1
|
Sibal S, Patankar A, Raut T. Nilotinib as an Independent Risk Factor for Stroke by Accelerated Atherosclerosis. Cureus 2024; 16:e72952. [PMID: 39634983 PMCID: PMC11615558 DOI: 10.7759/cureus.72952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
Nilotinib, a tyrosine kinase inhibitor (TKI) used in patients of chronic myeloid leukemia (CML), has been known to cause atherosclerosis and arterial stenosis as a rare complication of long-term or high-dose therapy. Patients in this group are more likely to have coronary or peripheral artery disease; intracranial involvement is comparatively uncommon. Furthermore, studies on nilotinib-induced ischemia in Indian populations are scarce. Here, we present a case of ischemic stroke in a patient on long-term nilotinib treatment who, prior to treatment, had no risk factors for stroke. He presented with subacute symptoms of ataxia, motor and sensory deficit, and a raised low-density lipoprotein. MRI revealed multifocal arterial stenosis, as well as areas of infarction and hypoperfusion in the left cerebral hemisphere. Nilotinib therapy was immediately stopped; the patient was treated with dual antiplatelets, statins, and physiotherapy, and he had no major focal deficits on discharge. However, this case serves as a good reminder that even for patients considered to be largely safe from cardiovascular adverse events, regular monitoring of cardiovascular parameters is important so that timely preventive action can be initiated if necessary.
Collapse
Affiliation(s)
- Shamira Sibal
- Neurology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, IND
| | - Ashwini Patankar
- Neurology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, IND
| | - Tushar Raut
- Neurology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, IND
| |
Collapse
|
2
|
Aghel N, Gustafson D, Delgado D, Atenafu EG, Fish JE, Lipton JH. High sensitivity c-reactive protein and circulating biomarkers of endothelial dysfunction in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitors. Leuk Lymphoma 2023; 64:2008-2017. [PMID: 37554059 DOI: 10.1080/10428194.2023.2242990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the management of patients with chronic myelogenous leukemia (CML); however, they may cause cardiovascular (CV) toxicities. In this cross-sectional study, we explored whether high-sensitivity C-reactive protein (hsCRP) and novel markers of vascular dysfunction were associated with exposure to specific TKIs, in 262 CML patients. Hs-CRP level was not associated with CML disease activity or treatment with a specific TKI. Body mass index (OR: 1.15, 95% CI: 1.108-1.246; p < 0.001) and CML duration (OR: 1.004, 95% CI: 1.001-1.008; p = 0.024) were independently associated with higher hs-CRP. In exploratory analyses, novel endothelial-centric markers (e.g. ET-1 and VCAM-1) were differential across the various TKIs, particularly amongst nilotinib- and ponatinib-treated patients. While Levels of hs-CRP do not appear to be correlated with specific TKIs, circulating markers of vascular dysfunction were altered in patients treated with specific TKIs and should be explored as potential markers of TKI-associated CV risk.
Collapse
Affiliation(s)
- Nazanin Aghel
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Ted Rogers Program in Cardiotoxicity Prevention University Health Network, Toronto, Canada
- Division of Cardiology, Cardio-Oncology Program, McMaster University, Hamilton, Canada
| | - Dakota Gustafson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Diego Delgado
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Ted Rogers Program in Cardiotoxicity Prevention University Health Network, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Ted Rogers Program in Cardiotoxicity Prevention University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Lipton
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Li Y, Drabison T, Nepal M, Ho RH, Leblanc AF, Gibson AA, Jin Y, Yang W, Huang KM, Uddin ME, Chen M, DiGiacomo DF, Chen X, Razzaq S, Tonniges JR, McTigue DM, Mims AS, Lustberg MB, Wang Y, Hummon AB, Evans WE, Baker SD, Cavaletti G, Sparreboom A, Hu S. Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy. JCI Insight 2023; 8:e164646. [PMID: 37347545 PMCID: PMC10443802 DOI: 10.1172/jci.insight.164646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Vincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN - including mechanical allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology - without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, and it could serve as a companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mahesh Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Richard H. Ho
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alix F. Leblanc
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Duncan F. DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Xihui Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Sobia Razzaq
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | | | - Dana M. McTigue
- The Belford Center for Spinal Cord Injury & Department of Neuroscience, College of Medicine, and
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Maryam B. Lustberg
- The Breast Center at Smilow Cancer Hospital at Yale, New Haven, Connecticut, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
S AK, Patel SS, Patel S, Parikh P. Future treatment of Diabetes - Tyrosine Kinase inhibitors. J Diabetes Metab Disord 2023; 22:61-71. [PMID: 37255821 PMCID: PMC10225458 DOI: 10.1007/s40200-022-01164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
Background Diabetes mellitus (DM) is a group of metabolic disorders that have an increased risk of macro and micro-vascular complications due to lipid dysfunction. The present drug treatments for the management of DM either have numerous side effects or do not have long-lasting therapeutic effects. So it is essential to find a newer class of drug for DM treatment. Method Broad information has been researched regarding Tyrosine kinase Inhibitors (TKIs) and their mechanism of action. They are proven for the management of various kinds of cancers. TKIs produce anti-hyperglycemic effects by acting on multiple targets such as c-Abl, Platelet-Derived Growth Factor Receptor (PDGFR), Vascular Endothelial Growth Factor Receptor (VEGFR), Epidermal Growth Factor Receptor (EGFR), and c-Kit. Result This family of drugs blocks numerous tyrosine kinases by acting as a partial agonist of PPAR-γ receptors and results in an anti-diabetic effect by improving insulin sensitivity and glucose disposal rate. Conclusion Therefore, it is said that TKI drugs will be great potential for the treatment of Diabetes. This review summarizes the possible targets of TKIs and TKIs being a potential drug class in the management of Diabetes mellitus.
Collapse
Affiliation(s)
- Aakash Kumar S
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Shreya Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Palak Parikh
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
5
|
Karki S, Deenadayalan V, Shrestha P, Dhungel S, Vij A. A Rare Case of Regorafenib-Induced ST-Elevation Myocardial Infarction. Cureus 2023; 15:e39779. [PMID: 37398771 PMCID: PMC10312477 DOI: 10.7759/cureus.39779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Regorafenib is an oral multi-kinase inhibitor that is used in the treatment of chemotherapy-resistant metastatic colorectal carcinoma. However, multi-kinase inhibitors have been known to cause cardiac side effects, most notably hypertension. Myocardial ischemia is a very extraordinary adverse effect of regorafenib. Our patient was a 74-year-old gentleman with stage IVa colon cancer who underwent a right colectomy with end ileostomy and was on cycle two of regorafenib during the presentation. He came in with acute onset chest pain that was intermittent, non-exertional, and radiating to the back. His left heart catheterization did not reveal any atherosclerotic lesions, and his ST-elevation myocardial infarction (STEMI) was deemed an extremely rare adverse event from regorafenib. We are herewith reporting a case of regorafenib-induced STEMI.
