1
|
Kim WJ, Ryu R, Doo EH, Choi Y, Kim K, Kim BK, Kim H, Kim M, Huh CS. Supplementation with the Probiotic Strains Bifidobacterium longum and Lactiplantibacillus rhamnosus Alleviates Glucose Intolerance by Restoring the IL-22 Response and Pancreatic Beta Cell Dysfunction in Type 2 Diabetic Mice. Probiotics Antimicrob Proteins 2025; 17:541-556. [PMID: 37804432 DOI: 10.1007/s12602-023-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Won Jun Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Ri Ryu
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Eun-Hee Doo
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
- Department of Yuhan Biotechnology, School of Bio-Health Sciences, Yuhan University, Bucheon, 14780, South Korea
| | - Yukyung Choi
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Kyunghwan Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Byoung Kook Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
- Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, South Korea.
| | - Chul Sung Huh
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea.
| |
Collapse
|
2
|
Konings LAM, Miguelañez-Matute L, Boeren AMP, van de Luitgaarden IAT, Dirksmeier F, de Knegt RJ, Tushuizen ME, Grobbee DE, Holleboom AG, Cabezas MC. Pharmacological treatment options for metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes mellitus: A systematic review. Eur J Clin Invest 2025; 55:e70003. [PMID: 39937036 DOI: 10.1111/eci.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely related to type 2 diabetes mellitus (T2DM) through a common root in insulin resistance. The more severe stage, metabolic dysfunction-associated steatohepatitis (MASH), increases the risk for cardiovascular complications, liver cirrhosis and hepatocellular carcinoma. Several trials investigating established antidiabetic-drugs in patients with T2DM and MASLD have yielded promising results. Therefore, we aimed to systematically review the effect of T2DM-drug treatment on MALSD parameters. METHODS Medical databases were searched until January 2025 for controlled trials in patients with T2DM and MASLD/MASH. Studies that evaluated the effect of T2DM-medication on the severity of MASLD/MASH in T2DM patients were included. The quality of the studies was assessed by three independent reviewers using a set of Cochrane risk-of-bias tools. RESULTS Of 1748 references, 117 studies fulfilled the inclusion-criteria and were assessed for eligibility in full-text. Fifty-two articles were included. Data included a total of 64.708 patients and study populations ranged from 9 to 50.742. Heterogeneity in study-design and analysis hampered the comparability of the results. Most evidence was present for GLP-1 receptor agonists, SGLT2-inhibitors and PPAR-γ-agonists for regression of liver fibrosis and MASH. CONCLUSION Studies on the value of T2DM-drug treatment in the improvement of MASLD vary significantly in study design, size and quality. GLP-1 receptor agonists, PPAR-γ-agonists, SGLT2-inhibitors may all be preferred pharmacological interventions for patients with MASLD/MASH and T2DM. Newer agents like dual GLP-1/GIP or triple GLP-1/GIP/Glucagon agonists will likely play an important role in the treatment of MASLD/MASH in the near future.
Collapse
Affiliation(s)
- Laura A M Konings
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
- Department of Internal Medicine and Endocrinology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Anna M P Boeren
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | | | - Femme Dirksmeier
- Department of Gastroenterology and Hepatology, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Rob J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, LUMC, Leiden, the Netherlands
| | | | | | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
- Department of Internal Medicine and Endocrinology, Erasmus MC, Rotterdam, the Netherlands
- Julius Clinical, Zeist, the Netherlands
| |
Collapse
|
3
|
Yang N, Tian Q, Lei Z, Wang S, Cheng N, Wang Z, Jiang X, Zheng X, Xu W, Ye M, Zhao L, Wen M, Niu J, Sun W, Shen P, Huang Z, Li X. FGF2 Mediated USP42-PPARγ Axis Activation Ameliorates Liver Oxidative Damage and Promotes Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408724. [PMID: 40091484 DOI: 10.1002/advs.202408724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Liver regeneration is critical for maintaining whole-body homeostasis, especially under exposure to deadly chemical toxins. Understanding the molecular mechanisms underlying liver repair is critical for the development of intervention strategies to treat liver diseases. In this study, ubiquitin-specific Proteases 42 (USP42) is identified as a novel deubiquitinases (DUB) of peroxisome proliferators-activated receptor γ (PPARγ) in hepatocytes. This DUB interacted, deubiquitinated, and stabilized PPARγ, and increased PPARγ targeted proliferative and antioxidative gene expressions, which protects the liver from carbon tetrachloride (CCL4) induced oxidative injury and promotes liver regeneration. In addition, fibroblast growth factor 2 (FGF2) initiated USP42 expression and enhanced the interaction between USP42 and PPARγ during the liver regeneration process. Moreover, the PPARγ full agonist, rosiglitazone (RSG), possesses the ability to further reinforce the USP42-PPARγ interplay, which enlightens to construct of an extracellular vesicle-based targeting strategy to activate the liver USP42-PPARγ axis and promote liver regeneration. In summary, the work uncovers the importance of USP42-PPARγ axis-mediated liver tissue homeostasis and provides a promising regimen to target this protein-protein interplay for liver regeneration.
