1
|
Dhakal B, Hari P, Chhabra S, Szabo A, Lum LG, Glass DD, Park JH, Donato M, Siegel DS, Felizardo TC, Fowler DH. Rapamycin-resistant polyclonal Th1/Tc1 cell therapy (RAPA-201) safely induces disease remissions in relapsed, refractory multiple myeloma. J Immunother Cancer 2025; 13:e010649. [PMID: 39875173 PMCID: PMC11781102 DOI: 10.1136/jitc-2024-010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (TCM) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context. METHODS The clinical trial (NCT04176380) evaluated RAPA-201 therapy in combination with fludarabine-sparing low-dose host conditioning for the treatment of patients with relapsed, refractory multiple myeloma (RRMM). RESULTS From December 2020 to December 2022, 14 patients with RRMM received a median of three RAPA-201 infusions (median dose, 80×106 cells). RAPA-201 drug products (DPs) were: polyclonal; enriched for TCM cells; reduced for immune checkpoint expression, including PD1, CD73, and LAIR1; and preferentially secreted Th1 cytokines. The median chemotherapy dose administered per cycle was 1,817 mg total for cyclophosphamide (range, 1,100-2,200) and 2.35 mg/M2 for pentostatin (range, 0-16). Nine of 14 patients (64%) achieved disease remission, with eight partial responses and one stringent complete response. Median progression-free survival was 6.0 months (range, 2.1 to>16.8 months). There were no toxicities of any grade attributable to RAPA-201, including no cytokine release syndrome and no immune effector cell-associated neurotoxicity syndrome. Only 4 of 14 patients (29%) had a serious adverse event (≥ grade 3) of any attribution. CONCLUSIONS Consistent with our hypothesis, ex vivo manufacturing using mTOR inhibition and IFN-α polarization consistently yielded a novel RAPA-201 DP that possessed a desirable phenotype relative to cytokine phenotype, memory status, and checkpoint expression. RAPA-201 recipients had preservation of T cell counts and Th1 cytokine secretion yet had increased T cell receptor clonality that associates with antitumor responses in the setting of monoclonal antibody checkpoint therapy. RAPA-201 therapy overcomes previous barriers to effective autologous polyclonal T-cell therapy, as it is feasible to manufacture, exquisitely safe to administer, and mediates remission in patients with RRMM. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT04176380.
Collapse
Affiliation(s)
- Binod Dhakal
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Parameswaran Hari
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Obsidian Therapeutics, Boston, Massachusetts, USA
| | - Saurabh Chhabra
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Mayo Clinic, Phoenix, Arizona, USA
| | - Aniko Szabo
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Michele Donato
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - David S Siegel
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | | |
Collapse
|
2
|
Husby S, Tulstrup M, Harsløf M, Nielsen C, Haastrup E, Ebbesen LH, Klarskov Andersen M, Pertesi M, Brieghel C, Niemann CU, Nilsson B, Szabo AG, Andersen NF, Abildgaard N, Vangsted A, Grønbæk K. Mosaic chromosomal alterations in hematopoietic cells and clinical outcomes in patients with multiple myeloma. Leukemia 2024; 38:2456-2465. [PMID: 39223296 PMCID: PMC11518982 DOI: 10.1038/s41375-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mosaic chromosomal alterations (mCAs) in hematopoietic cells increase mortality and risk of hematological cancers and infections. We investigated the landscape of mCAs and their clinical consequences in 976 patients with multiple myeloma undergoing high-dose chemotherapy and autologous stem cell support (ASCT) with median 6.4 years of follow-up. mCAs were detected in the stem cell harvest product of 158 patients (16.2%). Autosomal aberrations were found in 60 patients (6.1%) and affected all chromosomes. Loss of chromosome X was found in 51 females (12.7%) and loss of chromosome Y in 55 males (9.6%). Overall survival and progression were similar between carriers of autosomal mCAs and non-carriers. In contrast, female patients with loss of the X chromosome had longer overall survival (age-adjusted[a.a.] HR 0.54, 95% CI 0.32-0.93, p = 0.02), lower risk of progression (a.a. HR 0.55, 95% CI 0.35-0.87; p = 0.01), and better post-transplant response (higher degree of complete response (CR) or very good partial response (VGPR)). The reason for this substantial effect is unknown. Additionally, myeloma clones in the stem cell product was confirmed by mCA analysis in the few patients with multiple mCAs (n = 12 patients). Multiple mCAs conferred inferior overall survival (a.a. HR 2.0, 95% CI 1.02-3.84; p = 0.04) and higher risk of myeloma progression (a.a. HR 3.36, 95% CI 1.67-6.81; p < 0.001), which is presumed to be driven by suspected myeloma contaminants.
Collapse
Affiliation(s)
- Simon Husby
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark.
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark.
| | - Morten Tulstrup
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Mads Harsløf
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer, Odense, Denmark
| | - Eva Haastrup
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Maroulio Pertesi
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Christian Brieghel
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | | | | - Niels Abildgaard
- Hematology Research Unit, Department of Hematology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Annette Vangsted
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Denmark, Copenhagen N, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Almutairi MH, Alsoraie WA, Alrubie TM, Alkhaldi AS, Alhajri NS, Alaujan MA, Almutairi MH, Almutairi BO. Increased MAGE-C Family Gene Expression Levels as a Biomarker of Colon Cancer Through the Demethylation Mechanism. Pharmaceuticals (Basel) 2024; 17:1447. [PMID: 39598359 PMCID: PMC11597369 DOI: 10.3390/ph17111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Colon cancer (CC) in Saudi Arabia is associated with a high death rate and is commonly identified at a more progressive stage. Therefore, it is critical to identify and characterize potential novel cancer-specific biomarkers to enhance early CC diagnosis. The goal was to assess their potential use as cancer biomarkers for the early detection and improvement of CC treatment. METHODS MAGE-C1, MAGE-C2, and MAGE-C3 family gene expression levels were examined using RT-PCR and qRT-PCR assays in 26 adjacent normal colon (NC) and CC tissue samples from male and female Saudi patients. Using several cell lines and the qRT-PCR technique, epigenetic control was also investigated to determine whether reduced treatment with 5-aza-2'-deoxycytidine, which reduces DNA methyltransferase, can increase the expression of the MAGE-C gene. The expression levels, promoter methylation, and prognostic significance of MAGE-C1, MAGE-C2, and MAGE-C3 genes across various cancers were analyzed using The Cancer Genome Atlas (TCGA) data. Additionally, the prognostic significance of these genes was assessed through Kaplan-Meier survival analysis. RESULTS The RT-PCR results showed that MAGE-C1, MAGE-C2, and MAGE-C3 gene expressions were significantly higher in the CC and NC tissues. The MAGE-C1 expression level was the highest in CC tissues (p < 0.0001), followed by MAGE-C3 (p = 0.0004) and MAGE-C2 (p = 0.0020) in descending order. The 5-aza-2'-deoxycytidine treatment significantly increased the mRNA expression levels of the MAGE-C1, MAGE-C2, and MAGE-C3 genes in HCT116, Caco-2, MCF-7, and MCF-10A cells. Expression analyses of TCGA samples revealed significant upregulation of these genes in several cancer types, with notable differences between normal, tumor, and metastatic tissues. Promoter methylation indicates hypomethylation in cancerous tissues. Survival analyses show that high expression levels of MAGE-C1 correlate with better prognosis, while MAGE-C3 is associated with poorer outcomes. CONCLUSIONS These results demonstrate that MAGE-C genes are viable prospective biomarkers of CC controlled by hypomethylating drugs, consequently offering a possible treatment target for CC in a specific population.
Collapse
Affiliation(s)
- Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (W.A.A.); (A.S.A.); (N.S.A.); (M.A.A.); (M.H.A.); (B.O.A.)
| | - Waad A. Alsoraie
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (W.A.A.); (A.S.A.); (N.S.A.); (M.A.A.); (M.H.A.); (B.O.A.)
| | - Turki M. Alrubie
- Laboratories Directorate, General Directorate of Animal Health, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia;
| | - Ahmad S. Alkhaldi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (W.A.A.); (A.S.A.); (N.S.A.); (M.A.A.); (M.H.A.); (B.O.A.)
| | - Nada S. Alhajri
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (W.A.A.); (A.S.A.); (N.S.A.); (M.A.A.); (M.H.A.); (B.O.A.)
| | - Monira A. Alaujan
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (W.A.A.); (A.S.A.); (N.S.A.); (M.A.A.); (M.H.A.); (B.O.A.)
| | - Manar H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (W.A.A.); (A.S.A.); (N.S.A.); (M.A.A.); (M.H.A.); (B.O.A.)