Collapse
Affiliation(s)
- Sadichhya Karki
- Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, USA
| | | | - Prajwal Shrestha
- Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, USA
| | - Samriddh Dhungel
- Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, USA
| | - Aviral Vij
- Cardiology, Cook County Health, Chicago, USA
| |
Collapse
|
6
|
Wang H, Wang Y, Li J, He Z, Boswell SA, Chung M, You F, Han S. Three tyrosine kinase inhibitors cause cardiotoxicity by inducing endoplasmic reticulum stress and inflammation in cardiomyocytes. BMC Med 2023; 21:147. [PMID: 37069550 PMCID: PMC10108821 DOI: 10.1186/s12916-023-02838-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are anti-cancer therapeutics often prescribed for long-term treatment. Many of these treatments cause cardiotoxicity with limited cure. We aim to clarify molecular mechanisms of TKI-induced cardiotoxicity so as to find potential targets for treating the adverse cardiac complications. METHODS Eight TKIs with different levels of cardiotoxicity reported are selected. Phenotypic and transcriptomic responses of human cardiomyocytes to TKIs at varying doses and times are profiled and analyzed. Stress responses and signaling pathways that modulate cardiotoxicity induced by three TKIs are validated in cardiomyocytes and rat hearts. RESULTS Toxicity rank of the eight TKIs determined by measuring their effects on cell viability, contractility, and respiration is largely consistent with that derived from database or literature, indicating that human cardiomyocytes are a good cellular model for studying cardiotoxicity. When transcriptomes are measured for selected TKI treatments with different levels of toxicity in human cardiomyocytes, the data are classified into 7 clusters with mainly single-drug clusters. Drug-specific effects on the transcriptome dominate over dose-, time- or toxicity-dependent effects. Two clusters with three TKIs (afatinib, ponatinib, and sorafenib) have the top enriched pathway as the endoplasmic reticulum stress (ERS). All three TKIs induce ERS in rat primary cardiomyocytes and ponatinib activates the IRE1α-XBP1s axis downstream of ERS in the hearts of rats underwent a 7-day course of drug treatment. To look for potential triggers of ERS, we find that the three TKIs induce transient reactive oxygen species followed by lipid peroxidation. Inhibiting either PERK or IRE1α downstream of ERS blocks TKI-induced cardiac damages, represented by the induction of cardiac fetal and pro-inflammatory genes without causing more cell death. CONCLUSIONS Our data contain rich information about phenotypic and transcriptional responses of human cardiomyocytes to eight TKIs, uncovering potential molecular mechanisms in modulating cardiotoxicity. ER stress is activated by multiple TKIs and leads to cardiotoxicity through promoting expression of pro-inflammatory factors and cardiac fetal genes. ER stress-induced inflammation is a promising therapeutic target to mitigate ponatinib- and sorafenib-induced cardiotoxicity.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yiming Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiongyuan Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyi He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Fuping You
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Sen Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| |
Collapse
|
7
|
Zhang Z, Chen Y, Wang Q, Xie L, Shan Y, Yang N, Wu W. Influence of fasting plasma glucose-lowering rate on BNP levels in type 2 diabetes mellitus patients with coronary microcirculation dysfunction. Hormones (Athens) 2023; 22:33-43. [PMID: 36369625 DOI: 10.1007/s42000-022-00404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
AIM The aim was to analyze the influence of fasting plasma glucose-lowering rate (FPGLR) on plasma BNP levels in type 2 diabetes mellitus (T2DM) patients with coronary microcirculation dysfunction (CMD) and to determine the optimal FPGLR for these patients. METHODS A total of 170 T2DM patients who received intensive glucose-lowering therapy during hospitalization in the First Affiliated Hospital of Harbin Medical University were enrolled. Ninety-two patients with CMD and 78 patients without CMD were assigned to a study and a control group, respectively. The study group was stratified as S1 (4.1 ~ 6.0 mmol·L-1·day-1), S2 (2.1 ~ 4.0 mmol·L-1·day-1), and S3 (≤ 2.0 mmol·L-1·day-1) by different FPGLR, and the same in the control group (C1, C2, and C3). The plasma BNP levels with the same FPGLR were compared between the study and the control group, and patients with a different FPGLR in the study group were also compared. RESULTS In the study and the control group, the BNP level in S1 was significantly higher than that in C1 (87 vs. 12 pg/ml, P < 0.001), although there was no significant difference between S2 and C2, S3 and C3. In the study group, the BNP level in S1 was significantly higher than that in S2 (87 vs. 22 pg/ml, P < 0.001) and S3 (87 vs. 15 pg/ml, P < 0.001), but there was no significant difference between S2 and S3. CONCLUSION Rapid intensive glucose-lowering may lead to increased plasma BNP levels in T2DM patients with CMD. Optimal FPGLR for these patients was determined to be no more than 4.0 mmol·L-1·day-1.
Collapse
Affiliation(s)
- Ziying Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Yangwen Chen
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Qian Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Lingli Xie
- Department of Endocrinology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Yongyan Shan
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Ning Yang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Weihua Wu
- Department of Endocrinology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
8
|
Cardiotoxicity of Tyrosine Kinase Inhibitors in Philadelphia-Positive Leukemia Patients. HEMATO 2023. [DOI: 10.3390/hemato4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In the past twenty years, tyrosine kinase inhibitors (TKIs) have substantially changed the therapeutic landscape and the clinical outcome of several cancers, including Philadelphia-chromosome positive chronic myeloid leukemia and acute lymphoblastic leukemia, chronic eosinophilic syndromes, gastrointestinal stromal tumors, and others. Despite the obvious advantages offered in terms of efficacy and the overall safety profile, this new class of agents presents novel side effects, sometimes different from those induced by conventional chemotherapy. Among others, the potential cardiac toxicity, characterized by possible arrhythmias and the highest rates of cardiac ischemic disease and heart failure, were predominantly investigated. In this article, the authors review the most significant evidence in this regard, highlighting the overall benefit of TKI usage and the need for careful monitoring, especially in elderly patients.
Collapse
|
9
|
Min HK, Kim SH, Won JY, Kim KW, Lee JY, Lee SH, Kim HR. Dasatinib, a selective tyrosine kinase inhibitor, prevents joint destruction in rheumatoid arthritis animal model. Int J Rheum Dis 2023; 26:718-726. [PMID: 36808837 DOI: 10.1111/1756-185x.14627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
AIM We aimed to evaluate the preventive role of the tyrosine kinase inhibitor dasatinib in an animal model of rheumatoid arthritis (RA). METHODS DBA/1J mice were injected with bovine type II collagen to induce arthritis (collagen-induced arthritis [CIA]). There were four experimental groups of mice, namely negative control (non-CIA), vehicle-treated CIA, dasatinib-pretreated CIA, and dasatinib-treated CIA. After collagen immunization, arthritis progression in the mice was clinically scored twice weekly for 5 weeks. Flow cytometry was used to evaluate in vitro CD4+ T-cell differentiation and ex vivo mast cell/CD4+ T-cell differentiation. Osteoclast formation was evaluated using tartrate-resistant acid phosphatase (TRAP) staining and by estimating the resorption pit area. RESULTS We found that the clinical arthritis histological scores were lower in the dasatinib pretreatment group than in the vehicle and dasatinib post-treatment groups. Flow cytometry showed that FcεR1+ cells were downregulated and regulatory T cells were upregulated in splenocytes of the dasatinib pretreatment group compared with those in the vehicle group. Additionally, there was a decline in IL-17+ CD4+ T-cell differentiation and an increase in CD4+ CD24high Foxp3+ T-cell differentiation with in vitro dasatinib treatment of human CD4+ T cells. The number of TRAP+ osteoclasts and the area of the resorption were decreased in the bone marrow cells derived from dasatinib-pretreated mice compared with those derived from vehicle group. CONCLUSION Dasatinib protected against arthritis in an animal model of RA by regulating the differentiation of regulatory T cells and IL-17+ CD4+ T cells and inhibiting osteoclastogenesis, indicating the therapeutic potential of dasatinib in the treatment of early RA.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | | | | | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Lipton JH, Brümmendorf TH, Gambacorti-Passerini C, Garcia-Gutiérrez V, Deininger MW, Cortes JE. Long-term safety review of tyrosine kinase inhibitors in chronic myeloid leukemia - What to look for when treatment-free remission is not an option. Blood Rev 2022; 56:100968. [DOI: 10.1016/j.blre.2022.100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
|
11
|
Ahmad J, Thurlapati A, Thotamgari S, Grewal US, Sheth AR, Gupta D, Beedupalli K, Dominic P. Anti-cancer Drugs Associated Atrial Fibrillation—An Analysis of Real-World Pharmacovigilance Data. Front Cardiovasc Med 2022; 9:739044. [PMID: 35498039 PMCID: PMC9051026 DOI: 10.3389/fcvm.2022.739044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundSeveral anti-cancer drugs have been linked to new onset atrial fibrillation (AF) but the true association of these drugs with AF is unknown. The FDA Adverse Event Reporting System (FAERS), a publicly available pharmacovigilance mechanism provided by the FDA, collects adverse event reports from the United States and other countries, thus providing real-world data.ObjectivesTo identify anti-cancer drugs associated with AF using the FAERS database.MethodsThe FAERS database was searched for all drugs reporting AF as an adverse event (AE). The top 30 anti-cancer drugs reporting AF cases were shortlisted and analyzed. Proportional reporting ratio (PRR) was used to measure disproportionality in reporting of adverse events for these drugs.ResultsWhen analyzed for AF as a percentage of all reported AE for a particular drug, Ibrutinib had the highest percentage (5.3%) followed distantly by venetoclax (1.6%), bortezomib (1.6%), carfilzomib (1.5%), and nilotinib (1.4%). The percentage of cardiac AE attributable to AF was also highest for ibrutinib (41.5%), followed by venetoclax (28.4%), pomalidomide (23.9%), bortezomib (18.2%), and lenalidomide (18.2%). Drugs with the highest PRR for AF included ibrutinib (5.96, 95% CI= 5.70–6.23), bortezomib (1.65, 95% CI = 1.52–1.79), venetoclax (1.65, 95% CI = 1.46–1.85), carfilzomib (1.53, 95% CI = 1.33–1.77), and nilotinib (1.46, 95% CI = 1.31–1.63).ConclusionsWhile newer anti-cancer drugs have improved the prognosis in cancer patients, it is important to identify any arrhythmias they may cause early on to prevent increased morbidity and mortality. Prospective studies are needed to better understand the true incidence of new onset AF associated with anti-cancer drugs.
Collapse
Affiliation(s)
- Javaria Ahmad
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Aswani Thurlapati
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Sahith Thotamgari
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Udhayvir Singh Grewal
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Aakash Rajendra Sheth
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Dipti Gupta
- Department of Medicine, Cardiology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, United States
| | - Kavitha Beedupalli
- Department of Hematology and Oncology and Feist Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Paari Dominic
- Center of Excellence for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- *Correspondence: Paari Dominic
| |
Collapse
|
12
|
Rocca C, De Francesco EM, Pasqua T, Granieri MC, De Bartolo A, Gallo Cantafio ME, Muoio MG, Gentile M, Neri A, Angelone T, Viglietto G, Amodio N. Mitochondrial Determinants of Anti-Cancer Drug-Induced Cardiotoxicity. Biomedicines 2022; 10:biomedicines10030520. [PMID: 35327322 PMCID: PMC8945454 DOI: 10.3390/biomedicines10030520] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Ernestina Marianna De Francesco
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Maria Grazia Muoio
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Massimo Gentile
- Hematology Unit, “Annunziata” Hospital of Cosenza, 87100 Cosenza, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Hematology Fondazione Cà Granda, IRCCS Policlinico, 20122 Milan, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
- Correspondence: (T.A.); (N.A.)
