1
|
Ito T, Kamimura T, Kiguchi T, Kato K, Takenaka R, Kobayashi M, Ito A, Sakai M, Izutsu K. Venetoclax treatment for chronic lymphocytic leukemia/small lymphocytic leukemia in Japan: post-marketing surveillance. Int J Hematol 2024; 120:613-620. [PMID: 39167348 PMCID: PMC11513738 DOI: 10.1007/s12185-024-03832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Venetoclax was approved for relapsed/refractory chronic lymphocytic leukemia (R/R CLL) and small lymphocytic leukemia (SLL) in Japan in September 2019; however, clinical data in Japanese patients are limited. This all-case post-marketing surveillance assessed efficacy and safety in Japanese patients with R/R CLL/SLL who started venetoclax treatment between November 2019 and August 2020. Overall, the safety and efficacy analysis sets included 129 and 114 patients, respectively. The overall response rate (ORR) was 57.0%; ORRs were higher in patients with versus without concomitant rituximab (65.4% vs. 54.7%), and in patients with 1 versus ≥ 2 prior lines of therapies (72.5% vs. 44.4%). Adverse events (AEs) were reported in 66.7% of patients (86/129); the most common AEs were neutrophil count decreased (22.5%), white blood cell count decreased (7.8%), and tumor lysis syndrome (TLS; 6.2%). AEs of special interest (TLS, myelosuppression, and infection) were manageable in clinical practice in Japan. Venetoclax is efficacious and safe for R/R CLL/SLL patients in the real-world setting in Japan. ClinicalTrials.gov ID: NCT04198415.
Collapse
Affiliation(s)
- Tomoki Ito
- Department of Hematology, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata City, Osaka, Japan.
| | | | - Toru Kiguchi
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | | | | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Osikov MV, Korobkin EA, Fedosov AA, Sineglazova AV. The Role of Changes in the Redox Status in the Pathogenesis of Chronic Lymphocytic Leukemia. DOKL BIOCHEM BIOPHYS 2024:10.1134/S1607672924701217. [PMID: 39480632 DOI: 10.1134/s1607672924701217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 11/02/2024]
Abstract
Chronic lymphocytic leukemia is a hemoblastosis of CD5+ B lymphocytes with lymphocytosis, damage to the lymphatic organs, occurring in the older age group, the etiology and pathogenesis of which are not fully understood. Oxidative stress is an important factor in the regulation of stem cells and the activation of intracellular survival signaling pathways in chronic lymphocytic leukemia cells. The aim of the study was to analyze the current data on the role of redox status changes in the pathogenesis of chronic lymphocytic leukemia. A review of published relevant studies 2018-2023, scientific articles in scientific electronic bibliographic databases PubMed and Social Sciences Citation Index, devoted to the pathogenesis of chronic lymphocytic leukemia and the role of free-radical oxidation processes in it was carried out. In chronic lymphocytic leukemia, oxidative stress with a systemic excess of reactive oxygen species, an imbalance in the effectiveness of antioxidant defense is caused mainly by activation of oxidative phosphorylation in mitochondria, low levels of NADPH-oxidase type 2, increased expression of heme oxygenase-1, glutathione peroxidase and glutathione recycling enzymes, superoxide dismutase-2, thioredoxins and decreased expression of catalase. One of the mechanisms of resistance to drug therapy and oxidative stress of chronic lymphocytic leukemia cells is the intracellular signaling pathway dependent on erythroid nuclear factor-2, due to the activation of expression in cells of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, heme oxygenase-1, thioredoxin-1 and -2, reduced glutathione, natural killer cell activity, which is associated with lifespan, chemotaxis, proliferation, and survival. FOXO family proteins are believed to suppress carcinogenesis. FOXO3a increases the expression of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, and the activity of natural killer cells, which promotes the survival of tumor cells. The development of new targeted pharmacological agents that are capable of accumulating reactive oxygen species and reducing antioxidant protection due to the degradation of erythroid nuclear factor-2 and activation of NADPH-quinone oxidoreductase-1 is underway, which modernizes the therapy of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- M V Osikov
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia.
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia.
| | - E A Korobkin
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia
| | - A A Fedosov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation, Moscow, Russia
| | | |
Collapse
|
3
|
Arcari A, Morello L, Borotti E, Ronda E, Rossi A, Vallisa D. Recent Advances in the Molecular Biology of Chronic Lymphocytic Leukemia: How to Define Prognosis and Guide Treatment. Cancers (Basel) 2024; 16:3483. [PMID: 39456577 PMCID: PMC11505876 DOI: 10.3390/cancers16203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most frequent type of leukemia in Western countries. In recent years, there have been important advances in the knowledge of molecular alterations that underlie the disease's pathogenesis. Very heterogeneous prognostic subgroups have been identified by the mutational status of immunoglobulin heavy variable genes (IGVH), FISH analysis and molecular evaluation of TP53 mutations. Next-generation sequencing (NGS) technologies have provided a deeper characterization of the genomic and epigenomic landscape of CLL. New therapeutic targets have led to a progressive reduction of traditional chemoimmunotherapy in favor of specific biological agents. Furthermore, in the latest clinical trials, the minimal residual disease (MRD) has emerged as a potent marker of outcome and a guide to treatment duration. This review focuses on recent insights into the understanding of CLL biology. We also consider the translation of these findings into the development of risk-adapted and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Annalisa Arcari
- Hematology Unit, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (L.M.); (D.V.)
| | - Lucia Morello
- Hematology Unit, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (L.M.); (D.V.)
| | - Elena Borotti
- Bone Marrow Transplant Laboratory, Molecular Diagnostic and Stem Cells Manipulation, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (E.B.); (E.R.); (A.R.)
| | - Elena Ronda
- Bone Marrow Transplant Laboratory, Molecular Diagnostic and Stem Cells Manipulation, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (E.B.); (E.R.); (A.R.)
| | - Angela Rossi
- Bone Marrow Transplant Laboratory, Molecular Diagnostic and Stem Cells Manipulation, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (E.B.); (E.R.); (A.R.)
| | - Daniele Vallisa
- Hematology Unit, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (L.M.); (D.V.)
| |
Collapse
|
4
|
Eiken AP, Schmitz E, Drengler EM, Smith AL, Skupa SA, Mohan K, Rana S, Singh S, Mallareddy JR, Mathew G, Natarajan A, El-Gamal D. The Novel Anti-Cancer Agent, SpiD3, Is Cytotoxic in CLL Cells Resistant to Ibrutinib or Venetoclax. HEMATO 2024; 5:321-339. [PMID: 39450301 PMCID: PMC11500768 DOI: 10.3390/hemato5030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Background B-cell receptor (BCR) signaling is a central driver in chronic lymphocytic leukemia (CLL), along with the activation of pro-survival pathways (e.g., NF-κB) and aberrant anti-apoptotic mechanisms (e.g., BCL2) culminating to CLL cell survival and drug resistance. Front-line targeted therapies such as ibrutinib (BTK inhibitor) and venetoclax (BCL2 inhibitor) have radically improved CLL management. Yet, persisting CLL cells lead to relapse in ~20% of patients, signifying the unmet need of inhibitor-resistant refractory CLL. SpiD3 is a novel spirocyclic dimer of analog 19 that displays NF-κB inhibitory activity and preclinical anti-cancer properties. Recently, we have shown that SpiD3 inhibits CLL cell proliferation and induces cytotoxicity by promoting futile activation of the unfolded protein response (UPR) pathway and generation of reactive oxygen species (ROS), resulting in the inhibition of protein synthesis in CLL cells. Methods We performed RNA-sequencing using CLL cells rendered resistant to ibrutinib and venetoclax to explore potential vulnerabilities in inhibitor-resistant and SpiD3-treated CLL cells. Results The transcriptomic analysis of ibrutinib- or venetoclax-resistant CLL cell lines revealed ferroptosis, UPR signaling, and oxidative stress to be among the top pathways modulated by SpiD3 treatment. By examining SpiD3-induced protein aggregation, ROS production, and ferroptosis in inhibitor-resistant CLL cells, our findings demonstrate cytotoxicity following SpiD3 treatment in cell lines resistant to current front-line CLL therapeutics. Conclusions Our results substantiate the development of SpiD3 as a novel therapeutic agent for relapsed/refractory CLL disease.
Collapse
Affiliation(s)
- Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Elizabeth Schmitz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erin M. Drengler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kabhilan Mohan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Grinu Mathew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Huntington SF, Cheng WY, Sarpong EM, Leng S, Farooqui MZH, Agu US, Catillon M, Lejeune D, Downes N, Matay L, Duh MS, De Nigris E. Real-world patterns and sequences of targeted therapy use in chronic lymphocytic leukemia and small lymphocytic lymphoma in the United States: a longitudinal study. Leuk Lymphoma 2024; 65:932-942. [PMID: 38696747 DOI: 10.1080/10428194.2024.2331631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024]
Abstract
With increasing focus on novel targeted therapies for chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), this longitudinal claims-based study evaluated real-world CLL/SLL treatment sequences, particularly sequential targeted therapy. Among patients with first-line (1 L) treatment in 2014-2017 (N = 2,612; median follow-up = 3 years), the most common 1 L treatment was chemoimmunotherapy (CIT; 44.6%), followed by CD20 (25.2%) and Bruton's tyrosine kinase inhibitors (BTKi; 21.7%). Among those with 1 L in 2018-2021 (N = 4,534; median follow-up = 1 year), these were BTKi (45.5%), CD20 (20.4%), CIT (17.5%), and B-cell lymphoma 2 inhibitor (8.3%). In 2014-2017, the proportion of patients receiving sequential targeted therapy in the first 2 LOTs was 11.2% (80.2% was BTKi→BTKi); in 2018-2021, this proportion was 34.3% (66.4% was BTKi→BTKi). Over time, there was a substantial increase in targeted therapy use in 1 L and sequential targeted therapy, particularly with BTKi→BTKi. Future studies should assess clinical outcomes to determine optimal sequences for CLL/SLL and reasons for restarting BTKi.
