scans of MIBG scintigraphy, respectively. CONCLUSIONS In our adjusted analyses, both imaging biomarkers had high diagnostic accuracy for detecting the hallmark pathology in the brain and for diagnosing the typical clinical syndrome.
Collapse
Affiliation(s)
- Takashi Nihashi
- Department of Radiology, Komaki City Hospital, Komaki, Japan.,Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Teruhiko Terasawa
- Section of General Internal Medicine, Department of Emergency and General Internal Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan. .,Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
32
|
Ma LY, Liu GL, Wang DX, Zhang MM, Kou WY, Feng T. Alpha-Synuclein in Peripheral Tissues in Parkinson's Disease. ACS Chem Neurosci 2019; 10:812-823. [PMID: 30714719 DOI: 10.1021/acschemneuro.8b00383] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder. To date, the diagnosis of PD relies mainly on clinical manifestations whereas neuropathological confirmation of the brain is only possible with postmortem studies. Neuronal loss in the substantia nigra pars compacta (SNc) associated with Lewy bodies/neurites is the pathological hallmark feature of PD. The major component of Lewy pathology (LP) is misfolded alpha-synuclein (α-SYN). There is evidence that the distribution of LP is not only limited to the brain but extends to peripheral tissues, including gastrointestinal tract, salivary glands, olfactory mucosa, skin, retina, adrenal gland, and heart. Sensitivity and specificity of α-SYN detection in PD vary greatly among studies due to methodological heterogeneity, such as sampling sites and size, tissue preparation, staining techniques, and antibodies used. Of note, α-SYN has also been found in preclinical and prodromal PD. Further in vivo studies focusing on favorable biopsy sites and standard techniques are needed to get better understanding of α-SYN deposits in preclinical, prodromal, and clinical PD.
Collapse
Affiliation(s)
- Ling-Yan Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Gen-Liang Liu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Dong-Xu Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mei-Mei Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wen-Yi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Parkinson’s Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
33
|
Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 2019; 14:5. [PMID: 30665447 PMCID: PMC6341685 DOI: 10.1186/s13024-019-0306-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is an age-associated neurodegenerative disorder producing progressive cognitive decline that interferes with normal life and daily activities. Neuropathologically, DLB is characterised by the accumulation of aggregated α-synuclein protein in Lewy bodies and Lewy neurites, similar to Parkinson’s disease (PD). Extrapyramidal motor features characteristic of PD, are common in DLB patients, but are not essential for the clinical diagnosis of DLB. Since many PD patients develop dementia as disease progresses, there has been controversy about the separation of DLB from PD dementia (PDD) and consensus reports have put forward guidelines to assist clinicians in the identification and management of both syndromes. Here, we present basic concepts and definitions, based on our current understanding, that should guide the community to address open questions that will, hopefully, lead us towards improved diagnosis and novel therapeutic strategies for DLB and other synucleinopathies.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK. .,Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany.
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Daniel Erskine
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lauren Walker
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - David Burn
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Paul Donaghy
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Morris
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - John-Paul Taylor
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Alan Thomas
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Johannes Attems
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ian McKeith
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
34
|
Submandibular gland is a suitable site for alpha synuclein pathology in Parkinson disease. Parkinsonism Relat Disord 2019; 58:35-39. [DOI: 10.1016/j.parkreldis.2018.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/21/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
35
|
Dugger BN, Hoffman BR, Scroggins A, Serrano GE, Adler CH, Shill HA, Belden CM, Sabbagh MN, Caviness JN, Driver Dunckley E, Beach TG. Tau immunoreactivity in peripheral tissues of human aging and select tauopathies. Neurosci Lett 2018; 696:132-139. [PMID: 30579993 DOI: 10.1016/j.neulet.2018.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022]
Abstract
Many studies have been directed at understanding mechanisms of tau aggregation and therapeutics, nearly all focusing on the brain. It is critical to understand the presence of tau in peripheral tissues since this may provide new insights into disease progression and selective vulnerability. The current study sought to determine the presence of select tau species in peripheral tissues in elderly individuals and across an array of tauopathies. Using formalin fixed paraffin embedded sections, we examined abdominal skin, submandibular gland, and sigmoid colon among 69 clinicopathologically defined cases: 19 lacking a clinical neuropathological diagnosis (normal controls), 26 progressive supranuclear palsy (PSP), 21 Alzheimer's disease (AD), and 3 with corticobasal degeneration (CBD). Immunohistochemistry was performed using antibodies for "total" tau (HT7) and two phosphorylated tau species (AT8 and pT231). HT7 staining of abdominal skin revealed immunoreactivity of potential nerve elements in 5% of cases (1 AD, 1 AD/PSP, and 1 CBD out of 55 cases examined); skin sections lacked AT8 and pT231 immunoreactive nerve elements. Submandibular glands from all cases had HT7 immunoreactive nerve elements; while pT231 was present in 92% of cases, and AT8 in only 3 cases (2 AD and one AD/PSP case). In sigmoid colon, HT7 immunoreactivity was present in all but 2 cases (97%), pT231 in 54%, and AT8 was present in only 5/62 cases (8%). These data suggest select tau species in CNS tauopathies do not have a high propensity to spread to the periphery and this may hold clues for the understanding of CNS tau pathogenicity and vulnerability.