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
- Correspondence: (T.A.); (N.A.)
| |
Collapse
|
13
|
Cheng M, Yang F, Liu J, Yang D, Zhang S, Yu Y, Jiang S, Dong M. Tyrosine Kinase Inhibitors-Induced Arrhythmias: From Molecular Mechanisms, Pharmacokinetics to Therapeutic Strategies. Front Cardiovasc Med 2021; 8:758010. [PMID: 34869670 PMCID: PMC8639698 DOI: 10.3389/fcvm.2021.758010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
With the development of anti-tumor drugs, tyrosine kinase inhibitors (TKIs) are an indispensable part of targeted therapy. They can be superior to traditional chemotherapeutic drugs in selectivity, safety, and efficacy. However, they have been found to be associated with serious adverse effects in use, such as myocardial infarction, fluid retention, hypertension, and rash. Although TKIs induced arrhythmia with a lower incidence than other cardiovascular diseases, much clinical evidence indicated that adequate attention and management should be provided to patients. This review focuses on QT interval prolongation and atrial fibrillation (AF) which are conveniently monitored in clinical practice. We collected data about TKIs, and analyzed the molecule mechanism, discussed the actual clinical evidence and drug-drug interaction, and provided countermeasures to QT interval prolongation and AF. We also pooled data to show that both QT prolongation and AF are related to their multi-target effects. Furthermore, more than 30 TKIs were approved by the FDA, but most of the novel drugs had a small sample size in the preclinical trial and risk/benefit assessments were not perfect, which led to a suspension after listing, like nilotinib. Similarly, vandetanib exhibits the most significant QT prolongation and ibrutinib exhibits the highest incidence in AF, but does not receive enough attention during treatment.
Collapse
Affiliation(s)
- Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Yang
- The First Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiahui Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Yang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
14
|
Kwon SH, Kim S, Park AY, Lee S, Gadhe CG, Seo BA, Park JS, Jo S, Oh Y, Kweon SH, Ma SX, Kim WR, Kim M, Kim H, Kim JE, Lee S, Lee J, Ko HS. A Novel, Selective c-Abl Inhibitor, Compound 5, Prevents Neurodegeneration in Parkinson's Disease. J Med Chem 2021; 64:15091-15110. [PMID: 34583507 DOI: 10.1021/acs.jmedchem.1c01022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects movement. The nonreceptor tyrosine kinase c-Abl has shown a potential role in the progression of PD. As such, c-Abl inhibition is a promising candidate for neuroprotection in PD and α-synucleinopathies. Compound 5 is a newly synthesized blood-brain barrier penetrant c-Abl inhibitor with higher efficacy than existing inhibitors. The objective of the current study was to demonstrate the neuroprotective effects of compound 5 on the α-synuclein preformed fibril (α-syn PFF) mouse model of PD. Compound 5 significantly reduced neurotoxicity, activation of c-Abl, and Lewy body pathology caused by α-syn PFF in cortical neurons. Additionally, compound 5 markedly ameliorated the loss of dopaminergic neurons, c-Abl activation, Lewy body pathology, neuroinflammatory responses, and behavioral deficits induced by α-syn PFF injection in vivo. Taken together, these results suggest that compound 5 could be a pharmaceutical agent to prevent the progression of PD and α-synucleinopathies.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biology, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - A Yeong Park
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Changdev Gorakshnath Gadhe
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jong-Sung Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Suyeon Jo
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Yumin Oh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Neuraly, Inc., Gaithersburg, Maryland 20878, United States
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Wonjoong R Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Misoon Kim
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Hyeongjun Kim
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Jae Eun Kim
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Neuraly, Inc., Gaithersburg, Maryland 20878, United States
| | - Jinhwa Lee
- 1ST Biotherapeutics, Inc., 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
15
|
Abstract
Doxorubicin is a commonly used anticancer agent that can cause debilitating and irreversible cardiac injury. The initiating mechanisms contributing to this side effect remain unknown, and current preventative strategies offer only modest protection. Using stem-cell-derived cardiomyocytes from patients receiving doxorubicin, we probed the transcriptomic landscape of solute carriers and identified organic cation transporter 3 (OCT3) (SLC22A3) as a critical transporter regulating the cardiac accumulation of doxorubicin. Functional validation studies in heterologous overexpression models confirmed that doxorubicin is transported into cardiomyocytes by OCT3 and that deficiency of OCT3 protected mice from acute and chronic doxorubicin-related changes in cardiovascular function and genetic pathways associated with cardiac damage. To provide proof-of-principle and demonstrate translational relevance of this transport mechanism, we identified several pharmacological inhibitors of OCT3, including nilotinib, and found that pharmacological targeting of OCT3 can also preserve cardiovascular function following treatment with doxorubicin without affecting its plasma levels or antitumor effects in multiple models of leukemia and breast cancer. Finally, we identified a previously unrecognized, OCT3-dependent pathway of doxorubicin-induced cardiotoxicity that results in a downstream signaling cascade involving the calcium-binding proteins S100A8 and S100A9. These collective findings not only shed light on the etiology of doxorubicin-induced cardiotoxicity, but also are of potential translational relevance and provide a rationale for the implementation of a targeted intervention strategy to prevent this debilitating side effect.
Collapse
|
16
|
Ding X, Mower J, Subramanian D, Cohen T. Augmenting aer2vec: Enriching distributed representations of adverse event report data with orthographic and lexical information. J Biomed Inform 2021; 119:103833. [PMID: 34111555 DOI: 10.1016/j.jbi.2021.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Adverse Drug Events (ADEs) are prevalent, costly, and sometimes preventable. Post-marketing drug surveillance aims to monitor ADEs that occur after a drug is released to market. Reports of such ADEs are aggregated by reporting systems, such as the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). In this paper, we consider the topic of how best to represent data derived from reports in FAERS for the purpose of detecting post-marketing surveillance signals, in order to inform regulatory decision making. In our previous work, we developed aer2vec, a method for deriving distributed representations (concept embeddings) of drugs and side effects from ADE reports, establishing the utility of distributional information for pharmacovigilance signal detection. In this paper, we advance this line of research further by evaluating the utility of encoding orthographic and lexical information. We do so by adapting two Natural Language Processing methods, subword embedding and vector retrofitting, which were developed to encode such information into word embeddings. Models were compared for their ability to distinguish between positive and negative examples in a set of manually curated drug/ADE relationships, with both aer2vec enhancements offering advantages in performances over baseline models, and best performance obtained when retrofitting and subword embeddings were applied in concert. In addition, this work demonstrates that models leveraging distributed representations do not require extensive manual preprocessing to perform well on this pharmacovigilance signal detection task, and may even benefit from information that would otherwise be lost during the normalization and standardization process.
Collapse
Affiliation(s)
- Xiruo Ding
- Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA, USA.
| | - Justin Mower
- Department of Computer Science, Rice University, Houston, TX, USA.
| | | | - Trevor Cohen
- Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Palmer JA, Smith AM, Gryshkova V, Donley ELR, Valentin JP, Burrier RE. A Targeted Metabolomics-Based Assay Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Identifies Structural and Functional Cardiotoxicity Potential. Toxicol Sci 2021; 174:218-240. [PMID: 32040181 DOI: 10.1093/toxsci/kfaa015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.
Collapse
Affiliation(s)
| | - Alan M Smith
- Stemina Biomarker Discovery, Inc, Madison, Wisconsin
| | - Vitalina Gryshkova
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | | - Jean-Pierre Valentin
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Coronary artery disease (CAD) is a common comorbidity in patients with cancer. We review shared risk factors between the two diseases and cancer treatments that increase the risk of CAD. We also discuss outcomes and management considerations of patients with cancer who develop CAD. RECENT FINDINGS Several traditional and novel risk factors promote the development of both CAD and cancer. Several cancer treatments further increase the risk of CAD. The presence of cancer is associated with a higher burden of comorbidities and thrombocytopenia, which predisposes patients to higher bleeding risks. Patients with cancer who develop acute coronary syndromes are less likely to receive timely revascularization or appropriate medical therapy, despite evidence showing that receipt of these interventions is associated with substantial benefit. Accordingly, a cancer diagnosis is associated with worse outcomes in patients with CAD. The risk-benefit balance of revascularization is becoming more favorable due to the improving prognosis of many cancers and safer revascularization strategies, including shorter requirements for dual antiplatelet therapy after revascularization. SUMMARY Several factors increase the complexity of managing CAD in patients with cancer. A multidisciplinary approach is recommended to guide treatment decisions in this high-risk and growing patient group.
