1
|
Long Q, Ye H, Song S, Li J, Wu J, Mao J, Li R, Ke Li, Gao Z, Zheng Y. A transcriptome-based risk model in sepsis enables prognostic prediction and drug repositioning. iScience 2024; 27:111277. [PMID: 39628572 PMCID: PMC11613189 DOI: 10.1016/j.isci.2024.111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Septic management presented a tremendous challenge due to heterogeneous host responses. We aimed to develop a risk model for early septic stratification based on transcriptomic signature. Here, we combined genes OLAH, LY96, HPGD, and ABLIM1 into a prognostic risk score model, which demonstrated exceptional performance in septic diagnosis (AUC = 0.99-1.00) and prognosis (AUC = 0.61-0.70), outperforming that of Mars and SRS endotypes. Also, the model unveiled immunosuppressive status in high-risk patients and a poor response to hydrocortisone in low-risk individuals. Single-cell transcriptome analysis further elucidated expression patterns and effects of the four genes across immune cell types, illustrating integrated host responses reflected by this model. Upon distinct transcriptional profiles of risk subgroups, we identified fenretinide and meloxicam as therapeutic agents, which significantly improved survival in septic mice models. Our study introduced a risk model that optimized risk stratification and drug repurposing of sepsis, thereby offering a comprehensive management approach.
Collapse
Affiliation(s)
- Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jingsong Mao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin 541000, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Ke Li
- Department of Critical Care Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| |
Collapse
|
2
|
Ahmad SS, Lim JH, Choi I, Lee EJ. Biocomputational screening of natural compounds targeting 15-hydroxyprostaglandin dehydrogenase to improve skeletal muscle during aging. Mol Divers 2024; 28:4425-4439. [PMID: 38904907 DOI: 10.1007/s11030-024-10825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/18/2024] [Indexed: 06/22/2024]
Abstract
Skeletal muscle (SM) contains a diverse population of muscle stem (or satellite) cells, which are essential for the maintenance of muscle tissue and positively regulated by prostaglandin E2 (PGE2). However, in aged SM, PGE2 levels are reduced due to increased prostaglandin catabolism by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a negative regulator of SM tissue repair and regeneration. Screening of a library of 80,617 natural compounds in the ZINC database against 15-PGDH was conducted from PyRx. Further, drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge were performed. The selected complex was forwarded for MD simulations up to 100ns. Based on free energy of binding obtained from docking revealed that ZINC14557836 and ZINC14638400 more potently inhibiting to 15-PGDH than SW033291 (the control and high-affinity inhibitor of 15-PGDH). The free energies of binding obtained from PyRx for 15-PGDH-ZINC14557836, 15-PGDH-ZINC14638400, and 15-PGDH-SW033291 complexes were - 10.30, -9.80, and - 8.0 kcal/mol, respectively. Root mean square deviations (RMSDs), root mean square fluctuations (RMSFs), radii of gyration (Rg), solvent-accessible surface areas (SASAs), and H-bond parameters obtained by 100 ns MD simulations predicted ZINC14557836 and ZINC14638400 more stably complexed with 15-PGDH than SW033291. The several parameters, including physicochemical properties and drug-likenesses, were within acceptable limits, and ZINC14557836 and ZINC14638400 also satisfied other drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge. These findings suggest that ZINC14557836 and ZINC14638400 provide starting points for the development of medications that increase SM regeneration and muscle stem (or satellite) cell numbers by inhibiting 15-PGDH.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
3
|
Lim HW, Kim HJ, Jeon CY, Lee Y, Kim M, Kim J, Kim SR, Lee S, Lim DC, Park HD, Park BC, Shin DW. Hair Growth Promoting Effects of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor in Human Follicle Dermal Papilla Cells. Int J Mol Sci 2024; 25:7485. [PMID: 39000592 PMCID: PMC11242524 DOI: 10.3390/ijms25137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Prostaglandin E2 (PGE2) is known to be effective in regenerating tissues, and bimatoprost, an analog of PGF2α, has been approved by the FDA as an eyelash growth promoter and has been proven effective in human hair follicles. Thus, to enhance PGE2 levels while improving hair loss, we found dihydroisoquinolinone piperidinylcarboxy pyrazolopyridine (DPP), an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using DeepZema®, an AI-based drug development program. Here, we investigated whether DPP improved hair loss in human follicle dermal papilla cells (HFDPCs) damaged by dihydrotestosterone (DHT), which causes hair loss. We found that DPP enhanced wound healing and the expression level of alkaline phosphatase in DHT-damaged HFDPCs. We observed that DPP significantly down-regulated the generation of reactive oxygen species caused by DHT. DPP recovered the mitochondrial membrane potential in DHT-damaged HFDPCs. We demonstrated that DPP significantly increased the phosphorylation levels of the AKT/ERK and activated Wnt signaling pathways in DHT-damaged HFDPCs. We also revealed that DPP significantly enhanced the size of the three-dimensional spheroid in DHT-damaged HFDPCs and increased hair growth in ex vivo human hair follicle organ culture. These data suggest that DPP exhibits beneficial effects on DHT-damaged HFDPCs and can be utilized as a promising agent for improving hair loss.