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (W.A.A.); (A.S.A.); (N.S.A.); (M.A.A.); (M.H.A.); (B.O.A.)
| |
Collapse
|
4
|
Liu X, Zhu X, Zhao Y, Shan Y, Gao Z, Yuan K. CDCA gene family promotes progression and prognosis in lung adenocarcinoma. Medicine (Baltimore) 2024; 103:e38581. [PMID: 38875380 PMCID: PMC11175971 DOI: 10.1097/md.0000000000038581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The cell division cycle-associated (CDCA) family participates in the cell cycle, and the dysregulation of its expression is associated with the development of several types of cancers. However, the roles of CDCAs in lung adenocarcinomas (LUAD) have not been investigated in systematic research. METHODS Using data retrieved from The Cancer Genome Atlas (TCGA), the expression of CDCAs in LUAD and normal tissues was compared, and survival analysis was performed using the data. Also, the correlation between clinical characteristics and the expression of CDCAs was assessed. Using data from cBioPortal, we investigated genetic alterations in CDCAs and their prognostic implications. Immunohistochemical analyses were performed to validate our findings from TCGA data. Following this, we created a risk score model to develop a nomogram. We also performed gene set enrichment analyses (GSEA), gene ontology, and KEGG pathway analysis. We used Timer to analyze the correlation between immune cell infiltration, tumor purity, and expression data. RESULTS Our results indicated that all CDCAs were expressed at high levels in LUAD; this could be associated with poor overall survival, as indicated in TCGA data. Univariate and multivariate Cox analyses revealed that CDCA4/5 could serve as independent risk factors. The results of immunohistochemical analyses confirmed our results. Based on the estimation of expression levels, clinical characteristics, alterations, and immune infiltration, the low-risk group of CDCA4/5 had a better prognosis than the high-risk group. Immune therapy is also a potential treatment option. CONCLUSION In conclusion, our findings indicate that CDCAs play important roles in LUAD, and CDCA4/5 can serve as diagnostic and prognostic biomarkers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- XiangSen Liu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xudong Zhu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi Zhao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuchen Shan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - ZhaoJia Gao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Yuan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
5
|
D’Angelo A, Kilili H, Chapman R, Generali D, Tinhofer I, Luminari S, Donati B, Ciarrocchi A, Giannini R, Moretto R, Cremolini C, Pietrantonio F, Sobhani N, Bonazza D, Prins R, Song SG, Jeon YK, Pisignano G, Cinelli M, Bagby S, Urrutia AO. Immune-related pan-cancer gene expression signatures of patient survival revealed by NanoString-based analyses. PLoS One 2023; 18:e0280364. [PMID: 36649303 PMCID: PMC9844904 DOI: 10.1371/journal.pone.0280364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.
Collapse
Affiliation(s)
- Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Oncology Department, Royal United Hospital, Bath, United Kingdom
- * E-mail:
| | - Huseyin Kilili
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Robert Chapman
- Department of Medicine, The Princess Alexandra Hospital, Harlow, United Kingdom
| | - Daniele Generali
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charite´ University Hospital, Berlin, Germany
| | - Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Benedetta Donati
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Riccardo Giannini
- Department of Surgery, Clinical, Molecular and Critical Care Pathology, University of Pisa, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Debora Bonazza
- Department of Medical, Surgical and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Robert Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Mattia Cinelli
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Araxi O. Urrutia
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Instituto de Ecologia, UNAM, Ciudad de Mexico, Mexico
| |
Collapse
|
6
|
Wang J, Hu Y, Hamidi H, Dos Santos C, Zhang J, Punnoose E, Li W. Immune microenvironment characteristics in multiple myeloma progression from transcriptome profiling. Front Oncol 2022; 12:948548. [PMID: 36033464 PMCID: PMC9413314 DOI: 10.3389/fonc.2022.948548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite the significant advances in treatment, relapsed and refractory MM has not yet been completely cured due to the immune dysfunction in the tumor microenvironment (TME). In this study, we analyzed the transcriptome data from patients with newly diagnosed (ND) and relapsed/refractory (R/R) MM to characterize differences in the TME and further decipher the mechanism of tumor progression in MM. We observed highly expressed cancer testis antigens and immune suppressive cell infiltration, such as Th2 and M2 cells, are associated with MM progression. Furthermore, the TGF-β signature contributes to the worse outcome of patients with R/R MM. Moreover, patients with ND MM could be classified into immune-low and immune-high phenotypes. Immune-high patients with higher IFN-g signatures are associated with MHC-II–mediated CD4+ T-cell response through CIITA stimulation. The baseline TME status could potentially inform new therapeutic choices for the ND MM who are ineligible for autologous stem cell transplantation and may help predict the response to CAR-T for patients with R/R MM. Our study demonstrates how integrating tumor transcriptome and clinical information to characterize MM immune microenvironment and elucidate potential mechanisms of tumor progression and immune evasion, which will provide insights into MM treatment selection.
Collapse
Affiliation(s)
- Jin Wang
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
| | - Yi Hu
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
| | - Habib Hamidi
- Oncology Biomarker Development, Genentech, Ltd., South San Francisco, CA, United States
| | - Cedric Dos Santos
- Oncology Biomarker Development, Genentech, Ltd., South San Francisco, CA, United States
| | - Jingyu Zhang
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
| | - Elizabeth Punnoose
- Oncology Biomarker Development, Genentech, Ltd., South San Francisco, CA, United States
| | - Wenjin Li
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
- *Correspondence: Wenjin Li,
| |
Collapse
|
7
|
Clonal evolution after treatment pressure in multiple myeloma: heterogenous genomic aberrations and transcriptomic convergence. Leukemia 2022; 36:1887-1897. [PMID: 35643867 PMCID: PMC9252918 DOI: 10.1038/s41375-022-01597-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
We investigated genomic and transcriptomic changes in paired tumor samples of 29 in-house multiple myeloma (MM) patients and 28 patients from the MMRF CoMMpass study before and after treatment. A change in clonal composition was found in 46/57 (82%) of patients, and single-nucleotide variants (SNVs) increased from median 67 to 86. The highest increase in prevalence of genetic aberrations was found in RAS genes (60% to 72%), amp1q21 (18% to 35%), and TP53 (9% to 18%). The SBS-MM1 mutation signature was detected both in patients receiving high and low dose melphalan. A total of 2589 genes were differentially expressed between early and late samples (FDR < 0.05). Gene set enrichment analysis (GSEA) showed increased expression of E2F, MYC, and glycolysis pathways and a decreased expression in TNF-NFkB and TGFbeta pathways in late compared to early stage. Single sample GSEA (ssGSEA) scores of differentially expressed pathways revealed that these changes were most evident in end-stage disease. Increased expression of several potentially targetable genes was found at late disease stages, including cancer-testis antigens, XPO1 and ABC transporters. Our study demonstrates a transcriptomic convergence of pathways supporting increased proliferation and metabolism during disease progression in MM.
Collapse
|
8
|
Füchsl F, Krackhardt AM. Adoptive Cellular Therapy for Multiple Myeloma Using CAR- and TCR-Transgenic T Cells: Response and Resistance. Cells 2022; 11:410. [PMID: 35159220 PMCID: PMC8834324 DOI: 10.3390/cells11030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Despite the substantial improvement of therapeutic approaches, multiple myeloma (MM) remains mostly incurable. However, immunotherapeutic and especially T cell-based approaches pioneered the therapeutic landscape for relapsed and refractory disease recently. Targeting B-cell maturation antigen (BCMA) on myeloma cells has been demonstrated to be highly effective not only by antibody-derived constructs but also by adoptive cellular therapies. Chimeric antigen receptor (CAR)-transgenic T cells lead to deep, albeit mostly not durable responses with manageable side-effects in intensively pretreated patients. The spectrum of adoptive T cell-transfer covers synthetic CARs with diverse specificities as well as currently less well-established T cell receptor (TCR)-based personalized strategies. In this review, we want to focus on treatment characteristics including efficacy and safety of CAR- and TCR-transgenic T cells in MM as well as the future potential these novel therapies may have. ACT with transgenic T cells has only entered clinical trials and various engineering strategies for optimization of T cell responses are necessary to overcome therapy resistance mechanisms. We want to outline the current success in engineering CAR- and TCR-T cells, but also discuss challenges including resistance mechanisms of MM for evading T cell therapy and point out possible novel strategies.
Collapse
Affiliation(s)
- Franziska Füchsl
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
| | - Angela M. Krackhardt
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
- German Cancer Consortium (DKTK), Partner-Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Einsteinstraße 25, 81675 Munich, Germany
| |
Collapse
|
9
|
Multipeptide stimulated PBMCs generate T EM/T CM for adoptive cell therapy in multiple myeloma. Oncotarget 2021; 12:2051-2067. [PMID: 34611479 PMCID: PMC8487724 DOI: 10.18632/oncotarget.28067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 12/05/2022] Open
Abstract
Multiple Myeloma (MM) patients suffer disease relapse due to the development of therapeutic resistance. Increasing evidence suggests that immunotherapeutic strategies can provide durable responses. Here we evaluate the possibility of adoptive cell transfer (ACT) by generating ex vivo T cells from peripheral blood mononuclear cells (PBMCs) isolated from MM patients by employing our previously devised protocols. We designed peptides from antigens (Ags) including cancer testis antigens (CTAs) that are over expressed in MM. We exposed PBMCs from different healthy donors (HDs) to single peptides. We observed reproducible Ag-specific cluster of differentiation 4+ (CD4+) and CD8+ T cell responses on exposure of PBMCs to different single peptide sequences. These peptide sequences were used to compile four different peptide cocktails. Naïve T cells from PBMCs from MM patients or HDs recognized the cognate Ag in all four peptide cocktails, leading to generation of multiclonal Ag-specific CD4+ and CD8+ effector and central memory T (TEM and TCM, respectively) cells which produced interferon-gamma (IFN-γ), granzyme B and perforin on secondary restimulation. Furthermore, this study demonstrated that immune cells from MM patients are capable of switching metabolic programs to induce effector and memory responses. Multiple peptides and cocktails were identified that induce IFN-γ+, T1-type, metabolically active T cells, thereby paving the way for feasibility testing of ACT in phase I clinical trials.