Collapse
|
19
|
Schalkwijk S, Sahota T, Verheijen RB, Harmer AR, Ahmed GF. Parent and Metabolite Concentration-QT Modeling to Evaluate QT-Interval Prolongation at Savolitinib Therapeutic Doses. AAPS JOURNAL 2021; 23:46. [PMID: 33733338 DOI: 10.1208/s12248-021-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
Savolitinib is an oral, potent, and highly selective MET-tyrosine kinase inhibitor under investigation in various tumor types. A thorough QT study evaluated effects on QT interval after a 600-mg single savolitinib dose in healthy subjects. We report exposure-response (E-R) modeling from this study to characterize the effects of savolitinib and its metabolites, M2 and M3, on QTc changes. In a novel application, in vitro potencies against hERG current provided mechanistic support to model the metabolites' effects. The hERG IC50 estimates (95% CI) were 25.8 (22.2-29.9) and 22.6 (14.7-34.6) μM for parent and M2, respectively. The E-R was described by both linear and Emax models, with exposure captured by an active moiety that consisted of savolitinib and M2 concentrations, weighted by the hERG IC50 ratio (1.14). The maximal increase in ΔΔQTcF and EC50 estimates (95% CI) was 18.5 (9.2-27.7) ms and 5709 (2889-8529) nM, respectively. Ignoring M2 contribution resulted in under prediction of QTcF prolongation in the hypothetical case of inhibited M2 clearance; at 300 mg Cmax, the mean (90% CI) of ∆∆QTcF was 9.0 (5.7-12.6) and 5.9 (2.9-8.9) ms using the hERG-informed and parent-only linear models, respectively. Simulations in normal setting confirmed modest QTcF prolongation with 600 mg, but not 300 mg. Using the linear model, the mean (90% CI) maximum ΔΔQTcF were 12.3 (8.6-16.2) and 5.5 (2.6-8.5) ms for 600 and 300 mg, respectively. Further clinical studies will monitor cardiac safety to assess the clinical significance of QT-interval prolongation with savolitinib.
Collapse
Affiliation(s)
- Stein Schalkwijk
- BioPharmaceuticals R&D, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK.
| | - Tarjinder Sahota
- Formerly BioPharmaceuticals R&D, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | | | - Alexander R Harmer
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ghada F Ahmed
- Formerly BioPharmaceuticals R&D, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| |
Collapse
|
20
|
Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life (Basel) 2020; 10:life10120344. [PMID: 33322351 PMCID: PMC7763613 DOI: 10.3390/life10120344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-related cardiac dysfunction, also known as cardiotoxicity, is a group of drug-related adverse events negatively affecting myocardial structure and functions in patients who received chemotherapy for cancer treatment. Clinical manifestations can vary from life-threatening arrythmias to chronic conditions, such as heart failure or hypertension, which dramatically reduce quality of life of cancer survivors. Standard chemotherapy exerts its toxic effect mainly by inducing oxidative stress and genomic instability, while new targeted therapies work by interfering with signaling pathways important not only in cancer cells but also in myocytes. For example, Bruton’s tyrosine kinase (BTK) inhibitors interfere with class I phosphoinositide 3-kinase isoforms involved in cardiac hypertrophy, contractility, and regulation of various channel forming proteins; thus, off-target effects of BTK inhibitors are associated with increased frequency of arrhythmias, such as atrial fibrillation, compared to standard chemotherapy. In this review, we summarize current knowledge of cardiotoxic effects of targeted therapies used in hematology.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672-493
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- IRCCS Neuromed (Mediterranean Neurological Institute), 86077 Pozzilli, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
21
|
Tan S, Baggio D, Shortt J, Ko B. Cardiovascular Safety of Nilotinib in Alzheimer Disease. Ann Neurol 2020; 89:196. [PMID: 33103269 DOI: 10.1002/ana.25947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Sean Tan
- MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Diva Baggio
- Monash Haematology, Monash Health, Clayton, Victoria, Australia
| | - Jake Shortt
- Monash Haematology, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brian Ko
- MonashHeart, Monash Health, Clayton, Victoria, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Jafari A, Dadkhahfar S, Perseh S. Considerations for interactions of drugs used for the treatment of COVID-19 with anti-cancer treatments. Crit Rev Oncol Hematol 2020; 151:102982. [PMID: 32460133 PMCID: PMC7217119 DOI: 10.1016/j.critrevonc.2020.102982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV2 infection is an emerging issue worldwide. Cancer patient are at increased risk of infection compared to general population. On the other hand, these patients are at major risk of drug interactions caused by renal and hepatic impairment background. Because of the long-term use of chemotherapy drugs, drug interactions are important in these patients especially with SARS-CoV2 treatments now. This paper is review of reported drug interactions of current treatments for COVID-19 and anticancer agents.
Collapse
Affiliation(s)
- Anya Jafari
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sahar Dadkhahfar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahra Perseh
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Lee DH, Chandrashekhar S, Fradley MG. Electrophysiologic Complications in Cancer Patients. Methodist Debakey Cardiovasc J 2020; 15:282-288. [PMID: 31988689 DOI: 10.14797/mdcj-15-4-282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, dramatic advances in both cancer diagnosis and treatment have led to significantly increased survival rates. As such, cardiovascular toxicities due to oncologic treatments are more frequently identified. Although heart failure and cardiomyopathy have historically been the cardiotoxicities most associated with cancer therapeutics, it is now recognized that all components of the cardiovascular system can be affected. In this review, we discuss electrophysiologic complications of cancer treatments, including atrial and ventricular tachyarrhythmias as well as bradyarrhythmias, and recommend a multidisciplinary approach with both cardiologists and oncologists to provide safe and effective care to these patients.
Collapse
Affiliation(s)
| | | | - Michael G Fradley
- UNIVERSITY OF SOUTH FLORIDA, TAMPA, FLORIDA.,H. LEE MOFFITT CANCER CENTER AND RESEARCH INSTITUTE, TAMPA, FLORIDA
| |
Collapse
|
24
|
|
25
|
Safety and pharmacokinetics of quizartinib in Japanese patients with relapsed or refractory acute myeloid leukemia in a phase 1 study. Int J Hematol 2019; 110:654-664. [PMID: 31359361 DOI: 10.1007/s12185-019-02709-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Expanded therapeutic options are warranted for patients with relapsed or refractory (R/R) acute myeloid leukemia (AML) who have FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations. The present phase 1, multicenter, open-label, dose-escalation and dose-expansion study was conducted to assess the safety, pharmacokinetics, and efficacy of multiple-dose monotherapy of the FLT3 inhibitor, quizartinib, in Japanese patients with R/R AML. Patients received oral quizartinib, once daily, under fasting conditions in 28-day cycles. Sixteen patients (median age, 68.0 years; male, 56.3%; FLT3-ITD positive, 43.8%) received quizartinib (9, 3, and 4 patients at 20, 30, and 60 mg/day, respectively; median treatment duration, 95.0 days; median relative dose intensity, 100.0%). No dose-limiting toxicities were observed. The most common treatment-emergent adverse events were electrocardiogram QT prolonged (43.8%, grade 1 or 2) followed by nausea and pyrexia (37.5% each). No quizartinib-related deaths were reported. A dose-dependent increase of quizartinib and its active metabolite AC886 levels was observed at the steady state. The composite complete remission rate was 37.5%. Quizartinib was well tolerated in Japanese R/R AML patients at doses up to 60 mg/day; quizartinib 60 mg/day was considered as the recommended dose for the Japanese patient population in a subsequent study.Trial registration ClinicalTrials.gov identifier NCT02675478.
Collapse
|
26
|
Coker SA, Hurwitz HI, Sharma S, Wang D, Jordaan P, Zarate JP, Lewis LD. The effects of lapatinib on cardiac repolarization: results from a placebo controlled, single sequence, crossover study in patients with advanced solid tumors. Cancer Chemother Pharmacol 2019; 84:383-392. [PMID: 31187169 DOI: 10.1007/s00280-019-03880-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the effect of lapatinib on the QTc interval and ECG parameters in patients with advanced solid tumors. METHODS This was a multicenter, placebo-controlled study in subjects with advanced solid tumors. Subjects were administered two doses of matching placebo on day 1, 12 h apart and one dose in the morning on day 2. Two doses of lapatinib 2000 mg were administered orally on day 3, 12 h apart and one dose in the morning on day 4. Twelve-lead digital ECGs were extracted from continuous Holter recordings at pre-specified time points over the 24-h period on days 2 and 4. Venous blood samples for lapatinib concentrations were obtained immediately following the ECGs. RESULTS A maximum mean baseline-adjusted, placebo time-matched increase in QTcF, (ddQTcF) in the evaluable, (EV) population (n = 37) of 8.8 ms (90% CI 4.1, 13.4) occurred approximately 10 h after the third lapatinib dose. These results were consistent with those in the pharmacodynamic, PD population, (n = 52) (ddQTcF = 7.9 ms; 90% CI 4.1, 11.7). No subject experienced QTcF increases from baseline of > 60 ms on lapatinib or placebo. The geometric mean lapatinib Cmax of 3902 ng/mL was observed at 3.6 h post-dose. CONCLUSIONS These data show a relevant, treatment-related increase in QTcF after treatment with three doses of lapatinib 2000 mg. This study confirms the need for caution in patients with solid tumors treated with lapatinib, and who are concomitantly receiving drugs that are strong CYP3A inhibitors and/or prolong the QTc.