Collapse
Affiliation(s)
- Brittany N Dugger
- Department of Pathology and Laboratory Medicine University of California, Davis, Sacramento, CA, United States.
| | | | - Alex Scroggins
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Charles H Adler
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Holly A Shill
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Marwan N Sabbagh
- Barrow Neurological Institute, Phoenix, AZ, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - John N Caviness
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Erika Driver Dunckley
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| |
Collapse
|
36
|
Brinkmalm A, Portelius E, Brinkmalm G, Pannee J, Dahlén R, Gobom J, Blennow K, Zetterberg H. Fluid-based proteomics targeted on pathophysiological processes and pathologies in neurodegenerative diseases. J Neurochem 2018; 151:417-434. [PMID: 30238462 DOI: 10.1111/jnc.14594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/05/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative dementias constitute a broad group of diseases in which abnormally folded proteins accumulate in specific brain regions and result in tissue reactions that eventually cause neuronal dysfunction and degeneration. Depending on where in the brain this happens, symptoms appear which may be used to classify the disorders on clinical grounds. However, brain changes in neurodegenerative dementias start to accumulate many years prior to symptom onset and there is a poor correlation between the clinical picture and what pathology that is the most likely to cause it. Thus, novel drug candidates having disease-modifying effects that is targeting the underlying pathology and changes the course of the disease needs to be defined using objective biomarker-based measures since the clinical symptoms are often non-specific and overlap between different disorders. Furthermore, the treatment should ideally be initiated as soon as symptoms are evident or when biomarkers confirm an underlying pathology (pre-clinical phase of the disease) to reduce irreversible damage to, for example, neurons, synapses and axons. Clinical trials in the pre-clinical phase bring a greater importance to biomarkers since by definition the clinical effects are difficult or slow to discern in a population that is not yet clinically affected. Here, we discuss neuropathological changes that may underlie neurodegenerative dementias, including how they can be detected and quantified using currently available biofluid-based biomarkers and how more of them could be identified using targeted proteomics approaches. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Josef Pannee
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rahil Dahlén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
37
|
Beach TG, Serrano GE, Kremer T, Canamero M, Dziadek S, Sade H, Derkinderen P, Corbillé AG, Letournel F, Munoz DG, White CL, Schneider J, Crary JF, Sue LI, Adler CH, Glass MJ, Intorcia AJ, Walker JE, Foroud T, Coffey CS, Ecklund D, Riss H, Goßmann J, König F, Kopil CM, Arnedo V, Riley L, Linder C, Dave KD, Jennings D, Seibyl J, Mollenhauer B, Chahine L. Immunohistochemical Method and Histopathology Judging for the Systemic Synuclein Sampling Study (S4). J Neuropathol Exp Neurol 2018; 77:793-802. [PMID: 30107604 PMCID: PMC6097838 DOI: 10.1093/jnen/nly056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunohistochemical (IHC) α-synuclein (Asyn) pathology in peripheral biopsies may be a biomarker of Parkinson disease (PD). The multi-center Systemic Synuclein Sampling Study (S4) is evaluating IHC Asyn pathology within skin, colon and submandibular gland biopsies from 60 PD and 20 control subjects. Asyn pathology is being evaluated by a blinded panel of specially trained neuropathologists. Preliminary work assessed 2 candidate immunoperoxidase methods using a set of PD and control autopsy-derived sections from formalin-fixed, paraffin-embedded blocks of the 3 tissues. Both methods had 100% specificity; one, utilizing the 5C12 monoclonal antibody, was more sensitive in skin (67% vs 33%), and was chosen for further use in S4. Four trainee neuropathologists were trained to perform S4 histopathology readings; in subsequent testing, their scoring was compared to that of the trainer neuropathologist on both glass slides and digital images. Specificity and sensitivity were both close to 100% with all readers in all tissue types on both glass slides and digital images except for skin, where sensitivity averaged 75% with digital images and 83.5% with glass slides. Semiquantitative (0-3) density score agreement between trainees and trainer averaged 67% for glass slides and 62% for digital images.
