1
|
Lee JY, Min DJ, Kim W, Bin BH, Kim K, Cho EG. Non pharmacological high-intensity ultrasound treatment of human dermal fibroblasts to accelerate wound healing. Sci Rep 2021; 11:2465. [PMID: 33510199 PMCID: PMC7844265 DOI: 10.1038/s41598-021-81878-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/07/2021] [Indexed: 01/11/2023] Open
Abstract
Inspired by the effectiveness of low-intensity ultrasound on tissue regeneration, we investigated the potential effect of short-term high-intensity ultrasound treatment for acceleration of wound healing in an in vitro wound model and dermal equivalent, both comprising human dermal fibroblasts. Short-term ultrasound of various amplitudes significantly increased the proliferation and migration of fibroblasts and subsequently increased the production of the extracellular matrix components fibronectin and collagen type I, both of which are important for wound healing and are secreted by fibroblasts. In addition, ultrasound treatment increased the contraction of a fibroblast-embedded three-dimensional collagen matrix, and the effect was synergistically increased in the presence of TGF-β. RNA-sequencing and bioinformatics analyses revealed changes in gene expression and p38 and ERK1/2 MAPK pathway activation in the ultrasound-stimulated fibroblasts. Our findings suggest that ultrasound as a mechanical stimulus can activate human dermal fibroblasts. Therefore, the activation of fibroblasts using ultrasound may improve the healing of various types of wounds and increase skin regeneration.
Collapse
Affiliation(s)
- Jeong Yu Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Dae-Jin Min
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Wanil Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Bum-Ho Bin
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyuhan Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eun-Gyung Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
McArthur L, Riddell A, Chilton L, Smith GL, Nicklin SA. Regulation of connexin 43 by interleukin 1β in adult rat cardiac fibroblasts and effects in an adult rat cardiac myocyte: fibroblast co-culture model. Heliyon 2019; 6:e03031. [PMID: 31909243 PMCID: PMC6940628 DOI: 10.1016/j.heliyon.2019.e03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Connexin 43 expression (Cx43) is increased in cardiac fibroblasts (CFs) following myocardial infarction. Here, potential mediators responsible for increasing Cx43 expression and effects of differential CF phenotype on cardiac myocyte (CM) function were investigated. Stimulating adult rat CFs with proinflammatory mediators revealed that interleukin 1β (IL-1β) significantly enhanced Cx43 levels through the IL-1β pathway. Additionally, IL-1β reduced mRNA levels of the myofibroblast (MF) markers: (i) connective tissue growth factor (CTGF) and (ii) α smooth muscle actin (αSMA), compared to control CFs. A co-culture adult rat CM:CF model was utilised to examine cell-to-cell interactions. Transfer of calcein from CMs to underlying CFs suggested functional gap junction formation. Functional analysis revealed contraction duration (CD) of CMs was shortened in co-culture with CFs, while treatment of CFs with IL-1β reduced this mechanical effect of co-culture. No effect on action potential rise time or duration of CMs cultured with control or IL-1β-treated CFs was observed. These data demonstrate that stimulating CFs with IL-1β increases Cx43 and reduces MF marker expression, suggesting altered cell phenotype. These changes may underlie the reduced mechanical effects of IL-1β treated CFs on CD of co-cultured CMs and therefore have an implication for our understanding of heterocellular interactions in cardiac disease.
Collapse
Affiliation(s)
- Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Lisa Chilton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
3
|
Basma H, Johanson AN, Dhar K, Anderson D, Qiu F, Rennard S, Lowes BD. TGF-β induces a heart failure phenotype via fibroblasts exosome signaling. Heliyon 2019; 5:e02633. [PMID: 31687497 PMCID: PMC6820308 DOI: 10.1016/j.heliyon.2019.e02633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose The mechanisms for persistent and progressive loss of myocardial function in advanced heart failure (HF) remain incompletely characterized. In the current study, we sought to determine the impact of TGF-β on fibroblasts transcriptional profiles and assess if exosomes from TGF-β treated fibroblasts could induce a heart failure phenotype in co-cultured cardiomyocytes. Method Normal heart fibroblasts were treated with TGF-β with a final conc. of 2.5 ng/ml in serum free media. HF fibroblasts were also obtained from patients undergoing implantation of left ventricular assist devices. Exosomes were collected using three-step ultracentrifugation. Cardiomyocytes were co-cultured with exosomes from TGF-β-treated, HF and control fibroblasts. RNA was extracted from the fibroblasts, exosomes, and the cardiomyocytes for a targeted panel of genes using Ion AmpliSeq. Fibroblast function was evaluated by collagen gel contraction. Results Fibroblasts treated with TGF-β differentially express 21 of the 140 genes in our targeted panel. These fibroblasts exhibit enhanced collagen gel contraction similar to HF fibroblasts. Fifty of these targeted genes were also differentially expressed in fibroblast exosomes. Pathway analysis of these transcriptional changes suggest hypertrophic signaling to cardiac muscle. Cardiomyocytes, co-cultured with exosomes from TGF- β treated fibroblasts or heart failure patients, differentially expressed 40 genes compared to controls. Cardiomyocytes co-cultured with exosomes of TGF-β treated fibroblasts induced a molecular phenotype similar to cardiomyocytes co-cultured with exosomes from HF fibroblasts. These changes involve contractile proteins, adrenergic receptors, calcium signaling, metabolism and cell renewal. Conclusion TGF-β induces broad transcriptional changes in fibroblasts as well as their exosomes. These exosomes induce a heart failure phenotype in cardiomyocytes. Exosome signaling from fibroblasts likely contributes to disease progression in heart failure.