Collapse
Affiliation(s)
- Shodeinde A Coker
- Section of Clinical Pharmacology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Section of Hematology/Oncology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Bristol-Myers Squibb, 3401, Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Herbert I Hurwitz
- Division of Medical Oncology, Duke University Medical Center, 10 Bryan Searle Drive, Durham, NC, 27710, USA
- Genentech, 1 DNA Way MS 45-4B, South San Francisco, CA, 94080, USA
| | - Sunil Sharma
- The Huntsman Cancer Center, University of Utah, 2000 Circle of Hope, Suite 2125, Salt Lake City, UT, 84112, USA
| | - Ding Wang
- Henry Ford Hospital, Pallister Place, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | | | | | - Lionel D Lewis
- Section of Clinical Pharmacology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Section of Hematology/Oncology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
27
|
QT Interval Prolongation Associated With Cytotoxic and Targeted Cancer Therapeutics. Curr Treat Options Oncol 2019; 20:55. [DOI: 10.1007/s11864-019-0657-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Das D, Asher A, Ghosh AK. Cancer and Coronary Artery Disease: Common Associations, Diagnosis and Management Challenges. Curr Treat Options Oncol 2019; 20:46. [DOI: 10.1007/s11864-019-0644-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Pucci G, Milan A, Paini A, Salvetti M, Cerasari A, Vaudo G. Acute blood pressure elevation associated with biological therapies for cancer: a focus on VEGF signaling pathway inhibitors. Expert Opin Biol Ther 2019; 19:433-442. [PMID: 30888868 DOI: 10.1080/14712598.2019.1594770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Treatment with biological agents interfering with mechanisms of angiogenesis, such as vascular endothelial growth factor (VEGF) signaling pathway (VSP) inhibitors, was associated with an enhanced risk of acute and severe blood pressure (BP) increase and development of hypertensive emergencies. Areas covered: The present article will review the scientific literature reporting hypertensive emergencies as a complication of biological treatment with VSP inhibitors. Hypertensive emergency is a life-threatening condition characterized by very high BP values (>180/110 mmHg) associated with acute organ damage. The exact mechanism of action is still incompletely clarified. Endothelial dysfunction following reduced bioavailability of nitric oxide has been hypothesized to play an important role in promoting hypertension and the occurrence of acute organ damage. Expert opinion: Prevention, prompt recognition and treatment of hypertensive emergencies associated with treatment with VSP-inhibitors are essential to reduce the risk of adverse events. Not infrequently, the occurrence of hypertensive emergency led to VSP treatment discontinuation, with potential negative consequences on patient overall survival. The present review aims at providing detailed knowledge for the clinician regarding this specific issue, which could be of high impact in usual clinical practice, given the increasing burden of indications to treatment with biological agents targeted to the VEGF pathway.
Collapse
Affiliation(s)
- Giacomo Pucci
- a Department of Medicine , University of Perugia , Perugia , Italy.,b Unit of Internal Medicine , Terni University Hospital , Terni , Italy
| | - Alberto Milan
- c Department of Medical Sciences - Hypertension Center , University of Torino - AOU Città della Salute e della Scienza di Torino , Torino , Italy
| | - Anna Paini
- d Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Massimo Salvetti
- d Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Alberto Cerasari
- a Department of Medicine , University of Perugia , Perugia , Italy.,b Unit of Internal Medicine , Terni University Hospital , Terni , Italy
| | - Gaetano Vaudo
- a Department of Medicine , University of Perugia , Perugia , Italy.,b Unit of Internal Medicine , Terni University Hospital , Terni , Italy
| |
Collapse
|
30
|
Almeida AG, Almeida A, Melo T, Guerra L, Lopes L, Ribeiro P, Duarte M, Mota A, Fontes-Carvalho R. New prospects for the management of cardiovascular effects of tyrosine kinase inhibitors in patients with chronic myeloid leukemia. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2017.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Novas perspetivas para a abordagem dos efeitos cardiovasculares dos inibidores da tirosinacinase em doentes com leucemia mieloide crónica. Rev Port Cardiol 2019; 38:1-9. [DOI: 10.1016/j.repc.2017.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/08/2017] [Indexed: 11/22/2022] Open
|
32
|
Aghel N, Delgado DH, Lipton JH. Cardiovascular events in chronic myeloid leukemia clinical trials. Is it time to reassess and report the events according to cardiology guidelines? Leukemia 2018; 32:2095-2104. [PMID: 30201984 DOI: 10.1038/s41375-018-0247-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 11/09/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myeloid leukemia (CML). Although these treatments have changed the natural course of CML and many other cancers, they may cause cardiovascular and/or metabolic complications. In this review, we discuss how overlooking the main drivers of cardiovascular events (CVEs) and lack of standard definitions for cardiovascular adverse events might have affected these event rates in CML trials. Methodological limitations that affect the available data are discussed, with an emphasis on the future direction of cardiovascular safety research in trials of investigational drugs in cancer treatment.
Collapse
Affiliation(s)
- Nazanin Aghel
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Diego Hernan Delgado
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Howard Lipton
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Silva JMD, Lima BDS, Araújo TLD, Lima FET, Cunha GHD. Cardiovascular adverse events associated with oral antineoplastic therapy. Rev Bras Enferm 2018; 71:2561-2569. [PMID: 30304190 DOI: 10.1590/0034-7167-2017-0450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To identify in the literature the cardiovascular adverse events resulting from oral antineoplastic therapy. METHOD Integrative review of the literature through the SCOPUS, Scientific Electronic Library Online (SciELO), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medical Literature Analysis and Retrieval System Online (MEDLINE) databases. The antineoplastic, cardiotoxicity, cardiovascular system and adverse reaction descriptors were used in Portuguese, English and Spanish. We selected 23 articles published between 1985 and 2015. RESULTS Twenty studies were related to cardiac events and eleven to peripheral vascular events. The most frequent adverse cardiac events were reduced left ventricular ejection fraction, myocardial infarction, changes in the electrocardiogram, heart failure and angina, whereas peripheral vascular events were hypertension and thromboembolism. CONCLUSION Oral antineoplastic therapy is associated with different adverse events, including cardiac and peripheral vascular events.
Collapse
Affiliation(s)
- Jacqueline Mota da Silva
- Universidade Federal do Ceará, Faculty of Pharmacy, Dentistry and Nursing, Department of Nursing. Fortaleza, Ceará, Brazil
| | - Beatriz da Silva Lima
- Universidade Federal do Ceará, Faculty of Pharmacy, Dentistry and Nursing, Department of Nursing. Fortaleza, Ceará, Brazil
| | - Thelma Leite de Araújo
- Universidade Federal do Ceará, Faculty of Pharmacy, Dentistry and Nursing, Department of Nursing. Fortaleza, Ceará, Brazil
| | | | - Gilmara Holanda da Cunha
- Universidade Federal do Ceará, Faculty of Pharmacy, Dentistry and Nursing, Department of Nursing. Fortaleza, Ceará, Brazil
| |
Collapse
|
34
|
Medeiros BC, Possick J, Fradley M. Cardiovascular, pulmonary, and metabolic toxicities complicating tyrosine kinase inhibitor therapy in chronic myeloid leukemia: Strategies for monitoring, detecting, and managing. Blood Rev 2018; 32:289-299. [DOI: 10.1016/j.blre.2018.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 12/19/2022]
|
35
|
Duan J, Tao J, Zhai M, Li C, Zhou N, Lv J, Wang L, Lin L, Bai R. Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: current evidence and future research perspectives. Oncotarget 2018; 9:25738-25749. [PMID: 29876021 PMCID: PMC5986642 DOI: 10.18632/oncotarget.25008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
Anticancer drugs may have proarrhythmic effects including drug-induced QT interval prolongation, which is of particular importance because it can lead to a fatal polymorphic ventricular tachycardia termed torsade de pointes (TdP). QT interval prolongation and TdP are rare life-threatening untoward effects of anticancer therapy, particularly with arsenic trioxides and anthracyclines, and even some novel molecular targeted drugs touted as 'tumor specific'. Several factors that affect myocardial repolarization can further increase the risk of TdP. This article reviews the mechanism of QT interval prolongation, risk factors for TdP and the QT toxicity of anticancer drugs as well as its management. Specific attention should be paid to high-risk populations such as patients with underlying heart diseases, electrolyte imbalance and bradycardia. To minimize the occurrence of QT interval prolongation and TdP, it is advisable to conduct a careful risk factor assessment before antitumor therapy. To this end, several new biomarkers have been introduced to predict TdP triggering and recent studies have pointed out the potential clinical relevance of genetic testing.
Collapse
Affiliation(s)
- Jialin Duan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jingwen Tao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Maocai Zhai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chengpeng Li
- Department of Cardiology, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, P.R. China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lin Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Rong Bai
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Beijing, P.R. China.,Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Austin, TX, USA
| |
Collapse
|
36
|
Conant G, Lai BFL, Lu RXZ, Korolj A, Wang EY, Radisic M. High-Content Assessment of Cardiac Function Using Heart-on-a-Chip Devices as Drug Screening Model. Stem Cell Rev Rep 2018; 13:335-346. [PMID: 28429185 DOI: 10.1007/s12015-017-9736-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drug discovery and development continues to be a challenge to the pharmaceutical industry despite great advances in cell and molecular biology that allow for the design of better targeted therapeutics. Many potential drug compounds fail during the clinical trial due to inefficacy and toxicity that were not predicted during preclinical stages. The fundamental problem lies with the use of traditional drug screening models that still largely rely on the use of cell lines or animal cell monolayers, which leads to lack of predictive power of human tissue and organ response to the drug candidates. More physiologically relevant systems are therefore critical in relieving the burden of high failure rates. Emerging knowledge and techniques in tissue engineering and microfabrication have enabled the development of micro-engineered systems - collectively known as organs-on-chips - that may lead to a paradigm shift in preclinical drug screening assays. In this review we explore the technological advances and challenges in the development of heart-on-a-chip models, by addressing current assessment methods for drug-induced cardiotoxicity and providing a perspective on the modifications that should be implemented to realize the full potential of this system.