Collapse
Affiliation(s)
- Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffman-La Roche, Ltd, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Penzberg, Germany
| | - Marta Canamero
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffman-La Roche, Ltd, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Penzberg, Germany
| | - Sebastian Dziadek
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffman-La Roche, Ltd, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Penzberg, Germany
| | - Hadassah Sade
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffman-La Roche, Ltd, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Penzberg, Germany
| | - Pascal Derkinderen
- Department of Neurology, CHU Nantes, Inserm, U1235, Nantes University, Nantes F-44035, France
- CHU Angers, Neurobiology and Neuropathology Laboratory, Angers F-49033, France
| | - Anne-Gaëlle Corbillé
- Department of Neurology, CHU Nantes, Inserm, U1235, Nantes University, Nantes F-44035, France
- CHU Angers, Neurobiology and Neuropathology Laboratory, Angers F-49033, France
| | - Franck Letournel
- Department of Neurology, CHU Nantes, Inserm, U1235, Nantes University, Nantes F-44035, France
- CHU Angers, Neurobiology and Neuropathology Laboratory, Angers F-49033, France
| | - David G Munoz
- Laboratory Medicine and Keenan Research Centre for Biomedical Research of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - John F Crary
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lucia I Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Charles H Adler
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Michael J Glass
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Anthony J Intorcia
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Jessica E Walker
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Tatiana Foroud
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Dixie Ecklund
- Department of Biostatistics, University of Iowa, Iowa City, Iowa
| | - Holly Riss
- Department of Biostatistics, University of Iowa, Iowa City, Iowa
| | | | - Fatima König
- Targos Molecular Pathology GmbH, Kassel, Germany
| | - Catherine M Kopil
- The Michael J. Fox Foundation for Parkinson’s Research, New York, New York
| | - Vanessa Arnedo
- The Michael J. Fox Foundation for Parkinson’s Research, New York, New York
| | - Lindsey Riley
- The Michael J. Fox Foundation for Parkinson’s Research, New York, New York
| | - Carly Linder
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson’s Research, New York, New York
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, Connecticut
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel and University Medical Center Goettingen, Goettingen, Germany
| | - Lana Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Soboll L, Leppert D, Dillmann U, Schaefer-Schuler A, Fassbender K, Ezziddin S, Spiegel J. MIBG scintigraphy of the major salivary glands in multiple system atrophy. Parkinsonism Relat Disord 2018; 53:112-114. [DOI: 10.1016/j.parkreldis.2018.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 11/29/2022]
|
39
|
Leak RK. Conditioning Against the Pathology of Parkinson's disease. CONDITIONING MEDICINE 2018; 1:143-162. [PMID: 30370426 PMCID: PMC6200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parkinson's disease is delayed in clinical onset, asymmetric in initial appearance, and slow in progression. One explanation for these characteristics may be a boost in natural defenses after early exposure to mild cellular stress. As the patient ages and resilience recedes, however, stress levels may become sufficiently high that toxic cellular responses can no longer be curbed, culminating in inverted U-shaped stress-response curves as a function of disease duration. If dopaminergic systems are indeed capable of responding to mild stress with effective natural defenses, experimental models of Parkinson's disease should adhere to the principles of preconditioning, whereby stress exposure fortifies cells and tempers the toxic sequelae of subsequent stressors. Here, I review evidence favoring the efficacy of preconditioning in dopaminergic systems. Recent animal work also raises the possibility that cross-hemispheric preconditioning may arrest the spread of asymmetric Parkinson's pathology to the other side of the brain. Indeed, compensatory homeostatic systems have long been hypothesized to maintain neurological function until a threshold of cell loss is exceeded and are often displayed as inverted U-shaped curves. However, some stress responses assume an exponential or sigmoidal profile as a function of disease severity, suggesting end-stage deceleration of disease processes. Thus, surviving dopaminergic neurons may become progressively harder to kill, with the dorsal nigral tier dying slower due to superior baseline defenses, inducible conditioning capacity, or delayed dorsomedial nigral spread of disease. In addition, compensatory processes may be useful as biomarkers to distinguish "responder patients" from "nonresponders" before clinical trials. However, another possibility is that defenses are already maximally conditioned in most patients and no further boost is possible. A third alternative is that genuinely diseased human cells cannot be conditioned, in contrast to preclinical models, none of which faithfully recapitulate age-related human conditions. Disease-related "conditioning deficiencies" would then explain how Parkinson's pathology takes root, progressively shrinks defenses, and eventually kills the patient.