Collapse
Affiliation(s)
| | | | | | | | - Fang Qiu
- University of Nebraska Medical Center, USA
| | - Stephen Rennard
- University of Nebraska Medical Center, USA.,Early Clinical Development, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
4
|
Kang S, Verma S, Hassanabad AF, Teng G, Belke DD, Dundas JA, Guzzardi DG, Svystonyuk DA, Pattar SS, Park DSJ, Turnbull JD, Duff HJ, Tibbles LA, Cunnington RH, Dyck JRB, Fedak PWM. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Can J Cardiol 2019; 36:543-553. [PMID: 31837891 DOI: 10.1016/j.cjca.2019.08.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Empagliflozin, an SGLT2 inhibitor, has shown remarkable reductions in cardiovascular mortality and heart failure admissions (EMPA-REG OUTCOME). However, the mechanism underlying the heart failure protective effects of empagliflozin remains largely unknown. Cardiac fibroblasts play an integral role in the progression of structural cardiac remodelling and heart failure, in part, by regulating extracellular matrix (ECM) homeostasis. The objective of this study was to determine if empagliflozin has a direct effect on human cardiac myofibroblast-mediated ECM remodelling. METHODS Cardiac fibroblasts were isolated via explant culture from human atrial tissue obtained at open heart surgery. Collagen gel contraction assay was used to assess myofibroblast activity. Cell morphology and cell-mediated ECM remodelling was examined with the use of confocal microscopy. Gene expression of profibrotic markers was assessed with the use of reverse-transcription quantitative polymerase chain reaction. RESULTS Empagliflozin significantly attenuated transforming growth factor β1-induced fibroblast activation via collagen gel contraction after 72-hour exposure, with escalating concentrations (0.5 μmol/L, 1 μmol/L, and 5 μmol/L) resulting in greater attenuation. Morphologic assessment showed that myofibroblasts exposed to empagliflozin were smaller in size with shorter and fewer number of extensions, indicative of a more quiescent phenotype. Moreover, empagliflozin significantly attenuated cell-mediated ECM remodelling as measured by collagen fibre alignment index. Gene expression profiling revealed significant suppression of critical profibrotic markers by empagliflozin, including COL1A1, ACTA2, CTGF, FN1, and MMP-2. CONCLUSIONS We provide novel data showing a direct effect of empagliflozin on human cardiac myofibroblast phenotype and function by attenuation of myofibroblast activity and cell-mediated collagen remodelling. These data provide critical insights into the profound effects of empagliflozin as noted in the EMPA-REG OUTCOME study.
Collapse
Affiliation(s)
- Sean Kang
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Darrell D Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Jameson A Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - David G Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Simranjit S Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Daniel S J Park
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Henry J Duff
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Lee Anne Tibbles
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ryan H Cunnington
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Mazankowski Alberta Health Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Reyes‐Martínez JE, Ruiz‐Pacheco JA, Flores‐Valdéz MA, Elsawy MA, Vallejo‐Cardona AA, Castillo‐Díaz LA. Advanced hydrogels for treatment of diabetes. J Tissue Eng Regen Med 2019; 13:1375-1393. [DOI: 10.1002/term.2880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/31/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Juana E. Reyes‐Martínez
- Departamento de Biología. División de Ciencias Naturales y ExactasUniversidad de Guanajuato Guanajuato México
| | | | - Mario A. Flores‐Valdéz
- Biotecnología Médica y FarmacéuticaCentro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Guadalajara México
| | - Mohamed A. Elsawy
- School of Pharmacy and Biomedical SciencesUniversity of Central Lancashire Preston UK
| | - Alba A. Vallejo‐Cardona
- Biotecnología Médica y FarmacéuticaCentro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Guadalajara México
| | - Luis A. Castillo‐Díaz
- Departamento de Medicina y Ciencias de la Salud, División de Ciencias Biológicas y de la SaludUniversidad de Sonora Hermosillo México
| |
Collapse
|
6
|
Xiong L, Liu Y, Zhou M, Wang G, Quan D, Shuai W, Shen C, Kong B, Huang C, Huang H. Targeted ablation of cardiac sympathetic neurons attenuates adverse postinfarction remodelling and left ventricular dysfunction. Exp Physiol 2018; 103:1221-1229. [PMID: 29928790 DOI: 10.1113/ep086928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Liang Xiong
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Yu Liu
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Mingmin Zhou
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Guangji Wang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Dajun Quan
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Wei Shuai
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Caijie Shen
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Bin Kong
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Congxin Huang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - He Huang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| |
Collapse
|
7
|
Wang N, Zheng X, Qian J, Yao W, Bai L, Hou G, Qiu X, Li X, Jiang X. Renal sympathetic denervation alleviates myocardial fibrosis following isoproterenol-induced heart failure. Mol Med Rep 2017; 16:5091-5098. [PMID: 28849013 PMCID: PMC5647034 DOI: 10.3892/mmr.2017.7255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine if renal sympathetic denervation (RSD) may alleviate isoproterenol-induced left ventricle remodeling, and to identify the underlying mechanism. A total of 70 rats were randomly divided into control (n=15), sham operation (n=15), heart failure (HF) with sham operation (HF + sham; n=20) and HF with treatment (HF + RSD; n=20) groups. The HF model was established by subcutaneous injection of isoproterenol; six weeks later, 1eft ventricular internal diameter at end‑systole (LVIDs), left ventricular systolic posterior wall thickness (LVPWs), 1eft ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were measured. Plasma norepinephrine (NE), angiotensin II (Ang II) and aldosterone (ALD) levels were measured by ELISA. Myocardial collagen volume fraction (CVF) was determined by Masson's staining. Reverse transcription‑quantitative polymerase chain reaction was used to determine the mRNA expression levels of ventricular transforming growth factor‑β (TGF‑β), connective tissue growth factor (CTGF) and microRNAs (miRs), including miR‑29b, miR‑30c and miR‑133a. The results demonstrated that LVIDs and LVPWs in the HF + RSD group were significantly decreased compared with the HF + sham group. By contrast, LVFS and LVEF in the HF + RSD group were significantly increased compared with the HF + sham group. RSD significantly reduced the levels of plasma NE, Ang II and ALD. CVF in the HF + RSD group was reduced by 38.1% compared with the HF + sham group. Expression levels of TGF‑β and CTGF were decreased, whereas those of miR‑29b, miR‑30c and miR‑133a were increased, in the HF + RSD group compared with the HF + sham group. These results indicated that RSD alleviates isoproterenol‑induced left ventricle remodeling potentially via downregulation of TGF‑β/CTGF and upregulation of miR‑29b, miR‑30c and miR‑133a. RSD may therefore be an effective non‑drug therapy for the treatment of heart failure.
Collapse
Affiliation(s)
- Neng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Qian
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Wei Yao
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Lu Bai
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Guo Hou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuan Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Zhou H, Yu X, Zhou G. NLRC5 silencing ameliorates cardiac fibrosis by inhibiting the TGF‑β1/Smad3 signaling pathway. Mol Med Rep 2017; 16:3551-3556. [PMID: 28713900 DOI: 10.3892/mmr.2017.6990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/02/2017] [Indexed: 11/05/2022] Open
Abstract
The proliferation of cardiac fibroblasts (CFs) and excessive deposition of extracellular matrix are the predominant pathological characteristics of cardiac fibrosis. As the largest member of the nucleotide‑binding domain and leucine‑rich repeat (NLR) family, NLRC5 has been shown to be pivotal in the development of hepatic fibrosis. However, whether NLRC5 is involved in the pathogenesis of cardiac fibrosis remains to be elucidated. The present study aimed to investigate the role of NLRC5 and its mechanisms in regulating cardiac fibrosis. CFs were stimulated with transforming growth factor (TGF)‑β1 for various times and the mRNA and protein expression of NLRC5 was assessed using reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. In addition, CFs were transfected with small interfering (si)RNA targeting NLRC5 or scramble siRNA for 24 h and then stimulated with TGF‑β1 for 24 h. Subsequently, cell proliferation was measured using an MTT assay, whereas cell migration was evaluated using a Transwell migration assay. The protein expression levels of α‑smooth muscle actin, collagen I, connective tissue growth factor, phosphorylated‑Smad3 and Smad3 were measured using western blot analysis. The results demonstrated that NLRC5 was upregulated in TGF‑β1‑induced CFs. The knockdown of NLRC5 significantly inhibited cell proliferation and migration, and suppressed myofibroblast differentiation and the expression of pro‑fibrotic molecules in TGF‑β1‑treated CFs. Furthermore, the knockdown of NLRC5 attenuated TGF‑β1‑induced phosphorylation of small mothers against decapentaplegic (Smad)3 in the CFs. The results of the present study indicated that NLRC5 acted as a key regulator of pathological cardiac fibrosis, and NLRC5 silencing ameliorated cardiac fibrosis by inhibiting the TGF‑β1/Smad3 signaling pathway. These results suggested that NLRC5 may be a novel target for attenuating cardiac fibrosis.