Collapse
Affiliation(s)
- Genevieve Conant
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Benjamin Fook Lun Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rick Xing Ze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Toronto General Research Institute, Toronto, ON, Canada.
| |
Collapse
|
37
|
Leblanc AF, Sprowl JA, Alberti P, Chiorazzi A, Arnold WD, Gibson AA, Hong KW, Pioso MS, Chen M, Huang KM, Chodisetty V, Costa O, Florea T, de Bruijn P, Mathijssen RH, Reinbolt RE, Lustberg MB, Sucheston-Campbell LE, Cavaletti G, Sparreboom A, Hu S. OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J Clin Invest 2018; 128:816-825. [PMID: 29337310 DOI: 10.1172/jci96160] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Paclitaxel is among the most widely used anticancer drugs and is known to cause a dose-limiting peripheral neurotoxicity, the initiating mechanisms of which remain unknown. Here, we identified the murine solute carrier organic anion-transporting polypeptide B2 (OATP1B2) as a mediator of paclitaxel-induced neurotoxicity. Additionally, using established tests to assess acute and chronic paclitaxel-induced neurotoxicity, we found that genetic or pharmacologic knockout of OATP1B2 protected mice from mechanically induced allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes. The function of this transport system was inhibited by the tyrosine kinase inhibitor nilotinib through a noncompetitive mechanism, without compromising the anticancer properties of paclitaxel. Collectively, our findings reveal a pathway that explains the fundamental basis of paclitaxel-induced neurotoxicity, with potential implications for its therapeutic management.
Collapse
Affiliation(s)
- Alix F Leblanc
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Jason A Sprowl
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, Buffalo, New York, USA
| | - Paola Alberti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - W David Arnold
- Division of Neuromuscular Disorders, Department of Neurology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kristen W Hong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Marissa S Pioso
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Vamsi Chodisetty
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Olivia Costa
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, Buffalo, New York, USA
| | - Tatiana Florea
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, Buffalo, New York, USA
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ron H Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | | | - Lara E Sucheston-Campbell
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
38
|
de Lemos ML, Kung C, Kletas V, Badry N, Kang I. Approach to initiating QT-prolonging oncology drugs in the ambulatory setting. J Oncol Pharm Pract 2018; 25:198-204. [PMID: 29298624 DOI: 10.1177/1078155217748735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the introduction of regulatory drug approval guidance on the evaluation of QT interval prolongation, an increasing number of drug monographs has included cautions on the risk of QT prolongation. For example, QT prolongation is mentioned in the Canadian product monographs of 29 drugs commonly seen in oncology practice. This presents two major challenges. First, most guidelines and risk predictive tools for QT prolongation have been developed for hospitalized patients in acute care settings. In contrast, most QT-prolonging oncology drugs are used in medically stable patients in the ambulatory setting. Second, many oncology drugs are unique for their indications and non-QT prolonging alternative agents are often not available. In this review, we will outline an empiric initial approach to ambulatory cancer patients who are treated with oncology drugs which may prolong QT interval. This includes the predictive value of QT prolongation on torsades de pointes, the risk factors of the patients and the drugs, and the limitations of existing guidance in this area.
Collapse
Affiliation(s)
- Mário L de Lemos
- Provincial Pharmacy, Systemic Therapy Program, BC Cancer Agency, Vancouver, BC, Canada
| | - Carrie Kung
- Provincial Pharmacy, Systemic Therapy Program, BC Cancer Agency, Vancouver, BC, Canada
| | - Victoria Kletas
- Provincial Pharmacy, Systemic Therapy Program, BC Cancer Agency, Vancouver, BC, Canada
| | - Nadine Badry
- Provincial Pharmacy, Systemic Therapy Program, BC Cancer Agency, Vancouver, BC, Canada
| | - Isabell Kang
- Provincial Pharmacy, Systemic Therapy Program, BC Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
39
|
Sharma A, Burridge PW, McKeithan WL, Serrano R, Shukla P, Sayed N, Churko JM, Kitani T, Wu H, Holmström A, Matsa E, Zhang Y, Kumar A, Fan AC, Del Álamo JC, Wu SM, Moslehi JJ, Mercola M, Wu JC. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 2017; 9:9/377/eaaf2584. [PMID: 28202772 DOI: 10.1126/scitranslmed.aaf2584] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase inhibitors (TKIs), despite their efficacy as anticancer therapeutics, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen U.S. Food and Drug Administration-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a "cardiac safety index" to reflect the cardiotoxicities of existing TKIs. TKIs with low cardiac safety indices exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that vascular endothelial growth factor receptor 2 (VEGFR2)/platelet-derived growth factor receptor (PDGFR)-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. With phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Up-regulating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during cotreatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anticancer TKIs, and the results correlate with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.
Collapse
Affiliation(s)
- Arun Sharma
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul W Burridge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pharmacology and Center for Pharmacogenomics, Northwestern University School of Medicine, Chicago, IL 60611, USA
| | - Wesley L McKeithan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92092, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra Holmström
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anusha Kumar
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alice C Fan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan C Del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92092, USA
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Javid J Moslehi
- Division of Cardiovascular Medicine, Cardio-Oncology Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Ezeani M, Elom S. Necessity to evaluate PI3K/Akt signalling pathway in proarrhythmia. Open Heart 2017; 4:e000596. [PMID: 29259786 PMCID: PMC5729307 DOI: 10.1136/openhrt-2017-000596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 01/04/2023] Open
Abstract
The incidence of QT prolongation and torsades de pointes is on the rise due to the use of cardiovascular and non-cardiovascular drugs. Robust efforts have been made and are still ongoing to understand the underlying mechanisms that can enhance or prevent the development of drug-induced proarrhythmia. A caveat in the use of antiarrhythmic drugs is the ability to obtain safe action potential prolongation therapeutic effects, through IKr blockade. This remains as yet completely unachievable, as blockers of the potassium channel have not provided complete safe measures. Because of this, efforts at understanding the mechanisms of proarrhythmia have continued. PI3K/Akt signalling pathway appears to possess some potential advantage in this regard because cardiomyocytes intracellular dialysis with phosphatidylinositol (3,4,5)-trisphosphate (PIP3) normalises ion channel alterations and eliminates proarrhythmic features. However, there is a conundrum. Increased activities of PIP3 signalling can enhance cell proliferation and survival, and reduced activities of PIP3 signalling can lead to proarrhythmia. PI3K inhibitors used in cancer treatment have been found to cause proarrhythmia, and represent a potential avenue for the research and evaluation of potential effectiveness of a battery of antiarrhythmic and cancer drugs that are either currently in use or in development. Despite this knowledge, limited information is available on PI3K/Akt signalling and arrhythmogenesis. This highlights the need to search for new ways to improve testing of antiarrhythmic drugs and increase our understanding in PI3K/Akt signalling and arrhythmogenesis.