Collapse
Affiliation(s)
- Hye Won Lim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Hak Joong Kim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Chae Young Jeon
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Yurim Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Mujun Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Jinsick Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Soon Re Kim
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
| | - Sanghwa Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Dong Chul Lim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Hee Dong Park
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Byung Cheol Park
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
- Department of Dermatology, Dankook University Hospital, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Dong Wook Shin
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| |
Collapse
|
4
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
5
|
Gahalawat S, Addepalli Y, Fink SP, Kasturi L, Markowitz SD, Ready JM. Enzymatic Resolution and Decarboxylative Functionalization of α-Sulfinyl Esters. Chemistry 2024; 30:e202302996. [PMID: 37721804 PMCID: PMC10872298 DOI: 10.1002/chem.202302996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
α-Sulfinyl esters can be readily prepared through thiol substitution of α-bromo esters followed by oxidation to the sulfoxide. Enzymatic resolution with lipoprotein lipase provides both the unreacted esters and corresponding α-sulfinyl carboxylic acids in high yields and enantiomeric ratios. Subsequent decarboxylative halogenation, dihalogenation, trihalogenation and cross-coupling gives rise to functionalized sulfoxides. The method has been applied to the asymmetric synthesis of a potent inhibitor of 15-prostaglandin dehydrogenase.
Collapse
Affiliation(s)
- Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, 75390-9038, Dallas, Texas, USA
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, 75390-9038, Dallas, Texas, USA
| | - Stephen P Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, 44106, Cleveland, Ohio, USA
| | - Lakshmi Kasturi
- Department of Medicine, Case Western Reserve University, 44106, Cleveland, Ohio, USA
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center and Department of Medicine, Case Western Reserve University, Seidman Cancer Center, University Hospitals of Cleveland, 44106, Cleveland, Ohio, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, 75390-9038, Dallas, Texas, USA
| |
Collapse
|
6
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
7
|
Huang W, Li H, Kiselar J, Fink SP, Regmi S, Day A, Yuan Y, Chance M, Ready JM, Markowitz SD, Taylor DJ. Small molecule inhibitors of 15-PGDH exploit a physiologic induced-fit closing system. Nat Commun 2023; 14:784. [PMID: 36774348 PMCID: PMC9922282 DOI: 10.1038/s41467-023-36463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
15-prostaglandin dehydrogenase (15-PGDH) is a negative regulator of tissue stem cells that acts via enzymatic activity of oxidizing and degrading PGE2, and related eicosanoids, that support stem cells during tissue repair. Indeed, inhibiting 15-PGDH markedly accelerates tissue repair in multiple organs. Here we have used cryo-electron microscopy to solve the solution structure of native 15-PGDH and of 15-PGDH individually complexed with two distinct chemical inhibitors. These structures identify key 15-PGDH residues that mediate binding to both classes of inhibitors. Moreover, we identify a dynamic 15-PGDH lid domain that closes around the inhibitors, and that is likely fundamental to the physiologic 15-PGDH enzymatic mechanism. We furthermore identify two key residues, F185 and Y217, that act as hinges to regulate lid closing, and which both inhibitors exploit to capture the lid in the closed conformation, thus explaining their sub-nanomolar binding affinities. These findings provide the basis for further development of 15-PGDH targeted drugs as therapeutics for regenerative medicine.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyun Li
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Janna Kiselar
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen P Fink
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sagar Regmi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alexander Day
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yiyuan Yuan
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Chance
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA.