Collapse
Affiliation(s)
- Hongtao Zhou
- Department of Ultrasound Room, Tianjin Medical University Metabolic Diseases Hospital, Tianjin 300070, P.R. China
| | - Xuefang Yu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin 300054, P.R. China
| | - Guiming Zhou
- Department of Ultrasound Room, Tianjin Medical University General Hospital, Tianjin 300054, P.R. China
| |
Collapse
|
9
|
Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice. Biomed Pharmacother 2016; 84:1350-1358. [DOI: 10.1016/j.biopha.2016.10.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/19/2022] Open
|
10
|
Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis 2016; 1863:298-309. [PMID: 27825850 DOI: 10.1016/j.bbadis.2016.11.006] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/09/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Cardiac myofibroblasts play an important role in myocardial remodeling. Although α-smooth muscle actin (α-SMA) expression is the hallmark of mature myofibroblasts, its role in regulating fibroblast function remains poorly understood. We explore the effects of the matrix environment in modulating cardiac fibroblast phenotype, and we investigate the role of α-SMA in fibroblast function using loss- and gain-of-function approaches. In murine myocardial infarction, infiltration of the infarct border zone with abundant α-SMA-positive myofibroblasts was associated with scar contraction. Isolated cardiac fibroblasts cultured in plates showed high α-SMA expression localized in stress fibers, exhibited activation of focal adhesion kinase (FAK), and synthesized large amounts of extracellular matrix proteins. In contrast, when these cells were cultured in collagen lattices, they exhibited marked reduction of α-SMA expression, negligible FAK activation, attenuated collagen synthesis, and increased transcription of genes associated with matrix metabolism. Transforming Growth Factor-β1-mediated contraction of fibroblast-populated collagen pads was associated with accentuated α-SMA synthesis. In contrast, serum- and basic Fibroblast Growth Factor-induced collagen pad contraction was associated with reduced α-SMA expression. α-SMA siRNA knockdown attenuated contraction of collagen pads populated with serum-stimulated cells. Surprisingly, α-SMA overexpression also reduced collagen pad contraction, suggesting that α-SMA is not sufficient to promote contraction of the matrix. Reduced contraction by α-SMA-overexpressing cells was associated with attenuated proliferative activity, in the absence of any effects on apoptosis. α-SMA may be implicated in contraction and remodeling of the extracellular matrix, but is not sufficient to induce contraction. α-SMA expression may modulate cellular functions, beyond its effects on contractility.
Collapse
Affiliation(s)
- Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
11
|
Vivar R, Humeres C, Muñoz C, Boza P, Bolivar S, Tapia F, Lavandero S, Chiong M, Diaz-Araya G. FoxO1 mediates TGF-beta1-dependent cardiac myofibroblast differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:128-38. [DOI: 10.1016/j.bbamcr.2015.10.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
12
|
Wailes EM, Levi-Polyachenko NH. Multi-walled nanotubes for cellular reprogramming of cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:955-963. [PMID: 26733259 DOI: 10.1016/j.nano.2015.12.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/14/2015] [Accepted: 12/05/2015] [Indexed: 11/18/2022]
Abstract
UNLABELLED Triple negative breast cancer is exceptionally difficult to treat due to the lack of distinguishing biomarkers for drug targeting. An alternative approach based on recent data indicates that these cells may be more susceptible to mechanical influences, such as alterations in the tumor stroma. Three dimensional collagen gels containing co-cultures of mesenchymal cells and MDA-MB-231 cancer cells were utilized to explore the effects of multi-walled nanotubes (MWNT) on cell contraction, invasion, viability, MMP-9 expression, and migration of breast cancer cells. MWNT were able to restrict each of these features for the cancer cells without impeding the associated mesenchymal cells. MWNT-collagen gels are useful tools for cellular reprogramming of cancer cells and should be considered in greater detail as a potential agent for therapeutic treatment of triple-negative breast cancer. FROM THE CLINICAL EDITOR Breast cancer is still a leading cause of death for women worldwide. One subtype of this cancer which is very aggressive is the triple negative breast cancer. The behavior of tumors may be affected by the tumor stromal environment. In this study, the authors investigated the effects of multi-walled nanotubes (MWNT) on tumor cell biology. The positive findings may point a new way in using this modality for treatment of triple-negative breast cancer in the future.
Collapse
Affiliation(s)
- Elizabeth M Wailes
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest University, Winston Salem, NC, USA
| | - Nicole H Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest University, Winston Salem, NC, USA.
| |
Collapse
|
13
|
Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem J 2015; 472:55-69. [PMID: 26349540 DOI: 10.1042/bj20150652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells.
