1
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Wiercinska E, Quade-Lyssy P, Hümmer C, Beifuß J, Akarkach K, Poppe C, Olevska V, Dzionek J, Lahnor H, Bosio A, Papanikolaou E, Bonig H. Automatic generation of alloreactivity-reduced donor lymphocytes and hematopoietic stem cells from the same mobilized apheresis product. J Transl Med 2023; 21:849. [PMID: 38007485 PMCID: PMC10675913 DOI: 10.1186/s12967-023-04738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023] Open
Abstract
INTRODUCTION In vitro or in vivo depletion of alloreactive T cells can facilitate haplo-identical hematopoietic stem cell transplantation (HSCT). Very satisfactory transplant outcomes were thus reported for TCRαβ/CD19-depleted hematopoietic stem/progenitor cell (HSPC) grafts. The current semi-automatic manufacturing process on the CliniMACS Plus, although robust, still requires a significant amount of manual labor to be completed. Towards advancing and further facilitating large scale cell processing, a new TCRαβ/CD19 depletion module combined with the previously described CD45RA depletion module (to serve as allo-reactivity attenuated donor lymphocyte infusion) was established on the CliniMACS Prodigy. METHODS We evaluated six apheresis products from G-CSF-mobilized volunteer donors which were split automatically by the Prodigy, one portion each depleted of CD45RA+ or of TCRαβ+ and CD19+ cells. We investigated critical quality attributes for both products. Products were assessed for recovery of HSPCs and mature subsets, as well as depletion efficiency of targeted cells using flow cytometry. Effects of apheresis and product age post 48 h storage at 2-6 °C as well as freeze-thawing on product viability and recovery of WBC and HPSCs were assessed by flow cytometry. RESULTS Ten sequential automatic processes were completed with minimal hands-on time beyond tubing set installation. Depletion efficiency of CD45RA+ resp. TCRαβ+ and CD19+ cells was equivalent to previous reports, achieving mean depletions of 4 log of targeted cells for both products. HSPC products retained TCRγδ+ and NK cells. 48 h storage of apheresis product was associated with the expected modest loss of HSPCs, but depletions remained efficient. Depleted products were stable until at least 72 h after apheresis with stem cell viabilities > 90%. Freeze-thawing resulted in loss of NK cells; post-thaw recovery of viable CD45+ and HSPCs was > 70% and in line with expectation. CONCLUSION The closed, GMP-compatible process generates two separate medicinal products from the same mobilized apheresis product. The CD45RA-depleted products contained functional memory T cells, whereas the TCRαβ/CD19-depleted products included HSPCs, TCRγδ+ and NK cells. Both products are predicted to be effectively depleted of GVH-reactivity while providing immunological surveillance, in support of haplo-identical HSCT.
Collapse
Affiliation(s)
- E Wiercinska
- Department of Cellular Therapeutics (GMP), German Red Cross Blood Service BaWü-He, Institute Frankfurt, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - P Quade-Lyssy
- Department of Cellular Therapeutics (GMP), German Red Cross Blood Service BaWü-He, Institute Frankfurt, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - C Hümmer
- Department of Cellular Therapeutics (GMP), German Red Cross Blood Service BaWü-He, Institute Frankfurt, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - J Beifuß
- Department of Cellular Therapeutics (GMP), German Red Cross Blood Service BaWü-He, Institute Frankfurt, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - K Akarkach
- Department of Cellular Therapeutics (GMP), German Red Cross Blood Service BaWü-He, Institute Frankfurt, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - C Poppe
- Department of Cellular Therapeutics (GMP), German Red Cross Blood Service BaWü-He, Institute Frankfurt, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - V Olevska
- Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany
| | - J Dzionek
- Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany
| | - H Lahnor
- Miltenyi Biomedicine GmbH, Bergisch Gladbach, Germany
| | - A Bosio
- Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany
| | - E Papanikolaou
- Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Halvard Bonig
- Department of Cellular Therapeutics (GMP), German Red Cross Blood Service BaWü-He, Institute Frankfurt, Frankfurt, Germany.
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany.
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA.
- DRK-BSD BaWüHe, Sandhofstraße 1, 60528, Frankfurt, Germany.
| |
Collapse
|
3
|
Mangare C, Tischer-Zimmermann S, Bonifacius A, Riese SB, Dragon AC, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. Variances in Antiviral Memory T-Cell Repertoire of CD45RA- and CD62L-Depleted Lymphocyte Products Reflect the Need of Individual T-Cell Selection Strategies to Reduce the Risk of GvHD while Preserving Antiviral Immunity in Adoptive T-Cell Therapy. Transfus Med Hemother 2021; 49:30-43. [DOI: 10.1159/000516284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
<b><i>Introduction:</i></b> Viral infections and reactivations still remain a cause of morbidity and mortality after hematopoietic stem cell transplantation due to immunodeficiency and immunosuppression. Transfer of unmanipulated donor-derived lymphocytes (DLI) represents a promising strategy for improving cellular immunity but carries the risk of graft versus host disease (GvHD). Depleting alloreactive naïve T cells (T<sub>N</sub>) from DLIs was implemented to reduce the risk of GvHD induction while preserving antiviral memory T-cell activity. Here, we compared two T<sub>N</sub> depletion strategies via CD45RA and CD62L expression and investigated the presence of antiviral memory T cells against human adenovirus (AdV) and Epstein-Barr virus (EBV) in the depleted fractions in relation to their functional and immunophenotypic characteristics. <b><i>Methods:</i></b> T-cell responses against ppEBV_EBNA1, ppEBV_Consensus and ppAdV_Hexon within T<sub>N</sub>-depleted (CD45RA<sup>−</sup>/CD62L<sup>−</sup>) and T<sub>N</sub>-enriched (CD45RA<sup>+</sup>/CD62L<sup>+</sup>) fractions were quantified by interferon-gamma (IFN-γ) ELISpot assay after short- and long-term <i>in vitro</i> stimulation. T-cell frequencies and immunophenotypic composition were assessed in all fractions by flow cytometry. Moreover, alloimmune T-cell responses were evaluated by mixed lymphocyte reaction. <b><i>Results:</i></b> According to differences in the phenotype composition, antigen-specific T-cell responses in CD45RA<sup>−</sup> fraction were up to 2 times higher than those in the CD62L<sup>−</sup> fraction, with the highest increase (up to 4-fold) observed after 7 days for ppEBV_EBNA1-specific T cells. The CD4<sup>+</sup> effector memory T cells (T<sub>EM</sub>) were mainly responsible for EBV_EBNA1- and AdV_Hexon-specific T-cell responses, whereas the main functionally active T cells against ppEBV_Consensus were CD8<sup>+</sup> central memory T cells (T<sub>CM</sub>) and T<sub>EM</sub>. Moreover, comparison of both depletion strategies indicated that alloreactivity in CD45RA<sup>−</sup> was lower than that in CD62L<sup>−</sup> fraction. <b><i>Conclusion:</i></b> Taken together, our results indicate that CD45RA depletion is a more suitable strategy for generating T<sub>N</sub>-depleted products consisting of memory T cells against ppEBV_EBNA1 and ppAdV_Hexon than CD62L in terms of depletion effectiveness, T-cell functionality and alloreactivity. To maximally exploit the beneficial effects mediated by antiviral memory T cells in T<sub>N</sub>-depleted products, depletion methods should be selected individually according to phenotype composition and CD4/CD8 antigen restriction. T<sub>N</sub>-depleted DLIs may improve the clinical outcome in terms of infections, GvHD, and disease relapse if selection of pathogen-specific donor T cells is not available.
Collapse
|
4
|
Removal of CD276 + cells from haploidentical memory T-cell grafts significantly lowers the risk of GVHD. Bone Marrow Transplant 2021; 56:2336-2354. [PMID: 33976380 PMCID: PMC8486669 DOI: 10.1038/s41409-021-01307-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
Detrimental graft-versus-host disease (GVHD) still remains a major cause of death in hematopoietic stem cell transplantation (HSCT). The recently explored depletion of naive cells from mobilized grafts (CD45RA depletion) has shown considerable promise, yet is unable to eliminate the incidence of GVHD. Analysis of CD45RA-depleted haploidentical mixed lymphocytes culture (haplo-MLC) revealed insufficient suppression of alloresponses in the CD4+ compartment and identified CD276 as a marker for alloreactive memory Th1 T cells. Conclusively, depleting CD276+ cells from CD45RA-depleted haplo-MLC significantly attenuated alloreactivity to recipient cells while increasing antiviral reactivity and maintaining anti-third party reactivity in vitro. To evaluate these findings in vivo, bulk, CD45RA-depleted, or CD45RA/CD276-depleted CD4+ T cells from HLA-DR4negative healthy humans were transplanted into NSG-Ab°DR4 mice, a sensitive human allo-GVHD model. Compellingly, CD45RA/CD276-depleted grafts from HLA-DR4negative donors or in vivo depletion of CD276+ cells after transplant of HLA-DR4negative memory CD4 T cells significantly delay the onset of GVHD symptoms and significantly alleviate its severity in NSG-Ab°DR4 mice. The clinical courses correlated with diminished Th1-cytokine secretion and downregulated CXCR6 expression of engrafted peripheral T cells. Collectively, mismatched HLA-mediated GVHD can be controlled by depleting recipient-specific CD276+ alloreacting T cells from the graft, highlighting its application in haplo-HSCT.
Collapse
|
5
|
Bremm M, Krastel T, Cappel C, Zimmermann O, Pfeffermann LM, Katzki V, Bonig H, Schäfer R, Rettinger E, Merker M, Bremm S, Schaefer K, Klingebiel T, Soerensen J, Bader P, Huenecke S. Depletion of CD45RA + T cells: Advantages and disadvantages of different purification methods. J Immunol Methods 2021; 492:112960. [PMID: 33417916 DOI: 10.1016/j.jim.2021.112960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recently, new advances were made regarding the depletion of CD45RA+ naïve T cells from haploidentical grafts as they are suspected to be the most alloreactive. METHODS Within this project we investigated CD45RA-depletion from G-CSF mobilized PBSC by two different purification strategies according to GMP, specifically direct depletion of CD45RA+ cells (one-step approach), or CD34-positive selection followed by CD45RA-depletion (two-step approach). RESULTS With log -3.9 and - 3.8 the depletion quality of CD45RA+ T cells was equally for both approaches together with a close to complete CD19+ B cell depletion. However, due to a high expression of CD45RA the majority of NK cells were lost within both CD45RA depletion strategies. Stem cell recovery after one-step CD45RA-depletion was at median 52.0% (range: 49.7-67.2%), which was comparable to previously published recovery data received from direct CD34 positive selection. Memory T cell recovery including CD4+ and CD8+ memory T cell subsets was statistically not differing between both purification approaches. The recovery of CD4+ and CD8+ T cells was as well similar, but overall a higher amount of cytotoxic than T-helper cells were lost as indicated by an increase of the CD4/CD8 ratio. CONCLUSIONS CD45RA-depletion from G-CSF mobilized PBSC is feasible as one- and two-step approach and results in sufficient reduction of CD45RA+ T cells as well as B cells, but also to a co-depletion of NK cells. However, by gaining two independent cell products, the two-step approach enables the highest clinical flexibility in regard to individual graft composition with precise dosage of stem cells and T cells.