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Hu B, Toda K, Wang X, Antczak MI, Smith J, Geboers S, Nishikawa G, Li H, Dawson D, Fink S, Desai AB, Williams NS, Markowitz SD, Ready JM. Orally Bioavailable Quinoxaline Inhibitors of 15-Prostaglandin Dehydrogenase (15-PGDH) Promote Tissue Repair and Regeneration. J Med Chem 2022; 65:15327-15343. [PMID: 36322935 PMCID: PMC9885488 DOI: 10.1021/acs.jmedchem.2c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
15-Prostaglandin dehydrogenase (15-PGDH) regulates the concentration of prostaglandin E2 in vivo. Inhibitors of 15-PGDH elevate PGE2 levels and promote tissue repair and regeneration. Here, we describe a novel class of quinoxaline amides that show potent inhibition of 15-PGDH, good oral bioavailability, and protective activity in mouse models of ulcerative colitis and recovery from bone marrow transplantation.
Collapse
Affiliation(s)
- Bin Hu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Kosuke Toda
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Xiaoyu Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Monika I Antczak
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Julianne Smith
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Sophie Geboers
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Gen Nishikawa
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Hongyun Li
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Dawn Dawson
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Stephen Fink
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Amar B Desai
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio44106, United States
- Seidman Cancer Center, University Hospitals of Cleveland, Cleveland, Ohio44106, United States
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| |
Collapse
|
9
|
Ho WJ, Smith JNP, Park YS, Hadiono M, Christo K, Jogasuria A, Zhang Y, Broncano AV, Kasturi L, Dawson DM, Gerson SL, Markowitz SD, Desai AB. 15-PGDH regulates hematopoietic and gastrointestinal fitness during aging. PLoS One 2022; 17:e0268787. [PMID: 35587945 PMCID: PMC9119474 DOI: 10.1371/journal.pone.0268787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence implicates the eicosanoid molecule prostaglandin E2 (PGE2) in conferring a regenerative phenotype to multiple organ systems following tissue injury. As aging is in part characterized by loss of tissue stem cells' regenerative capacity, we tested the hypothesis that the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) contributes to the diminished organ fitness of aged mice. Here we demonstrate that genetic loss of 15-PGDH (Hpgd) confers a protective effect on aging of murine hematopoietic and gastrointestinal (GI) tissues. Aged mice lacking 15-PGDH display increased hematopoietic output as assessed by peripheral blood cell counts, bone marrow and splenic stem cell compartments, and accelerated post-transplantation recovery compared to their WT counterparts. Loss of Hpgd expression also resulted in enhanced GI fitness and reduced local inflammation in response to colitis. Together these results suggest that 15-PGDH negatively regulates aged tissue regeneration, and that 15-PGDH inhibition may be a viable therapeutic strategy to ameliorate age-associated loss of organ fitness.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Julianne N. P. Smith
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Young Soo Park
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Matthew Hadiono
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kelsey Christo
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alvin Jogasuria
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yongyou Zhang
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alyssia V. Broncano
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lakshmi Kasturi
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dawn M. Dawson
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Stanton L. Gerson
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, United States of America
| | - Sanford D. Markowitz
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, United States of America
| | - Amar B. Desai
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
10
|
Dogan AB, Rohner NA, Smith JNP, Kilgore JA, Williams NS, Markowitz SD, von Recum HA, Desai AB. Polymer Microparticles Prolong Delivery of the 15-PGDH Inhibitor SW033291. Pharmaceutics 2021; 14:85. [PMID: 35056981 PMCID: PMC8779392 DOI: 10.3390/pharmaceutics14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