Collapse
|
10
|
Chen C, Gao D, Huo J, Qu R, Guo Y, Hu X, Luo L. Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer. Sci Rep 2021; 11:12172. [PMID: 34108519 PMCID: PMC8190062 DOI: 10.1038/s41598-021-91290-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer (BrC) subtype lacking effective therapeutic targets currently. The development of multi-omics databases facilities the identification of core genes for TNBC. Using TCGA-BRCA and METABRIC datasets, we identified CT83 as the most TNBC-specific gene. By further integrating FUSCC-TNBC, CCLE, TCGA pan-cancer, Expression Atlas, and Human Protein Atlas datasets, we found CT83 is frequently activated in TNBC and many other cancers, while it is always silenced in non-TNBC, 120 types of normal non-testis tissues, and 18 types of blood cells. Notably, according to the TCGA-BRCA methylation data, hypomethylation on chromosome X 116,463,019 to 116,463,039 is significantly correlated with the abnormal activation of CT83 in BrC. Using Kaplan-Meier Plotter, we demonstrated that activated CT83 is significantly associated with unfavorably overall survival in BrC and worse outcomes in some other cancers. Furthermore, GSEA suggested that the abnormal activation of CT83 in BrC is probably oncogenic by triggering the activation of cell cycle signaling. Meanwhile, we also noticed copy number variations and mutations of CT83 are quite rare in any cancer type, and its role in immune infiltration is not significant. In summary, we highlighted the significance of CT83 for TNBC and presented a comprehensive bioinformatics strategy for single-gene analysis in cancer.
Collapse
Affiliation(s)
- Chen Chen
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Dan Gao
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Jinlong Huo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Rui Qu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Youming Guo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Xiaochi Hu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Libo Luo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| |
Collapse
|
11
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021. [DOI: 10.37349/etat.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3University of Montpellier, UFR Medicine, 34093 Montpellier, France 4 Institut Universitaire de France (IUF), 75000 Paris France
| |
Collapse
|
12
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:65-106. [PMID: 36046090 PMCID: PMC9400753 DOI: 10.37349/etat.2021.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3UFR Medicine, University of Montpellier, 34093 Montpellier, France 4Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
13
|
Dufva O, Pölönen P, Brück O, Keränen MAI, Klievink J, Mehtonen J, Huuhtanen J, Kumar A, Malani D, Siitonen S, Kankainen M, Ghimire B, Lahtela J, Mattila P, Vähä-Koskela M, Wennerberg K, Granberg K, Leivonen SK, Meriranta L, Heckman C, Leppä S, Nykter M, Lohi O, Heinäniemi M, Mustjoki S. Immunogenomic Landscape of Hematological Malignancies. Cancer Cell 2020; 38:380-399.e13. [PMID: 32649887 DOI: 10.1016/j.ccell.2020.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Understanding factors that shape the immune landscape across hematological malignancies is essential for immunotherapy development. We integrated over 8,000 transcriptomes and 2,000 samples with multilevel genomics of hematological cancers to investigate how immunological features are linked to cancer subtypes, genetic and epigenetic alterations, and patient survival, and validated key findings experimentally. Infiltration of cytotoxic lymphocytes was associated with TP53 and myelodysplasia-related changes in acute myeloid leukemia, and activated B cell-like phenotype and interferon-γ response in lymphoma. CIITA methylation regulating antigen presentation, cancer type-specific immune checkpoints, such as VISTA in myeloid malignancies, and variation in cancer antigen expression further contributed to immune heterogeneity and predicted survival. Our study provides a resource linking immunology with cancer subtypes and genomics in hematological malignancies.
Collapse
MESH Headings
- Acute Disease
- Epigenesis, Genetic
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Genomics/methods
- HLA Antigens/genetics
- Humans
- Immunotherapy/methods
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Mutation
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Oscar Brück
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mikko A I Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Ashwini Kumar
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Sanna Siitonen
- Department of Clinical Chemistry, UH and HUSLAB, HUH, 00029 Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | | | | | - Kirsi Granberg
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University (TU), 33014 Tampere, Finland
| | - Suvi-Katri Leivonen
- Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Leo Meriranta
- Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Caroline Heckman
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Sirpa Leppä
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University (TU), 33014 Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, TU and Tays Cancer Center, Tampere University Hospital, 33521 Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
14
|
A minority of T cells recognizing tumor-associated antigens presented in self-HLA can provoke antitumor reactivity. Blood 2020; 136:455-467. [DOI: 10.1182/blood.2019004443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Tumor-associated antigens (TAAs) are monomorphic self-antigens that are proposed as targets for immunotherapeutic approaches to treat malignancies. We investigated whether T cells with sufficient avidity to recognize naturally overexpressed self-antigens in the context of self-HLA can be found in the T-cell repertoire of healthy donors. Minor histocompatibility antigen (MiHA)-specific T cells were used as a model, as the influence of thymic selection on the T-cell repertoire directed against MiHA can be studied in both self (MiHApos donors) and non-self (MiHAneg donors) backgrounds. T-cell clones directed against the HLA*02:01-restricted MiHA HA-1H were isolated from HA-1Hneg/HLA-A*02:01pos and HA-1Hpos/HLA-A*02:01pos donors. Of the 16 unique HA-1H–specific T-cell clones, five T-cell clones derived from HA-1Hneg/HLA-A*02:01pos donors and one T-cell clone derived from an HA-1Hpos/HLA-A*02:01pos donor showed reactivity against HA-1Hpos target cells. In addition, in total, 663 T-cell clones (containing at least 91 unique clones expressing different T-cell receptors) directed against HLA*02:01-restricted peptides of TAA WT1-RMF, RHAMM-ILS, proteinase-3-VLQ, PRAME-VLD, and NY-eso-1-SLL were isolated from HLA-A*02:01pos donors. Only 3 PRAME-VLD–specific and one NY-eso-1-SLL–specific T-cell clone provoked interferon-γ production and/or cytolysis upon stimulation with HLA-A*02:01pos malignant cell lines (but not primary malignant samples) naturally overexpressing the TAA. These results show that self-HLA–restricted T cells specific for self-antigens such as MiHA in MiHApos donors and TAAs are present in peripheral blood of healthy individuals. However, clinical efficacy would require highly effective in vivo priming by peptide vaccination in the presence of proper adjuvants or in vitro expansion of the low numbers of self-antigen–specific T cells of sufficient avidity to recognize endogenously processed antigen.
Collapse
|
15
|
Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma. Blood Adv 2020; 3:2022-2034. [PMID: 31289029 DOI: 10.1182/bloodadvances.2019000194] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/14/2019] [Indexed: 01/15/2023] Open
Abstract
This study in patients with relapsed, refractory, or high-risk multiple myeloma (MM) evaluated the safety and activity of autologous T cells engineered to express an affinity-enhanced T-cell receptor (TCR) that recognizes a peptide shared by cancer antigens New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and L-antigen family member 1 (LAGE-1) and presented by HLA-A*02:01. T cells collected from 25 HLA-A*02:01-positive patients with MM expressing NY-ESO-1 and/or LAGE-1 were activated, transduced with self-inactivating lentiviral vector encoding the NY-ESO-1c259TCR, and expanded in culture. After myeloablation and autologous stem cell transplant (ASCT), all 25 patients received an infusion of up to 1 × 1010 NY-ESO-1 specific peptide enhanced affinity receptor (SPEAR) T cells. Objective response rate (International Myeloma Working Group consensus criteria) was 80% at day 42 (95% confidence interval [CI], 0.59-0.93), 76% at day 100 (95% CI, 0.55-0.91), and 44% at 1 year (95% CI, 0.24-0.65). At year 1, 13/25 patients were disease progression-free (52%); 11 were responders (1 stringent complete response, 1 complete response, 8 very good partial response, 1 partial response). Three patients remained disease progression-free at 38.6, 59.2, and 60.6 months post-NY-ESO-1 SPEAR T-cell infusion. Median progression-free survival was 13.5 months (range, 3.2-60.6 months); median overall survival was 35.1 months (range, 6.4-66.7 months). Infusions were well tolerated; cytokine release syndrome was not reported. No fatal serious adverse events occurred during study conduct. NY-ESO-1 SPEAR T cells expanded in vivo, trafficked to bone marrow, demonstrated persistence, and exhibited tumor antigen-directed functionality. In this MM patient population, NY-ESO-1 SPEAR T-cell therapy in the context of ASCT was associated with antitumor activity. This trial was registered at www.clinicaltrials.gov as #NCT01352286.