Collapse
|
14
|
Svystonyuk DA, Ngu JMC, Mewhort HEM, Lipon BD, Teng G, Guzzardi DG, Malik G, Belke DD, Fedak PWM. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. J Transl Med 2015; 13:147. [PMID: 25948488 PMCID: PMC4438633 DOI: 10.1186/s12967-015-0510-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tissue fibrosis and chamber remodeling is a hallmark of the failing heart and the final common pathway for heart failure of diverse etiologies. Sustained elevation of pro-fibrotic cytokine transforming growth factor-beta1 (TGFβ1) induces cardiac myofibroblast-mediated fibrosis and progressive structural tissue remodeling. OBJECTIVES We examined the effects of low molecular weight fibroblast growth factor (LMW-FGF-2) on human cardiac myofibroblast-mediated extracellular matrix (ECM) dysregulation and remodeling. METHODS Human cardiac biopsies were obtained during open-heart surgery and myofibroblasts were isolated, passaged, and seeded within type I collagen matrices. To induce myofibroblast activation and ECM remodeling, myofibroblast-seeded collagen gels were exposed to TGFβ1. The extent of ECM contraction, myofibroblast activation, ECM dysregulation, and cell apoptosis was determined in the presence of LMW-FGF-2 and compared to its absence. Using a novel floating nylon-grid supported thin collagen gel culture platform system, myofibroblast activation and local ECM remodeling around isolated single cells was imaged using confocal microscopy and quantified by image analysis. RESULTS TGFβ1 induced significant myofibroblast activation and ECM dysregulation as evidenced by collagen gel contraction, structural ECM remodeling, collagen synthesis, ECM degradation, and altered TIMP expression. LMW-FGF-2 significantly attenuated TGFβ1 induced myofibroblast-mediated ECM remodeling. These observations were similar using either ventricular or atrial-derived cardiac myofibroblasts. In addition, for the first time using individual cells, LMW-FGF-2 was observed to attenuate cardiac myofibroblast activation and prevent local cell-mediated ECM perturbations. CONCLUSIONS LMW-FGF-2 attenuates human cardiac myofibroblast-mediated ECM remodeling and may prevent progressive maladaptive chamber remodeling and tissue fibrosis for patients with diverse structural heart diseases.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Janet M C Ngu
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Brodie D Lipon
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - David G Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Getanshu Malik
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Darrell D Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| |
Collapse
|
15
|
Ngu JMC, Teng G, Meijndert HC, Mewhort HE, Turnbull JD, Stetler-Stevenson WG, Fedak PWM. Human cardiac fibroblast extracellular matrix remodeling: dual effects of tissue inhibitor of metalloproteinase-2. Cardiovasc Pathol 2014; 23:335-43. [PMID: 25060386 PMCID: PMC6295929 DOI: 10.1016/j.carpath.2014.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous inhibitor of matrix metalloproteinases (MMPs) that attenuates maladaptive cardiac remodeling in ischemic heart failure. We examined the effects of TIMP-2 on human cardiac fibroblast activation and extracellular matrix (ECM) remodeling. METHODS Human cardiac fibroblasts within a three-dimensional collagen matrix were assessed for phenotype conversion, ECM architecture and key molecular regulators of ECM remodeling after differential exposure to TIMP-2 and Ala+TIMP-2 (a modified TIMP-2 analogue devoid of MMP inhibitory activity). RESULTS TIMP-2 induced opposite effects on human cardiac fibroblast activation and ECM remodeling depending on concentration. TIMP-2 activated fibroblasts into contractile myofibroblasts that remodeled ECM. At higher concentrations (>10 nM), TIMP-2 inhibited fibroblast activation and prevented ECM remodeling. As compared to profibrotic cytokine transforming growth factor (TGF)-beta1, TIMP-2 activated fibroblasts and remodeled ECM without a net accumulation of matrix elements. TIMP-2 increased total protease activity as compared to TGF-beta1. Ala+TIMP-2 exposure revealed that the actions of TIMP-2 on cardiac fibroblast activation are independent of its effects on MMP inhibition. In the presence of GM6001, a broad-spectrum MMP inhibitor, TIMP-2-mediated ECM contraction was completely abolished, indicating that TIMP-2-mediated fibroblast activation is MMP dependent. CONCLUSION TIMP-2 functions in a contextual fashion such that the effect on cardiac fibroblasts depends on the tissue microenvironment. These observations highlight potential clinical challenges in using TIMP-2 as a therapeutic strategy to attenuate postinjury cardiac remodeling.
Collapse
Affiliation(s)
- Janet M C Ngu
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Hans Christopher Meijndert
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Holly E Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | | | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Olmedo I, Muñoz C, Guzmán N, Catalán M, Vivar R, Ayala P, Humeres C, Aránguiz P, García L, Velarde V, Díaz-Araya G. EPAC expression and function in cardiac fibroblasts and myofibroblasts. Toxicol Appl Pharmacol 2013; 272:414-22. [PMID: 23845590 DOI: 10.1016/j.taap.2013.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/20/2013] [Accepted: 06/23/2013] [Indexed: 01/26/2023]
Abstract
UNLABELLED In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. METHOD Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. RESULTS TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. CONCLUSION TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van Nieuwenhoven FA, Hemmings KE, Porter KE, Turner NA. Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function. Matrix Biol 2013; 32:399-406. [PMID: 23583823 DOI: 10.1016/j.matbio.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/22/2022]
Abstract
During cardiac remodeling, cardiac fibroblasts (CF) are influenced by increased levels of interleukin-1α (IL-1α) and transforming growth factor-β1 (TGFβ1). The present study investigated the interaction between these two important cytokines on function of human CF and their differentiation to myofibroblasts (CMF). CF were isolated from human atrial appendage and exposed to IL-1α and/or TGFβ1 (both 0.1 ng/ml). mRNA expression levels of selected genes were determined after 6-24h by real-time RT-PCR, while protein levels were analyzed at 24-48 h by ELISA or western blot. Activation of canonical signaling pathways (NFκB, Smad3, p38 MAPK) was determined by western blotting. Differentiation to CMF was examined by collagen gel contraction assays. Exposure of CF to IL-1α alone enhanced levels of IL-6, IL-8, matrix metalloproteinase-3 (MMP3) and collagen III (COL3A1), but reduced the CMF markers α-smooth muscle actin (αSMA) and connective tissue growth factor (CTGF/CCN2). By contrast, TGFβ1 alone had minor effects on IL-6, IL-8 and MMP3 levels, but significantly increased levels of the CMF markers αSMA, CTGF, COL1A1 and COL3A1. Co-stimulation with both IL-1α and TGFβ1 increased MMP3 expression synergistically. Furthermore, while TGFβ1 had no effect on IL-1α-induced IL-6 or IL-8 levels, co-stimulation inhibited the TGFβ1-induced increase in αSMA and blocked the gel contraction caused by TGFβ1. Combining IL-1α and TGFβ1 had no apparent effect on their canonical signaling pathways. In conclusion, IL-1α and TGFβ1 act synergistically to stimulate MMP3 expression in CF. Moreover, IL-1α has a dominant inhibitory effect on the phenotypic switch of CF to CMF induced by TGFβ1.
Collapse
Affiliation(s)
- Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Law BA, Carver WE. Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition. Alcohol Clin Exp Res 2013; 37:1286-94. [PMID: 23528014 DOI: 10.1111/acer.12111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/09/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as alcoholic cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM, and prior studies by this laboratory have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date, there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. METHODS Primary rat cardiac fibroblasts were cultured in the presence of ethanol (EtOH) and assayed for fibroblast activation by collagen gel contraction, alpha-smooth muscle actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I and III, and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of TGF-β in the response of cardiac fibroblasts to EtOH. RESULTS Treatment for cardiac fibroblasts with EtOH at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the EtOH-induced fibroblast activation. CONCLUSIONS EtOH treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by EtOH treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to EtOH.