Collapse
Affiliation(s)
- Melanie Bremm
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany.
| | - Theresa Krastel
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Claudia Cappel
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Olga Zimmermann
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Lisa-Marie Pfeffermann
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Verena Katzki
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Frankfurt/Main, Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Frankfurt/Main, Germany
| | - Eva Rettinger
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Michael Merker
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Sebastian Bremm
- Data Analytics & Visualization, Frankfurt University of Applied Sciences, Frankfurt/Main, Germany
| | - Kirsten Schaefer
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Jan Soerensen
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Peter Bader
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
6
|
Blagov S, Zvyagin IV, Shelikhova L, Khismatullina R, Balashov D, Komech E, Fomchenkova V, Shugay M, Starichkova J, Kurnikova E, Pershin D, Fadeeva M, Glushkova S, Muzalevskii Y, Kazachenok A, Efimenko M, Osipova E, Novichkova G, Chudakov D, Maschan A, Maschan M. T-cell tracking, safety, and effect of low-dose donor memory T-cell infusions after αβ T cell-depleted hematopoietic stem cell transplantation. Bone Marrow Transplant 2020; 56:900-908. [PMID: 33203952 DOI: 10.1038/s41409-020-01128-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
The delayed recovery of adaptive immunity underlies transplant-related mortality (TRM) after αβ T cell-depleted hematopoietic stem cell transplantation (HSCT). We tested the use of low-dose memory donor lymphocyte infusions (mDLIs) after engraftment of αβ T cell-depleted grafts.A cohort of 131 pediatric patients (median age 9 years) were grafted with αβ T cell-depleted products from either haplo (n = 79) or unrelated donors (n = 52). After engraftment, patients received mDLIs prepared by CD45RA depletion. Cell dose was escalated monthly from 25 × 103 to 100 × 103/kg (haplo) and from 100 × 103 to 300 × 103 /kg (MUD). In a subcohort of 16 patients, T-cell receptor (TCR) repertoire profiling with deep sequencing was used to track T-cell clones and to evaluate the contribution of mDLI to the immune repertoire.In total, 343 mDLIs were administered. The cumulative incidence (CI) of grades II and III de novo acute graft-versus-host disease (aGVHD) was 5% and 2%, respectively, and the CI of chronic graft-versus-host disease was 7%. Half of the patients with undetectable CMV-specific T cells before mDLI recovered CMV-specific T cells. TCR repertoire profiling confirmed that mDLI-derived T cells significantly contribute to the TCR repertoire up to 1 year after HSCT and include persistent, CMV-specific T-cell clones.
Collapse
Affiliation(s)
- Sergey Blagov
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ivan V Zvyagin
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Larisa Shelikhova
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Rimma Khismatullina
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitriy Balashov
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Komech
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Viktoria Fomchenkova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Mikhail Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Julia Starichkova
- Department of Statistics, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Kurnikova
- Transfusion Medicine Service, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitriy Pershin
- Transplantation Immunology and Immunotherapy Laboratory, Dmitriy Rogachev National Center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Fadeeva
- Transplantation Immunology and Immunotherapy Laboratory, Dmitriy Rogachev National Center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana Glushkova
- Transplantation Immunology and Immunotherapy Laboratory, Dmitriy Rogachev National Center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yakov Muzalevskii
- Transfusion Medicine Service, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexei Kazachenok
- Transfusion Medicine Service, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Efimenko
- Stem Cell Physiology Laboratory, Dmitriy Rogachev National center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Osipova
- Stem Cell Physiology Laboratory, Dmitriy Rogachev National center of pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitriy Chudakov
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexei Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| |
Collapse
|
7
|
Abstract
Acute graft-versus-host disease (aGvHD) is induced by immunocompetent alloreactive T lymphocytes in the donor graft responding to polymorphic and non-polymorphic host antigens and causing inflammation in primarily the skin, gastrointestinal tract and liver. aGvHD remains an important toxicity of allogeneic transplantation, and the search for better prophylactic and therapeutic strategies is critical to improve transplant outcomes. In this review, we discuss the significant translational and clinical advances in the field which have evolved based on a better understanding of transplant immunology. Prophylactic advances have been primarily focused on the depletion of T lymphocytes and modulation of T-cell activation, proliferation, effector and regulatory functions. Therapeutic strategies beyond corticosteroids have focused on inhibiting key cytokine pathways, lymphocyte trafficking, and immunologic tolerance. We also briefly discuss important future trends in the field, the role of the intestinal microbiome and dysbiosis, as well as prognostic biomarkers for aGvHD which may improve stratification-based application of preventive and therapeutic strategies.
Collapse
|
8
|
Laghmouchi A, Hoogstraten C, Falkenburg JHF, Jedema I. Priming of Allo-HLA-DP-Specific Reactivity from the Naïve T Cell Compartment Is Not Exclusively Mediated by Professional Antigen-Presenting Cells. Biol Blood Marrow Transplant 2020; 26:1257-1265. [PMID: 32165326 DOI: 10.1016/j.bbmt.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Allogeneic (allo) stem cell transplantation is applied to patients suffering from hematologic malignancies to replace the diseased hematopoietic system with cells derived from a donor stem cell graft. The majority of 10/10-matched unrelated donors are HLA-DP-mismatched, and this may result in varying degrees of the graft-versus-leukemia (GVL) effect with or without the occurrence of graft-versus-host disease (GVHD). Allo-HLA-reactive T cells are commonly present in the donor T cell repertoire, and thus a very profound alloreactive immune response can be provoked in the HLA-DP-mismatched setting. The magnitude and the diversity of the allo-HLA-DP-specific immune response likely dictates the balance between the occurrence of GVL and/or GVHD after transplantation. To understand the nature of the allo-HLA-DP-specific immune response provoked under different stimulatory conditions, immune responses were induced from both the naïve and memory T cell compartments using either HLA-DP-mismatched professional antigen-presenting cells (APCs) (monocyte-derived dendritic cells [allo-DCs]) or HLA-DP-mismatched nonprofessional APCs (skin-derived fibroblasts [allo-fibroblasts]) as stimulator cells. In this study, we observed that allo-HLA-DP-reactive T cells could be provoked from both the naïve and memory compartments by both types of APCs. However, the magnitude of the allo-HLA-DP-specific immune response was greater when stimulation was performed with allo-DCs. Moreover, we found that the frequency of allo-HLA-DP-reactive T cells was greater in the naïve T cell compartment compared with the memory T cell compartment, but we observed a comparable lineage specificity of these allo-HLA-DP-specific reactivities. Overall, the data from this study illustrate that the presence of professional APCs of recipient origin will mostly dictate the magnitude of the allo-HLA-DP-specific immune response derived from both the naïve and memory T cell compartments, but does not exclusively mediate the induction of these immune responses.
Collapse
Affiliation(s)
- Aicha Laghmouchi
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Conny Hoogstraten
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Grau-Vorster M, López-Montañés M, Cantó E, Vives J, Oliver-Vila I, Barba P, Querol S, Rudilla F. Characterization of a Cytomegalovirus-Specific T Lymphocyte Product Obtained Through a Rapid and Scalable Production Process for Use in Adoptive Immunotherapy. Front Immunol 2020; 11:271. [PMID: 32161589 PMCID: PMC7052482 DOI: 10.3389/fimmu.2020.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Immunosuppressed patients are susceptible to virus reactivation or de novo infection. Adoptive immunotherapy, based on virus-specific T lymphocytes (VST), can prevent or treat viral diseases. However, donor availability, HLA-compatibility restrictions, high costs, and time required for the production of personalized medicines constitute considerable limitations to this treatment. Ex vivo rapid and large-scale expansion of VST, compliant with current good manufacturing practice (cGMP) standards, with an associated cell donor registry would overcome these limitations. This study aimed to characterize a VST product obtained through an expansion protocol transferable to cGMP standards. Antigenic stimulus consisted of cytomegalovirus (CMV) pp65 peptide pool-pulsed autologous dendritic cells (DCs) derived from monocytes. G-Rex technology, cytokines IL-2, IL-7, and IL-15, and anti-CD3 and anti-CD28 antibodies were used for culture. At day 14 of cell culture, the final product was characterized regarding T cell subsets, specificity, and functionality. The final product, comprised mainly CD4+ and CD8+ T lymphocytes (49.2 ± 24.7 and 42.3 ± 25.2, respectively). The culture conditions made it possible to achieve at least a 98.89-fold increase in pp65-specific CD3+ IFN-γ+ cells. These cells were specific, as pp65-specific cytotoxicity was demonstrated. Additionally, in complete HLA mismatch and without the presence of pp65, alloreactivity resulted in <5% cell lysis. In conclusion, a cGMP scalable process for the generation of a large number of doses of CMV-specific cytotoxic T cells was successfully performed.