Collapse
|
16
|
Liu J, Yu Z, Sun M, Liu Q, Wei M, Gao H. Identification of cancer/testis antigen 2 gene as a potential hepatocellular carcinoma therapeutic target by hub gene screening with topological analysis. Oncol Lett 2019; 18:4778-4788. [PMID: 31611988 PMCID: PMC6781590 DOI: 10.3892/ol.2019.10811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
The 5-year survival rate of hepatocellular carcinoma (HCC) is <20%; thus, identifying new potential therapeutic targets or novel biomarkers for prognosis prediction is crucial. The present study aimed to screen hub genes by constructing protein-protein interaction (PPI) subnetworks using topological analysis methods, as well as reveal their clinical significance through big data analytics and their association with the clinicopathological features. Firstly, the PPI subnetworks were constructed using four topological analysis methods, including the MCC, DMNC, MNC and degree methods, to obtain 6 hub genes. Subsequently, the hub gene cancer/testis antigen 2 (CTAG2), which affects the prognosis of HCC (overall survival, P=0.035), was acquired by analysing clinical data in The Cancer Genome Atlas database. Meanwhile, CTAG2 expression was significantly associated with the age at diagnosis (P=0.003), T stage (P=0.028), TNM stage (P=0.028) and α-fetoprotein (AFP) expression (P=0.045). Further immunohistochemical analysis of samples collected in our hospital revealed that the expression level of CTAG2 in 46 HCC tissues was significantly higher in comparison with that in paired adjacent tissues. The clinical data indicated that the expression of CTAG2 was significantly correlated with the hepatitis B virus status (P=0.010) and AFP expression (P=0.004). These results were then found to be consistent with the results of big data analytics. Furthermore, Gene Set Enrichment Analysis demonstrated that the function of CTAG2 in HCC may be associated with the cell cycle. Taken together, these findings suggest that CTAG2 may serve as a new potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jinwei Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qianqian Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Liaoning Engineering Technology Research Centre for The Research, Development and Industrialization of Innovative Peptide Drugs, Shenyang, Liaoning 110122, P.R. China
| | - Hua Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
17
|
Ahn JH, Hwang SH, Cho HS, Lee M. Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis. Biomol Ther (Seoul) 2019; 27:302-310. [PMID: 30293252 PMCID: PMC6513187 DOI: 10.4062/biomolther.2018.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PANTHER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitor-resistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sung-Hee Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
18
|
Cohen AD, Lendvai N, Nataraj S, Imai N, Jungbluth AA, Tsakos I, Rahman A, Mei AHC, Singh H, Zarychta K, Kim-Schulze S, Park A, Venhaus R, Alpaugh K, Gnjatic S, Cho HJ. Autologous Lymphocyte Infusion Supports Tumor Antigen Vaccine-Induced Immunity in Autologous Stem Cell Transplant for Multiple Myeloma. Cancer Immunol Res 2019; 7:658-669. [PMID: 30745365 DOI: 10.1158/2326-6066.cir-18-0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/19/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Abstract
Autologous stem cell transplant (autoSCT), the standard consolidation therapy for multiple myeloma, improves disease-free survival, but is not curative. This could be an ideal setting for immunologic therapy. However, the immune milieu is impaired after autoSCT. We hypothesized that autologous lymphocyte infusion would restore immune competence, allowing immunotherapies such as cancer vaccines to elicit tumor antigen-specific immunity in the setting of autoSCT. In this pilot study (NCT01380145), we investigated safety, immunologic, and clinical outcomes of autologous lymphocyte infusion combined with peri-autoSCT immunotherapy with recombinant MAGE-A3 (a multiple myeloma-associated antigen) and adjuvant. Thirteen patients with multiple myeloma undergoing autoSCT were enrolled. Autologous lymphocyte infusion and MAGE vaccination were well tolerated. Combination immunotherapy resulted in high-titer humoral immunity and robust, antigen-specific CD4+ T-cell responses in all subjects, and the responses persisted at least one year post-autoSCT. CD4+ T cells were polyfunctional and Th1-biased. CD8+ T-cell responses were elicited in 3 of 13 subjects. These cells recognized naturally processed MAGE-A3 antigen. Median progression-free survival was 27 months, and median overall survival was not reached, suggesting no differences from standard-of-care. In 4 of 8 subjects tested, MAGE-A protein expression was not detected by IHC in multiple myeloma cells at relapse, suggesting therapy-induced immunologic selection against antigen-expressing clones. These results demonstrated that autologous lymphocyte infusion augmentation of autoSCT confers a favorable milieu for immunotherapies such as tumor vaccines. This strategy does not require ex vivo manipulation of autologous lymphocyte products and is an applicable platform for further investigation into combination immunotherapies to treat multiple myeloma.
Collapse
Affiliation(s)
- Adam D Cohen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Nikoletta Lendvai
- Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Sarah Nataraj
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Naoko Imai
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York
| | | | - Ioanna Tsakos
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Anna Huo-Chang Mei
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Herman Singh
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Katarzyna Zarychta
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Andrew Park
- Ludwig Institute for Cancer Research, New York, New York
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, New York, New York
| | | | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York.,Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Hearn J Cho
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
19
|
Chen Z, Shi C, Gao S, Song D, Feng Y. Impact of protamine I on colon cancer proliferation, invasion, migration, diagnosis and prognosis. Biol Chem 2018; 399:265-275. [PMID: 29140788 DOI: 10.1515/hsz-2017-0222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022]
Abstract
This paper investigates protamine I (PRM1) expression and its effects on proliferation, invasion and migration of colon cancer cells as well as its function in clinical diagnosis and prognosis. Gene chips were used to screen differentially expressed genes. PRM1 expression was detected by Western blotting and quantitative real time-polymerase chain reaction (qRT-PCR). Hematoxylin and eosin (HE) staining and immunohistochemistry were utilized to compare the expression of PRM1 from multiple differentiation levels of colon cancer tissues. Cell viability, cell apoptosis and cell cycle were tested using the MTT assay and flow cytometry. Cell invasion and migration capability were tested using the Transwell assay and wound healing. In vivo effects of PRM1 on colon cancer were explored using a xenograft model. PRM1 expression in serum was detected by enzyme-linked immunosorbent assay (ELISA). The expression level of PRM1 was significantly higher in colon cancer tissues and the staining degree of PRM1 in poorly-differentiated was stronger. pcDNA3.1-PRM1 decreased cell apoptosis while it increased the proliferation, cell invasion and migration. The si-PRM1 group displayed an opposite tendency. The serum PRM1 level was significantly higher and could serve as a diagnostic biomarker for colon cancer.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Nephrology, First Hospital of Jilin University, Jilin 130021, Changchun, China
| | - Chunyu Shi
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Jilin 130033, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Jilin 130033, Changchun, China
| | - Defeng Song
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Jilin 130033, Changchun, China
| | - Ye Feng
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Jilin 130033, Changchun, China
| |
Collapse
|
20
|
Shires K, Van Wyk T. The role of Cancer/Testis Antigens in Multiple Myeloma pathogenesis and their application in disease monitoring and therapy. Crit Rev Oncol Hematol 2018; 132:17-26. [PMID: 30447924 DOI: 10.1016/j.critrevonc.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022] Open
Abstract
A unique group of genes, encoding tumour associated antigens, known as the Cancer/Testis Antigens (CTAs), have been explored as novel markers of disease progression and as targets of immunotherapy in several cancers, including the haematological malignancy Multiple Myeloma (MM). This review aims to update the knowledge of CTA involvement in MM pathogenesis and how their potential as biomarkers for disease monitoring and targets of immunotherapy has been explored in the MM disease arena. Despite the initial promise of these antigens, their use as immunotherapy targets has not been successful, yet with a greater understanding of their role in disease pathogenesis they may still have a significant role to play as biomarkers of disease and therapeutic targets.
Collapse
Affiliation(s)
- Karen Shires
- Division of Haematology, Department of Pathology, University of Cape Town and National Health Laboratory Service/Groote Schuur Hospital, Cape Town, South Africa.
| | - Teagan Van Wyk
- Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
21
|
Solodovnik AA, Mkrtchyan HS, Misyurin VA, Tikhonova VV, Finashutina YP, Kasatkina NN, Solopova ON, Votyakova OM, Yakimovich OY, Volodina OM, Kichigina MY, Medvedovskaya EG, Antipova AS, Zavodnova IZ, Semenova AA, Arakelyan GR, Ryabukhina YE, Kolomeytsev OA, Shirin AD, Osmanov EA, Misyurin AV. EXPRESSION OF CANCER-TESTIS GENES PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 IN PATIENTS WITH MULTIPLE MYELOMA, THEIR INFLUENCE ON OVERALL SURVIVAL AND RELAPSE RATE. ACTA ACUST UNITED AC 2018. [DOI: 10.17650/2313-805x-2018-5-2-62-70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective:to study the prognostic significance of the expression of cancer-testis (CT) genes PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 in patients with multiple myeloma (MM) and their influence on overall survival and relapse rate. To determine their effect on suсh clinical parameters as levels of lactate dehydrogenase, leucocytes, hemoglobin, calcium, albumen, creatinine, beta-2-microglobulin.Materials and methods.Real-time polymerase chain reaction was performed on complementary DNA obtained from bone marrow of 77 patients with MM. The statistical analysis was performed using the Statistica 10.0 software package. To estimate prognostic values of the CT gene expression data were analyzed by the Kaplan – Meier method.Results.The study was conducted to determine the level of expression of CT genes PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 in a group of patients with MM. The group included primary and receiving cancer treatment in MM patients. According to the log-rank criterion expression of any of the CT genes PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 exerts a significant influence on overall survival and progression-free survival/relapse. It was also determined that providing expression of some CT genes, the levels of creatinine, calcium, beta-2-microglobulin were much higher to compare with patients without expression.