Collapse
|
7
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Nunes J, Tafesse R, Mao C, Purcell M, Mo X, Zhang L, Long M, Cyr MG, Rader C, Muthusamy N. Siglec-6 as a therapeutic target for cell migration and adhesion in chronic lymphocytic leukemia. Nat Commun 2024; 15:5180. [PMID: 38890323 PMCID: PMC11189495 DOI: 10.1038/s41467-024-48678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Siglec-6 is a lectin receptor with restricted expression in the placenta, mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL), its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo. Mass spectrometry analysis revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of MEC1-002 CLL cells with a Siglec-6 ligand, sTn, results in Cdc42 activation, WASP protein recruitment and F-actin polymerization, which are all associated with cell migration. Therapeutically, a Siglec-6/CD3-bispecific T-cell-recruiting antibody (T-biAb) improves overall survival in an immunocompetent mouse model and eliminates CLL cells in a patient derived xenograft model. Our findings thus reveal a migratory role for Siglec-6 in CLL, which can be therapeutically targeted using a Siglec-6 specific T-biAb.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Humans
- Animals
- Cell Movement
- Cell Adhesion
- Lectins/metabolism
- Mice
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Female
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Cell Line, Tumor
- Mesenchymal Stem Cells/metabolism
- Male
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jessica Nunes
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Rakeb Tafesse
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Charlene Mao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew Purcell
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Liwen Zhang
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Meixiao Long
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew G Cyr
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Christoph Rader
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Bordini J, Lenzi C, Frenquelli M, Morabito A, Pseftogas A, Belloni D, Mansouri L, Tsiolas G, Perotta E, Ranghetti P, Gandini F, Genova F, Hägerstrand D, Gavriilidis G, Keisaris S, Pechlivanis N, Davi F, Kay NE, Langerak AW, Pospisilova S, Scarfò L, Makris A, Psomopoulos FE, Stamatopoulos K, Rosenquist R, Campanella A, Ghia P. IκBε deficiency accelerates disease development in chronic lymphocytic leukemia. Leukemia 2024; 38:1287-1298. [PMID: 38575671 DOI: 10.1038/s41375-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Cell Movement
- Cell Proliferation
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- NF-kappa B/metabolism
- Piperidines/pharmacology
- I-kappa B Proteins/genetics
- I-kappa B Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
Collapse
Affiliation(s)
| | - Chiara Lenzi
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Alessia Morabito
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Athanasios Pseftogas
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Daniela Belloni
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - George Tsiolas
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | | | - Francesca Gandini
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Daniel Hägerstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sofoklis Keisaris
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | - Frederic Davi
- Institution Université Pierre et Marie Curie & Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | - Sarka Pospisilova
- University Hospital Brno, Brno, Czech Republic
- Masaryk University, Brno, Czech Republic
| | - Lydia Scarfò
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonios Makris
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Campanella
- IRCSS Ospedale San Raffaele, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Paolo Ghia
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Maiques-Diaz A, Martin-Subero JI. Biological, prognostic, and therapeutic impact of the epigenome in CLL. Semin Hematol 2024; 61:172-180. [PMID: 38151379 DOI: 10.1053/j.seminhematol.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by widespread alterations in the genetic and epigenetic landscapes which seem to underlie the variable clinical manifestations observed in patients. Over the last decade, epigenomic studies have described the whole-genome maps of DNA methylation and chromatin features of CLL and normal B cells, identifying distinct epigenetic mechanisms operating in tumoral cells. DNA methylation analyses have identified that the CLL methylome contains imprints of the cell of origin, as well as of the proliferative history of the tumor cells, with both being strong independent prognostic predictors. Moreover, single-cell analysis revealed a higher degree of DNA methylation noise in CLL cells, which associates with transcriptional plasticity and disease aggressiveness. Integrative analysis of chromatin has uncovered chromatin signatures, as well as regulatory regions specifically active in each CLL subtype or in Richter transformed samples. Unique transcription factor (TF) binding motifs are overrepresented on those regions, suggesting that altered TF networks operate from disease initiation to progression as nongenetic factors mediating the oncogenic transcriptional profiles. Multiomics analysis has identified that response to treatment is modulated by an epigenetic imprint, and that treatments affect chromatin through the activity of particular set of TFs. Additionally, the epigenome is an axis of therapeutic vulnerability in CLL, as it can be targeted by inhibitors of histone modifying enzymes, that have shown promising preclinical results. Altogether, this review aims at summarizing the major findings derived from published literature to distill how altered epigenomic mechanisms contribute to CLL origin, evolution, clinical behavior, and response to treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Prognosis
- Epigenesis, Genetic
- Epigenome
- DNA Methylation/genetics
- Epigenomics
- Chromatin/genetics
- Chromatin/metabolism
Collapse
Affiliation(s)
- Alba Maiques-Diaz
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Kolay S, Kumar N, Guleria M, Das T. [ 99mTc]Tc-labeled HYNIC conjugated chlorambucil as a tumor targeting Agent: Synthesis, characterization and ex-vivo evaluation. Bioorg Med Chem Lett 2024; 105:129730. [PMID: 38583784 DOI: 10.1016/j.bmcl.2024.129730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Chlorambucil is an alkylating drug that finds application towards chemotherapy of different types of cancers. In order to explore the possibility of utilization of this drug as an imaging agent for early diagnosis of solid tumors, attempt was made to synthesize a 99mTc complex of chlorambucil and evaluate its potential in tumor bearing small animal model. HYNIC-chlorambucil was synthesized by conjugation of HYNIC with chlorambucil via an ethylenediamine linker. All the intermediates and final product were purified and characterized by standard spectroscopic techniques viz. FT-IR, 1H/13C-NMR as well as by mass spectrometry. HYNIC-chlorambucil conjugate was radiolabeled with [99mTc]Tc and found to be formed with > 95 % radiochemical purity via RP-HPLC studies. The partition coefficient (Log10Po/w) of the synthesized complex was found to be -0.78 ± 0.25 which indicated the moderate hydrophilic nature for the complex. Biological behaviour of [99mTc]Tc-HYNIC-chlorambucil, studied in fibrosarcoma bearing Swiss mice, revealed a tumor uptake of about 4.16 ± 1.52 %IA/g at 30 min post-administration, which declined to 1.91 ± 0.13 % IA/g and 1.42 ± 0.14 %IA/g at 1 h and 2 h post-administration, respectively. A comparison of different [99mTc]Tc-chlorambucil derivatives (reported in the contemporary literature) formulated using different methodologies revealed that tumor uptake and pharmacokinetics exhibited by these agents strongly depend on the lipophilicity/hydrophilicity of such agents, which in turn is dependent on the bifunctional chelators used for formulating the radiolabeled chlorambucils.
Collapse
Affiliation(s)
- Soumi Kolay
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Naveen Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
12
|
Fontecha MB, Anadón MDR, Mercado Guzmán V, Stanganelli C, Galvano C, Tosin F, Bordone J, Bezares R, Rodríguez C, Heller V, Slavutsky I, Fundia AF. Genetic variability profiling of the p53 signaling pathway in chronic lymphocytic leukemia. Individual and combined analysis of TP53, MDM2 and NQO1 gene variants. Ann Hematol 2024:10.1007/s00277-024-05794-w. [PMID: 38743086 DOI: 10.1007/s00277-024-05794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
TP53 gene disruption, including 17p13 deletion [del(17p)] and/or TP53 mutations, is a negative prognostic biomarker in chronic lymphocytic leukemia (CLL) associated with disease progression, treatment failure and shorter survival. Germline variants in p53 signaling pathway genes could also lead to p53 dysfunction, but their involvement in CLL has not been thoroughly evaluated. The aim of this study was to determine the association of TP53, MDM2 and NQO1 gene variability with clinical and genetic data of CLL patients. Individual genotype and haplotype data of CLL patients were compared with clinical prognostic factors, cytogenetic and molecular cytogenetic findings as well as IGHV and TP53 mutational status. The study included 116 CLL patients and 161 healthy blood donors. TP53 (rs1042522, rs59758982, rs1625895), NQO1 (rs1800566) and MDM2 (rs2279744, rs150550023) variants were genotyped using different PCR approaches. Analysis of genotype frequencies revealed no association with the risk of CLL. TP53 rs1042522, rs1625895 and MDM2 rs2279744 variants were significantly associated with abnormal karyotype and the presence of del(17p). Similarly, these two TP53 variants were associated with TP53 disruption. Moreover, TP53 C-A-nondel and G-A-del haplotypes (rs1042522-rs1625895-rs59758982) were associated with an increased likelihood of carrying del(17p) and TP53 disruptions. MDM2 T-nondel haplotype (rs2279744-rs150550023) was found to be a low risk factor for del(17p) (OR = 0.32; CI: 0.12-0.82; p = 0.02) and TP53 disruptions (OR = 0.41; CI: 0.18-0.95; p = 0.04). Our findings suggest that TP53 and MDM2 variants may modulate the risk to have chromosome alterations and TP53 disruptions, particularly del(17p). To our knowledge this is the first study of several germline variants in p53 pathway genes in Argentine patients with CLL.
Collapse
Affiliation(s)
- María Belén Fontecha
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| | - María Del Rosario Anadón
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Verónica Mercado Guzmán
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
- Laboratorio de Biología Molecular, Hospital Alemán, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Camila Galvano
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernanda Tosin
- Servicio de Hematología, Hospital El Cruce, Buenos Aires, Argentina
| | - Javier Bordone
- Servicio de Hematología, Hospital El Cruce, Buenos Aires, Argentina
| | - Raimundo Bezares
- Servicio de Hematología, Hospital Álvarez, Buenos Aires, Argentina
| | - Cecilia Rodríguez
- Facultad de Ciencias Médicas, Hospital Nacional de Clínicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Heller
- Facultad de Ciencias Médicas, Hospital Nacional de Clínicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ariela Freya Fundia
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.
| |
Collapse
|
13
|
Ikhlef L, Yassine M, Chandouri B, Rivière L, Naves T, Dmytruk N, Gachard N, Jauberteau MO, Gallet PF. Targeting the NTSR2/TrkB oncogenic pathway in chronic lymphocytic leukemia. Sci Rep 2024; 14:6084. [PMID: 38480783 PMCID: PMC10937676 DOI: 10.1038/s41598-024-56663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Current therapies that target the B-cell receptor pathway or the inhibition of anti-apoptotic proteins do not prevent the progressive forms of chronic lymphocytic leukemia (CLL), have low long-term efficacy and are subject to therapeutic resistance. Deciphering the mechanisms of leukemic cell survival and searching for new specific targets therefore remain major challenges to improve the management of this disease. It was evidenced that NTSR2 (neurotensin receptor 2), through the recruitment of TRKB (tropomyosin related kinase B), induces survival pathways in leukemic B cells. We have investigated the therapeutic potential of this protein complex as a new target. The binding domain of NTSR2 and TRKB was identified and a peptide targeting the latter was designed. The peptide binds TRKB and efficiently decreases the interaction of the two proteins. It is also effectively internalized by CLL-B cells in which it notably affects Src family kinase signaling and anti-apoptotic proteins levels. It demonstrated a cytotoxic effect both in vitro on the MEC-1 cell line and ex vivo on a cohort of 30 CLL patients. Altogether, these results underline the therapeutic potential of the NTSR2/TRKB protein complex as a target in CLL and open new perspectives for the development of targeted therapies.