Collapse
Affiliation(s)
- Rehana K. Leak
- For correspondence please address: Rehana K. Leak,
Ph.D., Graduate School of Pharmaceutical Sciences, Duquesne University, 600
Forbes Ave, Pittsburgh, PA 15282, ,
412.396.4734
| |
Collapse
|
40
|
Rizzo G, Arcuti S, Copetti M, Alessandria M, Savica R, Fontana A, Liguori R, Logroscino G. Accuracy of clinical diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89:358-366. [PMID: 29030419 DOI: 10.1136/jnnp-2017-316844] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND The diagnosis of dementia with Lewy bodies (DLB) is based on diagnostic clinical criteria, which were updated over the years. OBJECTIVE To evaluate, through a systematic review, accuracy of the diagnostic criteria, testing a possible improvement over time. METHODS We searched on MEDLINE and SCOPUS databases for studies reporting diagnostic parameters regarding the clinical diagnosis of DLB until October 2016. We performed meta-analysis, using a Bayesian approach, on those using pathological examination as gold standard, subclassified based on the different diagnostic criteria used. RESULTS We selected 22 studies on 1585 patients. Pooled sensitivity, specificity and accuracy were 60.2%, 93.8%, 79.7%, respectively, for criteria antecedents to McKeith 1996. For McKeith 1996-possible, pooled sensitivity, specificity and accuracy were 65.6%, 80.6%, 77.9% in early stages and 72.3%, 64.3%, 66% in late stages, respectively. For McKeith 1996-probable, pooled sensitivity, specificity and accuracy were 19.4%, 95.1%, 77.7% in early stages and 48.6%, 88%, 79.2% in late stages, respectively. McKeith criteria 2005 were evaluated only in late stages: pooled sensitivity, specificity and accuracy were 91.3%, 66.7% and 81.6%, respectively, for possible diagnosis (only one study) and 88.3%, 80.8%, 90.7% for probable diagnosis, decreasing to 85.6%, 77.1% and 81.7% if only considering clinical settings focused on dementia diagnosis and care. CONCLUSIONS AND RELEVANCE Diagnostic criteria have become more sensitive and less specific over time, without substantial change in the accuracy. Based on current data, about 20% of DLB diagnosis are incorrect. Future studies are needed to evaluate if the recently released revised consensus criteria will improve the diagnostic accuracy of DLB.
Collapse
Affiliation(s)
- Giovanni Rizzo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, Unit of Neurology, University of Bologna, Bologna, Italy
| | - Simona Arcuti
- Department of Clinical Research in Neurology, University of Bari, Tricase, Italy.,Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Alessandria
- Department of Clinical Research in Neurology, University of Bari, Tricase, Italy
| | - Rodolfo Savica
- Department of Neurology and Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Andrea Fontana
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, Unit of Neurology, University of Bologna, Bologna, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, University of Bari, Tricase, Italy.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| |
Collapse
|
41
|
Leija-Salazar M, Piette C, Proukakis C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 2018; 44:267-285. [PMID: 29369391 DOI: 10.1111/nan.12465] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022]
Abstract
Somatic mutations are postzygotic mutations which may lead to mosaicism, the presence of cells with genetic differences in an organism. Their role in cancer is well established, but detailed investigation in health and other diseases has only been recently possible. This has been empowered by the improvements of sequencing techniques, including single-cell sequencing, which can still be error-prone but is rapidly improving. Mosaicism appears relatively common in the human body, including the normal brain, probably arising in early development, but also potentially during ageing. In this review, we first discuss theoretical considerations and current evidence relevant to somatic mutations in the brain. We present a framework to explain how they may be integrated with current views on neurodegeneration, focusing mainly on sporadic late-onset neurodegenerative diseases (Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis). We review the relevant studies so far, with the first evidence emerging in Alzheimer's in particular. We also discuss the role of mosaicism in inherited neurodegenerative disorders, particularly somatic instability of tandem repeats. We summarize existing views and data to present a model whereby the time of origin and spatial distribution of relevant somatic mutations, combined with any additional risk factors, may partly determine the development and onset age of sporadic neurodegenerative diseases.