As the prevalence of age-related fibrotic diseases continues to increase, novel antifibrotic therapies are emerging to address clinical needs. However, many novel therapeutics for managing chronic fibrosis are small-molecule drugs that require frequent dosing to attain effective concentrations. Although bolus parenteral administrations have become standard clinical practice, an extended delivery platform would achieve steady-state concentrations over a longer time period with fewer administrations. This study lays the foundation for the development of a sustained release platform for the delivery of (+)SW033291, a potent, small-molecule inhibitor of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) enzyme, which has previously demonstrated efficacy in a murine model of pulmonary fibrosis. Herein, we leverage fine-tuned cyclodextrin microparticles-specifically, β-CD microparticles (β-CD MPs)-to extend the delivery of the 15-PGDH inhibitor, (+)SW033291, to over one week.
Collapse
Affiliation(s)
- Alan B. Dogan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Nathan A. Rohner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Julianne N. P. Smith
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
| | - Jessica A. Kilgore
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (J.A.K.); (N.S.W.)
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (J.A.K.); (N.S.W.)
| | - Sanford D. Markowitz
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Amar B. Desai
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
| |
Collapse
|
11
|
Li J, Wang X, Ding J, Zhu Y, Min W, Kuang W, Yuan K, Sun C, Yang P. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Acta Pharm Sin B 2021; 12:2808-2831. [PMID: 35755294 PMCID: PMC9214065 DOI: 10.1016/j.apsb.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is the only curative therapy for many diseases. HSCs from umbilical cord blood (UCB) source have many advantages over from bone marrow. However, limited HSC dose in a single CB unit restrict its widespread use. Over the past two decades, ex vivo HSC expansion with small molecules has been an effective approach for obtaining adequate HSCs. Till now, several small-molecule compounds have entered the phase I/II trials, showing safe and favorable pharmacological profiles. As HSC expansion has become a hot topic over recent years, many newly identified small molecules along with novel biological mechanisms for HSC expansion would help solve this challenging issue. Here, we will give an overview of HSC biology, discovery and medicinal chemistry development of small molecules, natural products targeting for HSC expansion, and their recent clinical progresses, as well as potential protein targets for HSC expansion.
Collapse
|
12
|
Sun CC, Zhou ZQ, Yang D, Chen ZL, Zhou YY, Wen W, Feng C, Zheng L, Peng XY, Tang CF. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins. Int Immunopharmacol 2021; 101:108176. [PMID: 34655851 DOI: 10.1016/j.intimp.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
15-hydroxyprostaglandin dehydrogenase (15-PGDH; encoded by HPGD) is ubiquitously expressed in mammalian tissues and catalyzes the degradation of prostaglandins (PGs; mainly PGE2, PGD2, and PGF2α) in a process mediated by solute carrier organic anion transport protein family member 2A1 (SLCO2A1; also known as PGT, OATP2A1, PHOAR2, or SLC21A2). As a key enzyme, 15-PGDH catalyzes the rapid oxidation of 15-hydroxy-PGs into 15-keto-PGs with lower biological activity. Increasing evidence suggests that 15-PGDH plays a key role in many physiological and pathological processes in mammals and is considered a potential pharmacological target for preventing organ damage, promoting bone marrow graft recovery, and enhancing tissue regeneration. Additionally, results of whole-exome analyses suggest that recessive inheritance of an HPGD mutation is associated with idiopathic hypertrophic osteoarthropathy. Interestingly, as a tumor suppressor, 15-PGDH inhibits proliferation and induces the differentiation of cancer cells (including those associated with colorectal, lung, and breast cancers). Furthermore, a recent study identified 15-PGDH as a marker of aging tissue and a potential novel therapeutic target for resisting the complex pathology of aging-associated diseases. Here, we review and summarise recent information on the molecular functions of 15-PGDH and discuss its pathophysiological implications.