Collapse
Affiliation(s)
- Léa Ikhlef
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - May Yassine
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Boutaîna Chandouri
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Léa Rivière
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Thomas Naves
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Natalya Dmytruk
- Department of Clinical Hematology, University Hospital of Limoges, Limoges, France
| | - Nathalie Gachard
- Hematology Laboratory, UMR CNRS7276/INSERM 1262, University Hospital of Limoges, Limoges, France
| | - Marie-Odile Jauberteau
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
- Immunology Laboratory, University Hospital of Limoges, Limoges, France
| | - Paul-François Gallet
- UMR INSERM 1308, CAPTuR, University of Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France.
| |
Collapse
|
14
|
Samareh Salavatipour M, Poursalehi Z, Hosseini Rouzbahani N, Mohammadyar S, Vasei M. CRISPR-Cas9 in basic and translational aspects of cancer therapy. BIOIMPACTS : BI 2024; 14:30087. [PMID: 39493894 PMCID: PMC11530967 DOI: 10.34172/bi.2024.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction The discovery of gene editing techniques has opened a new era within the field of biology and enabled scientists to manipulate nucleic acid molecules. CRISPR-Cas9 genome engineering has revolutionized this achievement by successful targeting the DNA molecule and editing its sequence. Since genomic changes are the basis of the birth and growth of many tumors, CRISPR-Cas9 method has been successfully applied to identify and manipulate the genes which are involved in initiating and driving some neoplastic processes. Methods By review of the existing literature on application of CRISPR-Cas9 in cancer, different databases, such as PubMed and Google Scholar, we started data collection for "CRISPR-Cas9", "Genome Editing", "Cancer", "Solid tumors", "Hematologic malignancy" "Immunotherapy", "Diagnosis", "Drug resistance" phrases. Clinicaltrials.gov, a resource that provides access to information on clinical trials, was also searched in this review. Results We have defined the basics of this technology and then mentioned some clinical and preclinical studies using this technology in the treatment of a variety of solid tumors as well as hematologic neoplasms. Finally, we described the progress made by this technology in boosting immune-mediated cell therapy in oncology, such as CAR-T cells, CAR-NK cells, and CAR-M cells. Conclusion CRISPR-Cas9 system revolutionized the therapeutic strategies in some solid malignant tumors and leukemia through targeting the key genes involved in the pathogenesis of these cancers.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Hosseini Rouzbahani
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Sohaib Mohammadyar
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Vasei
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Playa-Albinyana H, Arenas F, Royo R, Giró A, López-Oreja I, Aymerich M, López-Guerra M, Frigola G, Beà S, Delgado J, Garcia-Roves PM, Campo E, Nadeu F, Colomer D. Chronic lymphocytic leukemia patient-derived xenografts recapitulate clonal evolution to Richter transformation. Leukemia 2024; 38:557-569. [PMID: 38017105 PMCID: PMC10912031 DOI: 10.1038/s41375-023-02095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell neoplasm with a heterogeneous clinical behavior. In 5-10% of patients the disease transforms into a diffuse large-B cell lymphoma known as Richter transformation (RT), which is associated with dismal prognosis. Here, we aimed to establish patient-derived xenograft (PDX) models to study the molecular features and evolution of CLL and RT. We generated two PDXs by injecting CLL (PDX12) and RT (PDX19) cells into immunocompromised NSG mice. Both PDXs were morphologically and phenotypically similar to RT. Whole-genome sequencing analysis at different time points of the PDX evolution revealed a genomic landscape similar to RT tumors from both patients and uncovered an unprecedented RT subclonal heterogeneity and clonal evolution during PDX generation. In PDX12, the transformed cells expanded from a very small subclone already present at the CLL stage. Transcriptomic analysis of PDXs showed a high oxidative phosphorylation (OXPHOS) and low B-cell receptor (BCR) signaling similar to the RT in the patients. IACS-010759, an OXPHOS inhibitor, reduced proliferation, and circumvented resistance to venetoclax. In summary, we have generated new RT-PDX models, one of them from CLL cells that mimicked the evolution of CLL to RT uncovering intrinsic features of RT cells of therapeutical value.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Heterografts
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Clonal Evolution/genetics
- Prognosis
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
Collapse
Affiliation(s)
- Heribert Playa-Albinyana
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Fabian Arenas
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ariadna Giró
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene López-Oreja
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Marta Aymerich
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Mònica López-Guerra
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Beà
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
- Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo M Garcia-Roves
- University of Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
16
|
Quinten E, Sepúlveda-Yáñez JH, Koning MT, Eken JA, Pfeifer D, Nteleah V, De Groen RAL, Saravia DA, Knijnenburg J, Stuivenberg-Bleijswijk HE, Pantic M, Agathangelidis A, Keppler-Hafkemeyer A, Van Bergen CAM, Uribe-Paredes R, Stamatopoulos K, Vermaat JSP, Zirlik K, Navarrete MA, Jumaa H, Veelken H. Autonomous B-cell receptor signaling and genetic aberrations in chronic lymphocytic leukemia-phenotype monoclonal B lymphocytosis in siblings of patients with chronic lymphocytic leukemia. Haematologica 2024; 109:824-834. [PMID: 37439337 PMCID: PMC10905078 DOI: 10.3324/haematol.2022.282542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Clonal expansion of CD5-expressing B cells, commonly designated as monoclonal B lymphocytosis (MBL), is a precursor condition for chronic lymphocytic leukemia (CLL). The mechanisms driving subclinical MBL B-cell expansion and progression to CLL, occurring in approximately 1% of affected individuals, are unknown. An autonomously signaling B-cell receptor (BCR) is essential for the pathogenesis of CLL. The objectives of this study were functional characterization of the BCR of MBL in siblings of CLL patients and a comparison of genetic variants in MBL-CLL sibling pairs. Screening of peripheral blood by flow cytometry detected 0.2-480 clonal CLL-phenotype cells per microliter (median: 37/μL) in 34 of 191 (17.8%) siblings of CLL patients. Clonal BCR isolated from highly purified CLL-phenotype cells induced robust calcium mobilization in BCR-deficient murine pre-B cells in the absence of external antigen and without experimental crosslinking. This autonomous BCR signal was less intense than the signal originating from the CLL BCR of their CLL siblings. According to genotyping by single nucleotide polymorphism array, whole exome, and targeted panel sequencing, CLL risk alleles were found with high and similar prevalence in CLL patients and MBL siblings, respectively. Likewise, the prevalence of recurrent CLL-associated genetic variants was similar between CLL and matched MBL samples. However, copy number variations and small variants were frequently subclonal in MBL cells, suggesting their acquisition during subclinical clonal expansion. These findings support a stepwise model of CLL pathogenesis, in which autonomous BCR signaling leads to a non-malignant (oligo)clonal expansion of CD5+ B cells, followed by malignant progression to CLL after acquisition of pathogenic genetic variants.
Collapse
Affiliation(s)
- Edwin Quinten
- Department of Hematology, Leiden University Medical Center, Leiden
| | - Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands; School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden
| | - Janneke A Eken
- Department of Hematology, Leiden University Medical Center, Leiden
| | - Dietmar Pfeifer
- Department of Medicine I, University Medical Center Freiburg, Freiburg
| | - Valeri Nteleah
- Department of Hematology, Leiden University Medical Center, Leiden
| | | | | | - Jeroen Knijnenburg
- Department of Clinical Genetics, Leiden University Medical Center, Leiden
| | | | - Milena Pantic
- Department of Medicine I, University Medical Center Freiburg, Freiburg
| | - Andreas Agathangelidis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | | | - Roberto Uribe-Paredes
- Department of Computer Engineering, Universidad de Magallanes, Punta Arenas, Chile; Centre for Biotechnology and Bioengineering, Santiago, Chile
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
| | | | - Katja Zirlik
- Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany; Tumor-und Brustzentrum Ostschweiz, Chur
| | | | | | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden.
| |
Collapse
|
17
|
Tsagiopoulou M, Gut IG. Machine learning and multi-omics data in chronic lymphocytic leukemia: the future of precision medicine? Front Genet 2024; 14:1304661. [PMID: 38283149 PMCID: PMC10811210 DOI: 10.3389/fgene.2023.1304661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Chronic lymphocytic leukemia is a complex and heterogeneous hematological malignancy. The advance of high-throughput multi-omics technologies has significantly influenced chronic lymphocytic leukemia research and paved the way for precision medicine approaches. In this review, we explore the role of machine learning in the analysis of multi-omics data in this hematological malignancy. We discuss recent literature on different machine learning models applied to single omic studies in chronic lymphocytic leukemia, with a special focus on the potential contributions to precision medicine. Finally, we highlight the recently published machine learning applications in multi-omics data in this area of research as well as their potential and limitations.
Collapse
Affiliation(s)
| | - Ivo G. Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
18
|
László T, Kotmayer L, Fésüs V, Hegyi L, Gróf S, Nagy Á, Kajtár B, Balogh A, Weisinger J, Masszi T, Nagy Z, Farkas P, Demeter J, Istenes I, Szász R, Gergely L, Sulák A, Borbényi Z, Lévai D, Schneider T, Pettendi P, Bodai E, Szerafin L, Rejtő L, Bátai Á, Dömötör MÁ, Sánta H, Plander M, Szendrei T, Hamed A, Lázár Z, Pauker Z, Radványi G, Kiss A, Körösmezey G, Jakucs J, Dombi PJ, Simon Z, Klucsik Z, Gurzó M, Tiboly M, Vidra T, Ilonczai P, Bors A, Andrikovics H, Egyed M, Székely T, Masszi A, Alpár D, Matolcsy A, Bödör C. Low-burden TP53 mutations represent frequent genetic events in CLL with an increased risk for treatment initiation. J Pathol Clin Res 2024; 10:e351. [PMID: 37987115 PMCID: PMC10766018 DOI: 10.1002/cjp2.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
TP53 aberrations predict chemoresistance and represent a contraindication for the use of standard chemoimmunotherapy in chronic lymphocytic leukaemia (CLL). Recent next-generation sequencing (NGS)-based studies have identified frequent low-burden TP53 mutations with variant allele frequencies below 10%, but the clinical impact of these low-burden TP53 mutations is still a matter of debate. In this study, we aimed to scrutinise the subclonal architecture and clinical impact of TP53 mutations using a sensitive, NGS-based mutation analysis in a 'real-world' cohort of 901 patients with CLL. In total, 225 TP53 mutations were identified in 17.5% (158/901) of the patients; 48% of these alterations represented high-burden mutations, while 52% were low-burden TP53 mutations. Low-burden mutations as sole alterations were identified in 39% (62/158) of all mutated cases with 82% (51/62) of these being represented by a single low-burden TP53 mutation. Patients harbouring low-burden TP53 mutations had significantly lower time to first treatment compared to patients with wild-type TP53. Our study has expanded the knowledge on the frequency, clonal architecture, and clinical impact of low-burden TP53 mutations. By demonstrating that patients with sole low-burden TP53 variants represent more than one-third of patients with TP53 mutations and have an increased risk for treatment initiation, our findings strengthen the need to redefine the threshold of TP53 variant reporting to below 10% in the routine diagnostic setting.