Collapse
Affiliation(s)
- Brittany A Law
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
19
|
Dixon IMC. Cardiac myofibroblasts: cells out of balance. A new thematic series. FIBROGENESIS & TISSUE REPAIR 2012; 5:14. [PMID: 22943486 PMCID: PMC3563470 DOI: 10.1186/1755-1536-5-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/03/2022]
Abstract
We are pleased to introduce a new thematic series dealing with cardiac fibrosis and its association with cardiovascular diseases. A wide variety of cardiovascular diseases are associated with cardiac fibrosis, which is now widely recognized to be not a secondary, but rather a primary contributor to cardiac dysfunction. The purpose of the current series of papers and reviews is to provide the reader with an up-to-date synopsis of the very latest research results and hypotheses that impact on cardiac fibrosis and disease.
Collapse
Affiliation(s)
- Ian M C Dixon
- Principal Investigator, Laboratory of Molecular Cardiology, Department of Physiology, Faculty of Medicine and the Institute of Cardiovascular Sciences, St, Boniface General Hospital Research Centre, University of Manitoba, 351 Tache Ave, Manitoba, R2H 2A6, Winnipeg, Canada.
| |
Collapse
|
20
|
The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 2012; 58:182-8. [PMID: 22885638 DOI: 10.1016/j.vph.2012.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblasts (CF) play a pivotal role in the repair and remodeling of the heart that occur following myocardial infarction (MI). The transition through the inflammatory, granulation and maturation phases of infarct healing is driven by cellular responses to local levels of cytokines, chemokines and growth factors that fluctuate in a temporal and spatial manner. In the acute inflammatory phase early after MI, CF contribute to the inflammatory milieu through increased secretion of proinflammatory cytokines and chemokines, and they promote extracellular matrix (ECM) degradation by increasing matrix metalloproteinase (MMP) expression and activity. In the granulation phase, CF migrate into the infarct zone, proliferate and produce MMPs and pro-angiogenic molecules to facilitate revascularization. Fibroblasts also undergo a phenotypic change to become myofibroblasts. In the maturation phase, inflammation is reduced by anti-inflammatory cytokines, and increased levels of profibrotic stimuli induce myofibroblasts to synthesize new ECM to form a scar. The scar is contracted through the mechanical force generated by myofibroblasts, preventing cardiac dilation. In this review we discuss the transition from myocardial inflammation to fibrosis with particular focus on how CF respond to alterations in proinflammatory and profibrotic signals. By furthering our understanding of these events, it is hoped that new therapeutic interventions will be developed that selectively reduce adverse myocardial remodeling post-MI, while sparing essential repair mechanisms.
Collapse
|
21
|
|
22
|
Wilson CG, Stone JW, Fowlkes V, Morales MO, Murphy CJ, Baxter SC, Goldsmith EC. Age-dependent expression of collagen receptors and deformation of type I collagen substrates by rat cardiac fibroblasts. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:555-562. [PMID: 21740617 PMCID: PMC4045481 DOI: 10.1017/s1431927611000390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Little is known about how age influences the ways in which cardiac fibroblasts interact with the extracellular matrix. We investigated the deformation of collagen substrates by neonatal and adult rat cardiac fibroblasts in monolayer and three-dimensional (3D) cultures, and quantified the expression of three collagen receptors [discoidin domain receptor (DDR)1, DDR2, and β1 integrin] and the contractile protein alpha smooth muscle actin (α-SMA) in these cells. We report that adult fibroblasts contracted 3D collagen substrates significantly less than their neonate counterparts, whereas no differences were observed in monolayer cultures. Adult cells had lower expression of β1 integrin and α-SMA than neonate cultures, and we detected significant correlations between the expression of α-SMA and each of the collagen receptors in neonate cells but not in adult cells. Consistent with recent work demonstrating age-dependent interactions with myocytes, our results indicate that interactions between cardiac fibroblasts and the extracellular matrix change with age.
Collapse
Affiliation(s)
- Christopher G. Wilson
- University of South Carolina School of Medicine, Department of Cell Biology & Anatomy, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - John W. Stone
- University of South Carolina, Department of Chemistry & Biochemistry, 631 Sumter St., Columbia, SC 29208, USA
| | - Vennece Fowlkes
- University of South Carolina School of Medicine, Department of Cell Biology & Anatomy, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Mary O. Morales
- University of South Carolina School of Medicine, Department of Cell Biology & Anatomy, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Catherine J. Murphy
- University of Illinois at Urbana-Champaign, Department of Chemistry, A512 Chemical & Life Sciences Laboratory, 600 South Mathews Ave., Urbana, IL 61801, USA
| | - Sarah C. Baxter
- University of South Carolina, Department of Mechanical Engineering, 300 Main St., Columbia, SC 29208, USA
| | - Edie C. Goldsmith
- University of South Carolina School of Medicine, Department of Cell Biology & Anatomy, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| |
Collapse
|
23
|
Freed DH, Chilton L, Li Y, Dangerfield AL, Raizman JE, Rattan SG, Visen N, Hryshko LV, Dixon IMC. Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration. Am J Physiol Heart Circ Physiol 2011; 301:H514-22. [DOI: 10.1152/ajpheart.01041.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemotactic movement of myofibroblasts is recognized as a common means for their sequestration to the site of tissue injury. Following myocardial infarction (MI), recruitment of cardiac myofibroblasts to the infarct scar is a critical step in wound healing. Contractile myofibroblasts express embryonic smooth muscle myosin, α-smooth muscle actin, as well as collagens I and III. We examined the effects of cardiotrophin-1 (CT-1) in the induction of primary rat ventricular myofibroblast motility. Changes in membrane potential (Em) and Ca2+entry were studied to reveal the mechanisms for induction of myofibroblast migration. CT-1-induced cardiac myofibroblast cell migration, which was attenuated through the inhibition of JAK2 (25 μM AG490), and myosin light chain kinase (20 μM ML-7). Inhibition of K+channels (1 mM tetraethylammonium or 100 μM 4-aminopyridine) and nonselective cation channels by 10 μM gadolinium (Gd3+) significantly reduced migration in the presence of CT-1. CT-1 treatment caused a significant increase in myosin light chain phosphorylation, which could be inhibited by incubation in Ca2+-free conditions or by application of AG490, ML-7, and W7 (100 μM; calmodulin inhibitor). Monitoring myofibroblast membrane potential with potentiometric fluorescent DiBAC4( 3 ) dye revealed a biphasic response to CT-1 consisting of an initial depolarization followed by hyperpolarization. Increased intracellular Ca2+, as assessed by fluo 3, occurred immediately after membrane depolarization and attenuated at the time of maximal hyperpolarization. CT-1 exerts chemotactic effects via multiple parallel signaling modalities in ventricular myofibroblasts, including changes in membrane potential, alterations in intracellular calcium, and activation of a number of intracellular signaling pathways. Further study is warranted to determine the precise role of K+currents in this process.