Collapse
Affiliation(s)
- Martin Ezeani
- Department of Chemical Pathology, Faculty of Health Science and Technology, College of Health Science, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Sunday Elom
- Department of Medical Biochemistry, Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
41
|
Porta-Sánchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, Thavendiranathan P. Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J Am Heart Assoc 2017; 6:JAHA.117.007724. [PMID: 29217664 PMCID: PMC5779062 DOI: 10.1161/jaha.117.007724] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The cardiovascular complications of cancer therapeutics are the focus of the burgeoning field of cardio‐oncology. A common challenge in this field is the impact of cancer drugs on cardiac repolarization (ie, QT prolongation) and the potential risk for the life‐threatening arrhythmia torsades de pointes. Although QT prolongation is not a perfect marker of arrhythmia risk, this has become a primary safety metric among oncologists. Cardiologists caring for patients receiving cancer treatment should become familiar with the drugs associated with QT prolongation, its incidence, and appropriate management strategies to provide meaningful consultation in this complex clinical scenario. Methods and Results In this article, we performed a systematic review (using Preferred Reporting Items of Systematic Reviews and Meta‐Analyses (PRISMA) guidelines) of commonly used cancer drugs to determine the incidence of QT prolongation and clinically relevant arrhythmias. We calculated summary estimates of the incidence of all and clinically relevant QT prolongation as well as arrhythmias and sudden cardiac death. We then describe strategies to prevent, identify, and manage QT prolongation in patients receiving cancer therapy. We identified a total of 173 relevant publications. The weighted incidence of any corrected QT (QTc) prolongation in our systematic review in patients treated with conventional therapies (eg, anthracyclines) ranged from 0% to 22%, although QTc >500 ms, arrhythmias, or sudden cardiac death was extremely rare. The risk of QTc prolongation with targeted therapies (eg, small molecular tyrosine kinase inhibitors) ranged between 0% and 22.7% with severe prolongation (QTc >500 ms) reported in 0% to 5.2% of the patients. Arrhythmias and sudden cardiac death were rare. Conclusions Our systematic review demonstrates that there is variability in the incidence of QTc prolongation of various cancer drugs; however, the clinical consequence, as defined by arrhythmias or sudden cardiac death, remains rare.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Cameron Gilbert
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Danna Spears
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Eitan Amir
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Joyce Chan
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Centre, Ted Rogers Program in Cardiotoxicity Prevention and Department of Medical Imaging, University Health Network University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Kroschwald L, Suttorp M, Tauer JT, Zimmermann N, Günther C, Bauer A. Off‑target effect of imatinib and nilotinib on human vitamin D3 metabolism. Mol Med Rep 2017; 17:1382-1388. [PMID: 29115640 DOI: 10.3892/mmr.2017.7952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022] Open
Abstract
Prolonged treatment with tyrosine kinase inhibitors (TKI) including imatinib (IMA) or nilotinib (NIL), induces severe disturbances of bone metabolism in patients with chronic myeloid leukaemia. As vitamin D3 (VD3) is involved in the complex cycle of bone remodelling, the present study investigated in vitro, the influence of IMA and NIL on VD3 metabolism i) in HaCaT cells and ii) in cultured outer root sheath keratinocytes (ORS‑KC) from hair follicles of IMA treated children. Cells were incubated in the presence of IMA or NIL. Concomitantly, specific inhibitors were applied to analyze the inhibition of the VD3 processing cytochrome P450 isoenzyme family by TKIs. In vitro, IMA and NIL significantly impaired the production of calcitriol in HaCaT and cultured ORS‑KC cells from hair follicles of IMA treated children. For NIL, this inhibitory effect demonstrated a 4‑fold increase. In HaCaT and ORS‑KC, application of specific CYP450 inhibitors revealed that CYP27B1 was impaired by IMA and NIL leading to an intracellular accumulation of calcidiol. However, during TKI treatment, KC of IMA treated children revealed no differences in calcidiol and calcitriol levels. In conclusion, IMA and NIL interfere with the vitamin D3 cascade due to their metabolism by CYP27B1.
Collapse
Affiliation(s)
- Lysann Kroschwald
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, D‑01307 Dresden, Germany
| | - Meinolf Suttorp
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, TU Dresden, D‑01307 Dresden, Germany
| | - Josephine Tabea Tauer
- Department of Pediatrics, Shriners Hospital for Children, Montréal, QC H4A 0A9, Canada
| | - Nick Zimmermann
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, D‑01307 Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, D‑01307 Dresden, Germany
| | - Andrea Bauer
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, D‑01307 Dresden, Germany
| |
Collapse
|
43
|
Aghel N, Lipton JH, Atenafu EG, Kim DDH, Delgado DH. Cardiovascular Events After Exposure to Nilotinib in Chronic Myeloid Leukemia: Long-term Follow-up. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:870-878.e1. [PMID: 28803825 DOI: 10.1016/j.clml.2017.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Nilotinib is a highly effective tyrosine kinase inhibitor in the treatment of chronic myeloid leukemia (CML). However, reports of cardiovascular toxicities caused by nilotinib have recently raised critical concerns. The aim of the present study was to evaluate the incidence of cardiovascular events (CVEs) and frequency of asymptomatic peripheral arterial disease (PAD) after long-term exposure to nilotinib. PATIENTS AND METHODS In the present retrospective cohort, we evaluated the incidence of CVEs in 63 CML patients treated with nilotinib. The results of Doppler ultrasound examination of the carotid and vertebral and lower extremity arteries with ankle-brachial index measurements were collected in asymptomatic patients. The clinical outcome was a composite endpoint of PAD, acute coronary events, stroke, heart failure, and cardiovascular death. RESULTS Sixty-three patients with a median age of 60 years were followed up for a median duration of 63 months. After a median nilotinib exposure of 49.30 months (range, 7.00-117.95 months), for a total exposure of 178.7 patient-years, 6 patients (9%) had experienced the clinical outcome. Four patients (8%) had abnormal arterial leg Doppler ultrasound findings. No significant lesions were reported in carotid/vertebral artery ultrasound examinations. Together, hypertension and low-density lipoprotein cholesterol > 2 mmol/L significantly increased the risk of CVEs or abnormal ultrasound findings (odds ratio, 37.65; 95% confidence interval, 4.06-348.9). CONCLUSION The incidence of CVEs and the frequency of asymptomatic PAD in this population was low, and CVEs were associated with cardiovascular risk factors. Aggressive risk factor modification and applying standard definitions for measuring cardiovascular outcomes might have contributed to the findings. Further prospective and adequately powered studies are needed to explore the effect of the cardiovascular risk profile on CVEs in CML patients taking nilotinib.
Collapse
Affiliation(s)
- Nazanin Aghel
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Jeffrey Howard Lipton
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Diego Hernan Delgado
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Hu S, Leblanc AF, Gibson AA, Hong KW, Kim JY, Janke LJ, Li L, Vasilyeva A, Finkelstein DB, Sprowl JA, Sweet DH, Schlatter E, Ciarimboli G, Schellens J, Baker SD, Pabla N, Sparreboom A. Identification of OAT1/OAT3 as Contributors to Cisplatin Toxicity. Clin Transl Sci 2017; 10:412-420. [PMID: 28689374 PMCID: PMC5593168 DOI: 10.1111/cts.12480] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is among the most widely used anticancer drugs and known to cause a dose‐limiting nephrotoxicity, which is partially dependent on the renal uptake carrier OCT2. We here report a previously unrecognized, OCT2‐independent pathway of cisplatin‐induced renal injury that is mediated by the organic anion transporters OAT1 and OAT3. Using transporter‐deficient mouse models, we found that this mechanism regulates renal uptake of a mercapturic acid metabolite of cisplatin that acts as a precursor of a potent nephrotoxin. The function of these two transport systems can be simultaneously inhibited by the tyrosine kinase inhibitor nilotinib through noncompetitive mechanisms, without compromising the anticancer properties of cisplatin. Collectively, our findings reveal a novel pathway that explains the fundamental basis of cisplatin‐induced nephrotoxicity, with potential implications for its therapeutic management.
Collapse
Affiliation(s)
- S Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - A F Leblanc
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - A A Gibson
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - K W Hong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - J Y Kim
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - L J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - L Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Vasilyeva
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - D B Finkelstein
- Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J A Sprowl
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, Buffalo, New York, USA
| | - D H Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - E Schlatter
- Medical Clinic D, Experimental Nephrology, Münster Medical Faculty, Münster, Germany
| | - G Ciarimboli
- Medical Clinic D, Experimental Nephrology, Münster Medical Faculty, Münster, Germany
| | - Jhm Schellens
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - S D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - N Pabla
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - A Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
45
|
Tyrosine kinase-targeting drugs-associated heart failure. Br J Cancer 2017; 116:1366-1373. [PMID: 28399109 PMCID: PMC5482733 DOI: 10.1038/bjc.2017.88] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/17/2017] [Accepted: 02/23/2017] [Indexed: 02/02/2023] Open
Abstract
Background: The impact of cancer therapies on cardiac disease in the general adult cancer survivor population is largely unknown. Our objective was to evaluate which tyrosine kinase-targeting drugs are associated with greater risk for new-onset heart failure (HF). Methods: A nested case–control analysis was conducted within a cohort of 27 992 patients of Clalit Health Services, newly treated with a tyrosine kinase-targeting, and/or chemotherapeutic drug, for a malignant disease, between 1 January 2005 and 31 December 2012. Each new case of HF was matched to up to 30 controls from the cohort on calendar year of cohort entry, age, gender, and duration of follow-up. Main outcome measure was odds ratio (OR) with 95% confidence interval (CI) of new-onset HF. Results: There were 936 incident cases of HF during 71 742 person-years of follow-up. Trastuzumab (OR 1.90, 95% CI 1.46–2.49), cetuximab (OR 1.72, 1.10–2.69), panitumumab (OR 3.01, 1.02–8.85), and sunitinib (OR 3.39, 1.78–6.47) were associated with increased HF risk. Comorbidity independently associated with higher risk in a multivariable conditional regression model was diabetes mellitus, hypertension, chronic renal failure, ischaemic heart disease, valvular heart disease, arrhythmia, and smoking. Conclusions: Trastuzumab, cetuximab, panitumumab, and sunitinib are associated with increased risk for new-onset HF.