Collapse
|
22
|
De la Cruz-Rosas A, Martínez-Tovar A, Ramos-Peñafiel C, Cerón-Maldonado R, García-Laguna A, Mendoza-Salas I, Miranda-Peralta E, Collazo-Jaloma J, Olarte-Carrillo I. Expression of genes MAGE-A3 MAGE-C1, NY-ESO-1 and SSX1 in patients with multiple myeloma at the General Hospital of Mexico. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2018. [DOI: 10.1016/j.hgmx.2016.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Wei Y, Wang Y, Gong J, Rao L, Wu Z, Nie T, Shi D, Zhang L. High expression of MAGE-A9 contributes to stemness and malignancy of human hepatocellular carcinoma. Int J Oncol 2017; 52:219-230. [PMID: 29138811 DOI: 10.3892/ijo.2017.4198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/23/2017] [Indexed: 01/30/2023] Open
Abstract
MAGE-A9, a well-characterized cancer testis antigen (CTA), belongs to a member of melanoma antigen gene (MAGE) family. In human malignancies, aberrant expression of MAGE genes correlated with poor clinical prognosis, increased tumor growth, metastases, and enrichment in stem cell populations of certain cancers. Cancer stem cells (CSCs) have been proposed to contribute to the major malignant phenotypes of liver cancer, including recurrence, metastasis and chemoresistance. However, expression and potential role of MAGE-A9 in liver cancer stem cells (LCSCs) still remain unclear. In the present study, we first analyzed the expression profiling of MAGE family genes in EpCAM+ and EpCAM- human hepatocellular carcinoma (HCC), based on public Gene Expression Omnibus (GEO) database. Among these examined MAGE members, MAGE-A9 is the only one with significantly higher expression in EpCAM+ HCC specimens as compared with EpCAM- HCC. Quantitative PCR analysis further confirmed that MAGE-A9 expression significantly elevated in a subtype of HCC patients that had features of hepatic stem/progenitor cells with high-level expression of EpCAM and α-fetoprotein (AFP). Moreover, MAGE-A9 displayed remarkably enriched expression in EpCAM+ HCC cells that were sorted by fluorescence-activated cell sorting and cultured HCC cell spheroids with characteristics of stem/progenitor cells. Functional experiments further revealed that MAGE-A9 overexpression promoted cell proliferation, colony formation, migration, chemoresistance, and tumorigenicity in the context of EpCAM+ HCC cells, whereas MAGE-A9 knockdown significantly inhibited anchorage-dependent and spheroid colony formation and in vivo tumorigenicity. Collectively, these data demonstrate that MAGE-A9 functions as an important regulator of LCSCs, and MAGE-A9 may serve as a potential therapeutic target against HCC stem/progenitor cells.
Collapse
Affiliation(s)
- Youping Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Yanqin Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Jing Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Lihua Rao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Zhiwei Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Teng Nie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Dongling Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Liming Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|
24
|
Mori M, Funakoshi T, Kameyama K, Kawakami Y, Sato E, Nakayama E, Amagai M, Tanese K. Lack of XAGE-1b and NY-ESO-1 in metastatic lymph nodes may predict the potential survival of stage III melanoma patients. J Dermatol 2017; 44:671-680. [PMID: 28105694 DOI: 10.1111/1346-8138.13730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
The cancer-testis antigens (CTA) are a large family of tumor-associated antigens expressed by a variety of cancer cells and primitive germ cells of the adult testis and placenta. These tumor-restricted expressing patterns suggest that CTA would be ideal targets for tumor-specific immunotherapy. XAGE-1 is a CTA that was originally identified by computer-based screening, and four transcription variants, XAGE-1a, -1b, -1c and -1d, have been characterized to date. Although the presence of XAGE-1 transcripts has been reported in various cancers, the expression of XAGE-1b in melanoma has not been fully characterized. In this study, we performed immunohistochemical staining of XAGE-1b together with NY-ESO-1, a well-known CTA, in 113 melanoma samples obtained from 84 patients and evaluated their expression in tumor cells. The effects of expression on tumor progression and patient prognosis were analyzed. Both XAGE-1b and NY-ESO-1 were expressed at high levels in lymph node metastasis and skin metastasis samples compared with the primary site (P < 0.01 in XAGE-1b and P < 0.05 in NY-ESO-1). In a subgroup analysis of 22 patients with stage III lymph node metastasis, overall survival was significantly higher in the XAGE-1b and NY-ESO-1 double-negative group than in the other groups (P < 0.05). These results suggest that lack of XAGE-1b and NY-ESO-1 expression could have a positive influence on clinical outcome in patients with melanoma.
Collapse
Affiliation(s)
- Mariko Mori
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science (Medical Research Center), Tokyo Medical University, Tokyo, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
High expression levels of MAGE-A9 are correlated with unfavorable survival in lung adenocarcinoma. Oncotarget 2016; 7:4871-81. [PMID: 26717042 PMCID: PMC4826249 DOI: 10.18632/oncotarget.6741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023] Open
Abstract
A variety of melanoma-associated antigen-A (MAGE-A) protein are commonly detected in lung cancers. Their biological function is not well characterized but may involve cell cycle progression and the regulation of apoptosis. We hypothesized that MAGE-A9 is involved in the regulation of apoptosis. To test this hypothesis, we evaluated MAGE-A9 protein expression by immunohistochemical staining and we assessed the relationship between the expression of MAGE-A9 and clinical pathological parameters. In addition, we investigated the effect of MAGE-A9 down-regulation in lung adenocarcinoma. The results showed that a high expression level of MAGE-A9 protein in lung adenocarcinoma tumor cells was related to larger tumor diameter (P = 0.013) and poor differentiation (P = 0.029). Cox regression analysis revealed that the expression of MAGE-A9 in lung adenocarcinoma tumor cells (P < 0.001) is an independent prognostic factor in five-year survival rates. NSCLC cells with silenced MAGE-A9 had decreased cell proliferation, migration and invasion in cell culture compared to corresponding control cells. The NSCLC cells showing down-regulated MAGE-A9 induced the expression of apoptosis-associated proteins. In addition, MAGE-A9 was associated with resistance to conventional chemotherapeutic agents. Our findings provide evidence that MAGE-A9 could be a potential therapeutic target in NSCLC.
Collapse
|
26
|
Al-Hujaily EM, Oldham RAA, Hari P, Medin JA. Development of Novel Immunotherapies for Multiple Myeloma. Int J Mol Sci 2016; 17:E1506. [PMID: 27618026 PMCID: PMC5037783 DOI: 10.3390/ijms17091506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM). It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM.
Collapse
Affiliation(s)
- Ensaf M Al-Hujaily
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Robyn A A Oldham
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Parameswaran Hari
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Thang PM, Takano A, Yoshitake Y, Shinohara M, Murakami Y, Daigo Y. Cell division cycle associated 1 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol 2016; 49:1385-93. [PMID: 27499128 DOI: 10.3892/ijo.2016.3649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Oral cavity carcinoma (OCC) is one of the most common causes of cancer-related death worldwide and has poor clinical outcome after standard therapies. Therefore, new prognostic biomarkers and therapeutic targets for OCC are urgently needed. We selected cell division cycle associated 1 (CDCA1) as a candidate OCC biomarker. Immunohistochemical analysis confirmed that CDCA1 protein was expressed in 67 of 99 OCC tissues (67.7%), but not in healthy oral epithelia. CDCA1 expression was significantly associated with poor prognosis in OCC patients (P=0.0244). Knockdown of CDCA1 by siRNAs significantly increased apoptosis of tumor cells. These data suggest that CDCA1 represents a novel prognostic biomarker and therapeutic target for OCC.
Collapse
Affiliation(s)
- Phung Manh Thang
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Ghafouri-Fard S, Seifi-Alan M, Shamsi R, Esfandiary A. Immunotherapy in Multiple Myeloma Using Cancer-Testis Antigens. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e3755. [PMID: 26634107 PMCID: PMC4667235 DOI: 10.17795/ijcp-3755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/29/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022]
Abstract
Context: Multiple myeloma (MM) is a B-cell malignancy characterized by monoclonal expansion of abnormal plasma cells in the bone marrow. It accounts for 10% of hematological malignancies. Although patients respond to a wide range of anticancer modalities, relapse occurs in a significant number of the cases. Immunotherapeutic approaches have been evolved to tackle this problem. Cancer-testis antigens CTAs as a group of tumor-associated antigens are appropriate targets for cancer immunotherapy as they have restricted expression pattern in normal tissues except for testis which is an immune-privileged site. Expression of these antigens has been assessed in different malignancies including MM. Evidence Acquisition: We performed a computerized search of the MEDLINE/PubMed databases with key words: multiple myeloma, cancer-testis antigen, and cancer stem cell and immunotherapy. Results: Several CTAs including NY-ESO-1, MAGE and GAGE family have been shown to be expressed in MM patients. Cellular and humoral immune responses against these antigens have been detected in MM patients. Conclusions: The frequent and high expression level of CTAs in MM patients shows that these antigens can be applied as cancer biomarkers as well as targets for immunotherapy in these patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mahnaz Seifi-Alan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
29
|
Nobeyama Y, Nakagawa H. Aberrant demethylation and expression of MAGEB2 in a subset of malignant peripheral nerve sheath tumors from neurofibromatosis type 1. J Dermatol Sci 2015; 81:118-23. [PMID: 26642794 DOI: 10.1016/j.jdermsci.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 10/08/2015] [Accepted: 11/10/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) occur in several percent of neurofibromatosis type 1 (NF-1) patients. When a CpG island (CGI) in the 5' region of a gene is methylated, transcription of that gene may be suppressed. Although cancer-testis antigens, including MAGEB2, are potential therapeutic targets for cancer in medical practice, information on MAGEB2 in MPNST is scarce. OBJECTIVE The purpose is to clarify the methylation status and expression of MAGEB2 in MPNSTs derived from patients with NF-1. METHODS Quantitative real-time methylation-specific PCR (RT-MSP) and quantitative real-time reverse transcription-PCR (RT-PCR) were performed to measure methylation and mRNA expression, respectively, in MPNST cell lines and in MPNST and neurofibroma samples from patients with NF-1. Immunohistochemical analysis was also performed to assess MAGEB2 protein expression. RESULTS RT-MSP and RT-PCR data showed low methylation levels and detectable mRNA expression of MAGEB2, respectively, in one MPNST cell line, but high methylation level and absence of expression in each other cell line and in normal cells. Based on RT-MSP data, 3 of 18 MPNST clinical samples exhibited low methylation levels; in contrast, all cutaneous and plexiform neurofibroma samples and normal cells exhibited high methylation levels. Methylation levels were not significantly associated with any clinical parameters. Immunohistochemical analysis revealed expression of MAGEB2 protein in MPNST clinical samples with the low methylation level. CONCLUSIONS MAGEB2 can be aberrantly demethylated and expressed in MPNSTs. Conversely, the gene may not be demethylated in any types of neurofibroma, suggesting that the demethylation does not occur before malignant transformation.