Collapse
Affiliation(s)
- Darren H. Freed
- Departments of 1Physiology and
- Surgery, Faculty of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada; and
| | - Lisa Chilton
- School of Veterinary and Biomedical Services, James Cook University, Cairns, Australia
| | - Yun Li
- Departments of 1Physiology and
| | | | - Joshua E. Raizman
- Surgery, Faculty of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada; and
| | | | | | | | | |
Collapse
|
24
|
Melchior-Becker A, Dai G, Ding Z, Schäfer L, Schrader J, Young MF, Fischer JW. Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J Biol Chem 2011; 286:17365-75. [PMID: 21454527 PMCID: PMC3089578 DOI: 10.1074/jbc.m110.192682] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI) is followed by extracellular matrix (ECM) remodeling, which is on the one hand required for the healing response and the formation of stable scar tissue. However, on the other hand, ECM remodeling can lead to fibrosis and decreased ventricular compliance. The small leucine-rich proteoglycan (SLRP), biglycan (bgn), has been shown to be critically involved in these processes. During post-infarct remodeling cardiac fibroblasts differentiate into myofibroblasts which are the main cell type mediating ECM remodeling. The aim of the present study was to characterize the role of bgn in modulating the phenotype of cardiac fibroblasts. Cardiac fibroblasts were isolated from hearts of wild-type (WT) versus bgn(-/0) mice. Phenotypic characterization of the bgn(-/0) fibroblasts revealed increased proliferation. Importantly, this phenotype of bgn(-/0) fibroblasts was abolished to the WT level by reconstitution of biglycan in the ECM. TGF-β receptor II expression and phosphorylation of SMAD2 were increased. Furthermore, indicative of a myofibroblast phenotype bgn(-/0) fibroblasts were characterized by increased α-smooth muscle actin (α-SMA) incorporated into stress fibers, increased formation of focal adhesions, and increased contraction of collagen gels. Administration of neutralizing antibodies to TGF-β reversed the pro-proliferative, myofibroblastic phenotype. In vivo post-MI α-SMA, TGF-β receptor II expression, and SMAD2 phosphorylation were markedly increased in bgn(-/0) mice. Collectively, the data suggest that bgn deficiency promotes myofibroblast differentiation and proliferation in vitro and in vivo likely due to increased responses to TGF-β and SMAD2 signaling.
Collapse
Affiliation(s)
- Ariane Melchior-Becker
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf 40225, Germany
| | - Guang Dai
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf 40225, Germany
| | - Zhaoping Ding
- the Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf 40225, Germany
| | - Liliana Schäfer
- the Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie/ZAFES, Klinikum der JW Goethe-Universität Frankfurt am Main 60590, Germany, and
| | - Jürgen Schrader
- the Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf 40225, Germany
| | - Marian F. Young
- the Craniofacial and Skeletal Diseases Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Jens W. Fischer
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf 40225, Germany
| |
Collapse
|
25
|
Galie PA, Westfall MV, Stegemann JP. Reduced serum content and increased matrix stiffness promote the cardiac myofibroblast transition in 3D collagen matrices. Cardiovasc Pathol 2011; 20:325-33. [PMID: 21306921 DOI: 10.1016/j.carpath.2010.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 09/27/2010] [Accepted: 10/21/2010] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The fibroblast-myofibroblast transition is an important event in the development of cardiac fibrosis and scar formation initiated after myocardial ischemia. The goals of the present study were to better understand the contribution of environmental factors to this transition and determine whether myofibroblasts provide equally important feedback to the surrounding environment. METHODS The influence of matrix stiffness and serum concentration on the myofibroblast transition was assessed by measuring message levels of a panel of cardiac fibroblast phenotype markers using quantitative reverse transcriptase polymerase chain reaction. Cell-mediated gel compaction measured the influence of environmental factors on cardiac fibroblast contractility. Immunohistochemistry characterized alpha-smooth muscle actin expression and cell morphology, while static and dynamic compression testing evaluated the effect of the cell response on the mechanical properties of the cell-seeded collagen hydrogels. RESULTS Both reduced serum content and increased matrix stiffness contributed to the myofibroblast transition, as indicated by contractile compaction of the gels, increased message levels of col3α1 and alpha-smooth muscle actin, and a less stellate morphology. However, the effects of serum and matrix stiffness were not additive. Mechanical testing indicated that reduced serum content increased the initial elastic modulus of cell-seeded gels and that gels lost their viscous character with time. CONCLUSIONS The results suggest that reduced serum and increased matrix stiffness promote the myofibroblast phenotype in the myocardium. This transition both enhances and is promoted by matrix stiffness, indicating the presence of positive feedback that may contribute to the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Peter A Galie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
26
|
Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IMC. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 2010; 239:1573-84. [PMID: 20503355 DOI: 10.1002/dvdy.22280] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In fibrosing hearts, myofibroblasts are associated with cardiac extracellular matrix remodeling. Expression of key genes in the transition of cardiac fibroblast to myofibroblast phenotype in post-myocardial infarction heart and in vitro has not been well addressed. Contractile, focal adhesion-associated, receptor proteins, fibroblast growth factor-2 (FGF-2) expression, and motility were compared to assess phenotype in adult and neonatal rat cardiac fibroblasts and myofibroblasts. Neonatal and adult fibroblasts undergo phenotypic transition to myofibroblastic cells, marked by increased alpha-smooth muscle actin (alphaSMA), smooth muscle myosin heavy chain (SMemb), extra domain-A (ED-A) fibronectin, paxillin, tensin, FGF-2, and TbetaRII receptor. Elevated ED-A fibronectin confirmed fibroblast to supermature myofibroblastic phenotype transition. Presence of myofibroblasts in vivo was noted in sections of healed infarct scar after myocardial infarction, and their expression is similar to that in culture. Thus, cultured neonatal and adult cardiac fibroblasts transition to myofibroblasts in vitro and share expression profiles of cardiac myofibroblasts in vivo. Reduced motility with in vitro passage reflects enhanced production of focal adhesions.