Collapse
Affiliation(s)
- Marta Grau-Vorster
- Cell Therapy Service, Banc de Sang i Teixits, Barcelona, Spain.,Transfusion Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María López-Montañés
- Cell Therapy Service, Banc de Sang i Teixits, Barcelona, Spain.,Transfusion Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Cantó
- Cell Therapy Service, Banc de Sang i Teixits, Barcelona, Spain.,Transfusion Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Cell Therapy Service, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Pere Barba
- Hematology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Querol
- Cell Therapy Service, Banc de Sang i Teixits, Barcelona, Spain
| | - Francesc Rudilla
- Cell Therapy Service, Banc de Sang i Teixits, Barcelona, Spain.,Transfusion Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Cuesta-Mateos C, Portero-Sainz I, García-Peydró M, Alcain J, Fuentes P, Juárez-Sánchez R, Pérez-García Y, Mateu-Albero T, Díaz-Fernández P, Vega-Piris L, Sánchez-López BA, Marcos-Jiménez A, Cardeñoso L, Gómez-García de Soria V, Toribio ML, Muñoz-Calleja C. Evaluation of therapeutic targeting of CCR7 in acute graft-versus-host disease. Bone Marrow Transplant 2020; 55:1935-1945. [PMID: 32086495 DOI: 10.1038/s41409-020-0830-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Graft-versus-host disease (GVHD) is the main complication after allogeneic hematopoietic stem cell transplantation. We previously unveiled a correlation between proportions of C-C motif chemokine receptor 7 (CCR7)+ T cells in the apheresis and the risk of developing GVHD. We wanted to evaluate in vivo whether apheresis with low proportion of CCR7+ cells or treatment with an anti-human CCR7 monoclonal antibody (mAb) were suitable strategies to prevent or treat acute GVHD in preclinical xenogeneic models. Therapeutic anti-CCR7 mAb was the most effective strategy in both prophylactic and therapeutic settings where antibody drastically reduced in vivo lymphoid organ infiltration of donor CCR7+ T cells, extended lifespan and solved clinical signs. The antibody neutralized in vitro migration of naïve and central memory T cells toward CCR7 ligands and depleted target CCR7+ subsets through complement activation. Both mechanisms of action spared CCR7- subsets, including effector memory and effector memory CD45RA+ T cells which may mediate graft versus leukemia effect and immunity against infections. Accordingly, the numbers of donor CCR7+ T cells in the apheresis were not associated to cytomegalovirus reactivation or the recurrence of the underlying disease. These findings provide a promising new strategy to prevent and treat acute GVHD, a condition where new specific, safety and effective treatment is needed.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain.,Immunological and Medicinal Products S.L. (IMMED), Madrid, Spain
| | - Itxaso Portero-Sainz
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | | | - Juan Alcain
- Centro de Biología Molecular Severo Ochoa (CBM-SO), Madrid, Spain
| | - Patricia Fuentes
- Centro de Biología Molecular Severo Ochoa (CBM-SO), Madrid, Spain
| | - Raquel Juárez-Sánchez
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain.,Immunological and Medicinal Products S.L. (IMMED), Madrid, Spain
| | - Yaiza Pérez-García
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Tamara Mateu-Albero
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Paula Díaz-Fernández
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Lorena Vega-Piris
- Methodology Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Blanca A Sánchez-López
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Ana Marcos-Jiménez
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Laura Cardeñoso
- Department of Microbiology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Valle Gómez-García de Soria
- Department of Hematology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | | | - Cecilia Muñoz-Calleja
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
11
|
ATIR101 administered after T-cell-depleted haploidentical HSCT reduces NRM and improves overall survival in acute leukemia. Leukemia 2020; 34:1907-1923. [PMID: 32047237 PMCID: PMC7326707 DOI: 10.1038/s41375-020-0733-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Overcoming graft-versus-host disease (GvHD) without increasing relapse and severe infections is a major challenge after allogeneic hematopoietic stem-cell transplantation (HSCT). ATIR101 is a haploidentical, naïve cell-enriched T-cell product, depleted of recipient-alloreactive T cells to minimize the risk of GvHD and provide graft-versus-infection and -leukemia activity. Safety and efficacy of ATIR101 administered after T-cell-depleted haploidentical HSCT (TCD-haplo + ATIR101) without posttransplant immunosuppressors were evaluated in a Phase 2, multicenter study of 23 patients with acute leukemia and compared with an observational cohort undergoing TCD-haplo alone (n = 35), matched unrelated donor (MUD; n = 64), mismatched unrelated donor (MMUD; n = 37), and umbilical cord blood (UCB; n = 22) HSCT. The primary endpoint, 6-month non-relapse mortality (NRM), was 13% with TCD-haplo + ATIR101. One year post HSCT, TCD-haplo + ATIR101 resulted in lower NRM versus TCD-haplo alone (P = 0.008). GvHD-free, relapse-free survival (GRFS) was higher with TCD-haplo + ATIR101 versus MMUD and UCB (both P < 0.03; 1-year rates: 56.5%, 27.0%, and 22.7%, respectively) and was not statistically different from MUD (1 year: 40.6%). ATIR101 grafts with high third-party reactivity were associated with fewer clinically relevant viral infections. Results suggest that haploidentical, selective donor-cell depletion may eliminate requirements for posttransplant immunosuppressors without increasing GvHD risk, with similar GRFS to MUD. Following these results, a randomized Phase 3 trial versus posttransplant cyclophosphamide had been initiated.
Collapse
|
12
|
LaBelle CA, Zhang RJ, Armistead PM, Allbritton NL. Assay and Isolation of Single Proliferating CD4+ Lymphocytes Using an Automated Microraft Array Platform. IEEE Trans Biomed Eng 2019; 67:2166-2175. [PMID: 31794384 DOI: 10.1109/tbme.2019.2956081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE While T lymphocytes have been employed as a cancer immunotherapy, the development of effective and specific T-cell-based therapeutics remains challenging. A key obstacle is the difficulty in identifying T cells reactive to cancer-associated antigens. The objective of this research was to develop a versatile platform for single cell analysis and isolation that can be applied in immunology research and clinical therapy development. METHODS An automated microscopy and cell sorting system was developed to track the proliferative behavior of single-cell human primary CD4+ lymphocytes in response to stimulation using allogeneic lymphoblastoid feeder cells. RESULTS The system identified single human T lymphocytes with a sensitivity of 98% and specificity of 99% and possessed a cell collection efficiency of 86%. Time-lapse imaging simultaneously tracked 4,534 alloreactive T cells on a single array; 19% of the arrayed cells formed colonies of ≥2 cells. From the array, 130 clonal colonies were isolated and 7 grew to colony sizes of >10,000 cells, consistent with the known proliferative capacity of T cells in vitro and their tendency to become exhausted with prolonged stimulation. The isolated colonies underwent ELISA assay to detect interferon-γ secretion and Sanger sequencing to determine T cell receptor β sequences with a 100% success rate. CONCLUSION The platform is capable of both identification and isolation of proliferative T cells in an automated manner. SIGNIFICANCE This novel technology enables the identification of TCR sequences based on T cell proliferation which is expected to speed the development of future cancer immunotherapies.
Collapse
|
13
|
Shimoni A, Labopin M, Finke J, Ciceri F, Deconinck E, Kröger N, Gramatzki M, Stelljes M, Blaise D, Stoelzel F, Chevallier P, Holler E, Fegueux N, Mohty M, Nagler A. Donor selection for a second allogeneic stem cell transplantation in AML patients relapsing after a first transplant: a study of the Acute Leukemia Working Party of EBMT. Blood Cancer J 2019; 9:88. [PMID: 31740656 PMCID: PMC6861251 DOI: 10.1038/s41408-019-0251-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/17/2023] Open
Abstract
Second allogeneic stem-cell transplantation (SCT2) is a therapeutic option for patients with AML relapsing after a first transplant. Prior studies have shown similar results after SCT2 from the same or different donor; however, there are limited data on second non-T-depleted haplo-identical transplant in this setting. We retrospectively analyzed SCT2 outcomes in 556 patients, median age 46 years, relapsing after first transplant given in CR1. Patients were divided into three groups based on SCT2 donor (donor2): same donor (n = 163, sib/sib-112, UD/UD-51), different matched donor (n = 305, sib/different sib-44, sib/UD-93, UD/different UD-168), or haplo-donor (n = 88, sib/haplo-45, UD/haplo-43). Two-year leukemia-free survival (LFS) rate after SCT2 was 23.5%, 23.7%, and 21.8%, respectively (P = 0.30). Multivariate analysis showed no effect of donor2 type on relapse: hazard ratio (HR) 0.89 (P = 0.57) and 1.11 (P = 0.68) for different donor and haplo-donor compared to same donor, respectively. However, donor2 did predict for non-relapse mortality (NRM) after SCT2: HR 1.21 (P = 0.50) and 2.08 (P = 0.03), respectively, and for LFS: HR 1.00 (P = 0.97) and 1.43 (P = 0.07), respectively. In conclusion, SCT2 with the same or different matched donor is associated with similar outcomes in patients with relapsed AML. Non-T-depleted haplo-identical transplant may be associated with higher NRM, similar relapse rate and with no better results in this setting.
Collapse
Affiliation(s)
- Avichai Shimoni
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Aviv University, Tel Aviv, Israel.
| | | | - Jürgen Finke
- Department of Medicine, Hematology-Oncology, University of Freiburg, Freiburg, Germany
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eric Deconinck
- Service d'Hématologie, Hopital Jean Minjoz, Besancon, France
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation & Immunotherapy, 2nd Medical Department, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Stelljes
- Department of Internal Medicine A, University of Muenster, Muenster, Germany
| | - Didier Blaise
- Department of Hematology, Institut Paoli Calmettes, Marseille, France
| | - Friedrich Stoelzel
- Department of Hematology/Oncology, Medical Clinic and Policlinic, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | | | - Ernst Holler
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | - Mohamad Mohty
- Acute Leukemia Working Party of EBMT, Paris, France.,Department of Haematology, Saint Antoine Hospital, Paris, France
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Aviv University, Tel Aviv, Israel.,Acute Leukemia Working Party of EBMT, Paris, France
| |
Collapse
|
14
|
Fürst D, Neuchel C, Tsamadou C, Schrezenmeier H, Mytilineos J. HLA Matching in Unrelated Stem Cell Transplantation up to Date. Transfus Med Hemother 2019; 46:326-336. [PMID: 31832058 DOI: 10.1159/000502263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/13/2019] [Indexed: 12/27/2022] Open
Abstract
Unrelated hematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in certain disease instances. Factors enabling this transformation were the optimization of treatment protocols and supportive care as well as the availability of a large number of donors worldwide along with the higher quality and reliability of HLA typing. The main criterion for donor selection is HLA compatibility. In this review we discuss the current clinical evidence of HLA matching in unrelated HSCT. In this context, we address methodical aspects of transplantation immunobiology research and discuss the impact of locus and resolution of HLA differences. Furthermore, we address special constellations such as unidirectional mismatches or the presence of nonexpressed alleles as well as HLA alloimmunization and describe the perspective for HLA typing and matching strategies in the future, given the implementation of novel complete or near-complete gene typing approaches using next-generation sequencing short read technology, which are now entering the standard of clinical care.
Collapse
Affiliation(s)
- Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
15
|
Mangare C, Tischer-Zimmermann S, Riese SB, Dragon AC, Prinz I, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. Robust Identification of Suitable T-Cell Subsets for Personalized CMV-Specific T-Cell Immunotherapy Using CD45RA and CD62L Microbeads. Int J Mol Sci 2019; 20:ijms20061415. [PMID: 30897843 PMCID: PMC6471767 DOI: 10.3390/ijms20061415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Viral infections and reactivations remain a serious obstacle to successful hematopoietic stem cell transplantation (HSCT). When antiviral drug treatment fails, adoptive virus-specific T-cell transfer provides an effective alternative. Assuming that naive T cells (TN) are mainly responsible for GvHD, methods were developed to generate naive T-cell-depleted products while preserving immune memory against viral infections. We compared two major strategies to deplete potentially alloreactive T cells: CD45RA and CD62L depletion and analyzed phenotype and functionality of the resulting CD45RA-/CD62L- naive T-cell-depleted as well as CD45RA⁺/CD62L⁺ naive T-cell-enriched fractions in the CMV pp65 and IE1 antigen model. CD45RA depletion resulted in loss of terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA), and CD62L depletion in loss of central memory T cells (TCM). Based on these differences in target cell-dependent and target cell-independent assays, antigen-specific T-cell responses in CD62L-depleted fraction were consistently 3⁻5 fold higher than those in CD45RA-depleted fraction. Interestingly, we also observed high donor variability in the CD45RA-depleted fraction, resulting in a substantial loss of immune memory. Accordingly, we identified donors with expected response (DER) and unexpected response (DUR). Taken together, our results showed that a naive T-cell depletion method should be chosen individually, based on the immunophenotypic composition of the T-cell populations present.