Collapse
Affiliation(s)
- Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, 25-8 Nishi-Shimbashi 3-chome, Minato-ku, Tokyo, Japan.
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, 25-8 Nishi-Shimbashi 3-chome, Minato-ku, Tokyo, Japan
| |
Collapse
|
30
|
Bam R, Khan S, Ling W, Randal SS, Li X, Barlogie B, Edmondson R, Yaccoby S. Primary myeloma interaction and growth in coculture with healthy donor hematopoietic bone marrow. BMC Cancer 2015; 15:864. [PMID: 26545722 PMCID: PMC4636897 DOI: 10.1186/s12885-015-1892-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/01/2015] [Indexed: 01/28/2023] Open
Abstract
Background Human primary myeloma (MM) cells do not survive in culture; current in vitro and in vivo systems for growing these cells are limited to coculture with a specific bone marrow (BM) cell type or growth in an immunodeficient animal model. The purpose of the study is to establish an interactive healthy donor whole BM based culture system capable of maintaining prolonged survival of primary MM cells. This normal BM (NBM) coculture system is different from using autologous BM that is already affected by the disease. Methods Whole BM from healthy donors was cultured in medium supplemented with BM serum from MM patients for 7 days, followed by 7 days of coculture with CD138-selected primary MM cells or MM cell lines. MM cells in the coculture were quantified using flow cytometry or bioluminescence of luciferase-expressing MM cells. T-cell cytokine array and proteomics were performed to identify secreted factors. Results NBM is composed of adherent and nonadherent compartments containing typical hematopoietic and mesenchymal cells. MM cells, or a subset of MM cells, from all examined cases survived and grew in this system, regardless of the MM cells’ molecular risk or subtype, and growth was comparable to coculture with individual stromal cell types. Adherent and nonadherent compartments supported MM growth, and this support required patient serum for optimal growth. Increased levels of MM growth factors IL-6 and IL-10 along with MM clinical markers B2M and LDHA were detected in supernatants from the NBM coculture than from the BM cultured alone. Levels of extracellular matrix factors (e.g., MMP1, HMCN1, COL3A1, ACAN) and immunomodulatory factors (e.g., IFI16, LILRB4, PTPN6, AZGP1) were changed in the coculture system. The NBM system protected MM cells from dexamethasone but not bortezomib, and effects of lenalidomide varied. Conclusions The NBM system demonstrates the ability of primary MM plasma cells to interact with and to survive in coculture with healthy adult BM. This model is suitable for studying MM-microenvironment interactions, particularly at the early stage of engagement in new BM niches, and for characterizing MM cell subpopulations capable of long-term survival through secretion of extracellular matrix and immune-related factors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1892-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rakesh Bam
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Sharmin Khan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Wen Ling
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Shelton S Randal
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Ricky Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Shmuel Yaccoby
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
31
|
Falkenburg JHF, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol 2015; 9:1894-903. [PMID: 26578450 DOI: 10.1016/j.molonc.2015.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several mechanisms can be responsible for control of hematological tumors by allo-reactive T cells. Following allogeneic stem cell transplantation (alloSCT) donor T cells recognizing genetic disparities presented on recipient cells and not on donor cells are main effectors of tumor control, but also of the detrimental graft versus host disease (GVHD). Since after transplantation normal hematopoiesis is of donor origin, any T cell response directed against polymorphic antigens expressed on hematopoietic recipient cells but not on donor cells will result in an anti-tumor response not affecting normal hematopoiesis. After fully HLA-matched alloSCT, T cells recognizing polymorphic peptides derived from proteins encoded by genes selectively expressed in hematopoietic lineages may result in anti-tumor responses without GVHD. Due to the high susceptibility of hematopoietic cells for T cell recognition, a low amplitude of the overall T cell response may also be in favor of the anti-tumor reactivity in hematological malignancies. A mismatch between donor and patient for specific HLA-alleles can also be exploited to induce a selective T cell response against patient (malignant) hematopoietic cells. If restricting HLA class II molecules are selectively expressed on hematopoietic cells under non-inflammatory circumstances, allo HLA class-II responses may control the tumor with limited risk of GVHD. Alternatively, T cells recognizing hematopoiesis-restricted antigens presented in the context of mismatched HLA alleles may be used to treat patients with hematological cancers. This review discusses various ways to manipulate the allo-immune response aiming to exploit the powerful ability of allo-reactive T-cells to control the malignancies without causing severe damage to non-hematopoietic tissues.
Collapse
Affiliation(s)
- J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Netherlands
| | - I Jedema
- Department of Hematology, Leiden University Medical Center, Netherlands.
| |
Collapse
|
32
|
Peche LY, Ladelfa MF, Toledo MF, Mano M, Laiseca JE, Schneider C, Monte M. Human MageB2 Protein Expression Enhances E2F Transcriptional Activity, Cell Proliferation, and Resistance to Ribotoxic Stress. J Biol Chem 2015; 290:29652-62. [PMID: 26468294 DOI: 10.1074/jbc.m115.671982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 12/15/2022] Open
Abstract
MageB2 belongs to the melanoma antigen gene (MAGE-I) family of tumor-specific antigens. Expression of this gene has been detected in human tumors of different origins. However, little is known about the protein function and how its expression affects tumor cell phenotypes. In this work, we found that human MageB2 protein promotes tumor cell proliferation in a p53-independent fashion, as observed both in cultured cells and growing tumors in mice. Gene expression analysis showed that MageB2 enhances the activity of E2F transcription factors. Mechanistically, the activation of E2Fs is related to the ability of MageB2 to interact with the E2F inhibitor HDAC1. Cellular distribution of MageB2 protein includes the nucleoli. Nevertheless, ribotoxic drugs rapidly promote its nucleolar exit. We show that MageB2 counteracts E2F inhibition by ribosomal proteins independently of Mdm2 expression. Importantly, MageB2 plays a critical role in impairing cell cycle arrest in response to Actinomycin D. The data presented here support a relevant function for human MageB2 in cancer cells both under cycling and stressed conditions, presenting a distinct functional feature with respect to other characterized MAGE-I proteins.
Collapse
Affiliation(s)
- Leticia Y Peche
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - María F Ladelfa
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - María F Toledo
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Miguel Mano
- the International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34149 Trieste, Italy, and
| | - Julieta E Laiseca
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Claudio Schneider
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Padriciano 99, 34149 Trieste, Italy, the Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Martín Monte
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina,
| |
Collapse
|
33
|
Lajmi N, Luetkens T, Yousef S, Templin J, Cao Y, Hildebrandt Y, Bartels K, Kröger N, Atanackovic D. Cancer-testis antigen MAGEC2 promotes proliferation and resistance to apoptosis in Multiple Myeloma. Br J Haematol 2015; 171:752-62. [DOI: 10.1111/bjh.13762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Nesrine Lajmi
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Tim Luetkens
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Sara Yousef
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
- Stem Cell Transplantation; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Julia Templin
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Yanran Cao
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - York Hildebrandt
- Stem Cell Transplantation; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Katrin Bartels
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Nicolaus Kröger
- Stem Cell Transplantation; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Djordje Atanackovic
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
34
|
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer. MICROARRAYS 2015; 4:287-310. [PMID: 26388997 PMCID: PMC4573573 DOI: 10.3390/microarrays4020287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Collapse
|
35
|
Xu Y, Wang C, Zhang Y, Jia L, Huang J. Overexpression of MAGE-A9 Is Predictive of Poor Prognosis in Epithelial Ovarian Cancer. Sci Rep 2015; 5:12104. [PMID: 26175056 PMCID: PMC4502509 DOI: 10.1038/srep12104] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/11/2015] [Indexed: 01/16/2023] Open
Abstract
The cancer testis antigen, melanoma-associated antigen A9 (MAGE-A9), is expressed in many kinds of different human cancers, and is an important target for immunotherapy. However, the clinicopathologic significance of MAGE-A9 in epithelial ovarian cancer (EOC) is unknown. In this study, real-time PCR (12 carcinomas of high FIGO stage, 12 carcinomas of low FIGO stage, and 20 normal ovary or fallopian tube tissues) and immunohistochemistry by tissue microarrays (128 carcinomas and 112 normal ovary or fallopian tube tissues, benign or borderline ovarian tumor tissues) were performed to characterize expression of MAGE-A9 in EOC. We found that significantly higher MAGE-A9 mRNA expression in EOC tumors than that in normal ovary or fallopian tube tissues (all P < 0.05). Protein expression of MAGE-A9 was significantly associated with FIGO stage, high histological grade, level of CA-125 and metastasis. Consistent with the associated poor clinicopathologic features, patients with MAGE-A9H (high-expressing) tumors had a worse overall survival as compared to patients with MAGE-A9L (low or none-expressing) tumors. Further studies revealed that MAGE-A9 overexpression was an independent prognostic factor for overall survival (OS). Multivariate analysis showed that patients with MAGE-A9 overexpressing tumors had extremely poor OS. These findings indicate that MAGE-A9 expression may be helpful in predicting EOC prognosis.