Collapse
Affiliation(s)
- Chen-Chen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zuo-Qiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Dong Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Yun-Yi Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Wei Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Chen Feng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| |
Collapse
|
13
|
Mallipeddi PL, Zhang Y, Li H, Markowitz SD, Posner B. Structural Insights into Novel 15-Prostaglandin Dehydrogenase Inhibitors. Molecules 2021; 26:molecules26195903. [PMID: 34641449 PMCID: PMC8512612 DOI: 10.3390/molecules26195903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
We discovered SW033291 in a high throughput chemical screen aimed at identifying 15-prostaglandin dehydrogenase (15-PGDH) modulators. The compound exhibited inhibitory activity in in vitro biochemical and cell-based assays of 15-PGDH activity. We subsequently demonstrated that this compound, and several analogs thereof, are effective in in vivo mouse models of bone marrow transplant, colitis, and liver regeneration, where increased levels of PGE2 positively potentiate tissue regeneration. To better understand the binding of SW033291, we carried out docking studies for both the substrate, PGE2, and an inhibitor, SW033291, to 15-PGDH. Our models suggest similarities in the ways that PGE2 and SW033291 interact with key residues in the 15-PGDH-NAD+ complex. We carried out molecular dynamics simulations (MD) of SW033291 bound to this complex, in order to understand the dynamics of the binding interactions for this compound. The butyl side chain (including the sulfoxide) of SW033291 participates in crucial binding interactions that are similar to those observed for the C15-OH and the C16-C20 alkyl chain of PGE2. In addition, interactions with residues Ser138, Tyr151, and Gln148 play key roles in orienting and stabilizing SW033291 in the binding site and lead to enantioselectivity for the R-enantiomer. Finally, we compare the binding mode of (R)-S(O)-SW033291 with the binding interactions of published 15-PGDH inhibitors.
Collapse
Affiliation(s)
- Prema L. Mallipeddi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Yongyou Zhang
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
| | - Hongyun Li
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
| | - Sanford D. Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
14
|
Cheng H, Huang H, Guo Z, Chang Y, Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Am J Cancer Res 2021; 11:8836-8854. [PMID: 34522214 PMCID: PMC8419039 DOI: 10.7150/thno.63396] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15-PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release.
Collapse
|
15
|
Smith JN, Dawson DM, Christo KF, Jogasuria AP, Cameron MJ, Antczak MI, Ready JM, Gerson SL, Markowitz SD, Desai AB. 15-PGDH inhibition activates the splenic niche to promote hematopoietic regeneration. JCI Insight 2021; 6:143658. [PMID: 33600377 PMCID: PMC8026178 DOI: 10.1172/jci.insight.143658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
The splenic microenvironment regulates hematopoietic stem and progenitor cell (HSPC) function, particularly during demand-adapted hematopoiesis; however, practical strategies to enhance splenic support of transplanted HSPCs have proved elusive. We have previously demonstrated that inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using the small molecule (+)SW033291 (PGDHi), increases BM prostaglandin E2 (PGE2) levels, expands HSPC numbers, and accelerates hematologic reconstitution after BM transplantation (BMT) in mice. Here we demonstrate that the splenic microenvironment, specifically 15-PGDH high-expressing macrophages, megakaryocytes (MKs), and mast cells (MCs), regulates steady-state hematopoiesis and potentiates recovery after BMT. Notably, PGDHi-induced neutrophil, platelet, and HSPC recovery were highly attenuated in splenectomized mice. PGDHi induced nonpathologic splenic extramedullary hematopoiesis at steady state, and pretransplant PGDHi enhanced the homing of transplanted cells to the spleen. 15-PGDH enzymatic activity localized specifically to macrophages, MK lineage cells, and MCs, identifying these cell types as likely coordinating the impact of PGDHi on splenic HSPCs. These findings suggest that 15-PGDH expression marks HSC niche cell types that regulate hematopoietic regeneration. Therefore, PGDHi provides a well-tolerated strategy to therapeutically target multiple HSC niches, promote hematopoietic regeneration, and improve clinical outcomes of BMT.