Collapse
Affiliation(s)
- M Leija-Salazar
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Piette
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Proukakis
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| |
Collapse
|
42
|
Heterogeneous pattern of autonomic dysfunction in Parkinson’s disease. J Neurol 2018; 265:933-941. [DOI: 10.1007/s00415-018-8789-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
|
43
|
Jiang P, Dickson DW. Parkinson's disease: experimental models and reality. Acta Neuropathol 2018; 135:13-32. [PMID: 29151169 PMCID: PMC5828522 DOI: 10.1007/s00401-017-1788-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive movement disorder of adults and the second most common neurodegenerative disease after Alzheimer's disease. Neuropathologic diagnosis of PD requires moderate-to-marked neuronal loss in the ventrolateral substantia nigra pars compacta and α-synuclein (αS) Lewy body pathology. Nigrostriatal dopaminergic neurodegeneration correlates with the Parkinsonian motor features, but involvement of other peripheral and central nervous system regions leads to a wide range of non-motor features. Nigrostriatal dopaminergic neurodegeneration is shared with other parkinsonian disorders, including some genetic forms of parkinsonism, but many of these disorders do not have Lewy bodies. An ideal animal model for PD, therefore, should exhibit age-dependent and progressive dopaminergic neurodegeneration, motor dysfunction, and abnormal αS pathology. Rodent models of PD using genetic or toxin based strategies have been widely used in the past several decades to investigate the pathogenesis and therapeutics of PD, but few recapitulate all the major clinical and pathologic features of PD. It is likely that new strategies or better understanding of fundamental disease processes may facilitate development of better animal models. In this review, we highlight progress in generating rodent models of PD based on impairments of four major cellular functions: mitochondrial oxidative phosphorylation, autophagy-lysosomal metabolism, ubiquitin-proteasome protein degradation, and endoplasmic reticulum stress/unfolded protein response. We attempt to evaluate how impairment of these major cellular systems contribute to PD and how they can be exploited in rodent models. In addition, we review recent cell biological studies suggesting a link between αS aggregation and impairment of nuclear membrane integrity, as observed during cellular models of apoptosis. We also briefly discuss the role of incompetent phagocytic clearance and how this may be a factor to consider in developing new rodent models of PD.
Collapse
Affiliation(s)
- Peizhou Jiang
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
44
|
Borghammer P. How does parkinson's disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov Disord 2017; 33:48-57. [PMID: 28843014 DOI: 10.1002/mds.27138] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/20/2017] [Accepted: 07/23/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a multisystem disorder with involvement of the peripheral nervous system. Misfolding and aggregation of α-synuclein is central to the pathogenesis of PD, and it has been postulated that the disease may originate in olfactory and gastrointestinal nerve terminals. The prion-like behavior of α-synuclein has been convincingly demonstrated in vitro and in animal models of PD. Lewy-type pathology have been detected in peripheral organs many years prior to PD diagnosis, and 2 independent studies have now suggested that truncal vagotomy may be protective against the disorder. Other lines of evidence are difficult to reconcile with a peripheral onset of PD, most importantly the relative scarcity of post mortem cases with isolated gastrointestinal α-synuclein pathology without concomitant CNS pathology. This Scientific Perspectives article revisits some important topics with implications for the dual-hit hypothesis. An account of the neuroanatomical pathways necessary for stereotypical α-synuclein spreading is presented. Parallels to the existing knowledge on true prion disorders, including Creutzfeld-Jakob disease, are examined. Finally, the vagotomy studies and the somewhat inconsistent findings in the growing literature on peripheral α-synuclein pathology are discussed. It is concluded that the dual-hit hypothesis remains a potential explanation for PD pathogenesis, but several issues need to be resolved before more firm conclusions can be drawn. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
45
|
Reichmann H. Premotor Diagnosis of Parkinson's Disease. Neurosci Bull 2017; 33:526-534. [PMID: 28776303 DOI: 10.1007/s12264-017-0159-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor. Some time later postural instability occurs. Pre-motor symptoms such as hyposmia, constipation, REM sleep behavior disorder and depression may antecede these motor symptoms for years. It would be ideal, if we had a biomarker which would allow to predict who with one or two of these pre-motor symptoms will develop the movement disorder Parkinson's disease (PD). Thus, it is interesting to learn that biopsies of the submandibular gland or colon biopsies may be a means to predict PD, if there is a high amout of abnormally folded alpha-synuclein and phosphorylated alpha-synuclein. This would be of relevance if we would have available means to stop the propagation of abnormal alpha-synuclein which is otherwise one of the reasons of this spreading disease PD.