Collapse
Affiliation(s)
- Jon-Jon Santiago
- Department of Physiology, Faculty of Medicine, Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Raizman JE, Komljenovic J, Chang R, Deng C, Bedosky KM, Rattan SG, Cunnington RH, Freed DH, Dixon IMC. The participation of the Na+-Ca2+ exchanger in primary cardiac myofibroblast migration, contraction, and proliferation. J Cell Physiol 2008; 213:540-51. [PMID: 17541957 DOI: 10.1002/jcp.21134] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cardiac ventricular myofibroblast motility, proliferation, and contraction contribute to post-myocardial infarct wound healing, infarct scar formation, and remodeling of the ventricle remote to the site of infarction. The Na+-Ca2+ exchanger (NCX1) is involved in altered calcium handling in cardiac myocytes during cardiac remodeling associated with heart failure, however, its role in cardiac myofibroblast cell function is unexplored. In this study we investigated the involvement of NCX1 as well as the role of non-selective-cation channels (NSCC) in cardiac myofibroblast cell function in vitro. Immunofluorescence and Western blots revealed that P1 cells upregulate alpha-smooth muscle actin (alphaSMA) and embryonic smooth muscle myosin heavy chain (SMemb) expression. NCX1 mRNA and proteins as well as Ca(v)1.2a protein are also expressed in P1 myofibroblasts. Myofibroblast motility in the presence of 50 ng/ml PDGF-BB was blocked with AG1296. Myofibroblast motility, contraction, and proliferation were sensitive to KB-R7943, a specific NCX1 reverse-mode inhibitor. In contrast, only proliferation and contraction, but not motility were sensitive to nifedipine, while gadolinium (NSCC blocker) was only associated with decreased motility. ML-7 treatment was associated with inhibition of the chemotactic response and contraction. Thus cardiac myofibroblast chemotaxis, contraction, and proliferation were sensitive to different pharmacologic treatments suggesting that regulation of transplasmalemmal calcium movements may be important in growth factor receptor-mediated processes. NCX1 may represent an important moiety in suppression of myofibroblast functions.
Collapse
Affiliation(s)
- Joshua E Raizman
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jahanyar J, Joyce DL, Southard RE, Loebe M, Noon GP, Koerner MM, Torre-Amione G, Youker KA. Decorin-mediated Transforming Growth Factor-β Inhibition Ameliorates Adverse Cardiac Remodeling. J Heart Lung Transplant 2007; 26:34-40. [PMID: 17234515 DOI: 10.1016/j.healun.2006.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/29/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Implantation of a left ventricular assist device (LVAD) has been shown to induce regression of fibrosis in patients with congestive heart failure (CHF) and improve myocardial function. The mechanism of reverse remodeling after mechanical circulatory support (MCS), however, has not been fully characterized. In this study we examined the anti-fibrotic effects of decorin, an extracellular matrix (ECM) proteoglycan, on the transforming growth factor-beta (TGF-beta) pathway. METHODS Human myocardial tissue samples were obtained from patients undergoing LVAD implantation and again following subsequent transplantation after a sustained period of MCS. The specimens were examined by utilizing different molecular and histologic techniques, including human cardiac fibroblast in vitro studies. We assessed gene expression, mRNA and protein levels. RESULTS We found a significant decrease in interstitial fibrosis after MCS, with a decrease in collagen mRNA transcription rates, serving as an indirect measurement of collagen synthesis. Both the mRNA and protein levels of decorin were significantly increased after a period of MCS. Decorin mRNA was up-regulated by 44% after MCS (p < 0.01), which paralleled the increase in interstitial decorin deposition (p < 0.001). In addition, p-SMAD2, a molecular marker downstream of the TGF-beta pathway, was found to be inactivated after MCS (p < 0.02). Moreover, cultured human cardiac fibroblasts exposed to TGF-beta demonstrated decreased collagen production when exogenous decorin was added (p < 0.03). CONCLUSIONS The decorin molecule is potentially involved in reverse cardiac remodeling, by directly inhibiting the TGF-beta pathway and its pro-fibrotic effects on the failing human heart.
Collapse
Affiliation(s)
- Jama Jahanyar
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Miyazaki M, Takai S, Jin D, Muramatsu M. Pathological roles of angiotensin II produced by mast cell chymase and the effects of chymase inhibition in animal models. Pharmacol Ther 2006; 112:668-76. [PMID: 16837049 DOI: 10.1016/j.pharmthera.2006.05.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 11/27/2022]
Abstract
The discovery of a new angiotensin II (Ang II) pathway generated by mast cell chymase has highlighted new biological functions for Ang II that is not related to the classic renin-angiotensin system (RAS). The conversion of Ang I to II occurs not only via the plasma angiotensin converting enzyme (ACE) or tissue ACE but also via chymase produced in the mast cells of humans, monkeys, dogs, and hamsters. The conversion by chymase has been especially found in morbid tissues following the migration of mast cells. The newly discovered functions of chymase are discussed in this review. During the vascular narrowing that occurs after vein grafting or balloon injury in dogs, chymase activity and Ang II concentrations along with intimal proliferation are significantly increased and chymase inhibitors completely suppressed these increase, though ACE inhibitors are ineffective. Similar results have also been confirmed in the dog arteriovenous fistula stenosis model. In both human and animal aneurysmal aortas, chymase activity is significantly increased, and chymase inhibitor has been shown to prevent the development of aneurysms in dogs. Chymase is activated in diseased hearts, and chymase inhibitors reduce both the mortality rates after acute myocardial infarction and the cardiac fibrosis that leads to the development of cardiomyopathy in hamsters. Chymase is also a pro-angiogenic factor, since the injection of chymase strongly facilitates angiogenesis in hamsters. We propose that chymase inhibitors are effective in the prevention of multiple cardiovascular disorders, especially at the local event level without any effect on the systemic blood pressure.
Collapse
Affiliation(s)
- Mizuo Miyazaki
- Department of Pharmacology, Osaka Medical College, 2-7, Daigakumachi, Takatsuki City, Osaka 569-8686, Japan.
| | | | | | | |
Collapse
|
30
|
Kapoun AM, Gaspar NJ, Wang Y, Damm D, Liu YW, O'young G, Quon D, Lam A, Munson K, Tran TT, Ma JY, Murphy A, Dugar S, Chakravarty S, Protter AA, Wen FQ, Liu X, Rennard SI, Higgins LS. Transforming Growth Factor-β Receptor Type 1 (TGFβRI) Kinase Activity but Not p38 Activation Is Required for TGFβRI-Induced Myofibroblast Differentiation and Profibrotic Gene Expression. Mol Pharmacol 2006; 70:518-31. [PMID: 16707625 DOI: 10.1124/mol.105.021600] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-beta (TGFbeta) is a major mediator of normal wound healing and of pathological conditions involving fibrosis, such as idiopathic pulmonary fibrosis. TGFbeta also stimulates the differentiation of myofibroblasts, a hallmark of fibrotic diseases. In this study, we examined the underlying processes of TGFbetaRI kinase activity in myofibroblast conversion of human lung fibroblasts using specific inhibitors of TGFbetaRI (SD-208) and p38 mitogen-activated kinase (SD-282). We demonstrated that SD-208, but not SD-282, inhibited TGFbeta-induced SMAD signaling, myofibroblast transformation, and collagen gel contraction. Furthermore, we extended our findings to a rat bleomycin-induced lung fibrosis model, demonstrating a significant decrease in the number of myofibroblasts at fibroblastic foci in animals treated with SD-208 but not those treated with SD-282. SD-208 also reduced collagen deposition in this in vivo model. Microarray analysis of human lung fibroblasts identified molecular fingerprints of these processes and showed that SD-208 had global effects on reversing TGFbeta-induced genes involved in fibrosis, inflammation, cell proliferation, cytoskeletal organization, and apoptosis. These studies also revealed that although the p38 pathway may not be needed for appearance or disappearance of the myofibroblast, it can mediate a subset of inflammatory and fibrogenic events of the myofibroblast during the process of tissue repair and fibrosis. Our findings suggest that inhibitors such as SD-208 may be therapeutically useful in human interstitial lung diseases and pulmonary fibrosis.