Collapse
|
46
|
Ieronimakis N, Hays A, Prasad A, Janebodin K, Duffield JS, Reyes M. PDGFRα signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy. J Pathol 2016; 240:410-424. [PMID: 27569721 PMCID: PMC5113675 DOI: 10.1002/path.4801] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
Fibrosis is a characteristic of Duchenne muscular dystrophy (DMD), yet the cellular and molecular mechanisms responsible for DMD fibrosis are poorly understood. Utilizing the Collagen1a1-GFP transgene to identify cells producing Collagen-I matrix in wild-type mice exposed to toxic injury or those mutated at the dystrophin gene locus (mdx) as a model of DMD, we studied mechanisms of skeletal muscle injury/repair and fibrosis. PDGFRα is restricted to Sca1+, CD45- mesenchymal progenitors. Fate-mapping experiments using inducible CreER/LoxP somatic recombination indicate that these progenitors expand in injury or DMD to become PDGFRα+, Col1a1-GFP+ matrix-forming fibroblasts, whereas muscle fibres do not become fibroblasts but are an important source of the PDGFRα ligand, PDGF-AA. While in toxin injury/repair of muscle PDGFRα, signalling is transiently up-regulated during the regenerative phase in the DMD model and in human DMD it is chronically overactivated. Conditional expression of the constitutively active PDGFRα D842V mutation in Collagen-I+ fibroblasts, during injury/repair, hindered the repair phase and instead promoted fibrosis. In DMD, treatment of mdx mice with crenolanib, a highly selective PDGFRα/β tyrosine kinase inhibitor, reduced fibrosis, improved muscle strength, and was associated with decreased activity of Src, a downstream effector of PDGFRα signalling. These observations are consistent with a model in which PDGFRα activation of mesenchymal progenitors normally regulates repair of the injured muscle, but in DMD persistent and excessive activation of this pathway directly drives fibrosis and hinders repair. The PDGFRα pathway is a potential new target for treatment of progressive DMD. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cells, Cultured
- Collagen Type I/biosynthesis
- Disease Models, Animal
- Dystrophin/genetics
- Enzyme Inhibitors/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Fibrosis
- Male
- Mice, Transgenic
- Muscle Strength/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mutation
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Regeneration/drug effects
- Regeneration/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
| | - Aislinn Hays
- Department of PathologyAlbert Einstein College of MedicineNYUSA
| | - Amalthiya Prasad
- Department of Pathology, School of MedicineUniversity of WashingtonWAUSA
| | | | - Jeremy S Duffield
- Department of Pathology, School of MedicineUniversity of WashingtonWAUSA
- Department of Medicine, School of MedicineUniversity of WashingtonWAUSA
- Discovery ResearchBiogen IncCambridgeMAUSA
| | - Morayma Reyes
- Department of PathologyAlbert Einstein College of MedicineNYUSA
- Montefiore Medical CenterBronxNYUSA
| |
Collapse
|
47
|
Proposal for a tailored stratification at baseline and monitoring of cardiovascular effects during follow-up in chronic phase chronic myeloid leukemia patients treated with nilotinib frontline. Crit Rev Oncol Hematol 2016; 107:190-198. [PMID: 27823647 DOI: 10.1016/j.critrevonc.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 11/22/2022] Open
Abstract
Nilotinib was approved for chronic myeloid leukemia patients in chronic phase or accelerated phase after resistance to imatinib or as frontline treatment. The drug, as other tyrosine kinase inhibitor has a specific safety profile with possible occurring metabolic side effects, such as increased glycaemia and cholesterol level, that may result, in predisposed patients, in an increased rate of cardiac and vascular disorders. The objectives of this paper were to focus on the optimal procedures to perform at diagnosis in order to identify patients at risk of possible events and the correct monitoring procedures in order to prevent and manage metabolic and cardiovascular adverse events. Several national haematologist and cardiologist reviewed the literature, analysed levels of evidence for each topic and, after extensive discussions presented their proposals based on current international guidelines.
Collapse
|
48
|
Herrmann J, Yang EH, Iliescu CA, Cilingiroglu M, Charitakis K, Hakeem A, Toutouzas K, Leesar MA, Grines CL, Marmagkiolis K. Vascular Toxicities of Cancer Therapies: The Old and the New--An Evolving Avenue. Circulation 2016; 133:1272-89. [PMID: 27022039 DOI: 10.1161/circulationaha.115.018347] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since the late 1990s, there has been a steady decline in cancer-related mortality, in part related to the introduction of so-called targeted therapies. Intended to interfere with a specific molecular pathway, these therapies have, paradoxically, led to a number of effects off their intended cancer tissue or molecular targets. The latest examples are tyrosine kinase inhibitors targeting the Philadelphia Chromosome mutation product, which have been associated with progressive atherosclerosis and acute vascular events. In addition, agents designed to interfere with the vascular growth factor signaling pathway have vascular side effects ranging from hypertension to arterial events and cardiomyocyte toxicity. Interestingly, the risk of cardiotoxicity with drugs such as trastuzumab is predicted by preexisting cardiovascular risk factors and disease, posing the question of a vascular component to the pathophysiology. The effect on the coronary circulation has been the leading explanation for the cardiotoxicity of 5-fluorouracil and may be the underlying the mechanism of presentation of apical ballooning syndrome with various chemotherapeutic agents. Classical chemotherapeutic agents such as cisplatin, often used in combination with bleomycin and vinca alkaloids, can lead to vascular events including acute coronary thrombosis and may be associated with an increased long-term cardiovascular risk. This review is intended to provide an update on the evolving spectrum of vascular toxicities with cancer therapeutics, particularly as they pertain to clinical practice, and to the conceptualization of cardiovascular diseases, as well. Vascular toxicity with cancer therapy: the old and the new, an evolving avenue.
Collapse
Affiliation(s)
- Joerg Herrmann
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.).
| | - Eric H Yang
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Cezar A Iliescu
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Mehmet Cilingiroglu
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Konstantinos Charitakis
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Abdul Hakeem
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Konstantinos Toutouzas
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Massoud A Leesar
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Cindy L Grines
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Konstantinos Marmagkiolis
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| |
Collapse
|
49
|
Smith BD, Liu J, Latremouille-Viau D, Guerin A, Fernandez D, Chen L. Treatment patterns, overall survival, healthcare resource use and costs in elderly Medicare beneficiaries with chronic myeloid leukemia using second-generation tyrosine kinase inhibitors as second-line therapy. Curr Med Res Opin 2016; 32:817-27. [PMID: 26743563 DOI: 10.1185/03007995.2016.1140030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective Though the median age at diagnosis is 64 years, few studies focus on elderly (≥65 years) patients with chronic myeloid leukemia (CML). This study examines healthcare outcomes among elderly Medicare beneficiaries with CML who started nilotinib or dasatinib after imatinib. Research design and methods Patients were identified in the Medicare Research Identifiable Files (2006-2012) and had continuous Medicare Parts A, B, and D coverage. Main outcome measures Treatment patterns, overall survival (OS), monthly healthcare resource utilization and medical costs were measured from the second-line tyrosine kinase inhibitor (TKI) initiation (index date) to end of Medicare coverage. Results Despite similar adherence, dasatinib patients (N = 379) were more likely to start on the recommended dose (74% vs. 53%; p < 0.001), and to have dose reductions (21% vs. 11%, adjusted hazard ratio [HR] = 1.94; p = 0.002) or dose increases (9% vs. 7%; adjusted HR = 1.81; p = 0.048) than nilotinib patients (N = 280). Fewer nilotinib patients discontinued (59% vs. 67%; adjusted HR = 0.80; p = 0.026) or switched to another TKI (21% vs. 29%; adjusted HR = 0.72; p = 0.044) than dasatinib patients. Nilotinib patients had longer median OS (>4.9 years vs. 4.0 years; p = 0.032) and 37% lower mortality risk than dasatinib patients (adjusted HR = 0.63; p = 0.008). Nilotinib patients had 23% fewer inpatient admissions, 30% fewer emergency room visits, 13% fewer outpatient visits (all p < 0.05), and lower monthly medical costs (by $513, p = 0.024) than dasatinib patients. Limitations Lack of clinical assessment (disease phase and response to first-line therapy) and retrospective nature of study (unobservable potential confounding factors, non-randomized treatment choice). Conclusions In the current study of elderly CML patients, initiation of second-line TKIs frequently occurs at doses lower than the recommended starting doses and, despite this, many patients require dose adjustments. Here, nilotinib patients required fewer dose adjustments than dasatinib patients. Further research focusing on elderly CML patients is warranted in order to help define future best clinical practices.
Collapse
Affiliation(s)
- B Douglas Smith
- a Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Jun Liu
- b Harvard University , Cambridge , MA , USA
| | | | - Annie Guerin
- c Analysis Group Inc. , Montreal, Quebec, Canada
| | | | - Lei Chen
- d Novartis Pharmaceuticals Corporation , East Hanover , NJ , USA
| |
Collapse
|
50
|
Hsiao FC, Yeh CN, Chu PH. Regorafenib-Related Myocardial Injury during Atrial Fibrillation. ACTA CARDIOLOGICA SINICA 2016; 32:243-6. [PMID: 27122956 DOI: 10.6515/acs20150629b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Multikinase inhibitors with an anti-vascular endothelial growth factor effect have been reported to increase the risk of myocardial infarction or ischemia. We have presented the case of a 72-year-old male who had a metastatic gastrointestinal stromal tumor for which he received targeted therapy and who was admitted to our hospital for recurrent episodes of myocardial injury during atrial fibrillation. Coronary angiography showed insignificant coronary artery stenosis. We also reviewed the incidence of cardiovascular events in patients receiving regorafenib, and the current understanding of the mechanism of targeted therapy-induced myocardial ischemia/infarction. KEY WORDS Multikinase inhibitor • Myocardial infarction • Myocardial ischemia • Vascular endothelial growth factor.
Collapse
Affiliation(s)
- Fu-Chih Hsiao
- The Division of Cardiology, Department of Internal Medicine
| | - Chun-Nan Yeh
- Division of General Surgery, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Pao-Hsien Chu
- The Division of Cardiology, Department of Internal Medicine
| |
Collapse
|