Collapse
Affiliation(s)
- Yunzhao Xu
- Department of Obstetrics and Gynecology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Chenyi Wang
- Department of Obstetrics and Gynecology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Lizhou Jia
- Department of Obstetrics and Gynecology, The Affiliated People's Hospital of Inner Mongolia Medical College, Inner Mongolia Autonomous Region 010021, China
| | - Jianfei Huang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| |
Collapse
|
36
|
Vaccination of multiple myeloma: Current strategies and future prospects. Crit Rev Oncol Hematol 2015; 96:339-54. [PMID: 26123319 DOI: 10.1016/j.critrevonc.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023] Open
Abstract
Tumor immunotherapy holds great promise in controlling multiple myeloma (MM) and may provide an alternative treatment modality to conventional chemotherapy for MM patients. For this reason, a major area of investigation is the development of cancer vaccines to generate myeloma-specific immunity. Several antigens that are able to induce specific T-cell responses are involved in different critical mechanisms for cell differentiation, inhibition of apoptosis, demethylation and proliferation. Strategies under development include infusion of vaccine-primed and ex vivo expanded/costimulated autologous T cells after high-dose melphalan, genetic engineering of autologous T cells with receptors for myeloma-specific epitopes, administration of dendritic cell/plasma cell fusions and administration expanded marrow-infiltrating lymphocytes. In addition, novel immunomodulatory drugs may synergize with immunotherapies. The task ahead is to evaluate these approaches in appropriate clinical settings, and to couple them with strategies to overcome mechanisms of immunoparesis as a means to induce more robust clinically significant immune responses.
Collapse
|
37
|
Sugimasa H, Taniue K, Kurimoto A, Takeda Y, Kawasaki Y, Akiyama T. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells. Biochem Biophys Res Commun 2015; 459:29-35. [DOI: 10.1016/j.bbrc.2015.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
38
|
Zhang S, Zhai X, Wang G, Feng J, Zhu H, Xu L, Mao G, Huang J. High expression of MAGE-A9 in tumor and stromal cells of non-small cell lung cancer was correlated with patient poor survival. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:541-550. [PMID: 25755744 PMCID: PMC4348844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Melanoma associated antigen-A (MAGE-A) is an oncogene and correlated with tumor initiation and development. However the roles of MAGE-A9 in non-small cell lung cancer (NSCLC) are still unknown. We investigated MAGE-A9 mRNA expression in 18 tumor tissues of NSCLC by qRT-PCR and MAGE-A9 protein expression in 213 NSCLC samples of tissue arrays by immunohistochemical staining. We assessed the relationship between MAGE-A9 expression and clinical parameters. The results showed that the high expression of MAGE-A9 protein in NSCLC tumor cells were commonly present in squamous cell carcinomas (P = 0.030). It was also related to larger tumor diameter, lymph node metastasis and later stage grouping with TNM classification (all P < 0.05). Whereas the expression of MAGE-A9 in stromal cells was higher in squamous cell carcinomas as well. Cox regression univariate and multivariable analysis revealed that MAGE-A9 expression in tumor cells of NSCLC (P < 0.001) is an independent prognostic factor in five-year overall survival rate. We concluded that the molecular assessment of MAGEA9 could be considered to improve prognostic evaluation and to identify eligible patients for potential target therapy.
Collapse
Affiliation(s)
- Siya Zhang
- Department of Chemotherapy, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| | - Xiaolu Zhai
- Department of Chemotherapy, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| | - Gui Wang
- Department of Respiratory, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| | - Huijun Zhu
- Department of Pathology, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| | - Guoxin Mao
- Department of Chemotherapy, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| | - Jianfei Huang
- Department of Pathology, Nantong University Affiliated HospitalNantong 226001, Jiangsu, China
| |
Collapse
|
39
|
Yao J, Caballero OL, Yung WKA, Weinstein JN, Riggins GJ, Strausberg RL, Zhao Q. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res 2014; 2:371-9. [PMID: 24764584 PMCID: PMC4007352 DOI: 10.1158/2326-6066.cir-13-0088] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer-testis (CT) antigens are potential targets for cancer immunotherapy because of their restricted expression in immune-privileged germ cells and various malignancies. Current application of CT-based immunotherapy has been focused on CT expression-rich tumors such as melanoma and lung cancers. In this study, we surveyed CT expression using The Cancer Genome Atlas (TCGA) datasets for ten common cancer types. We show that CT expression is specific and enriched within certain cancer molecular subtypes. For example, HORMAD1, CXorf61, ACTL8, and PRAME are highly enriched in the basal subtype of breast cancer; MAGE and CSAG are most frequently activated in the magnoid subtype of lung adenocarcinoma; and PRAME is highly upregulated in the ccB subtype of clear cell renal cell carcinoma. Analysis of CT gene expression and DNA methylation indicates that some CTs are regulated epigenetically, whereas others are controlled primarily by tissue- and subtype-specific transcription factors. Our results suggest that although for some CT expression is associated with patient outcome, not many are independent prognostic markers. Thus, CTs with shared expression pattern are heterogeneous molecules with distinct activation modes and functional properties in different cancers and cancer subtypes. These data suggest a cancer subtype-orientated application of CT antigen as biomarkers and immunotherapeutic targets.
Collapse
Affiliation(s)
- Jun Yao
- Authors' Affiliations: Departments of Ludwig Collaborative Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Bao L, Lu J, Liu KY, Li JL, Qin YZ, Chen H, Li LD, Kong Y, Shi HX, Lai YY, Liu YR, Jiang B, Chen SS, Huang XJ, Ruan GR. The clinical value of the quantitative detection of four cancer-testis antigen genes in multiple myeloma. Mol Cancer 2014; 13:25. [PMID: 24499297 PMCID: PMC3922338 DOI: 10.1186/1476-4598-13-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cancer-testis (CT) antigen genes might promote the progression of multiple myeloma (MM). CT antigens may act as diagnostic and prognostic markers in MM, but their expression levels and clinical implications in this disease are not fully understood. This study measured the expression levels of four CT antigen genes in Chinese patients with MM and explored their clinical implications. METHODS Real-time quantitative polymerase chain reaction (qPCR) was used to quantify the expression of MAGE-C1/CT7, MAGE-A3, MAGE-C2/CT10 and SSX-2 mRNA in 256 bone marrow samples from 144 MM patients. RESULTS In the newly diagnosed patients, the positive expression rates were 88.5% for MAGE-C1/CT7, 82.1% for MAGE-C2/CT10, 76.9% for MAGE-A3 and 25.6% for SSX-2. The expression levels and the number of co-expressed CT antigens correlated significantly with several clinical indicators, including the percentage of plasma cells infiltrating the bone marrow, abnormal chromosome karyotypes and the clinical course. CONCLUSION MAGE-C1/CT7, MAGE-A3, MAGE-C2/CT10 and SSX-2 expression levels provide potentially effective clinical indicators for the auxiliary diagnosis and monitoring of treatment efficacy in MM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiao-Jun Huang
- Peking University People's Hospital and Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No,11 Xi-Zhi-Men South Street, 100044 Beijing, China.
| | | |
Collapse
|
41
|
Klippel ZK, Chou J, Towlerton AM, Voong LN, Robbins P, Bensinger WI, Warren EH. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther 2014; 21:337-42. [PMID: 24451117 PMCID: PMC4040020 DOI: 10.1038/gt.2013.87] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 01/11/2023]
Abstract
Adoptive immunotherapy of tumors with T cells specific for the cancer-testis antigen NY-ESO-1 has shown great promise in preclinical models and in early stage clinical trials. Tumor persistence or recurrence after NY-ESO-1-specific therapy occurs, however, and the mechanisms of recurrence remain poorly defined. In a murine xenograft model of NY-ESO-1+ multiple myeloma, we observed tumor recurrence after adoptive transfer of CD8+ T cells genetically redirected to the prototypic NY-ESO-1157-165 peptide presented by HLA-A*02:01. Analysis of the myeloma cells that had escaped from T cell control revealed intact expression of NY-ESO-1 and B2M, but selective, complete loss of HLA-A*02:01 expression from the cell surface. Loss of heterozygosity in the Major Histocompatibility Complex (MHC) involving the HLA-A locus was identified in the tumor cells, and further analysis revealed selective loss of the allele encoding HLA-A*02:01. Although loss of heterozygosity involving the MHC has not been described in myeloma patients with persistent or recurrent disease after immune therapies such as allogeneic hematopoietic cell transplantation (HCT), it has been described in patients with acute myelogenous leukemia who relapsed after allogeneic HCT. These results suggest that MHC loss should be evaluated in patients with myeloma and other cancers who relapse after adoptive NY-ESO-1-specific T cell therapy.
Collapse
Affiliation(s)
- Z K Klippel
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| | - J Chou
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| | - A M Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - L N Voong
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Molecular Biosciences, Northwestern University, Bethesda, MD, USA
| | - P Robbins
- Surgery Branch, National Cancer Institute, Bethesda, MD, USA
| | - W I Bensinger
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| | - E H Warren
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
A Panel of Cancer Testis Antigens and Clinical Risk Factors to Predict Metastasis in Colorectal Cancer. J Biomark 2014; 2014:272683. [PMID: 26317029 PMCID: PMC4437385 DOI: 10.1155/2014/272683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third common carcinoma with a high rate of mortality worldwide and several studies have investigated some molecular and clinicopathological markers for diagnosis and prognosis of its malignant phenotypes. The aim of this study is to evaluate expression frequency of PAGE4, SCP-1, and SPANXA/D cancer testis antigen (CTA) genes as well as some clinical risk markers to predict liver metastasis of colorectal cancer patients. The expression frequency of PAGE4, SCP-1, and SPANXA/D cancer/testis antigen (CTA) genes was obtained using reverse transcription polymerase chain reaction (RT-PCR) assay in 90 colorectal tumor samples including both negative and positive liver metastasis tumors. Statistical analysis was performed to assess the association of three studied genes and clinical risk factors with CRC liver metastasis. The frequency of PAGE4 and SCP-1 genes expression was significantly higher in the primary tumours with liver metastasis when statistically compared with primary tumors with no liver metastasis (P < 0.05). Among all clinical risk factors studied, the lymph node metastasis and the depth of invasion were statistically correlated with liver metastasis of CRC patients. In addition, using multiple logistic regression, we constructed a model based on PAGE4 and lymph node metastasis to predict liver metastasis of CRC.