Collapse
Affiliation(s)
- Tamás László
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Lili Kotmayer
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Viktória Fésüs
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
- Kaposi Mór University Teaching Hospital of County SomogyKaposvárHungary
| | - Lajos Hegyi
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Stefánia Gróf
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Ákos Nagy
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Béla Kajtár
- Department of PathologyUniversity of Pécs Medical SchoolPécsHungary
| | - Alexandra Balogh
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Júlia Weisinger
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Tamás Masszi
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Zsolt Nagy
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Péter Farkas
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Judit Demeter
- Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Ildikó Istenes
- Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Róbert Szász
- Division of Hematology, Department of Internal MedicineUniversity of DebrecenDebrecenHungary
| | - Lajos Gergely
- Division of Hematology, Department of Internal MedicineUniversity of DebrecenDebrecenHungary
| | - Adrienn Sulák
- 2nd Department of Internal Medicine and Cardiology CenterUniversity of SzegedSzegedHungary
| | - Zita Borbényi
- 2nd Department of Internal Medicine and Cardiology CenterUniversity of SzegedSzegedHungary
| | - Dóra Lévai
- Hematology and Lymphoma UnitNational Institute of OncologyBudapestHungary
| | - Tamás Schneider
- Hematology and Lymphoma UnitNational Institute of OncologyBudapestHungary
| | - Piroska Pettendi
- Hetényi Géza Hospital and Clinic of County Jász‐Nagykun‐SzolnokSzolnokHungary
| | - Emese Bodai
- Hetényi Géza Hospital and Clinic of County Jász‐Nagykun‐SzolnokSzolnokHungary
| | - László Szerafin
- Hospitals of County Szabolcs‐Szatmár‐Bereg and University Teaching HospitalNyíregyházaHungary
| | - László Rejtő
- Hospitals of County Szabolcs‐Szatmár‐Bereg and University Teaching HospitalNyíregyházaHungary
| | - Árpád Bátai
- Fejér County Szent György University Teaching HospitalSzékesfehérvárHungary
| | - Mária Á Dömötör
- Fejér County Szent György University Teaching HospitalSzékesfehérvárHungary
| | - Hermina Sánta
- Fejér County Szent György University Teaching HospitalSzékesfehérvárHungary
| | - Márk Plander
- Markusovszky University Teaching HospitalSzombathelyHungary
| | - Tamás Szendrei
- Markusovszky University Teaching HospitalSzombathelyHungary
| | - Aryan Hamed
- Petz Aladár University Teaching HospitalGyőrHungary
| | - Zsolt Lázár
- Petz Aladár University Teaching HospitalGyőrHungary
| | - Zsolt Pauker
- Borsod‐Abaúj‐Zemplén County Hospital and University Teaching HospitalMiskolcHungary
| | - Gáspár Radványi
- Borsod‐Abaúj‐Zemplén County Hospital and University Teaching HospitalMiskolcHungary
| | - Adrienn Kiss
- Military Hospital – State Health CentreBudapestHungary
| | | | | | | | | | - Zsolt Klucsik
- Bács‐Kiskun County Teaching HospitalKecskemétHungary
| | - Mihály Gurzó
- Bács‐Kiskun County Teaching HospitalKecskemétHungary
| | | | - Tímea Vidra
- Soproni Erzsébet Teaching Hospital and Rehabilitation InstituteSopronHungary
| | | | - András Bors
- Central Hospital of Southern Pest – National Institute of Hematology and InfectologyBudapestHungary
| | - Hajnalka Andrikovics
- Central Hospital of Southern Pest – National Institute of Hematology and InfectologyBudapestHungary
| | - Miklós Egyed
- Kaposi Mór University Teaching Hospital of County SomogyKaposvárHungary
| | - Tamás Székely
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - András Masszi
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
- Hematology and Lymphoma UnitNational Institute of OncologyBudapestHungary
| | - Donát Alpár
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - András Matolcsy
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
- Department of Laboratory MedicineKarolinska InstituteSolnaSweden
| | - Csaba Bödör
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| |
Collapse
|
19
|
Jacobs R, Lu X, Emond B, Morrison L, Kinkead F, Lefebvre P, Lafeuille MH, Khan W, Wu LH, Qureshi ZP, Levy MY. Time to next treatment in patients with chronic lymphocytic leukemia initiating first-line ibrutinib or acalabrutinib. Future Oncol 2024; 20:39-53. [PMID: 37476983 DOI: 10.2217/fon-2023-0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Aim: To investigate real-world time to next treatment in patients with chronic lymphocytic leukemia initiating first-line (1L) ibrutinib or acalabrutinib. Materials & methods: US specialty pharmacy electronic medical records (21/11/2018-30/4/2022) were used; patients initiated 1L on/after 21/11/2019 (acalabrutinib approval). Results: Among 710 patients receiving ibrutinib, 5.9% initiated next treatment (mean time to initiation = 9.2 months); among 373 patients receiving acalabrutinib, 7.5% initiated next treatment (mean time to initiation = 5.9 months). Adjusting for baseline characteristics, acalabrutinib-treated patients were 89% more likely to initiate next treatment (hazard ratio = 1.89; p = 0.016). Conclusion: This study addresses a need for real-world comparative effectiveness between 1L ibrutinib and acalabrutinib and shows that next treatment (a clinically meaningful measure for real-world progression) occurred less frequently with 1L ibrutinib.
Collapse
Affiliation(s)
- Ryan Jacobs
- Atrium Health Levine Cancer Institute (Hematology), Charlotte, NC 28204, USA
| | - Xiaoxiao Lu
- Janssen Scientific Affairs, LLC, Horsham, PA 19044, USA
| | - Bruno Emond
- Analysis Group, Inc., Montréal, Québec H3B 0G7, Canada
| | | | | | | | | | - Wasiulla Khan
- Janssen Scientific Affairs, LLC, Horsham, PA 19044, USA
| | - Linda H Wu
- Janssen Scientific Affairs, LLC, Horsham, PA 19044, USA
| | | | - Moshe Yair Levy
- Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
20
|
Amiri BS, Sabernia N, Abouali B, Amini P, Rezaeeyan H. Evaluation of MicroRNA as Minimal Residual Disease in Leukemia: Diagnostic and Prognostic Approach: A Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2541-2553. [PMID: 38435763 PMCID: PMC10903317 DOI: 10.18502/ijph.v52i12.14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/19/2023] [Indexed: 03/05/2024]
Abstract
Various factors are effective in the development of minimal residual disease (MRD), one of which is MicroRNAs (miRNAs). miRNAs and their dysfunction in gene expression have influential role in the pathogenesis of leukemia. Nowadays, treatments that lead to the suppression or replacement of miRNAs have been developed. Focusing on the role of miRNAs in managing the treatment of leukemia, in this review article we have investigated the miRNAs and signaling pathways involved in the process of apoptosis and cell proliferation, as well as miRNAs with oncogenic function in malignant leukemia cells. Among the studied miRNAs, miR-99a, and miR-181a play an essential role in apoptosis, proliferation and oncogenesis via AKT, MAPK, RAS, and mTOR signaling pathways. miR-223 and miR-125a affect apoptosis and oncogenesis via Wnt/B-catenin, PTEN/PI3K, and STAT5/AKT/ERK/Src signaling pathways. miR-100 also affects both apoptosis and oncogenesis; it acts via IGF1 and mTOR signaling pathways.
Collapse
Affiliation(s)
- Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences Tehran, Iran
| | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behdokht Abouali
- Department of Ophthalmology, School of Medicine, Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parya Amini
- Department of Cardiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Rezaeeyan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization, Tehran, Iran
| |
Collapse
|
21
|
Balla B, Tripon F, Candea M, Banescu C. Copy Number Variations and Gene Mutations Identified by Multiplex Ligation-Dependent Probe Amplification in Romanian Chronic Lymphocytic Leukemia Patients. J Pers Med 2023; 13:1239. [PMID: 37623489 PMCID: PMC10455273 DOI: 10.3390/jpm13081239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is known for its wide-ranging clinical and genetic diversity. The study aimed to assess the associations between copy number variations (CNVs) and various biological and clinical features, as well as the survival rates of CLL patients and to evaluate the effectiveness of the multiplex ligation-dependent probe amplification (MLPA) technique in CLL patients.DNA was extracted from 110 patients, and MLPA was performed. Mutations in NOTCH1, SF3B1, and MYD88 were also analyzed. A total of 52 patients showed at least one CNV, 26 had at least one somatic mutation, and 10 presented both, CNVs, and somatic mutations. The most commonly identified CNVs were del(114.3), del(11q22.3), and dup(12q23.2). Other CNVs identified included del(17p13.1), del(14q32.33), dup(10q23.31), and del(19p13.2). One patient was identified with concomitant trisomy 12, 13, and 19. NOTCH1 and SF3B1 mutations were found in 13 patients each, either alone or in combination with other mutations or CNVs, while MYD88 mutation was identified in one patient. Forty-two patients had normal results. Associations between the investigated CNVs and gene mutations and patients' overall survival were found. The presence of NOTCH1 and SF3B1 mutations or the combination of NOTCH1 mutation and CNVs significantly influenced the survival of patients with CLL. Both mutations are frequently associated with different CNVs. Del(13q) is associated with the longest survival rate, while the shortest survival is found in patients with del(17p). Even if MLPA has constraints, it may be used as the primary routine analysis in patients with CLL.
Collapse
Affiliation(s)
- Beata Balla
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Florin Tripon
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Marcela Candea
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Claudia Banescu
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Medical Genetics Laboratory, Emergency County Hospital of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
22
|
Nannini DR, Cortese R, Egwom P, Palaniyandi S, Hildebrandt GC. Time to relapse in chronic lymphocytic leukemia and DNA-methylation-based biological age. Clin Epigenetics 2023; 15:81. [PMID: 37165442 PMCID: PMC10170738 DOI: 10.1186/s13148-023-01496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a mature B cell neoplasm with a predilection for older individuals. While previous studies have identified epigenetic signatures associated with CLL, whether age-related DNA methylation changes modulate CLL relapse remains elusive. In this study, we examined the association between epigenetic age acceleration and time to CLL relapse in a publicly available dataset. DNA methylation profiling of 35 CLL patients prior to initiating chemoimmunotherapy was performed using the Infinium HumanMethylation450 BeadChip. Four epigenetic age acceleration metrics (intrinsic epigenetic age acceleration [IEAA], extrinsic epigenetic age acceleration [EEAA], PhenoAge acceleration [PhenoAA], and GrimAge acceleration [GrimAA]) were estimated from blood DNA methylation levels. Linear, quantile, and logistic regression and receiver operating characteristic curve analyses were conducted to assess the association between each epigenetic age metric and time to CLL relapse. EEAA (p = 0.011) and PhenoAA (p = 0.046) were negatively and GrimAA (p = 0.040) was positively associated with time to CLL relapse. Simultaneous assessment of EEAA and GrimAA in male patients distinguished patients who relapsed early from patients who relapsed later (p = 0.039). No associations were observed with IEAA. These findings suggest epigenetic age acceleration prior to chemoimmunotherapy initiation is associated with time to CLL relapse. Our results provide novel insight into the association between age-related DNA methylation changes and CLL relapse and may serve has biomarkers for treatment relapse, and potentially, treatment selection.