Collapse
|
31
|
Lijnen PJ, Petrov VV, Diaz-Araya G, Fagard RH. Reversal of Angiotensin II-Stimulated Collagen Gel Contraction in Cardiac Fibroblasts by Aminopeptidase Inhibition. J Cardiovasc Pharmacol 2005; 45:68-73. [PMID: 15613982 DOI: 10.1097/00005344-200501000-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this investigation was to determine whether aminopeptidase inhibition could affect the angiotensin II-stimulated collagen gel contraction in basal (control) and TGF-beta1-treated cardiac fibroblasts (or myofibroblasts). The tested aminopeptidase inhibitors were the broad range aminopeptidase inhibitor bestatin, the specific inhibitor of alanine aminopeptidase leuhistin, and the specific inhibitor of arginine aminopeptidase arphamenine A. Cardiac fibroblasts (from normal male adult rats) from passage 2 were cultured to confluency and incubated with(out) 400 pmol/L TGF-beta1 in Dulbecco Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS). These fibroblasts were then further incubated in a floating collagen gel lattice with the tested products (angiotensin II, bestatin, leuhistin, or arphamenine A) for 3 days in DMEM without FBS. The contraction of the collagen gel lattice by cardiac fibroblasts was determined by measuring the gel volume with tritiated water. Aminopeptidase activity was estimated by spectrophotometric determination of the liberation of p-nitroaniline from alanine- or arginine-p-nitroanilide. Angiotensin II (100 nmol/L) reduced the gel volume in control and TGF-beta1-treated cardiac fibroblasts. The angiotensin II-stimulated collagen gel contraction in control and TGF-beta1-treated fibroblasts was almost completely reversed by leuhistin and arphamenine A (100 micromol/L). Bestatin (100 micromol/L) only partially inhibited the angiotensin II-stimulated collagen gel contraction in control fibroblasts, although it did not affect the angiotensin II-induced contraction in TGF-beta1-treated fibroblasts. In control and TGF-beta1-treated cardiac fibroblasts, 100 micromol/L leuhistin or arphamenine A only partially inhibited alanine aminopeptidase activity, whereas bestatin (100 micromol/L) completely inhibited the alanine aminopeptidase activity. Arginine aminopeptidase activity was only partially inhibited by leuhistin and arphamenine A at 100 micromol/L in control and TGF-beta1-treated fibroblasts. Bestatin, however, completely blocked the arginine aminopeptidase activity in control fibroblasts and only partially in TGF-beta1-treated fibroblasts at 100 micromol/L. Our data suggest that both alanine and arginine aminopeptidases are involved in the reversal of the angiotensin II-stimulated collagen gel contraction in control and TGF-beta1-treated cardiac fibroblasts or myofibroblasts.
Collapse
Affiliation(s)
- Paul J Lijnen
- Hypertension and Cardiovascular Rehabilitation Unit, Department of Molecular and Cardiovascular Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
32
|
Takai S, Jin D, Muramatsu M, Okamoto Y, Miyazaki M. Therapeutic applications of chymase inhibitors in cardiovascular diseases and fibrosis. Eur J Pharmacol 2004; 501:1-8. [PMID: 15464056 DOI: 10.1016/j.ejphar.2004.08.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 08/12/2004] [Accepted: 08/19/2004] [Indexed: 11/30/2022]
Abstract
Chymase activates not only angiotensin I to angiotensin II but also latent transforming growth factor-beta-binding protein to transforming growth factor-beta. In dog grafted veins, chymase activity and angiotensin II concentration along with vascular proliferation were significantly increased, while they were significantly suppressed by a chymase inhibitor. After balloon injury in dog arteries, chymase activity was significantly increased in the injured artery, and a chymase inhibitor and an angiotensin AT(1) receptor antagonist were effective in preventing the vascular proliferation, but an angiotensin-converting enzyme inhibitor was ineffective. In fibrotic models, the tissue fibrosis was reduced by chymase inhibitors. In adhesion models, the transforming growth factor-beta concentration and adhesion formation were suppressed by chymase inhibitors. Therefore, chymase inhibitors may be useful for preventing cardiovascular diseases and fibrosis via inhibition of angiotensin II formation and transforming growth factor-beta activation.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Pharmacology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan.
| | | | | | | | | |
Collapse
|
33
|
Kondo S, Kagami S, Urushihara M, Kitamura A, Shimizu M, Strutz F, Müller GA, Kuroda Y. Transforming growth factor-β1 stimulates collagen matrix remodeling through increased adhesive and contractive potential by human renal fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:91-100. [PMID: 15313011 DOI: 10.1016/j.bbamcr.2004.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Renal tubulointerstitial fibrosis is the common final pathway leading to end-stage renal failure. Tubulointerstitial fibrosis is characterized by fibroblast proliferation and excessive matrix accumulation. Transforming growth factor-beta1 (TGF-beta1) has been implicated in the development of renal fibrosis accompanied by alpha-smooth muscle actin (alpha-SMA) expression in renal fibroblasts. To investigate the molecular and cellular mechanisms involved in tubulointerstitial fibrosis, we examined the effect of TGF-beta1 on collagen type I (collagen) gel contraction, an in vitro model of scar collagen remodeling. TGF-beta1 enhanced collagen gel contraction by human renal fibroblasts in a dose- and time-dependent manner. Function-blocking anti-alpha1 or anti-alpha2 integrin subunit antibodies significantly suppressed TGF-beta1-stimulated collagen gel contraction. Scanning electron microscopy showed that TGF-beta1 enhanced the formation of the collagen fibrils by cell attachment to collagen via alpha1beta1 and alpha2beta1 integrins. Flow cytometry and cell adhesion analyses revealed that the stimulation of renal fibroblasts with TGF-beta1 enhanced cell adhesion to collagen via the increased expression of alpha1 and alpha2 integrin subunits within collagen gels. Fibroblast migration to collagen was not up-regulated by TGF-beta1. Furthermore, TGF-beta1 increased the expression of a putative contractile protein, alpha-SMA, by human renal fibroblasts in collagen gels. These results suggest that TGF-beta1 stimulates fibroblast-collagen matrix remodeling by increasing both integrin-mediated cell attachment to collagen and alpha-SMA expression, thereby contributing to pathological tubulointerstitial collagen matrix reorganization in renal fibrosis.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, School of Medicine, University of Tokushima, Kuramoto-cho-3-chome, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|