Collapse
Affiliation(s)
- Caroline Mangare
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | - Sabine Tischer-Zimmermann
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, 30625 Hannover, Germany.
| | - Sebastian B Riese
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | - Anna C Dragon
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, 30625 Hannover, Germany.
| | - Britta Maecker-Kolhoff
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, 30625 Hannover, Germany.
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany.
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
16
|
Immunomagnetic selective donor-derived CD4+CCR7+ T cell depletion procedure for peripheral blood stem cells graft. Curr Res Transl Med 2019; 67:1-7. [DOI: 10.1016/j.retram.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022]
|
17
|
Meurer T, Arrieta-Bolaños E, Metzing M, Langer MM, van Balen P, Falkenburg JHF, Beelen DW, Horn PA, Fleischhauer K, Crivello P. Dissecting Genetic Control of HLA-DPB1 Expression and Its Relation to Structural Mismatch Models in Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:2236. [PMID: 30344521 PMCID: PMC6183238 DOI: 10.3389/fimmu.2018.02236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022] Open
Abstract
HLA expression levels have been suggested to be genetically controlled by single nucleotide polymorphisms (SNP) in the untranslated regions (UTR), and expression variants have been associated with the outcome of chronic viral infection and hematopoietic stem cell transplantation (HSCT). In particular, the 3′UTR rs9277534-G/A SNP in HLA-DPB1 has been associated with graft-versus-host-disease after HSCT (Expression model); however its relevance in different immune cells and its mode of action have not been systematically addressed. In addition, there is a strong though not complete overlap between the rs9277534-G/A SNP and structural HLA-DPB1 T cell epitope (TCE) groups which have also been associated with HSCT outcome (TCE Structural model). Here we confirm and extend previous findings of significantly higher HLA-DPB1 expression in B cell lines, unstimulated primary B cells, and monocytes homozygous for rs9277534-G compared to those homozygous for rs9277534-A. However, these differences were abrogated by interferon-γ stimulation or differentiation into dendritic cells. We identify at least seven 3′UTR rs9277534-G/A haplotypes differing by a total of 37 SNP, also characterized by linkage to length variants of a short tandem repeat (STR) in intron 2 and TCE group assignment. 3′UTR mapping did not show any significant differences in post-transcriptional regulation assessed by luciferase assays between two representative rs9277534-G/A haplotypes for any of eight overlapping fragments. Moreover, no evidence for alternative splicing associated with the intron 2 STR was obtained by RT-PCR. In an exemplary cohort of 379 HLA-DPB1 mismatched donor-recipient pairs, risk prediction by the Expression model and the Structural TCE model was 36.7% concordant, with the majority of discordances due to non-applicability of the Expression model. HLA-DPB1 from different TCE groups expressed in the absence of the 3′UTR at similar levels by transfected HeLa cells elicited significantly different mean alloreactive CD4+ T-cell responses, as assessed by CD137 upregulation assays in 178 independent cultures. Taken together, our data provide new insights into the cell type-specific and mechanistic basis of the association between the rs9277534-G/A SNP and HLA-DPB1 expression, and show that, despite partial overlap between both models in HSCT risk-prediction, differential alloreactivity determined by the TCE structural model occurs independently from HLA-DPB1 differential expression.
Collapse
Affiliation(s)
- Thuja Meurer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | | | - Maximilian Metzing
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | - Mona-May Langer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dietrich W Beelen
- Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.,Deusches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
18
|
Unexpected High Incidence of Human Herpesvirus-6 Encephalitis after Naive T Cell-Depleted Graft of Haploidentical Stem Cell Transplantation in Pediatric Patients. Biol Blood Marrow Transplant 2018; 24:2316-2323. [PMID: 30031939 DOI: 10.1016/j.bbmt.2018.07.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022]
Abstract
The CD45RA T cell depletion (TCD) method has been used to deplete naive T cells, preventing graft-versus-host disease (GVHD) but preserving memory cells, providing immediate functional T cells with anti-infection, antileukemia, and antirejection effects. We describe a series of 25 consecutive high-risk patients with leukemia who received haploidentical hematopoietic stem cell transplantation (haplo-HSCT) with CD45RA TCD. Each patient received 2 cell products: 1 created by CD34 positive selection and the other through CD45RA depletion from the CD34 negative fraction by a CliniMACS device. CD45RA-depleted haplo-HSCT was well tolerated, with rapid engraftment and low risk of severe acute GVHD and chronic GVHD. Although this treatment achieved a good control of viral reactivations, such as cytomegalovirus and adenovirus, we observed an unexpectedly high rate of limbic encephalitis due to human herpesvirus-6 (HHV-6; 8 cases). Characteristically, the infection appeared early in almost all patients, just after the engraftment. Although no patient died from encephalitis, 1 patient showed neuropsychological sequelae, and another experienced secondary graft failure just after the HHV-6 reactivation.
Collapse
|
19
|
Inman CF, Eldershaw SA, Croudace JE, Davies NJ, Sharma-Oates A, Rai T, Pearce H, Sirovica M, Chan YLT, Verma K, Zuo J, Nagra S, Kinsella F, Nunnick J, Amel-Kashipaz R, Craddock C, Malladi R, Moss P. Unique features and clinical importance of acute alloreactive immune responses. JCI Insight 2018; 3:97219. [PMID: 29769441 PMCID: PMC6012511 DOI: 10.1172/jci.insight.97219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) can cure some patients with hematopoietic malignancy, but this relies on the development of a donor T cell alloreactive immune response. T cell activity in the first 2 weeks after allo-SCT is crucial in determining outcome, despite the clinical effects of the early alloreactive immune response often not appearing until later. However, the effect of the allogeneic environment on T cells is difficult to study at this time point due to the effects of profound lymphopenia. We approached this problem by comparing T cells at week 2 after allograft to T cells from autograft patients. Allograft T cells were present in small numbers but displayed intense proliferation with spontaneous cytokine production. Oligoclonal expansions at week 2 came to represent a substantial fraction of the established T cell pool and were recruited into tissues affected by graft-versus-host disease. Transcriptional analysis uncovered a range of potential targets for immune manipulation, including OX40L, TWEAK, and CD70. These findings reveal that recognition of alloantigen drives naive T cells toward a unique phenotype. Moreover, they demonstrate that early clonal T cell responses are recruited to sites of subsequent tissue damage and provide a range of targets for potential therapeutic immunomodulation. Alloreactive response T cells at 2 weeks after allo-SCT displayed intense proliferation with spontaneous cytokine production, and were recruited into tissues affected by GvHD.
Collapse
Affiliation(s)
- Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Joanne E Croudace
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Nathaniel J Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Archana Sharma-Oates
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tanuja Rai
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Mirjana Sirovica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Y L Tracey Chan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Sandeep Nagra
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Francesca Kinsella
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jane Nunnick
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Rasoul Amel-Kashipaz
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Charles Craddock
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
20
|
Gary R, Aigner M, Moi S, Schaffer S, Gottmann A, Maas S, Zimmermann R, Zingsem J, Strobel J, Mackensen A, Mautner J, Moosmann A, Gerbitz A. Clinical-grade generation of peptide-stimulated CMV/EBV-specific T cells from G-CSF mobilized stem cell grafts. J Transl Med 2018; 16:124. [PMID: 29743075 PMCID: PMC5941463 DOI: 10.1186/s12967-018-1498-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein–Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts. Methods We have developed a good manufacturing practice protocol to generate CMV/EBV-peptide-stimulated T cells from leukapheresis products of G-CSF mobilized and non-mobilized donors. Our procedure selectively expands virus-specific CD8+ und CD4+ T cells over 9 days using a generic pool of 34 CMV and EBV peptides that represent well-defined dominant T-cell epitopes with various HLA restrictions. For HLA class I, this set of peptides covers at least 80% of the European population. Results CMV/EBV-specific T cells were successfully expanded from leukapheresis material of both G-CSF mobilized and non-mobilized donors. The protocol allows administration shortly after stem cell transplantation (d30+), storage over liquid nitrogen for iterated applications, and protection of the stem cell donor by avoiding a second leukapheresis. Conclusion Our protocol allows for rapid and cost-efficient production of T cells for early transfusion after aSCT as a preventive approach. It is currently evaluated in a phase I/IIa clinical trial. Electronic supplementary material The online version of this article (10.1186/s12967-018-1498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina Gary
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Michael Aigner
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stephanie Moi
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Schaffer
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Anja Gottmann
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies CCS, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Jürgen Zingsem
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Andreas Mackensen
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Josef Mautner
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Technical University of Munich, Marchioninistr. 25, 81377, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group Host Control of Viral Latency and Reactivation (HOCOVLAR), Helmholtz Zentrum München, Marchioninistr. 25, 81377, Munich, Germany
| | - Armin Gerbitz
- Department of Hematology, Oncology and Tumorimmunology, Charité Berlin, Berlin, Germany
| |
Collapse
|
21
|
Gokgoz Z, Arslan O. Haploidentical stem cell transplantation: T cell depleted and repleted. Transfus Apher Sci 2018; 57:171-173. [DOI: 10.1016/j.transci.2018.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Müller N, Landwehr K, Langeveld K, Stenzel J, Pouwels W, van der Hoorn MA, Seifried E, Bonig H. Generation of alloreactivity-reduced donor lymphocyte products retaining memory function by fully automatic depletion of CD45RA-positive cells. Cytotherapy 2018; 20:532-542. [DOI: 10.1016/j.jcyt.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 01/04/2023]
|
23
|
|
24
|
Campidelli A, Qian C, Laroye C, Decot V, Reppel L, D'aveni M, Bensoussan D. Adenovirus-specific T-lymphocyte efficacy in the presence of methylprednisolone: An in vitro study. Cytotherapy 2018; 20:524-531. [PMID: 29496461 DOI: 10.1016/j.jcyt.2017.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
Virus-specific T-cell (VST) infusion becomes a promising alternative treatment for refractory viral infections after hematopoietic stem cell transplantation (HSCT). However, VSTs are often infused during an immunosuppressive treatment course, especially corticosteroids, which are a first-line curative treatment of graft-versus-host disease (GVHD). We were interested in whether corticosteroids could affect adenovirus (ADV)-VST functions. After interferon (IFN)-γ based immunomagnetic selection, ADV-VSTs were in vitro expanded according to three different culture conditions: without methylprednisolone (MP; n = 7), with a final concentration of MP 1 µg/mL (n = 7) or MP 2 µg/mL (n = 7) during 28 ± 11 days. Efficacy and alloreactivity of expanded ADV-VSTs was controlled in vitro. MP transitorily inhibited ADV-VST early expansion. No impairment of specific IFN-γ secretion capacity and cytotoxicity of ADV-VSTs was observed in the presence of MP. However, specific proliferation and alloreactivity of ADV-VSTs were decreased in the presence of MP. Altogether, these results and the preliminary encouraging clinical experiences of co-administration of MP 1 mg/kg and ADV-VSTs will contribute to safe and efficient use of anti-viral immunotherapy.