Collapse
|
43
|
Kobayashi Y, Takano A, Miyagi Y, Tsuchiya E, Sonoda H, Shimizu T, Okabe H, Tani T, Fujiyama Y, Daigo Y. Cell division cycle-associated protein 1 overexpression is essential for the malignant potential of colorectal cancers. Int J Oncol 2013; 44:69-77. [PMID: 24247253 DOI: 10.3892/ijo.2013.2177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022] Open
Abstract
To identify new cancer biomarkers and therapeutic targets for colorectal cancers (CRCs), we performed immunohistochemical analysis using tissue microarrays covering archival tumor tissue samples from 434 CRC patients and antibodies to cell division cycle-associated protein 1 (CDCA1) that was originally identified as an oncoantigen by our gene expression profile database, and compared its expression with several clinicopathological factors. Strong CDCA1 positivity was associated with poorer prognosis for patients with CRC (P=0.019) and multivariate analysis confirmed its independent prognostic value. In addition, transfection of siRNAs against CDCA1 suppressed its expression and induced apoptosis of CRC cells. These results suggest that CDCA1 could be a prognostic biomarker and a potential therapeutic target for CRCs.
Collapse
Affiliation(s)
- Yu Kobayashi
- Department of Medical Oncology, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Locke FL, Nishihori T, Alsina M, Kharfan-Dabaja MA. Immunotherapy strategies for multiple myeloma: the present and the future. Immunotherapy 2013; 5:1005-20. [PMID: 23998734 PMCID: PMC4905571 DOI: 10.2217/imt.13.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Growing knowledge of the complexities of the immune system have led to a better understanding of how it can be harnessed for the purpose of anticancer therapy. Moreover, recent success with immunotherapies for solid tumors, combined with novel therapeutic strategies against myeloma, heighten excitement at the prospect of improving clinical outcomes for myeloma by improving antitumor immunity. Increased understanding of myeloma tumor-associated antigens, availability of more potent vaccines, expanded immune-modulating therapies, development of agents that block immune-suppressive pathways, increased sophistication of adoptive cell therapy techniques and capitalization upon standard autologous transplant are all important standalone or combination strategies that might ultimately improve prognosis of patients with multiple myeloma.
Collapse
Affiliation(s)
- Frederick L Locke
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Taiga Nishihori
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Melissa Alsina
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Mohamed A Kharfan-Dabaja
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
45
|
Sarasquete ME, Martínez-López J, Chillón MC, Alcoceba M, Corchete LA, Paiva B, Puig N, Sebastián E, Jiménez C, Mateos MV, Oriol A, Rosiñol L, Palomera L, Teruel AI, González Y, Lahuerta JJ, Bladé J, Gutiérrez NC, Fernández-Redondo E, González M, San Miguel JF, García-Sanz R. Evaluating gene expression profiling by quantitative polymerase chain reaction to develop a clinically feasible test for outcome prediction in multiple myeloma. Br J Haematol 2013; 163:223-34. [PMID: 23952215 DOI: 10.1111/bjh.12519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
Abstract
The gene expression profiles (GEPs) of 96 selected genes were analysed by real-time quantitative polymerase chain reaction (qPCR) with a TaqMan low-density array card in isolated tumour plasma cells (PCs) from 157 newly diagnosed multiple myeloma (MM) patients. This qPCR-based GEP correctly classified cases following the Translocation-cyclin D classification. Classic prognostic parameters and qPCR-based GEP predicted MM patient outcome and, although multivariate analyses revealed that cytogenetic risk (standard vs. high risk) was the variable that most strongly predicted prognosis, GEP added significant information for risk stratification. Considering only the standard risk cytogenetic patients, multivariate analyses revealed that high β2-microglobulin, low CDKN1A and high SLC19A1 gene expression levels independently predicted a short time-to-progression (TTP), while high International Staging System stage, low CDKN2B and high TBRG4 gene expression predicted poor overall survival (OS). A gene expression risk score enabled the division of standard risk patients into two groups with different TTPs (83% vs. 38% at 3 years, P < 0·0001) and OS rates (88% vs. 61% at 5 years; P = 0·003). This study demonstrates that quantitative PCR is a robust, accurate and feasible technique for implementing in the daily routine as a surrogate for GEP-arrays.
Collapse
Affiliation(s)
- María E Sarasquete
- Servicio de Hematología, Hospital Universitario de Salamanca e Instituto Biosanitario de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Neumann F, Kaddu-Mulindwa D, Widmann T, Preuss KD, Held G, Zwick C, Roemer K, Pfreundschuh M, Kubuschok B. EBV-transformed lymphoblastoid cell lines as vaccines against cancer testis antigen-positive tumors. Cancer Immunol Immunother 2013; 62:1211-22. [PMID: 23619976 PMCID: PMC11028802 DOI: 10.1007/s00262-013-1412-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/28/2013] [Indexed: 12/25/2022]
Abstract
EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.
Collapse
Affiliation(s)
- Frank Neumann
- Department of Internal Medicine I, José Carreras-Center for Immuno- and Gene Therapy, University of Saarland Medical School, 66421, Homburg, Saar, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
New targets for the immunotherapy of colon cancer-does reactive disease hold the answer? Cancer Gene Ther 2013; 20:157-68. [PMID: 23492821 DOI: 10.1038/cgt.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA-C and Stage IIIA-C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients--those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.
Collapse
|
48
|
Sánchez-Peña ML, Isaza CE, Pérez-Morales J, Rodríguez-Padilla C, Castro JM, Cabrera-Ríos M. Identification of potential biomarkers from microarray experiments using multiple criteria optimization. Cancer Med 2013; 2:253-65. [PMID: 23634293 PMCID: PMC3639664 DOI: 10.1002/cam4.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization procedure to compare different experiments is no longer necessary.
Collapse
Affiliation(s)
- Matilde L Sánchez-Peña
- Bio IE Lab, Industrial Engineering Department, University of Puerto Rico at Mayaguez, Mayagüez, Puerto Rico
| | | | | | | | | | | |
Collapse
|
49
|
Poli C, Raffin C, Dojcinovic D, Luescher I, Ayyoub M, Valmori D. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer. Haematologica 2013; 98:316-22. [PMID: 22875619 PMCID: PMC3561442 DOI: 10.3324/haematol.2012.071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/26/2012] [Indexed: 12/11/2022] Open
Abstract
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Collapse
Affiliation(s)
- Caroline Poli
- Institut National de la Santé et de la Recherche Médicale, Unité 1102, Institut de Cancérologie de l’Ouest, Nantes-Saint Herblain, France
| | - Caroline Raffin
- Institut National de la Santé et de la Recherche Médicale, Unité 1102, Institut de Cancérologie de l’Ouest, Nantes-Saint Herblain, France
| | - Danijel Dojcinovic
- Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Immanuel Luescher
- Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Maha Ayyoub
- Institut National de la Santé et de la Recherche Médicale, Unité 1102, Institut de Cancérologie de l’Ouest, Nantes-Saint Herblain, France
| | - Danila Valmori
- Institut National de la Santé et de la Recherche Médicale, Unité 1102, Institut de Cancérologie de l’Ouest, Nantes-Saint Herblain, France
- L’UNAM Université, Faculty of Medicine, University of Nantes, Nantes, France
| |
Collapse
|
50
|
Rosenzweig MA, Landau H, Seldin D, O'Hara C, Girnius S, Hanson N, Frosina D, Sedrak C, Arcila M, Comenzo RL, Giralt S, Gnjatic S, Jungbluth AA, Koehne G. Cancer-testis antigen expression and immunogenicity in AL amyloidosis. Blood Cancer J 2012; 2:e90. [PMID: 22983433 PMCID: PMC3461704 DOI: 10.1038/bcj.2012.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Light-chain amyloidosis (AL) is a plasma cell dyscrasia closely related to multiple myeloma. In multiple myeloma, the cancer-testis antigens (CTAs) CT7 (MAGE-C1), CT10 (MAGE-C2) and MAGE-A CTAs are expressed in up to 80% of cases. In this study, we investigated the expression and immunogenicity of several CTAs in patients with AL amyloidosis in a total of 38 bone marrow specimens by employing standard immunohistochemistry techniques on paraffin-embedded archival tissues. Plasma samples from 35 patients (27 with matched bone marrow samples) were also analyzed by ELISA for sero reactivity to a group of full-length CTA proteins. CT7 was present in 25/38 (66%) while CT10 was demonstrated in 3/38 and GAGE in 1/38 AL amyloid cases. The expression pattern was mostly focal. There were no significant differences with regard to organ involvement, response to treatment, or prognosis in CTA positive compared to negative cases. None of the specimens showed spontaneous humoral immunity to CT7, but sero reactivity was observed in individual patients to other CTAs. This study identifies CT7 as the prevalent CTA in plasma cells of patients with AL amyloidosis. Further analyses determining the biology of CTAs in AL amyloidosis and their value as potential targets for immunotherapy are warranted.
Collapse
Affiliation(s)
- M A Rosenzweig
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Cancer Center, Duarte, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|