Collapse
Affiliation(s)
- Drew R Nannini
- Department of Internal Medicine, School of Medicine, University of Missouri at Columbia, MA408 Medical Science Building, Columbia, MO, 65212, USA.
| | - Rene Cortese
- Department of Child Health and Department of Obstetrics, Gynecology, and Women's Health, School of Medicine, University of Missouri at Columbia, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri at Columbia, Columbia, MO, 65212, USA
| | - Peter Egwom
- Department of Internal Medicine, School of Medicine, University of Missouri at Columbia, MA408 Medical Science Building, Columbia, MO, 65212, USA
| | - Senthilnathan Palaniyandi
- Ellis Fischel Cancer Center, University of Missouri at Columbia, Columbia, MO, 65212, USA
- Division of Hematology and Medical Oncology, School of Medicine, University of Missouri at Columbia, Columbia, MO, 65212, USA
| | - Gerhard C Hildebrandt
- Ellis Fischel Cancer Center, University of Missouri at Columbia, Columbia, MO, 65212, USA
- Division of Hematology and Medical Oncology, School of Medicine, University of Missouri at Columbia, Columbia, MO, 65212, USA
| |
Collapse
|
23
|
Tang J, Zhong J, Yang Z, Su Q, Mo W. Glyoxalase 1 inhibitor BBGC suppresses the progression of chronic lymphocytic leukemia and promotes the efficacy of Palbociclib. Biochem Biophys Res Commun 2023; 650:96-102. [PMID: 36774689 DOI: 10.1016/j.bbrc.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a highly heterogeneous disease. Despite recent tremen-dous progress in managing CLL, the disease remains incurable with clinical therapies, and relapse is inevitable. To overcome this, new diagnostic and prognostic markers need to be investigated. We thus screened through the public database for genes with diagnostic, prognostic, and therapeutic implications in CLL. We further performed RT-qPCR and Western blot analysis to measure the candidate gene and protein expression levels, respectively, in peripheral blood mononuclear cells. Our results indicated that Glyoxalase 1 (GLO1) expression was significantly higher in patients with CLL than in healthy controls. Furthermore, cell proliferation, apoptosis, and cell cycle assay results together indicated that S-p-bromobenzylglutathione cyclopentyl diester (BBGC), an effective inhibitor of GLO1, suppresses the progression of CLL. Bioinformatics analysis revealed that GLO1 expression is closely associated with CDK4 expression in a wide variety of cancer types, and inhibition of CDK4 through silencing of genes or inhibitors can downregulate GLO1 expression. Subsequent validation experiments demonstrated that GLO1 protein levels were downregulated in MEC-1 and Jurkat cell lines after palbociclib exposure, and combination treatment of palbociclib with GLO1 inhibitor BBGC effectively delayed the growth of tumor cell lines.
Collapse
Affiliation(s)
- Jiameng Tang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Jialing Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Zheng Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Qisheng Su
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Wuning Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China.
| |
Collapse
|
24
|
Abstract
IMPORTANCE Chronic lymphocytic leukemia (CLL), defined by a minimum of 5 × 109/L monoclonal B cells in the blood, affects more than 200 000 people and is associated with approximately 4410 deaths in the US annually. CLL is associated with an immunocompromised state and an increased rate of complications from infections. OBSERVATIONS At the time of diagnosis, the median age of patients with CLL is 70 years, and an estimated 95% of patients have at least 1 medical comorbidity. Approximately 70% to 80% of patients with CLL are asymptomatic at the time of diagnosis, and one-third will never require treatment for CLL. Prognostic models have been developed to estimate the time to first treatment and the overall survival, but for patients who are asymptomatic, irrespective of disease risk category, clinical observation is the standard of care. Patients with symptomatic disease who have bulky or progressive lymphadenopathy or hepatosplenomegaly and those with a low neutrophil count, anemia, or thrombocytopenia and/or symptoms of fever, drenching night sweats, and weight loss (B symptoms) should be offered treatment. For these patients, first-line treatment consists of a regimen containing either a covalent Bruton tyrosine kinase (BTK) inhibitor (acalabrutinib, zanubrutinib, or ibrutinib) or a B-cell leukemia/lymphoma 2 (BCL2) inhibitor (venetoclax). There is no evidence that starting either class before the other improves outcomes. The covalent BTK inhibitors are typically used indefinitely. Survival rates are approximately 88% at 4 years for acalabrutinib, 94% at 2 years for zanubrutinib, and 78% at 7 years for ibrutinib. Venetoclax is prescribed in combination with obinutuzumab, a monoclonal anti-CD20 antibody, in first-line treatment for 1 year (overall survival, 82% at 5-year follow-up). A noncovalent BTK inhibitor, pitobrutinib, has shown an overall response rate of more than 70% after failure of covalent BTK inhibitors and venetoclax. Phosphoinositide 3'-kinase (PI3K) inhibitors (idelalisib and duvelisib) can be prescribed for disease that progresses with BTK inhibitors and venetoclax, but patients require close monitoring for adverse events such as autoimmune conditions and infections. In patients with multiple relapses, chimeric antigen receptor T-cell (CAR-T) therapy with lisocabtagene maraleucel was associated with a 45% complete response rate. The only potential cure for CLL is allogeneic hematopoietic cell transplant, which remains an option after use of targeted agents. CONCLUSIONS AND RELEVANCE More than 200 000 people in the US are living with a CLL diagnosis, and CLL causes approximately 4410 deaths each year in the US. Approximately two-thirds of patients eventually need treatment. Highly effective novel targeted agents include BTK inhibitors such as acalabrutinib, zanubrutinib, ibrutinib, and pirtobrutinib or BCL2 inhibitors such as venetoclax.
Collapse
Affiliation(s)
- Mazyar Shadman
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Medical Oncology Division, University of Washington, Seattle
| |
Collapse
|
25
|
Wan Mohamad Zamri WN, Mohd Yunus N, Abdul Aziz AA, Zulkipli NN, Sulong S. Perspectives on the Application of Cytogenomic Approaches in Chronic Lymphocytic Leukaemia. Diagnostics (Basel) 2023; 13:964. [PMID: 36900108 PMCID: PMC10001075 DOI: 10.3390/diagnostics13050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a haematological malignancy characterised by the accumulation of monoclonal mature B lymphocytes (positive for CD5+ and CD23+) in peripheral blood, bone marrow, and lymph nodes. Although CLL is reported to be rare in Asian countries compared to Western countries, the disease course is more aggressive in Asian countries than in their Western counterparts. It has been postulated that this is due to genetic variants between populations. Various cytogenomic methods, either of the traditional type (conventional cytogenetics or fluorescence in situ hybridisation (FISH)) or using more advanced technology such as DNA microarrays, next generation sequencing (NGS), or genome wide association studies (GWAS), were used to detect chromosomal aberrations in CLL. Up until now, conventional cytogenetic analysis remained the gold standard in diagnosing chromosomal abnormality in haematological malignancy including CLL, even though it is tedious and time-consuming. In concordance with technological advancement, DNA microarrays are gaining popularity among clinicians as they are faster and better able to accurately diagnose the presence of chromosomal abnormalities. However, every technology has challenges to overcome. In this review, CLL and its genetic abnormalities will be discussed, as well as the application of microarray technology as a diagnostic platform.
Collapse
Affiliation(s)
| | - Nazihah Mohd Yunus
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ninie Nadia Zulkipli
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu 21300, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
26
|
Geyer JT, Kluk MJ. Current Landscape of Ancillary Diagnostic Testing in Chronic Lymphocytic Leukemia. Surg Pathol Clin 2023; 16:411-421. [PMID: 37149366 DOI: 10.1016/j.path.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and is a heterogeneous disease with variable patient outcomes. A multidisciplinary technical evaluation, including flow cytometry, immunohistochemistry, molecular and cytogenetic analyses, can comprehensively characterize a patient's leukemia at diagnosis, identify important prognostic biomarkers, and track measurable residual disease; all of which can impact patient management. This review highlights the key concepts, clinical significance, and main biomarkers detectable with each of these technical approaches; the contents are a helpful resource for medical practitioners involved in the workup and management of patients with CLL.
Collapse
|
27
|
Catapano R, Sepe L, Toscano E, Paolella G, Chiurazzi F, Barbato SP, Bruzzese D, Arianna R, Grosso M, Romano S, Romano MF, Costanzo P, Cesaro E. Biological relevance of ZNF224 expression in chronic lymphocytic leukemia and its implication IN NF-kB pathway regulation. Front Mol Biosci 2022; 9:1010984. [PMID: 36425656 PMCID: PMC9681601 DOI: 10.3389/fmolb.2022.1010984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 12/21/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, whose presentation and clinical course are highly variable. Identification of novel prognostic factors may contribute to improving the CLL classification and providing indications for treatment options. The zinc finger protein ZNF224 plays a key role in cell transformation, through the control of apoptotic and survival pathways. In this study, we evaluated the potential application of ZNF224 as a novel marker of CLL progression and therapy responsiveness. To this aim, we analyzed ZNF224 expression levels in B lymphocytes from CLL patients at different stages of the disease and in patients showing different treatment outcomes. The expression of ZNF224 was significantly increased in disease progression and dramatically decreased in patients in complete remission after chemotherapy. Gene expression correlation analysis performed on datasets of CLL patients revealed that ZNF224 expression was well correlated with that of some prognostic and predictive markers. Moreover, bioinformatic analysis coupled ZNF224 to NF-κB pathway, and experimental data demonstrated that RNA interference of ZNF224 reduced the activity of the NF-κB survival pathway in CLL cells. Consistently with a pro-survival role, ZNF224 knockdown raised spontaneous and drug-induced apoptosis and inhibited the proliferation of peripheral blood mononuclear cells from CLL patients. Our findings provide evidence for the involvement of ZNF224 in the survival of CLL cells via NF-κB pathway modulation, and also suggest ZNF224 as a prognostic and predictive molecular marker of CLL disease.