Collapse
Affiliation(s)
- Arnaud Campidelli
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; CHRU de Nancy, Unité de Transplantation Médullaire Allogénique, Vandoeuvre-Lès-Nancy, France
| | - Chongsheng Qian
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Caroline Laroye
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, Faculté de Pharmacie, Département de Microbiologie-Immunologie, Nancy, France
| | - Véronique Decot
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, Faculté de Pharmacie, Département de Microbiologie-Immunologie, Nancy, France
| | - Maud D'aveni
- CHRU de Nancy, Unité de Transplantation Médullaire Allogénique, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, Faculté de Pharmacie, Département de Microbiologie-Immunologie, Nancy, France
| |
Collapse
|
25
|
Arrieta-Bolaños E, Crivello P, Metzing M, Meurer T, Ahci M, Rytlewski J, Vignali M, Yusko E, van Balen P, Horn PA, Falkenburg JHF, Fleischhauer K. Alloreactive T Cell Receptor Diversity against Structurally Similar or Dissimilar HLA-DP Antigens Assessed by Deep Sequencing. Front Immunol 2018. [PMID: 29520276 PMCID: PMC5827552 DOI: 10.3389/fimmu.2018.00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T cell alloreactivity is mediated by a self-human leukocyte antigen (HLA)-restricted T cell receptor (TCR) repertoire able to recognize both structurally similar and dissimilar allogeneic HLA molecules (i.e., differing by a single or several amino acids in their peptide-binding groove). We hypothesized that thymic selection on self-HLA molecules could have an indirect impact on the size and diversity of the alloreactive response. To test this possibility, we used TCR Vβ immunophenotyping and immunosequencing technology in a model of alloreactivity between self-HLA selected T cells and allogeneic HLA-DPB1 (DPB1) differing from self-DPB1*04:02 by a single (DPB1*02:01) or several (DPB1*09:01) amino acids in the peptide-binding groove. CD4+ T cells from three different self-DPB1*04:01,*04:02 individuals were stimulated with HeLa cells stably transduced with the relevant peptide processing machinery, co-stimulatory molecules, and HLA-DP. Flow cytometric quantification of the DPB1-specific T cell response measured as upregulation of the activation marker CD137 revealed significantly lower levels of alloreactivity against DPB1*02:01 compared with DPB1*09:01 (mean CD4+CD137+ frequency 35.2 ± 9.9 vs. 61.5 ± 7.7%, respectively, p < 0.0001). These quantitative differences were, however, not reflected by differences in the breadth of the alloreactive response at the Vβ level, with both alloantigens eliciting specific responses from all TCR-Vβ specificities tested by flow cytometry, albeit with higher levels of reactivity from most Vβ specificities against DPB1*09:01. In line with these observations, TCRB-CDR3 immunosequencing showed no significant differences in mean clonality of sorted CD137+CD4+ cells alloreactive against DPB1*02:01 or DPB1*09:01 [0.39 (0.36–0.45) and 0.39 (0.30–0.46), respectively], or in the cumulative frequencies of the 10 most frequent responding clones (55–67 and 58–62%, respectively). Most of the clones alloreactive against DPB1*02:01 (68.3%) or DPB1*09:01 (75.3%) were characterized by low-abundance (i.e., they were not appreciable among the pre-culture T cells). Interestingly, however, their cumulative frequency was lower against DPB1*02:01 compared with DPB1*09:01 (mean cumulative frequency 35.3 vs. 50.6%, respectively). Our data show that, despite lower levels of alloreactivity, a similar clonal diversity can be elicited by structurally similar compared with structurally dissimilar HLA-DPB1 alloantigens and demonstrate the power of TCRB immunosequencing in unraveling subtle qualitative changes not appreciable by conventional methods.
Collapse
Affiliation(s)
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | - Maximilian Metzing
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | - Thuja Meurer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | - Müberra Ahci
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | | | | | - Erik Yusko
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | | | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
26
|
Major Histocompatibility Mismatch and Donor Choice for Second Allogeneic Bone Marrow Transplantation. Biol Blood Marrow Transplant 2017; 23:1887-1894. [PMID: 28754545 DOI: 10.1016/j.bbmt.2017.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/18/2017] [Indexed: 11/21/2022]
Abstract
Large alternative donor pools provide the potential for selecting a different donor for a second allogeneic (allo) bone or marrow transplant (BMT). As HLA disparity may contribute to the graft-versus-tumor effect, utilizing new mismatched haplotype donors may potentially improve the antitumor activity for relapsed hematologic malignancies despite a previous alloBMT. Data from patients who received a second alloBMT for relapsed hematologic malignancies at Johns Hopkins were analyzed. Outcomes were compared between patients who received a second allograft with the same MHC composition and those who received an allograft with a new mismatched haplotype. Loss of heterozygosity analysis was performed for patients with acute myeloid leukemia (AML) whose first allograft was haploidentical. Between 2005 and 2015, 40 patients received a second BMT for a relapsed hematologic malignancy. The median follow-up is 750 (range, 26 to 2950) days. The median overall survival (OS) in the cohort is 928 days (95% confidence interval [CI], 602 to not reached [NR]); median event-free survival (EFS) for the cohort is 500 days (95% CI, 355 to NR). The 4-year OS is 40% (95% CI, 25% to 64%), and the 4-year EFS is 36% (95% CI, 24% to 55%). The cumulative incidence of nonrelapsed mortality by 2 years was 27% (95% CI, 13% to 42%). The cumulative incidence of grade 3 to 4 acute graft-versus-host disease (GVHD) at 100 days was 15% (95% CI, 4% to 26%); the cumulative incidence of extensive chronic GVHD at 2 years was 22% (95% CI, 9% to 36%). The median survival was 552 days (95% CI, 376 to 2950+) in the group who underwent transplantation with a second allograft that did not harbor a new mismatched haplotype, while it was not reached in the group whose allograft contained a new mismatched haplotype (hazard ratio [HR], .36; 95% CI, .14 to .9; P = .02). EFS was also longer in the group who received an allograft containing a new mismatched haplotype, (NR versus 401 days; HR, .50; 95% CI, .22 to 1.14; P = .09). Although the allograft for this patient's second BMT contained a new mismatched haplotype, AML nevertheless relapsed a second time. Second BMTs are feasible and provide a reasonable chance of long-term survival. An allograft with a new mismatched haplotype may improve outcomes after second BMTs for relapsed hematologic malignancies.
Collapse
|
27
|
A high migratory capacity of donor T-cells in response to the lymph node homing receptor CCR7 increases the incidence and severity of GvHD. Bone Marrow Transplant 2017; 52:745-752. [PMID: 28112745 DOI: 10.1038/bmt.2016.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 01/02/2023]
Abstract
The pathogenesis of GvHD involves migration of donor T-cells into the secondary lymphoid organs in the recipient, which is steered by two homing molecules, CD62L and CCR7. Therefore, we investigated whether the migratory capacity of donor T-cells is associated with GvHD. This single center prospective study included 85 donor-recipient pairs. In vitro chemotaxis assays of the lymphocytes of the apheresis product were performed in parallel to the analysis of CD62L and CCR7 by flow cytometry. The migratory index to the CCR7 ligands, CCL19 and CCL21, was higher in T-cells from donors whose recipients will develop GvHD. Similarly, the acute GvHD (aGvHD) group received higher percentage of CD4+CCR7+ T-cells, whereas chronic GvHD (cGvHD) patients were transplanted with higher percentages of CD8+CCR7+ T-cells compared with the non-GvHD group. These results were confirmed when patients were subdivided according to degrees of severity. Further, multivariate analysis confirmed that the proportions of CCR7+ CD4+ and CCR7+ CD8+ T-cells are risk factors for the development and severity of aGvHD and cGvHD, respectively. Functional experiments demonstrated that CCR7+ T-cells exhibited higher potential for activation than CCR7- T-cells did. We therefore propose that the selective depletion of CCR7-expressing T-cells may be an effective preventive therapy for GvHD.
Collapse
|
28
|
Cappel C, Huenecke S, Suemmerer A, Erben S, Rettinger E, Pfirrmann V, Heinze A, Zimmermann O, Klingebiel T, Ullrich E, Bader P, Bremm M. Cytotoxic potential of IL-15-activated cytokine-induced killer cells against human neuroblastoma cells. Pediatr Blood Cancer 2016; 63:2230-2239. [PMID: 27433920 DOI: 10.1002/pbc.26147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite advances in therapy, the prognosis is poor and optimized therapies are urgently needed. Therefore, we investigated the antitumor potential of interleukin-15 (IL-15)-activated cytokine-induced killer (CIK) cells against different NB cell lines. PROCEDURE CIK cells were generated from peripheral blood mononuclear cells by the stimulation with interferon-γ (IFN-γ), IL-2, OKT-3 and IL-15 over a period of 10-12 days. The cytotoxic activity against NB cells was analyzed by nonradioactive Europium release assay before and after blocking of different receptor-ligand interactions relevant in CIK cell-mediated cytotoxicity. RESULTS The final CIK cell products consisted in median of 83% (range: 75.9-91.9%) CD3+ CD56- T cells, 14% (range: 5.2-20.7%) CD3+ CD56+ NK-like T cells and 2% (range: 0.9-4.8%) CD3- CD56+ NK cells. CIK cells expanded significantly upon ex vivo stimulation with median rates of 22.3-fold for T cells, 58.3-fold for NK-like T cells and 2.5-fold for NK cells. Interestingly, CD25 surface expression increased from less than equal to 1% up to median 79.7%. Cytotoxic activity of CIK cells against NB cells was in median 34.7, 25.9 and 34.8% against the cell lines UKF-NB-3, UKF-NB-4 and SK-N-SH, respectively. In comparison with IL-2-stimulated NK cells, CIK cells showed a significantly higher cytotoxicity. Antibody-mediated blocking of the receptors NKG2D, TRAIL, FasL, DNAM-1, NKp30 and lymphocyte function-associated antigen-1 (LFA-1) significantly reduced lytic activity, indicating that diverse cytotoxic mechanisms might be involved in CIK cell-mediated NB killing. CONCLUSIONS Unlike the mechanism reported in other malignancies, NKG2D-mediated cytotoxicity does not constitute the major killing mechanism of CIK cells against NB.