Collapse
Affiliation(s)
- Julianne Np Smith
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Dawn M Dawson
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Kelsey F Christo
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Alvin P Jogasuria
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark J Cameron
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Monika I Antczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stanton L Gerson
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA.,University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Sanford D Markowitz
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA.,University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Amar B Desai
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Affiliation(s)
- Friedrich Becker
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
| | - K. Lenhard Rudolph
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
- University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
17
|
Smith JNP, Witkin MD, Jogasuria AP, Christo KF, Raffay TM, Markowitz SD, Desai AB. Therapeutic targeting of 15-PGDH in murine pulmonary fibrosis. Sci Rep 2020; 10:11657. [PMID: 32669620 PMCID: PMC7363833 DOI: 10.1038/s41598-020-68336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by interstitial remodeling and pulmonary dysfunction. The etiology of IPF is not completely understood but involves pathologic inflammation and subsequent failure to resolve fibrosis in response to epithelial injury. Treatments for IPF are limited to anti-inflammatory and immunomodulatory agents, which are only partially effective. Prostaglandin E2 (PGE2) disrupts TGFβ signaling and suppresses myofibroblast differentiation, however practical strategies to raise tissue PGE2 during IPF have been limited. We previously described the discovery of a small molecule, (+)SW033291, that binds with high affinity to the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and increases PGE2 levels. Here we evaluated pulmonary 15-PGDH expression and activity and tested whether pharmacologic 15-PGDH inhibition (PGDHi) is protective in a mouse model of bleomycin-induced pulmonary fibrosis (PF). Long-term PGDHi was well-tolerated, reduced the severity of pulmonary fibrotic lesions and extracellular matrix remodeling, and improved pulmonary function in bleomycin-treated mice. Moreover, PGDHi attenuated both acute inflammation and weight loss, and decreased mortality. Endothelial cells and macrophages are likely targets as these cell types highly expressed 15-PGDH. In conclusion, PGDHi ameliorates inflammatory pathology and fibrosis in murine PF, and may have clinical utility to treat human disease.
Collapse
Affiliation(s)
- Julianne N P Smith
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew D Witkin
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alvin P Jogasuria
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kelsey F Christo
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas M Raffay
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanford D Markowitz
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA. .,University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA.
| | - Amar B Desai
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
18
|
Inhibition of 15-PGDH Protects Mice from Immune-Mediated Bone Marrow Failure. Biol Blood Marrow Transplant 2020; 26:1552-1556. [PMID: 32422251 DOI: 10.1016/j.bbmt.2020.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Aplastic anemia (AA) is a human immune-mediated bone marrow failure syndrome that is treated by stem cell transplantation for patients who have a matched related donor and by immunosuppressive therapy (IST) for those who do not. Responses to IST are variable, with patients still at risk for prolonged neutropenia, transfusion dependence, immune suppression, and severe opportunistic infections. Therefore, additional therapies are needed to accelerate hematologic recovery in patients receiving front-line IST. We have shown that inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH) with the small molecule SW033291 (PGDHi) increases bone marrow (BM) prostaglandin E2 levels, expands hematopoietic stem cell (HSC) numbers, and accelerates hematologic reconstitution following murine BM transplantation. We now report that in a murine model of immune-mediated BM failure, PGDHi therapy mitigated cytopenias, increased BM HSC and progenitor cell numbers, and significantly extended survival compared with vehicle-treated mice. PGDHi protection was not immune-mediated, as serum IFN-γ levels and BM CD8+ T lymphocyte frequencies were not impacted. Moreover, dual administration of PGDHi plus low-dose IST enhanced total white blood cell, neutrophil, and platelet recovery, achieving responses similar to those seen with maximal-dose IST with lower toxicity. Taken together, these data demonstrate that PGDHi can complement IST to accelerate hematologic recovery and reduce morbidity in severe AA.