Collapse
Affiliation(s)
- Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Federico Chiurazzi
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy
| | - Serafina Patrizia Barbato
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Rosa Arianna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
28
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
29
|
Giudice V, Serio B, Bertolini A, Mettivier L, D'Alto F, Pezzullo L, D'Addona M, Fumo R, Zeppa P, Gorrese M, Selleri C. Implementation of International Prognostic Index with flow cytometry immunophenotyping for better risk stratification of chronic lymphocytic leukemia. Eur J Haematol 2022; 109:483-493. [PMID: 35871396 PMCID: PMC9804478 DOI: 10.1111/ejh.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Current chronic lymphocytic leukemia (CLL) International Prognostic Index (IPI) stratifies patients based on clinical, molecular, and biochemical features; however, B-cell markers also influence CLL outcomes. Here, prognostic roles of CD11c, CD38, and CD49d were first evaluated, and then an immunophenotypic score was combined with CLL-IPI for risk stratification of CLL patients. METHODS A total of 171 CLL subjects were included, and surface marker expression was assessed by flow cytometry. Levels ≥30% were chosen as cut-off of positivity to a marker; then values of 1 (for CD11c and CD38) or 3 (for CD49d) were assigned and scores determined for each patient's clone immunophenotype. RESULTS CD49d positivity was significantly associated with simultaneous expression of CD11c and/or CD38, unmutated IGHV status, and higher β2-microglobulin levels compared to those with CD49d negativity. Moreover, CD49d+ patients experienced a shorter progression-free survival and time to treatment. When the immunophenotypic score was combined with CLL-IPI, patients with high-risk immunophenotype had a significantly lower time-to-treatment regardless CLL-IPI. CONCLUSIONS Our results suggested clinical utility of an integrated prognostic score for better risk stratification of CLL patients. These results require further validation in prospective larger studies.
Collapse
Affiliation(s)
- Valentina Giudice
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly,Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| | - Bianca Serio
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Angela Bertolini
- Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| | - Laura Mettivier
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Francesca D'Alto
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Luca Pezzullo
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Matteo D'Addona
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Rosalba Fumo
- Anatomy Pathology UnitUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Pio Zeppa
- Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly,Anatomy Pathology UnitUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Marisa Gorrese
- Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| | - Carmine Selleri
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly,Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| |
Collapse
|
30
|
Narezkina A, Akhter N, Lu X, Emond B, Panjabi S, Forbes SP, Hilts A, Liu S, Lafeuille MH, Lefebvre P, Huang Q, Choi M. Real-World Persistence and Time to Next Treatment With Ibrutinib in Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Including Patients at High Risk for Atrial Fibrillation or Stroke. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e959-e971. [PMID: 35973891 DOI: 10.1016/j.clml.2022.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a recognized adverse consequence associated with all Bruton's tyrosine kinase inhibitors used to treat chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL); however, real-world time to discontinuation (TTD) and time to next treatment (TTNT) of CLL/SLL patients with a high baseline AF/stroke risk remain unknown. MATERIALS AND METHODS Patients with CLL/SLL from a nationwide electronic health record-derived database (February 12, 2013-January 31, 2021) initiating first-line (1L) or second or later-line (2L+) treatment with ibrutinib or other regimens on or after February 12, 2014 (index date) were analyzed. Kaplan-Meier survival analysis was used to assess TTD and TTNT among all patients, patients with high AF risk (CHARGE-AF risk score ≥10.0%), and patients at high risk of stroke (CHA2DS2-VASc risk score ≥3 [females] or ≥2 [males]). RESULTS In 1L/2L+, 2190/1851 patients received ibrutinib and 4388/4135, were treated with other regimens. Median TTD for ibrutinib was similar regardless of AF/stroke-related risk (1L: all patients, 15.7 months; high AF risk, 11.7 months; high stroke risk, 13.7 months; similar results in 2L+). Median TTNT was significantly longer for ibrutinib vs. other regimens (1L: not reached vs. 45.9 months; 2L+: not reached vs. 23.6 months; both P < .05), including among those with high AF/stroke risk. TTNT was similar between all patients and high-risk cohorts in 1L and 2L+ (all P > .05). CONCLUSION This study highlights that elevated baseline AF/stroke-related risk does not adversely impact TTD and TTNT outcomes associated with ibrutinib use. Additionally, TTNT was significantly longer for patients treated with ibrutinib vs. other regimens.
Collapse
Affiliation(s)
- Anna Narezkina
- University of California San Diego Health, San Diego, CA
| | | | - Xiaoxiao Lu
- Janssen Scientific Affairs, LLC, Horsham, PA
| | - Bruno Emond
- Analysis Group, Inc., Montréal, Québec, Canada.
| | | | | | | | | | | | | | - Qing Huang
- Janssen Scientific Affairs, LLC, Horsham, PA
| | - Michael Choi
- University of California San Diego Moores Cancer Center, San Diego, CA
| |
Collapse
|
31
|
Galasso M, Dalla Pozza E, Chignola R, Gambino S, Cavallini C, Quaglia FM, Lovato O, Dando I, Malpeli G, Krampera M, Donadelli M, Romanelli MG, Scupoli MT. The rs1001179 SNP and CpG methylation regulate catalase expression in chronic lymphocytic leukemia. Cell Mol Life Sci 2022; 79:521. [PMID: 36112236 PMCID: PMC9481481 DOI: 10.1007/s00018-022-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an extremely variable clinical course. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course. Elucidating mechanisms regulating CAT expression in CLL is preeminent to understand disease mechanisms and develop strategies for improving its clinical management. In this study, we investigated the role of the CAT promoter rs1001179 single nucleotide polymorphism (SNP) and of the CpG Island II methylation encompassing this SNP in the regulation of CAT expression in CLL. Leukemic cells harboring the rs1001179 SNP T allele exhibited a significantly higher CAT expression compared with cells bearing the CC genotype. CAT promoter harboring the T -but not C- allele was accessible to ETS-1 and GR-β transcription factors. Moreover, CLL cells exhibited lower methylation levels than normal B cells, in line with the higher CAT mRNA and protein expressed by CLL in comparison with normal B cells. Methylation levels at specific CpG sites negatively correlated with CAT levels in CLL cells. Inhibition of methyltransferase activity induced a significant increase in CAT levels, thus functionally validating the role of CpG methylation in regulating CAT expression in CLL. Finally, the CT/TT genotypes were associated with lower methylation and higher CAT levels, suggesting that the rs1001179 T allele and CpG methylation may interact in regulating CAT expression in CLL. This study identifies genetic and epigenetic mechanisms underlying differential expression of CAT, which could be of crucial relevance for the development of therapies targeting redox regulatory pathways in CLL.
Collapse
Affiliation(s)
- Marilisa Galasso
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Simona Gambino
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Francesca Maria Quaglia
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ornella Lovato
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ilaria Dando
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Giorgio Malpeli
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Massimo Donadelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Maria G Romanelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Maria T Scupoli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
32
|
Elderdery AY, Alzahrani B, Hamza SMA, Mostafa-Hedeab G, Mok PL, Subbiah SK. CuO-TiO 2-Chitosan-Berbamine Nanocomposites Induce Apoptosis through the Mitochondrial Pathway with the Expression of P53, BAX, and BCL-2 in the Human K562 Cancer Cell Line. Bioinorg Chem Appl 2022; 2022:9602725. [PMID: 36164585 PMCID: PMC9509271 DOI: 10.1155/2022/9602725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO2-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO2-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC50 concentrations of CuO-TiO2-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO2-Chitosan-Berbamine, according to our findings.
Collapse
Affiliation(s)
- Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Siddiqa M. A Hamza
- Faculty of Medicine, Department of Pathology, Umm Alqura University, Algunfuda, Mecca, Saudi Arabia
| | - Gomaa Mostafa-Hedeab
- Pharmacology & Therapeutic Department-Medical College, Jouf University, Sakaka, Saudi Arabia
| | - Pooi Ling Mok
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
33
|
Rogers KA, Lu X, Emond B, Côté-Sergent A, Kinkead F, Lafeuille MH, Lefebvre P, Huang Q. Clinical and economic burden of tumor lysis syndrome among patients with chronic lymphocytic leukemia/small lymphocytic lymphoma: A real-world US retrospective study. J Manag Care Spec Pharm 2022; 28:1033-1045. [DOI: 10.18553/jmcp.2022.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kerry A Rogers
- Division of Hematology, The Ohio State University, Columbus
| | - Xiaoxiao Lu
- Janssen Scientific Affairs, LLC, Horsham, PA
| | | | | | | | | | | | - Qing Huang
- Janssen Scientific Affairs, LLC, Horsham, PA
| |
Collapse
|
34
|
Yang Y, Liu L, Tucker HO. Induction of chronic lymphocytic leukemia-like disease in STYK1/NOK transgenic mice. Biochem Biophys Res Commun 2022; 626:51-57. [PMID: 35970044 DOI: 10.1016/j.bbrc.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
STYK1/NOK functions in a ligand independent and constitutive fashion to provoke tumor formation and to be up-regulated in many types of cancer cells. However, how STYK1/NOK functions at the whole animal level is completely unknown. Here, we found that STYK1/NOK-transgenic (tg) mice spontaneously developed immunosuppressive B-CLL-like disease with generally shorter life spans. The phenotype of STYK1/NOK-induced B-CLL was typically heterogeneous, and most often, presented lymphadenectasis accompanied with hepatomegaly and/or splenomegaly. STYK1/NOK-tg mice also suffered reduced immune responses. The expanded CD5+CD19+ (B1) lymphocyte pool was detected within peripheral lymphoid organs. Analysis on GEO profile revealed that expression of STYK1/NOK were significantly up-regulated in primary human B-CLL. Inoculation of blood cells from sick STYK1/NOK-tg mice into immune-deficient recipients recaptured the B1 malignant phenotype. Our study demonstrated that STYK1/NOK transgenic mouse may serve as a useful model system for the developments of novel diagnosis and treatment of B-CLL.