Collapse
Affiliation(s)
- Claudia Cappel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| | - Anica Suemmerer
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Stephanie Erben
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Verena Pfirrmann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Annekathrin Heinze
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Olga Zimmermann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Evelyn Ullrich
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Melanie Bremm
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
29
|
CD4+ T-cell alloreactivity toward mismatched HLA class II alleles early after double umbilical cord blood transplantation. Blood 2016; 128:2165-2174. [PMID: 27531680 DOI: 10.1182/blood-2016-06-718619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022] Open
Abstract
Although double umbilical cord blood transplantation (dUCBT) in adult patients may be associated with less graft failure compared with single UCBT, hematopoietic recovery generally originates from a single cord blood unit (CBU). CBU predominance is still incompletely understood. We recently showed that blood CD4+ T-cell numbers rapidly increase after dUCBT, and early CD4+ T-cell chimerism predicts for graft predominance. Given the frequent HLA class II allele mismatches between CBUs in dUCBT, we hypothesized that alloreactive HLA class II-specific CD4+ T cells from the "winning" CBU may contribute to rejection of the "loser" CBU. We evaluated whether CD4+ T cells originating from the predominant (PD)-CBU would recognize HLA class II allele mismatches, expressed by the nonengrafting (NE)-CBU. Alloreactive effector CD4+ T cells toward 1 or more mismatched HLA class II alleles of the NE-CBU were detected in 11 of 11 patients, with reactivity toward 29 of 33 (88%) tested mismatches, and the strongest reactivity toward DR and DQ alleles early after dUCBT. Mismatched HLA class II allele-specific CD4+ T cells recognized primary leukemic cells when the mismatched HLA class II allele was shared between NE-CBU and patient. Our results suggest that cytotoxicity exerted by CD4+ T cells from the PD-CBU drives the rapid rejection of the NE-CBU, whose alloreactive effect might also contribute to graft-versus-leukemia.
Collapse
|
30
|
HLA-DPB1 mismatch alleles represent powerful leukemia rejection antigens in CD4 T-cell immunotherapy after allogeneic stem-cell transplantation. Leukemia 2016; 31:434-445. [DOI: 10.1038/leu.2016.210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022]
|
31
|
Caballero-Velázquez T, Montero I, Sánchez-Guijo F, Parody R, Saldaña R, Valcarcel D, López-Godino O, Ferra i Coll C, Cuesta M, Carrillo-Vico A, Sánchez-Abarca LI, López-Corral L, Márquez-Malaver FJ, Pérez-Simón JA. Immunomodulatory Effect of Vitamin D after Allogeneic Stem Cell Transplantation: Results of a Prospective Multicenter Clinical Trial. Clin Cancer Res 2016; 22:5673-5681. [DOI: 10.1158/1078-0432.ccr-16-0238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/28/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022]
|
32
|
Berges C, Chatterjee M, Topp MS, Einsele H. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res 2016; 64:687-98. [PMID: 26724940 DOI: 10.1007/s12026-015-8778-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is still a major cause of transplant-related mortality after allogeneic stem cell transplantation (ASCT). It requires immunosuppressive treatments that broadly abrogate T cell responses including beneficial ones directed against tumor cells or infective pathogens. Polo-like kinase 1 (PLK1) is overexpressed in many cancer types including leukemia, and clinical studies demonstrated that targeting PLK1 using selective PLK1 inhibitors resulted in inhibition of proliferation and induction of apoptosis predominantly in tumor cells, supporting the feasibility of PLK1 as target for anticancer therapy. Here, we show that activation of alloreactive T cells (Tallo) up-regulate expression of PLK1, suggesting that PLK1 is a potential new candidate for dual therapy of aGvHD and leukemia after ASCT. Inhibition of PLK1, using PLK1-specific inhibitor GSK461364A selectively depletes Tallo by preventing activation and by inducing apoptosis in already activated Tallo, while memory T cells are preserved. Activated Tallo cells which survive exposure to PLK1 undergo inhibition of proliferation by induction of G2/M cell cycle arrest, which is accompanied by accumulation of cell cycle regulator proteins p21(WAF/CIP1), p27(Kip1), p53 and cyclin B1, whereas abundance of CDK4 decreased. We also show that suppressive effects of PLK1 inhibition on Tallo were synergistically enhanced by concomitant inhibition of molecular chaperone Hsp90. Taken together, our data suggest that PLK1 inhibition represents a reasonable dual strategy to suppress residual tumor growth and efficiently deplete Tallo, and thus provide a rationale to selectively prevent and treat aGvHD.
Collapse
Affiliation(s)
- Carsten Berges
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| | - Manik Chatterjee
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Max S Topp
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Haploidentical Stem Cell Transplantation in Adult Haematological Malignancies. Adv Hematol 2016; 2016:3905907. [PMID: 27313619 PMCID: PMC4904087 DOI: 10.1155/2016/3905907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
Haematopoietic stem cell transplantation is a well-established treatment option for both hematological malignancies and nonmalignant conditions such as aplastic anemia and haemoglobinopathies. For those patients lacking a suitable matched sibling or matched unrelated donor, haploidentical donors are an alternative expedient donor pool. Historically, haploidentical transplantation led to high rates of graft rejection and GVHD. Strategies to circumvent these issues include T cell depletion and management of complications thereof or T replete transplants with GVHD prophylaxis. This review is an overview of these strategies and contemporaneous outcomes for hematological malignancies in adult haploidentical stem cell transplant recipients.
Collapse
|
34
|
TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses. Blood 2016; 128:72-81. [PMID: 27103745 DOI: 10.1182/blood-2015-10-679191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022] Open
Abstract
Donor T-cell immune responses can eradicate lymphomas after allogeneic hematopoietic stem cell transplantation (AHSCT), but can also damage healthy tissues resulting in harmful graft-versus-host disease (GVHD). Next-generation sequencing has recently identified many new genetic lesions in follicular lymphoma (FL). One such gene, tumor necrosis factor receptor superfamily 14 (TNFRSF14), abnormal in 40% of FL patients, encodes the herpes virus entry mediator (HVEM) which limits T-cell activation via ligation of the B- and T-lymphocyte attenuator. As lymphoma B cells can act as antigen-presenting cells, we hypothesized that TNFRSF14 aberrations that reduce HVEM expression could alter the capacity of FL B cells to stimulate allogeneic T-cell responses and impact the outcome of AHSCT. In an in vitro model of alloreactivity, human lymphoma B cells with TNFRSF14 aberrations had reduced HVEM expression and greater alloantigen-presenting capacity than wild-type lymphoma B cells. The increased immune-stimulatory capacity of lymphoma B cells with TNFRSF14 aberrations had clinical relevance, associating with higher incidence of acute GVHD in patients undergoing AHSCT. FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to reduce harmful GVHD after transplantation. Importantly, this study is the first to demonstrate the impact of an acquired genetic lesion on the capacity of tumor cells to stimulate allogeneic T-cell immune responses which may have wider consequences for adoptive immunotherapy strategies.
Collapse
|
35
|
Fleischhauer K, Beelen DW. HLA mismatching as a strategy to reduce relapse after alternative donor transplantation. Semin Hematol 2016; 53:57-64. [PMID: 27000727 DOI: 10.1053/j.seminhematol.2016.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human leukocyte antigen (HLA) mismatches are targets of alloreactive T cells, mediators of graft-versus-leukemia (GvL) and graft-versus-host disease (GvHD) after alternative donor transplantation. Exploitation of HLA mismatching in order to reduce relapse is hampered by necessary interventions aimed at controlling GvHD on the one hand, and by the possibility of immune escape through selective loss of mismatched HLA in relapsing leukemia on the other. Retrospective studies reporting the impact of HLA mismatches on post-transplant relapse need to be interpreted with caution, due to many confounding factors, including disease and use of T-cell depletion, and to be constantly updated to the rapidly changing clinical protocols. Current evidence suggests similar relapse rates for 8/8, 7/8 HLA-matched unrelated, T-cell-replete haploidentical and umbilical cord blood transplantation; however, investigations of locus-specific effects are still scarce in the latter two settings. In unrelated transplantation, a specific role for mismatches at HLA-C and HLA-DPB1, and therein of permissive mismatches defined on the basis of T-cell alloreactivity and/or expression levels, in reducing relapse has been demonstrated in independent studies. This observation suggests new approaches to utilize HLA matching in unrelated donor searches, and the need for further research in the field.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Dietrich W Beelen
- Department for Bone Marrow Transplantation, West-German Cancer Center, University Hospital Essen, Essen, Germany
| |
Collapse
|
36
|
McLaughlin L, Cruz CR, Bollard CM. Adoptive T-cell therapies for refractory/relapsed leukemia and lymphoma: current strategies and recent advances. Ther Adv Hematol 2015; 6:295-307. [PMID: 26622998 DOI: 10.1177/2040620715594736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite significant advancements in the treatment and outcome of hematologic malignancies, prognosis remains poor for patients who have relapsed or refractory disease. Adoptive T-cell immunotherapy offers novel therapeutics that attempt to utilize the noted graft versus leukemia effect. While CD19 chimeric antigen receptor (CAR)-modified T cells have thus far been the most clinically successful application of adoptive T immunotherapy, further work with antigen specific T cells and CARs that recognize other targets have helped diversify the field to treat a broad spectrum of hematologic malignancies. This article will focus primarily on therapies currently in the clinical trial phase as well as current downfalls or limitations.
Collapse
Affiliation(s)
- Lauren McLaughlin
- Children's National Health System and The George Washington University, Washington, DC, USA
| | - C Russell Cruz
- Children's National Health System and The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- Children's National Health System and The George Washington University, 111 Michigan Ave, Washington, DC 20010, USA
| |
Collapse
|
37
|
T-cell alloreactivity and transplantation outcome: a budding role for heterologous immunity? Curr Opin Organ Transplant 2015; 20:454-60. [PMID: 26126194 DOI: 10.1097/mot.0000000000000218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Despite the association between alloreactive T cells and poor graft survival, the mechanisms behind T-cell-mediated rejection are still under investigation. In this review, we will discuss the latest insights into the impact of T-cell alloreactivity on solid organ transplantation and hematopoietic stem cell transplantation (HSCT), with special emphasis on the potential impact of heterologous immunity. RECENT FINDINGS A large part of the memory T-cell repertoire is induced upon virus infections, and evidence for a role of T-cell receptor cross-reactivity of virus-induced memory T cells against allogeneic human leukocyte antigen (HLA) is accumulating in experimental and clinical solid organ transplantation studies. In HSCT, strong alloreactive potential of naïve T cells causes concerns for graft-versus-host disease while additional HLA-DP matching is suggested to prevent CD4 alloreactivity. Furthermore, virus-induced memory T cells hamper mixed chimerism induction, pointing once more towards a role for heterologous immunity. SUMMARY Both memory and naïve T cells contribute to the alloimmune response after transplantation. Monitoring for T-cell phenotypes could help predict rejection episodes and/or graft-versus-host disease, allowing timely intervention. Tailoring donor lymphocyte infusions and additional HLA matching could prevent strong alloreactivity in HSCT. Furthermore, the potential role of heterologous immunity in T-cell alloreactivity and transplantation is gaining interest.