Collapse
Affiliation(s)
- Heinz Reichmann
- Department of Neurology, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
46
|
Jellinger KA. Neuropathology of Nonmotor Symptoms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:13-62. [PMID: 28802920 DOI: 10.1016/bs.irn.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD), a multiorgan neurodegenerative disorder associated with α-synuclein deposits throughout the nervous system and many organs, is clinically characterized by motor and nonmotor features, many of the latter antedating motor dysfunctions by 20 or more years. The causes of the nonmotor manifestations such as olfactory, autonomic, sensory, neuropsychiatric, visuospatial, sleep, and other disorders are unlikely to be related to single lesions. They are mediated by the involvement of both dopaminergic and nondopaminergic systems, and diverse structures outside the nigrostriatal system that is mainly responsible for the motor features of PD. The nonmotor alterations appear in early/prodromal stages of the disease and its further progression, suggesting a topographical and chronological spread of the lesions. This lends further support for the notion that PD is a multiorgan proteinopathy, although the exact relationship between presymptomatic and later developing nonmotor features of PD and neuropathology awaits further elucidation.
Collapse
|
47
|
Tomlinson JJ, Shutinoski B, Dong L, Meng F, Elleithy D, Lengacher NA, Nguyen AP, Cron GO, Jiang Q, Roberson ED, Nussbaum RL, Majbour NK, El-Agnaf OM, Bennett SA, Lagace DC, Woulfe JM, Sad S, Brown EG, Schlossmacher MG. Holocranohistochemistry enables the visualization of α-synuclein expression in the murine olfactory system and discovery of its systemic anti-microbial effects. J Neural Transm (Vienna) 2017; 124:721-738. [PMID: 28477284 PMCID: PMC5446848 DOI: 10.1007/s00702-017-1726-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 01/19/2023]
Abstract
Braak and Del Tredici have proposed that typical Parkinson disease (PD) has its origins in the olfactory bulb and gastrointestinal tract. However, the role of the olfactory system has insufficiently been explored in the pathogeneses of PD and Alzheimer disease (AD) in laboratory models. Here, we demonstrate applications of a new method to process mouse heads for microscopy by sectioning, mounting, and staining whole skulls (‘holocranohistochemistry’). This technique permits the visualization of the olfactory system from the nasal cavity to mitral cells and dopamine-producing interneurons of glomeruli in the olfactory bulb. We applied this method to two specific goals: first, to visualize PD- and AD-linked gene expression in the olfactory system, where we detected abundant, endogenous α-synuclein and tau expression in the olfactory epithelium. Furthermore, we observed amyloid-β plaques and proteinase-K-resistant α-synuclein species, respectively, in cranial nerve-I of APP- and human SNCA-over-expressing mice. The second application of the technique was to the modeling of gene–environment interactions in the nasal cavity of mice. We tracked the infection of a neurotropic respiratory-enteric-orphan virus from the nose pad into cranial nerves-I (and -V) and monitored the ensuing brain infection. Given its abundance in the olfactory epithelia, we questioned whether α-synuclein played a role in innate host defenses to modify the outcome of infections. Indeed, Snca-null mice were more likely to succumb to viral encephalitis versus their wild-type littermates. Moreover, using a bacterial sepsis model, Snca-null mice were less able to control infection after intravenous inoculation with Salmonella typhimurium. Together, holocranohistochemistry enabled new discoveries related to α-synuclein expression and its function in mice. Future studies will address: the role of Mapt and mutant SNCA alleles in infection paradigms; the contribution of xenobiotics in the initiation of idiopathic PD; and the safety to the host when systemically targeting α-synuclein by immunotherapy.