Collapse
Affiliation(s)
- Yin Yang
- Department of Pathogen Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Li Liu
- Department of Pathogen Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Haley O Tucker
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin TX, 78712, USA.
| |
Collapse
|
35
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
36
|
Gelmez MY, Betul Oktelik F, Cinar S, Ozbalak M, Ozluk O, Aktan M, Deniz G. High expression of OX-40, ICOS, and low expression PD-L1 of follicular helper and follicular cytotoxic T cells in chronic lymphocytic leukemia. J Hematop 2022. [DOI: 10.1007/s12308-022-00497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
37
|
Burley TA, Hesketh A, Bucca G, Kennedy E, Ladikou EE, Towler BP, Mitchell S, Smith CP, Fegan C, Johnston R, Pepper A, Pepper C. Elucidation of Focal Adhesion Kinase as a Modulator of Migration and Invasion and as a Potential Therapeutic Target in Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14071600. [PMID: 35406371 PMCID: PMC8996841 DOI: 10.3390/cancers14071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
The retention and re-migration of Chronic Lymphocytic Leukemia cells into cytoprotective and proliferative lymphoid niches is thought to contribute to the development of resistance, leading to subsequent disease relapse. The aim of this study was to elucidate the molecular processes that govern CLL cell migration to elicit a more complete inhibition of tumor cell migration. We compared the phenotypic and transcriptional changes induced in CLL cells using two distinct models designed to recapitulate the peripheral circulation, CLL cell migration across an endothelial barrier, and the lymph node interaction between CLL cells and activated T cells. Initially, CLL cells were co-cultured with CD40L-expressing fibroblasts and exhibited an activated B-cell phenotype, and their transcriptional signatures demonstrated the upregulation of pro-survival and anti-apoptotic genes and overrepresentation of the NF-κB signaling pathway. Using our dynamic circulating model, we were able to study the transcriptomics and miRNomics associated with CLL migration. More than 3000 genes were altered when CLL cells underwent transendothelial migration, with an overrepresentation of adhesion and cell migration gene sets. From this analysis, an upregulation of the FAK signaling pathway was observed. Importantly, PTK2 (FAK) gene expression was significantly upregulated in migrating CLL cells (PTK2 Fold-change = 4.9). Here we demonstrate that TLR9 agonism increased levels of p-FAK (p ≤ 0.05), which could be prevented by pharmacological inhibition of FAK with defactinib (p ≤ 0.01). Furthermore, a reduction in CLL cell migration and invasion was observed when FAK was inhibited (p ≤ 0.0001), supporting a role for FAK in both CLL migration and tissue invasion. When taken together, our data highlights the potential for combining FAK inhibition with current targeted therapies as a more effective treatment regime for CLL.
Collapse
Affiliation(s)
- Thomas A. Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK; (A.H.); (G.B.); (C.P.S.)
| | - Giselda Bucca
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK; (A.H.); (G.B.); (C.P.S.)
| | - Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Eleni E. Ladikou
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Benjamin P. Towler
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Colin P. Smith
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK; (A.H.); (G.B.); (C.P.S.)
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7YH, UK
| | - Christopher Fegan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Rosalynd Johnston
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
- Correspondence: ; Tel.: +44-01273-678644
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| |
Collapse
|
38
|
Mimmi S, Maisano D, Dattilo V, Gentile M, Chiurazzi F, D’Ambrosio A, Zimbo A, Nisticò N, Aloisio A, Vecchio E, Fiume G, Iaccino E, Quinto I. Unmutated IGHV1-69 CLL Clone Displays a Distinct Gene Expression Profile by a Comparative qRT-PCR Assay. Biomedicines 2022; 10:biomedicines10030604. [PMID: 35327406 PMCID: PMC8945665 DOI: 10.3390/biomedicines10030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a heterogeneous disease characterized by variable clinical courses among different patients. This notion was supported by the possible coexistence of two or more independent CLL clones within the same patients, identified by the characterization of the B cell receptor immunoglobulin (BcR IG) idiotypic sequence. By using the antigen-binding site of the BcR IG as bait, the identification and isolation of aggressive and drug-resistance leukemic B-cell clones could allow a deeper biological and molecular investigation. Indeed, by the screening of phage display libraries, we previously selected a peptide binder of the idiotypic region of CLL BCR IGs expressing the unmutated rearrangement IGHV1-69 and used it as a probe to perform a peptide-based cell sorting by flow cytometry in peripheral blood samples from patients with CLL. Since the IGHV1-69 clones persisted during the follow-up time in both patients, we explored the possibility of these clones having acquired an evolutive advantage compared to the other coexisting clones in terms of a higher expression of genes involved in the survival and apoptosis escape processes. To this end, we studied the expression patterns of a panel of genes involved in apoptosis regulation and in NF-kB-dependent pro-survival signals by comparative qRT-PCR assays. According to the results, IGHV1-69 clones showed a higher expression of pro-survival and anti-apoptotic genes as compared to the other CLL clones with different immunogenetic characteristics. Moreover, these IGHV1-69 clones did not carry any characteristic genetic lesions, indicating the relevance of our approach in performing a comprehensive molecular characterization of single tumor clones, as well as for designing new personalized therapeutic approaches for the most aggressive and persistent tumor clones.
Collapse
Affiliation(s)
- Selena Mimmi
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
- Correspondence: (S.M.); (V.D.); Tel.: +39-0961-369-4057 (S.M. & V.D.)
| | - Domenico Maisano
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Vincenzo Dattilo
- Laboratory Genetics Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Correspondence: (S.M.); (V.D.); Tel.: +39-0961-369-4057 (S.M. & V.D.)
| | - Massimo Gentile
- Hematology Unit, Department of Onco-Hematology, A.O of Cosenza, 87100 Cosenza, Italy;
| | - Federico Chiurazzi
- Hematological Clinic, Department of Clinical Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.D.)
| | - Alessandro D’Ambrosio
- Hematological Clinic, Department of Clinical Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.D.)
| | - Annamaria Zimbo
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Nancy Nisticò
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Annamaria Aloisio
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Eleonora Vecchio
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Giuseppe Fiume
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Enrico Iaccino
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Ileana Quinto
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| |
Collapse
|
39
|
Druggable Molecular Pathways in Chronic Lymphocytic Leukemia. Life (Basel) 2022; 12:life12020283. [PMID: 35207569 PMCID: PMC8875960 DOI: 10.3390/life12020283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), the most common type of leukemia in adults, is characterized by a high degree of clinical heterogeneity that is influenced by the disease’s molecular complexity. The genes most frequently affected in CLL cluster into specific biological pathways, including B-cell receptor (BCR) signaling, apoptosis, NF-κB, and NOTCH1 signaling. BCR signaling and the apoptosis pathway have been exploited to design targeted medicines for CLL therapy. Consistently, molecules that selectively inhibit specific BCR components, namely Bruton tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) as well as inhibitors of BCL2, have revolutionized the therapeutic management of CLL patients. Several BTK inhibitors and PI3K inhibitors with different modes of action are currently used or are in development in advanced stage clinical trials. Moreover, the restoration of apoptosis by the BCL2 inhibitor venetoclax offers meaningful clinical activity with a fixed-duration scheme. Inhibitors of the BCR and of BCL2 are able to overcome the chemorefractoriness associated with high-risk genetic features, including TP53 disruption. Other signaling cascades involved in CLL pathogenesis, in particular NOTCH signaling and NF-kB signaling, already provide biomarkers for a precision medicine approach to CLL and may represent potential druggable targets for the future. The aim of the present review is to discuss the druggable pathways of CLL and to provide the biological background of the high efficacy of targeted biological drugs in CLL.
Collapse
|
40
|
Ebrahim H, Fisha T, Debash H, Bisetegn H. Patterns of Bone Marrow Confirmed Malignant and Non-Malignant Hematological Disorders in Patients with Abnormal Hematological Parameters in Northeast Ethiopia. J Blood Med 2022; 13:51-60. [PMID: 35210892 PMCID: PMC8857978 DOI: 10.2147/jbm.s346091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hussen Ebrahim
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
- Correspondence: Hussen Ebrahim, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, 1145, Ethiopia, Tel +251 921332772, Email
| | - Temesgen Fisha
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtye Bisetegn
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
41
|
Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, Moses EJ. Utilization of CRISPR-Mediated Tools for Studying Functional Genomics in Hematological Malignancies: An Overview on the Current Perspectives, Challenges, and Clinical Implications. Front Genet 2022; 12:767298. [PMID: 35154242 PMCID: PMC8834884 DOI: 10.3389/fgene.2021.767298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
Collapse
Affiliation(s)
- Maheswaran Solayappan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Adam Azlan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Kang Zi Khor
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mot Yee Yik
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Matiullah Khan
- Department of Pathology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
42
|
Nicolò A, Linder AT, Jumaa H, Maity PC. The Determinants of B Cell Receptor Signaling as Prototype Molecular Biomarkers of Leukemia. Front Oncol 2022; 11:771669. [PMID: 34993136 PMCID: PMC8724047 DOI: 10.3389/fonc.2021.771669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced genome-wide association studies (GWAS) identified several transforming mutations in susceptible loci which are recognized as valuable prognostic markers in chronic lymphocytic leukemia (CLL) and B cell lymphoma (BCL). Alongside, robust genetic manipulations facilitated the generation of preclinical mouse models to validate mutations associated with poor prognosis and refractory B cell malignancies. Taken together, these studies identified new prognostic markers that could achieve characteristics of precision biomarkers for molecular diagnosis. On the contrary, the idea of augmented B cell antigen receptor (BCR) signaling as a transforming cue has somewhat receded despite the efficacy of Btk and Syk inhibitors. Recent studies from several research groups pointed out that acquired mutations in BCR components serve as faithful biomarkers, which become important for precision diagnostics and therapy, due to their relevant role in augmented BCR signaling and CLL pathogenesis. For example, we showed that expression of a single point mutated immunoglobulin light chain (LC) recombined through the variable gene segment IGLV3-21, named IGLV3-21R110, marks severe CLL cases. In this perspective, we summarize the molecular mechanisms fine-tuning B cell transformation, focusing on immunoglobulin point mutations and recurrent mutations in tumor suppressors. We present a stochastic model for gain-of-autonomous BCR signaling and subsequent neoplastic transformation. Of note, additional mutational analyses on immunoglobulin heavy chain (HC) derived from non-subset #2 CLL IGLV3-21R110 cases endorses our perspective. Altogether, we propose a model of malignant transformation in which the augmented BCR signaling creates a conducive platform for the appearance of transforming mutations.
Collapse
Affiliation(s)
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| | | |
Collapse
|
43
|
Kwok M, Wu CJ. Clonal Evolution of High-Risk Chronic Lymphocytic Leukemia: A Contemporary Perspective. Front Oncol 2021; 11:790004. [PMID: 34976831 PMCID: PMC8716560 DOI: 10.3389/fonc.2021.790004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Clonal evolution represents the natural process through which cancer cells continuously search for phenotypic advantages that enable them to develop and expand within microenvironmental constraints. In chronic lymphocytic leukemia (CLL), clonal evolution underpins leukemic progression and therapeutic resistance, with differences in clonal evolutionary dynamics accounting for its characteristically diverse clinical course. The past few years have witnessed profound changes in our understanding of CLL clonal evolution, facilitated by a maturing definition of high-risk CLL and an increasing sophistication of next-generation sequencing technology. In this review, we offer a modern perspective on clonal evolution of high-risk CLL, highlighting recent discoveries, paradigm shifts and unresolved questions. We appraise recent advances in our understanding of the molecular basis of CLL clonal evolution, focusing on the genetic and non-genetic sources of intratumoral heterogeneity, as well as tumor-immune dynamics. We review the technological innovations, particularly in single-cell technology, which have fostered these advances and represent essential tools for future discoveries. In addition, we discuss clonal evolution within several contexts of particular relevance to contemporary clinical practice, including the settings of therapeutic resistance to CLL targeted therapy and immunotherapy, as well as Richter transformation of CLL to high-grade lymphoma.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
44
|
Costello J, Kang M, Banerji V. Frontline Treatment of the Young, Fit Patient with CLL: A Canadian Perspective. Curr Oncol 2021; 28:3825-3835. [PMID: 34677244 PMCID: PMC8534822 DOI: 10.3390/curroncol28050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
From a Canadian perspective, there has been a limited discussion on the frontline management of young, fit patients with chronic lymphocytic leukemia (CLL). The prevalence of this population ranges between 2 and 22 per 100,000 persons in Canada and varies by region. Until recently, fixed-duration fludarabine-based chemoimmunotherapy (CIT) was the primary treatment option in Canada for this patient population. The ECOG1912 trial has since demonstrated that ibrutinib and rituximab therapy are as effective as fludarabine-cyclophosphamide-rituximab (FCR) in this population. The ALLIANCE trial showed that rituximab added no incremental benefit to ibrutinib. Canadian payors and physicians adopted ibrutinib monotherapy as the CLL standard of care, even in the young, fit population, although frontline ibrutinib therapy is often reimbursed by provincial public drug plans only in patients with high-risk disease or those who are unfit to receive fludarabine. Young, fit patients with CLL and their physicians may now choose between continuous ibrutinib monotherapy and fixed-duration CIT with FCR. Factors affecting this choice include patient preference and the short- and long-term toxicity profiles of both regimens, and a risk-based algorithm is provided. As new continuous-therapy options enter the market, all treatment choices present benefits and risks that must be communicated to the patient.