Collapse
|
38
|
Distler E, Albrecht J, Brunk A, Khan S, Schnürer E, Frey M, Mottok A, Jordán-Garrote AL, Brede C, Beilhack A, Mades A, Tomsitz D, Theobald M, Herr W, Hartwig UF. Patient-individualized CD8⁺ cytolytic T-cell therapy effectively combats minimal residual leukemia in immunodeficient mice. Int J Cancer 2015; 138:1256-68. [PMID: 26376181 DOI: 10.1002/ijc.29854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
Adoptive transfer of donor-derived cytolytic T-lymphocytes (CTL) has evolved as a promising strategy to improve graft-versus-leukemia (GvL) effects in allogeneic hematopoietic stem-cell transplantation. However, durable clinical responses are often hampered by limited capability of transferred T cells to establish effective and sustained antitumor immunity in vivo. We therefore analyzed GvL responses of acute myeloid leukemia (AML)-reactive CD8(+) CTL with central and effector memory phenotype in a new allogeneic donor-patient specific humanized mouse model. CTL lines and clones obtained upon stimulation of naive CD45RA(+) donor CD8(+) T cells with either single HLA antigen-mismatched or HLA-matched primary AML blasts, respectively, elicited strong leukemia reactivity during cytokine-optimized short to intermediate (i.e., 2-8 weeks) culture periods. Single doses of CTL were intravenously infused into NOD/scidIL2Rcg(null) mice when engraftment with patient AML reached bone marrow infiltration of 1-5%, clinically defining minimal residual disease status. This treatment resulted in complete regression of HLA-mismatched and strong reduction of HLA-matched AML infiltration, respectively. Most importantly, mice receiving AML-reactive CTL showed significantly prolonged survival. Transferred CTL were detectable in murine bone marrow and spleen and demonstrated sustained AML-reactivity ex vivo. Moreover, injections with human IL-15 clearly promoted CTL persistence. In summary, we show that naive donor-derived CD8(+) CTL effectively combat patient AML blasts in immunodeficient mice. The donor-patient specific humanized mouse model appears suitable to evaluate therapeutic efficacy of AML-reactive CTL before adoptive transfer into patients. It may further help to identify powerful leukemia rejection antigens and T-cell receptors for redirecting immunity to leukemias even in a patient-individualized manner.
Collapse
Affiliation(s)
- Eva Distler
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Jana Albrecht
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Ariane Brunk
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Shamsul Khan
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Elke Schnürer
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Michaela Frey
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Anja Mottok
- Institute of Pathology, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany
| | - Ana-Laura Jordán-Garrote
- Department of Medicine II, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany.,Interdisziplinary Center for Clinical Research (IZKF), Zinklesweg 10, Würzburg, 97078, Germany
| | - Christian Brede
- Department of Medicine II, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany.,Interdisziplinary Center for Clinical Research (IZKF), Zinklesweg 10, Würzburg, 97078, Germany
| | - Andreas Beilhack
- Department of Medicine II, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany.,Interdisziplinary Center for Clinical Research (IZKF), Zinklesweg 10, Würzburg, 97078, Germany
| | - Andreas Mades
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Dirk Tomsitz
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Matthias Theobald
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Wolfgang Herr
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany.,Department of Medicine III-Hematology and Internal Oncology, University Hospital of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Udo F Hartwig
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany.,Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr. 1, Mainz, 55101, Germany
| |
Collapse
|
39
|
Generation of memory T cells for adoptive transfer using clinical-grade anti-CD62L magnetic beads. Bone Marrow Transplant 2015; 50:1358-64. [DOI: 10.1038/bmt.2015.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
|
40
|
Roberto A, Castagna L, Zanon V, Bramanti S, Crocchiolo R, McLaren JE, Gandolfi S, Tentorio P, Sarina B, Timofeeva I, Santoro A, Carlo-Stella C, Bruno B, Carniti C, Corradini P, Gostick E, Ladell K, Price DA, Roederer M, Mavilio D, Lugli E. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood 2015; 125:2855-64. [PMID: 25742699 PMCID: PMC4424633 DOI: 10.1182/blood-2014-11-608406] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/28/2015] [Indexed: 12/31/2022] Open
Abstract
Early T-cell reconstitution following allogeneic transplantation depends on the persistence and function of T cells that are adoptively transferred with the graft. Posttransplant cyclophosphamide (pt-Cy) effectively prevents alloreactive responses from unmanipulated grafts, but its effect on subsequent immune reconstitution remains undetermined. Here, we show that T memory stem cells (TSCM), which demonstrated superior reconstitution capacity in preclinical models, are the most abundant circulating T-cell population in the early days following haploidentical transplantation combined with pt-Cy and precede the expansion of effector cells. Transferred naive, but not TSCM or conventional memory cells preferentially survive cyclophosphamide, thus suggesting that posttransplant TSCM originate from naive precursors. Moreover, donor naive T cells specific for exogenous and self/tumor antigens persist in the host and contribute to peripheral reconstitution by differentiating into effectors. Similarly, pathogen-specific memory T cells generate detectable recall responses, but only in the presence of the cognate antigen. We thus define the cellular basis of T-cell reconstitution following pt-Cy at the antigen-specific level and propose to explore naive-derived TSCM in the clinical setting to overcome immunodeficiency. These trials were registered at www.clinicaltrials.gov as #NCT02049424 and #NCT02049580.
Collapse
Affiliation(s)
- Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luca Castagna
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Veronica Zanon
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Stefania Bramanti
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Roberto Crocchiolo
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sara Gandolfi
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Paolo Tentorio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Barbara Sarina
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Inna Timofeeva
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Armando Santoro
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Carmelo Carlo-Stella
- Hematology and Bone Marrow Transplant Unit, Humanitas Cancer Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cristiana Carniti
- Department of Haematology and Pediatric Onco-Haematology, Istituto Nazionale Tumori, Milan, Italy; and
| | - Paolo Corradini
- Department of Haematology and Pediatric Onco-Haematology, Istituto Nazionale Tumori, Milan, Italy; and
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
41
|
Shook DR, Triplett BM, Eldridge PW, Kang G, Srinivasan A, Leung W. Haploidentical stem cell transplantation augmented by CD45RA negative lymphocytes provides rapid engraftment and excellent tolerability. Pediatr Blood Cancer 2015; 62:666-73. [PMID: 25559618 DOI: 10.1002/pbc.25352] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Haploidentical donors are being increasingly used for allogeneic hematopoietic cell transplantation (HCT). However, the requisite T-cell depletion results in a profound and often long-lasting immunocompromised state, and donor lymphocyte infusions bring a risk of graft-versus-host disease (GVHD). Naïve T-cells are believed to be among the most alloreactive T-cell subset and can be identified by CD45RA expression. Allogeneic HCT using CD45RA depletion has not been previously described for haploidentical donors. PROCEDURE Eight children with relapsed or refractory solid tumors were transplanted following myeloablative conditioning. Each patient received two cell products, one created by CD3 depletion and the other through CD45RA depletion. RESULTS Median CD34 recovery was 59.2% with CD45RA depletion, compared to 82.4% using CD3 depletion. Median CD3+ T-cell dose after CD45RA reduction was 99.2 × 10(6) cells/kg, yet depletion of CD3+ CD45RA+ cells exceeded 4.5 log. CD45RA depletion also resulted in substantial depletion of B-cells (median 2.45 log). All eight patients engrafted within 14 days and rapidly achieved 100% donor chimerism. No acute GVHD or secondary graft failure was observed. CONCLUSIONS CD45RA depletion is a novel approach to haploidentical HCT that offers rapid engraftment with minimal risk of GVHD.
Collapse
Affiliation(s)
- David R Shook
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
42
|
Doisne JM, Hüber CM, Okkenhaug K, Colucci F. Immunomodulation of Selective Naive T Cell Functions by p110δ Inactivation Improves the Outcome of Mismatched Cell Transplantation. Cell Rep 2015; 10:702-710. [PMID: 25660021 PMCID: PMC4542309 DOI: 10.1016/j.celrep.2015.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/11/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) can treat certain hematologic malignancies due to the graft versus leukemia (GvL) effect but is complicated by graft versus host disease (GvHD). Expression of the p110δ catalytic subunit of the phosphoinositide 3-kinase pathway is restricted to leukocytes, where it regulates proliferation, migration, and cytokine production. Here, in a mouse model of fully mismatched hematopoietic cell transplantation (HCT), we show that genetic inactivation of p110δ in T cells leads to milder GvHD, whereas GvL is preserved. Inactivation of p110δ in human lymphocytes reduced T cell allorecognition. We demonstrate that both allostimulation and granzyme B expression were dependent on p110δ in naive T cells, which are the main mediators of GvHD, whereas memory T cells were unaffected. Strikingly, p110δ is not mandatory for either naive or memory T cells to mediate GvL. Therefore, immunomodulation of selective naive T cell functions by p110δ inactivation improves the outcome of allogeneic HSCT. Genetic p110δ inactivation in donor naive T cells mitigates GvHD in mice Pharmacological p110δ inactivation in human T cells reduces alloreactivity
Collapse
Affiliation(s)
- Jean-Marc Doisne
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK.
| | - Christian M Hüber
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Klaus Okkenhaug
- Laboratory for Lymphocyte Signaling and Development, Babraham Research Campus, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| |
Collapse
|
43
|
Touzot F, Neven B, Dal-Cortivo L, Gabrion A, Moshous D, Cros G, Chomton M, Luby JM, Terniaux B, Magalon J, Picard C, Blanche S, Fischer A, Cavazzana M. CD45RA depletion in HLA-mismatched allogeneic hematopoietic stem cell transplantation for primary combined immunodeficiency: A preliminary study. J Allergy Clin Immunol 2014; 135:1303-9.e1-3. [PMID: 25282016 DOI: 10.1016/j.jaci.2014.08.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/21/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Combined immunodeficiencies (CIDs) form a heterogeneous group of inherited conditions that affect the development, function, or both of T cells. The treatment of CIDs with allogeneic hematopoietic stem cell transplantation (HSCT) is complicated by a high incidence of life-threatening infections and an increased risk of graft-versus-host disease (GVHD). OBJECTIVE In view of the growing evidence that alloreactivity is mainly derived from human naive T cells, the selective depletion of naive T cells from allografts might constitute a way of reducing alloreactivity while maintaining memory T-cell responsiveness to pathogens. METHODS Five consecutive patients with CIDs and chronic viral infections underwent an allogeneic, HLA-mismatched HSCT. Given the patients' infection status and the potential risk of severe GVHD in the mismatched setting, the CD34(-) fraction of the allograft was depleted of naive T cells by using magnetic CD45RA beads. RESULTS Engraftment occurred in 4 of the 5 patients. No severe GVHD occurred. In the 4 engrafted patients viral infections were cleared within 2 months of the HSCT, and both cellular and humoral immunity were re-established within a year of the HSCT. An early T-cell response against viral pathogens was documented in 2 patients. CONCLUSION The present pilot study shows that clinical-grade depletion of naive T cells from an allograft through the use of magnetic CD45RA beads seems to be a feasible and efficacious option for the treatment of patients with CIDs at high risk of GVHD, infection, or both in an HLA-mismatched setting.