Collapse
|
19
|
|
20
|
Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglandin E2 (PGE2), are abundantly produced by cells of both the bone-forming (osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible cyclooxygenase, COX-2, is largely responsible for most PGE2 production in bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced by multiple agonists - hormones, growth factors, and proinflammatory factors - and the resulting PGE2 may mediate, amplify, or, as we have recently shown for parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2 can directly stimulate osteoblast differentiation and, indirectly via stimulation of RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net balance of these two effects of PGE2 in vivo on bone formation and bone resorption has been hard to predict and, as expected for such a widespread local factor, hard to study. Some of the complexity of PGE2 actions on bone can be explained by the fact that there are four receptors for PGE2 (EP1-4). Some of the major actions of PGE2 in vitro occur via EP2 and EP4, both of which can stimulate cAMP signaling, but there are other distinct signaling pathways, important in other tissues, which have not yet been fully elucidated in bone cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has been examined with positive results. Further studies to clarify the pathways of PGE2 action in bone may allow us to identify new and more effective ways to deliver the therapeutic benefits of PGE2 in skeletal disorders.
Collapse
Affiliation(s)
- Carol Pilbeam
- Department of Medicine and Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
21
|
Loew A, Köhnke T, Rehbeil E, Pietzner A, Weylandt KH. A Role for Lipid Mediators in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:ijms20102425. [PMID: 31100828 PMCID: PMC6567850 DOI: 10.3390/ijms20102425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
In spite of therapeutic improvements in the treatment of different hematologic malignancies, the prognosis of acute myeloid leukemia (AML) treated solely with conventional induction and consolidation chemotherapy remains poor, especially in association with high risk chromosomal or molecular aberrations. Recent discoveries describe the complex interaction of immune effector cells, as well as the role of the bone marrow microenvironment in the development, maintenance and progression of AML. Lipids, and in particular omega-3 as well as omega-6 polyunsaturated fatty acids (PUFAs) have been shown to play a vital role as signaling molecules of immune processes in numerous benign and malignant conditions. While the majority of research in cancer has been focused on the role of lipid mediators in solid tumors, some data are showing their involvement also in hematologic malignancies. There is a considerable amount of evidence that AML cells are targetable by innate and adaptive immune mechanisms, paving the way for immune therapy approaches in AML. In this article we review the current data showing the lipid mediator and lipidome patterns in AML and their potential links to immune mechanisms.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Bone Marrow
- Disease Progression
- Fatty Acids, Omega-3/immunology
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/immunology
- Fatty Acids, Omega-6/therapeutic use
- Fatty Acids, Unsaturated
- Hematologic Neoplasms/drug therapy
- Hematopoiesis
- Humans
- Immunity, Innate/drug effects
- Immunotherapy
- Inflammation
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Lipids/immunology
- Lipids/therapeutic use
- Neoplasms/drug therapy
- Prognosis
- Tumor Microenvironment
Collapse
Affiliation(s)
- Andreas Loew
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Thomas Köhnke
- Department of Internal Medicine III, University of Munich, 81377 Munich, Germany.
| | - Emma Rehbeil
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Anne Pietzner
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Karsten-H Weylandt
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
- Medical Department, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|