Collapse
Affiliation(s)
- Jacqueline Costello
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada;
- Eastern Health, St. John’s, NL A1B 3V6, Canada
| | - Matthew Kang
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Joseph Brant Hospital Oncology Clinic, Hamilton, ON L7S 0A2, Canada
| | - Versha Banerji
- Departments of Internal Medicine and Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: ; Tel.: 1-204-787-1884
| |
Collapse
|
45
|
Kwok M, Agathanggelou A, Davies N, Stankovic T. Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4681. [PMID: 34572908 PMCID: PMC8468925 DOI: 10.3390/cancers13184681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The p53 pathway is a desirable therapeutic target, owing to its critical role in the maintenance of genome integrity. This is exemplified in chronic lymphocytic leukemia (CLL), one of the most common adult hematologic malignancies, in which functional loss of p53 arising from genomic aberrations are frequently associated with clonal evolution, disease progression, and therapeutic resistance, even in the contemporary era of CLL targeted therapy and immunotherapy. Targeting the 'undruggable' p53 pathway therefore arguably represents the holy grail of cancer research. In recent years, several strategies have been proposed to exploit p53 pathway defects for cancer treatment. Such strategies include upregulating wild-type p53, restoring tumor suppressive function in mutant p53, inducing synthetic lethality by targeting collateral genome maintenance pathways, and harnessing the immunogenicity of p53 pathway aberrations. In this review, we will examine the biological and clinical implications of p53 pathway defects, as well as our progress towards development of therapeutic approaches targeting the p53 pathway, specifically within the context of CLL. We will appraise the opportunities and pitfalls associated with these therapeutic strategies, and evaluate their place amongst the array of new biological therapies for CLL.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2SY, UK
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| |
Collapse
|
46
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
47
|
Playa-Albinyana H, Arenas F, Colomer D. Advantages and disadvantages of mouse models of chronic lymphocytic leukemia in drug discovery. Expert Opin Drug Discov 2021; 16:1085-1090. [PMID: 34074187 DOI: 10.1080/17460441.2021.1935860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Heribert Playa-Albinyana
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona, Spain.,Centro De Investigación Biomédica En Red De Cáncer (CIBERONC, Barcelona, Spain
| | - Fabian Arenas
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona, Spain.,Centro De Investigación Biomédica En Red De Cáncer (CIBERONC, Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona, Spain.,Centro De Investigación Biomédica En Red De Cáncer (CIBERONC, Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Bödör C, Kotmayer L, László T, Takács F, Barna G, Kiss R, Sebestyén E, Nagy T, Hegyi LL, Mikala G, Fekete S, Farkas P, Balogh A, Masszi T, Demeter J, Weisinger J, Alizadeh H, Kajtár B, Kohl Z, Szász R, Gergely L, Gurbity Pálfi T, Sulák A, Kollár B, Egyed M, Plander M, Rejtő L, Szerafin L, Ilonczai P, Tamáska P, Pettendi P, Lévai D, Schneider T, Sebestyén A, Csermely P, Matolcsy A, Mátrai Z, Alpár D. Screening and monitoring of the BTK C481S mutation in a real-world cohort of patients with relapsed/refractory chronic lymphocytic leukaemia during ibrutinib therapy. Br J Haematol 2021; 194:355-364. [PMID: 34019713 DOI: 10.1111/bjh.17502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has revolutionised the therapeutic landscape of chronic lymphocytic leukaemia (CLL). Acquired mutations emerging at position C481 in the BTK tyrosine kinase domain are the predominant genetic alterations associated with secondary ibrutinib resistance. To assess the correlation between disease progression, and the emergence and temporal dynamics of the most common resistance mutation BTKC481S , sensitive (10-4 ) time-resolved screening was performed in 83 relapsed/refractory CLL patients during single-agent ibrutinib treatment. With a median follow-up time of 40 months, BTKC481S was detected in 48·2% (40/83) of the patients, with 80·0% (32/40) of them showing disease progression during the examined period. In these 32 cases, representing 72·7% (32/44) of all patients experiencing relapse, emergence of the BTKC481S mutation preceded the symptoms of clinical relapse with a median of nine months. Subsequent Bcl-2 inhibition therapy applied in 28/32 patients harbouring BTKC481S and progressing on ibrutinib conferred clinical and molecular remission across the patients. Our study demonstrates the clinical value of sensitive BTKC481S monitoring with the largest longitudinally analysed real-world patient cohort reported to date and validates the feasibility of an early prediction of relapse in the majority of ibrutinib-treated relapsed/refractory CLL patients experiencing disease progression.
Collapse
Affiliation(s)
- Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lili Kotmayer
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tamás László
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ferenc Takács
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Richárd Kiss
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Mikala
- South-Pest Central Hospital-National Institute of Hematology and Infectology, Budapest, Hungary
| | - Sándor Fekete
- South-Pest Central Hospital-National Institute of Hematology and Infectology, Budapest, Hungary
| | - Péter Farkas
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Alexandra Balogh
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Tamás Masszi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Judit Demeter
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Júlia Weisinger
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Hussain Alizadeh
- 1st Department of Internal Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Zoltán Kohl
- 1st Department of Internal Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Róbert Szász
- Division of Hematology, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Gergely
- Division of Hematology, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Timea Gurbity Pálfi
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Adrienn Sulák
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Balázs Kollár
- Kaposi Mór University Teaching Hospital of County Somogy, Kaposvár, Hungary
| | - Miklós Egyed
- Kaposi Mór University Teaching Hospital of County Somogy, Kaposvár, Hungary
| | - Márk Plander
- Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - László Rejtő
- Hospitals of County Szabolcs-Szatmár-Bereg and University Teaching Hospital, Nyíregyháza, Hungary
| | - László Szerafin
- Hospitals of County Szabolcs-Szatmár-Bereg and University Teaching Hospital, Nyíregyháza, Hungary
| | - Péter Ilonczai
- Hospitals of County Szabolcs-Szatmár-Bereg and University Teaching Hospital, Nyíregyháza, Hungary.,Markhot Ferenc Teaching Hospital of County Heves, Eger, Hungary
| | - Péter Tamáska
- Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Piroska Pettendi
- Hetényi Géza Hospital and Clinic of County Jász-Nagykun-Szolnok, Szolnok, Hungary
| | - Dóra Lévai
- National Institute of Oncology, Budapest, Hungary
| | | | - Anna Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Zoltán Mátrai
- South-Pest Central Hospital-National Institute of Hematology and Infectology, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
49
|
Bencomo-Alvarez AE, Rubio AJ, Gonzalez MA, Eiring AM. Blood cancer health disparities in the United States Hispanic population. Cold Spring Harb Mol Case Stud 2021; 7:a005967. [PMID: 33593728 PMCID: PMC8040735 DOI: 10.1101/mcs.a005967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a challenging, multifaceted disease that involves a combination of biological and nonbiological factors. Aside from COVID-19, cancer is the second leading cause of death in the United States and the first among Hispanic Americans. The Hispanic population is the largest minority group in the United States, which is rapidly growing in size. Unfortunately, U.S. Hispanics and other minority groups experience many different health disparities, resulting in poor survival outcomes and a reduced quality of life. Factors such as genomic mutations, lower socioeconomic status, lack of education, reduced access to health care, comorbidities, and environmental factors all contribute to these health-care inequalities. In the context of blood cancer health disparities, Hispanic patients are often diagnosed at a younger age and have worse outcomes compared with non-Hispanic individuals. In this commentary, we highlight the existing knowledge about cancer health disparities in the Hispanic population, with a focus on chronic and acute leukemia. In our experience at the U.S./Mexican border, analysis of several different blood cancers demonstrated that younger Hispanic patients with acute lymphoid or myeloid leukemia have higher incidence rates and worse prognoses. A combined approach, involving improved health-care access and better knowledge of the underlying factors, will allow for more timely diagnoses and the development of intervention strategies aimed at reducing or eliminating the disparities.
Collapse
Affiliation(s)
- Alfonso E Bencomo-Alvarez
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Andres J Rubio
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Mayra A Gonzalez
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Anna M Eiring
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| |
Collapse
|
50
|
Fiorcari S, Maffei R, Atene CG, Potenza L, Luppi M, Marasca R. Nurse-Like Cells and Chronic Lymphocytic Leukemia B Cells: A Mutualistic Crosstalk inside Tissue Microenvironments. Cells 2021; 10:217. [PMID: 33499012 PMCID: PMC7911538 DOI: 10.3390/cells10020217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is an example of hematological disease where cooperation between genetic defects and tumor microenvironmental interaction is involved in pathogenesis. CLL is a disease that is considered as "addicted to the host"; indeed, the crosstalk between leukemic cells and the tumor microenvironment is essential for leukemic clone maintenance supporting CLL cells' survival, proliferation, and protection from drug-induced apoptosis. CLL cells are not innocent bystanders but actively model and manipulate the surrounding microenvironment to their own advantage. Besides the different players involved in this crosstalk, nurse-like cells (NLC) resemble features related to leukemia-associated macrophages with an important function in preserving CLL cell survival and supporting an immunosuppressive microenvironment. This review provides a comprehensive overview of the role played by NLC in creating a nurturing and permissive milieu for CLL cells, illustrating the therapeutic possibilities in order to specifically target and re-educate them.
Collapse
Affiliation(s)
- Stefania Fiorcari
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
| | - Rossana Maffei
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| | - Claudio Giacinto Atene
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| |
Collapse
|