Collapse
Affiliation(s)
- Fabien Touzot
- Département de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France.
| | - Bénédicte Neven
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France; INSERM UMR1163, Paris, France
| | - Liliane Dal-Cortivo
- Département de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Aurélie Gabrion
- Département de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France; INSERM UMR1163, Paris, France
| | - Guilhem Cros
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Maryline Chomton
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jean-Marc Luby
- Département de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Brigitte Terniaux
- Département de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jérémy Magalon
- Département de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Capucine Picard
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Centre d'étude des déficits immunitaires (CEDI), Hôpital Necker-Enfants Malades, AP-HP, Paris, France; INSERM UMR1163, Paris, France
| | - Stéphane Blanche
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Alain Fischer
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France; INSERM UMR1163, Paris, France; College de France, Paris, France
| | - Marina Cavazzana
- Département de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| |
Collapse
|
44
|
Ramírez N, Beloki L, Ciaúrriz M, Rodríguez-Calvillo M, Escors D, Mansilla C, Bandrés E, Olavarría E. Impact of T cell selection methods in the success of clinical adoptive immunotherapy. Cell Mol Life Sci 2014; 71:1211-24. [PMID: 24077876 PMCID: PMC11113470 DOI: 10.1007/s00018-013-1463-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022]
Abstract
Chemotherapy and/or radiotherapy regular regimens used for conditioning of recipients of hematopoietic stem cell transplantation (SCT) induce a period of transient profound immunosuppression. The onset of a competent immunological response, such as the appearance of viral-specific T cells, is associated with a lower incidence of viral infections after haematopoietic transplantation. The rapid development of immunodominant peptide virus screening together with advances in the design of genetic and non-genetic viral- and tumoural-specific cellular selection strategies have opened new strategies for cellular immunotherapy in oncologic recipients who are highly sensitive to viral infections. However, the rapid development of cellular immunotherapy in SCT has disclosed the role of the T cell selection method in the modulation of functional cell activity and of in vivo secondary effects triggered following immunotherapy.
Collapse
Affiliation(s)
- Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Miriam Ciaúrriz
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Mercedes Rodríguez-Calvillo
- Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - David Escors
- Immunomodulation Research Group, Navarrabiomed, Miguel Servet Foundation, Pamplona, Navarre Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Eva Bandrés
- Immunology Unit, Complejo Hospitalario de Navarra, Navarra Health Service, Pamplona, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
- Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| |
Collapse
|
45
|
Wittenbecher F, Rieger K, Dziubianau M, Herholz A, Mensen A, Blau IW, Uharek L, Dörken B, Thiel A, Na IK. Rabbit antithymocyte globulin induces rapid expansion of effector memory CD8 T cells without accelerating acute graft versus host disease. Leuk Res Rep 2013; 2:82-5. [PMID: 24371789 PMCID: PMC3850384 DOI: 10.1016/j.lrr.2013.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/24/2013] [Accepted: 09/15/2013] [Indexed: 10/28/2022] Open
Abstract
Rabbit antithymocyte globulin (Thymoglobulin(®)) is commonly used as graft-versus-host disease (GvHD) prophylaxis. Since we found similar total CD8 T cell numbers in patients with and without Thymoglobulin(®) therapy within the first six months after allogeneic hematopoietic stem cell transplantation, we have analyzed the reconstitution of the CD8 T cell compartment in detail. After T cell-depletion, higher and more sustained proliferative capacity of memory CD8 T cells resulted in their rapid expansion, whereas the fraction of naive CD8 T cells decreased. Importantly, this shift towards effector memory CD8 T cells did not accelerate the incidence of GvHD.
Collapse
Affiliation(s)
| | - Kathrin Rieger
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany
| | - Mikalai Dziubianau
- Renal and Transplant Research Unit, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité CVK, Berlin, Germany
| | - Anne Herholz
- Department of Medicine, Division of Gastroenterology, Infectiology and Rheumatology, Charité, Berlin, Germany
| | - Angela Mensen
- Institute of Medical Immunology, Charité CVK, Berlin, Germany
| | - Igor Wolfgang Blau
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany
| | - Lutz Uharek
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany
| | - Bernd Dörken
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany ; Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité CVK, Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany ; Institute of Medical Immunology, Charité CVK, Berlin, Germany ; Experimental and Clinical Research Center (ECRC), Berlin, Germany
| |
Collapse
|
46
|
Human CD8+ memory and EBV-specific T cells show low alloreactivity in vitro and in CD34+ stem cell-engrafted NOD/SCID/IL-2Rγc null mice. Exp Hematol 2013; 42:28-38.e1-2. [PMID: 24120693 DOI: 10.1016/j.exphem.2013.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 11/20/2022]
Abstract
Current strategies in cellular immunotherapy of cancer and viral infections include the adoptive transfer of T cell receptor (TCR) and chimeric antigen receptor engineered T cells. When using transient RNA expression systems in clinical studies, multiple infusions with receptor-redirected T cells appear necessary. However, in allogeneic hematopoietic stem-cell transplantation, repeated transfer of donor-derived T cells increases the risk of alloreactive graft-versus-host disease. We investigated naive-derived (TN), memory-derived (TM), and Epstein Barr virus-specific (TEBV) CD8(+) T cell subsets for alloreactivity upon redirection with RNA encoding a cytomegalovirus-specific model TCR. We observed that alloreactivity to human leukocyte antigen (HLA)-mismatched hematopoietic cells developed at much stronger levels in TN compared with TM or TEBV populations in cytokine-release and cytotoxicity assays. Cytomegalovirus-specific effector function was higher in TCR-transfected TEBV and TM over TN cells. To measure alloreactivity in vivo, we reconstituted NOD/SCID/IL-2Rγc(null) mice with human CD34(+) stem cells and adoptively transferred them with CD8(+) T cell subsets previously stimulated against cells of the HLA-mismatched stem-cell donor. TN cells showed a significant ability to eliminate CD34-derived hematopoietic cells, which was not found with TM and TEBV cells. This reduced alloreactive potential along with strong effector function upon receptor RNA engineering makes CD8(+) memory and EBV-specific T cells advantageous tools in adoptive immunotherapy after allogeneic transplantation.
Collapse
|
47
|
Teschner D, Distler E, Wehler D, Frey M, Marandiuc D, Langeveld K, Theobald M, Thomas S, Herr W. Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplant 2013; 49:138-44. [PMID: 23933765 DOI: 10.1038/bmt.2013.114] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/25/2013] [Indexed: 01/18/2023]
Abstract
Depletion of naive T cells from donor leukapheresis products (LPs) aims at the reduction of alloreactivity, while preserving memory T-cell reactivity (for example, to pathogens). This study established the immunomagnetic depletion procedure under clean room conditions using CD45RA beads and analyzed LPs of six donors for cell composition and functional immune responses. CD45RA depletion resulted in 3.4-4.7 log (median 4.4) reduction of CD45RA(+) T cells, thereby eliminating naive and late effector T cells. B cells were also completely removed, whereas significant proportions of NK cells, monocytes and granulocytes persisted. CD45RA-depleted LPs contained effector and central memory CD4(+) and CD8(+) T cells that showed sustained IFN-γ secretion to CMV, EBV, Aspergillus and Candida Ags. Alloreactivity was measured in MLRs between donors with complete HLA-mismatch. Alloreactive CD8(+) T cells were strongly reduced (median >1-log) upon CD45RA depletion, whereas alloreactive CD4(+) T cells persisted in significant numbers. In conclusion, clinical grade depletion of CD45RA(+) naive T cells from donor LPs is feasible and highly efficient. The depleted products show sustained CD4(+) and CD8(+) T-cell reactivity to pathogens and effectively reduced CD8-mediated alloreactivity. Prophylactic and preemptive infusions after allogeneic SCT may improve T-cell reconstitution and pathogen-specific immunosurveillance, along with lower risk of inducing GVHD.
Collapse
Affiliation(s)
- D Teschner
- Third Department of Medicine-Hematology, Oncology, Pneumology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - E Distler
- Third Department of Medicine-Hematology, Oncology, Pneumology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - D Wehler
- Third Department of Medicine-Hematology, Oncology, Pneumology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - M Frey
- Third Department of Medicine-Hematology, Oncology, Pneumology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - D Marandiuc
- Transfusion Center, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - K Langeveld
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - M Theobald
- Third Department of Medicine-Hematology, Oncology, Pneumology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - S Thomas
- Third Department of Medicine-Hematology, Oncology, Pneumology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - W Herr
- 1] Third Department of Medicine-Hematology, Oncology, Pneumology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany [2] Department of Internal Medicine III-Hematology and Oncology, University Medical Center of Regensburg, Regensburg, Germany
| |
Collapse
|
48
|
Subviral dense bodies of human cytomegalovirus stimulate maturation and activation of monocyte-derived immature dendritic cells. J Virol 2013; 87:11287-91. [PMID: 23926346 DOI: 10.1128/jvi.01429-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells play a central role in the immune control of human cytomegalovirus (HCMV) infection. This work aimed at investigating the impact of noninfectious, subviral dense bodies of HCMV on the maturation and activation of dendritic cells (DC). Treatment of immature DC with dense bodies led to the maturation of these cells and significantly increased their capacity for cytokine release and antigen presentation. Dense body-activated DC may thereby contribute to the development of antiviral immunity.
Collapse
|
49
|
Nerreter T, Distler E, Köchel C, Einsele H, Herr W, Seggewiss-Bernhardt R. Combining dasatinib with dexamethasone long-term leads to maintenance of antiviral and antileukemia specific cytotoxic T cell responses in vitro. Exp Hematol 2013; 41:604-614.e4. [DOI: 10.1016/j.exphem.2013.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 11/30/2022]
|
50
|
Milano F, Heimfeld S, Gooley T, Jinneman J, Nicoud I, Delaney C. Correlation of infused CD3+CD8+ cells with single-donor dominance after double-unit cord blood transplantation. Biol Blood Marrow Transplant 2013; 19:156-60. [PMID: 22989692 PMCID: PMC4462195 DOI: 10.1016/j.bbmt.2012.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/09/2012] [Indexed: 01/05/2023]
Abstract
Single-donor dominance is observed in the majority of patients following double-unit cord blood transplantation (dCBT); however, the biological basis for this outcome is poorly understood. To investigate the possible influence of specific cell lineages on dominance in dCBT, flow cytometry assessment for CD34(+), CD14(+), CD20(+), CD3(-)CD56(+), CD3(+)CD56(+) (natural killer), and T cell subsets (CD4(+), CD8(+), memory, naïve, and regulatory) was performed on individual units. Subsets were calculated as infused viable cells per kilogram of recipient actual weight. Sixty patients who underwent dCBT were included in the final analysis. Higher CD3(+) cell dose was statistically concordant with the dominant unit in 72% of cases (P = .0006). Further T cell subset analyses showed that dominance was correlated more with the naive CD8(+) cell subset (71% concordance; P = .009) than with the naive CD4(+) cell subset (61% concordance; P = .19). These data indicate that a greater total CD3(+) cell dose, particularly of naïve CD3(+)CD8(+) T cells, may play an important role in determining single-donor dominance after dCBT.
Collapse
Affiliation(s)
- Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|