Collapse
Affiliation(s)
- Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada. .,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada. .,University of Ottawa, 451 Smyth Road, RGH #1464, Ottawa, ON, K1H 8M5, Canada.
| | - Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Li Dong
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fanyi Meng
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dina Elleithy
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Angela P Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Greg O Cron
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Faculty of Medicine, Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Qiubo Jiang
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Erik D Roberson
- Department of Neurology, University of Alabama, Birmingham, AL, USA
| | - Robert L Nussbaum
- Division of Medical Genetics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Omar M El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Steffany A Bennett
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Diane C Lagace
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada. .,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada. .,Division of Neurology, Department of Medicine, Faculty of Medicine, The Ottawa Hospital, Ottawa, ON, Canada. .,University of Ottawa, 451 Smyth Road, RGH #1464, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
48
|
Visanji NP, Mollenhauer B, Beach TG, Adler CH, Coffey CS, Kopil CM, Dave KD, Foroud T, Chahine L, Jennings D. The Systemic Synuclein Sampling Study: toward a biomarker for Parkinson's disease. Biomark Med 2017; 11:359-368. [DOI: 10.2217/bmm-2016-0366] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The search for a biomarker for Parkinson's disease (PD) has led to a surge in literature describing peripheral α-synuclein (aSyn) in both biofluids and biopsy/autopsy tissues. Despite encouraging results, attempts to capitalize on this promise have fallen woefully short. The Systemic Synuclein Sampling Study (S4) is uniquely designed to identify a reproducible diagnostic and progression biomarker for PD. S4 will evaluate aSyn in multiple tissues and biofluids within the same subject and across the disease spectrum to identify the optimal biomarker source and provide vital information on the evolution of peripheral aSyn throughout the disease. Additionally, S4 will correlate the systemic aSyn profile with an objective measure of nigrostriatal dopaminergic function furthering our understanding of the pathophysiological progression of PD.
Collapse
Affiliation(s)
- Naomi P Visanji
- Morton & Gloria Shulman Movement Disorders Centre & Edmund J Saffra program in Parkinson's disease, Toronto Western Hospital, 399 Bathurst Street, MCl 7, Toronto, Ontario, M5T 2S8, Canada
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstrasse 16, 34128 Kassel, Germany
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | | | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, Grand Central Station, PO Box 4777, New York, NY 10163-4777, USA
| | - Kuldip D Dave
- The Michael J Fox Foundation for Parkinson's Research, Grand Central Station, PO Box 4777, New York, NY 10163-4777, USA
| | - Tatiana Foroud
- Department of Medical & Molecular Genetics, Indiana University, Bloomington, IN 46202, USA
| | - Lana Chahine
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 330 South 9th Street, Philadelphia, PA 19107, USA
| | - Danna Jennings
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA
| | | |
Collapse
|
49
|
Lee JM, Derkinderen P, Kordower JH, Freeman R, Munoz DG, Kremer T, Zago W, Hutten SJ, Adler CH, Serrano GE, Beach TG. The Search for a Peripheral Biopsy Indicator of α-Synuclein Pathology for Parkinson Disease. J Neuropathol Exp Neurol 2017; 76:2-15. [DOI: 10.1093/jnen/nlw103] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
50
|
Abstract
PURPOSE OF REVIEW We describe evidence supporting the hypothesis that α-synuclein has a prion-like role in Parkinson's disease and related α-synucleinopathies, and discuss how this novel thinking impacts the development of diagnostics and disease-modifying therapies. RECENT FINDINGS Observations that immature dopamine neurons grafted to Parkinson's disease patients can develop Lewy bodies triggered a surge of interest in the putative prion-like properties of α-synuclein. We recount results from experiments which confirm that misfolded α-synuclein can exhibit disease-propagating properties, and describe how they relate to the spreading of α-synuclein aggregates in α-synucleinopathies. We share insights into the underlying molecular mechanisms and their relevance to novel therapeutic targets. Finally, we discuss what the initial triggers of α-synuclein misfolding might be, where in the body the misfolding events might take place, and how this can instruct development of novel diagnostic tools. We speculate that differences in anatomical trigger sites and variability in α-synuclein fibril structure can contribute to clinical differences between α-synucleinopathies. SUMMARY The realization that α-synuclein pathology can propagate between brain regions in neurodegenerative diseases has deepened and expanded our understanding of potential pathogenic processes which can lead to the development of novel diagnostic tools as well as the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Patrik Brundin
- Translational Parkinson’s Disease Research, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
| | - Jiyan Ma
- Prion Mechanisms in Neurodegenerative Disease, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
| | - Jeffrey H Kordower
- Parkinson’s Disease: Pathogenesis and Experimental Therapeutics; Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|