Collapse
Affiliation(s)
- Nanfei Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Pharmaceutical Biotechnology and Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qiang Tian
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhenli Lei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuxin Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Cheng
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xianqin Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuqun Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenjing Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Minyan Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longwei Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meiyun Wen
- Department of Pharmacology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianlou Niu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weijian Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Pingping Shen
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Pharmaceutical Biotechnology and Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhifeng Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
4
|
Kounatidis D, Vallianou NG, Rebelos E, Kouveletsou M, Kontrafouri P, Eleftheriadou I, Diakoumopoulou E, Karampela I, Tentolouris N, Dalamaga M. The Many Facets of PPAR-γ Agonism in Obesity and Associated Comorbidities: Benefits, Risks, Challenges, and Future Directions. Curr Obes Rep 2025; 14:19. [PMID: 39934485 DOI: 10.1007/s13679-025-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE OF REVIEW Obesity is strongly associated with cardiometabolic disorders and certain malignancies, emphasizing the key role of adipose tissue in human health. While incretin mimetics have shown effectiveness in glycemic control and weight loss, a holistic strategy for combating obesity and associated comorbidities remains elusive. This review explores peroxisome proliferator-activated receptor gamma (PPAR-γ) agonism as a potential therapeutic approach, highlighting its benefits, addressing its limitations, and outlining future directions for developing more effective treatment strategies. RECENT FINDINGS Both natural and synthetic PPAR-γ agonists hold significant therapeutic potential as insulin sensitizers, while also demonstrating anti-inflammatory properties and playing a critical role in regulating lipid metabolism. However, the clinical use of natural agonists is limited by poor bioavailability, while synthetic agents like thiazolidinediones are associated with adverse effects, including fluid retention, weight gain, and bone loss. Current research is focused on developing modified, tissue-specific PPAR-γ agonists, as well as dual PPAR-α/PPAR-γ agonists, with improved safety profiles to mitigate these side effects. Nanotechnology-based drug delivery systems also hold promise for enhancing bioavailability and therapeutic efficacy. Furthermore, the transformative potential of machine learning and artificial intelligence offers opportunities to accelerate advancements in this field. PPAR-γ agonists exhibit significant potential in addressing metabolic syndrome, cardiovascular disease, and cancer. However, their clinical use is restricted by safety concerns and suboptimal pharmacokinetics. Innovations in modified PPAR-γ agonists, nanotechnology-based delivery systems, and computational tools hold promise for creating safer and more effective therapeutic options for obesity and its associated disorders.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paraskevi Kontrafouri
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
5
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
6
|
Stefan N, Hartleb M, Popovic B, Varona R. Effect of essential phospholipids on hepatic steatosis in metabolic dysfunction-associated steatotic liver disease associated with type 2 diabetes mellitus and/or hyperlipidemia and/or obesity: study protocol of a randomized, double-blind, phase IV clinical trial. Trials 2024; 25:374. [PMID: 38858768 PMCID: PMC11165850 DOI: 10.1186/s13063-024-08208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a predominant chronic liver condition globally and is strongly associated with obesity, diabetes mellitus, and dyslipidemia. Essential phospholipids (EPL) are recommended as supportive treatment for managing liver conditions, including MASLD or metabolic dysfunction-associated steatohepatitis, cirrhosis, and viral hepatitis. While efficacy of EPL as an adjunctive therapy in MASLD treatment has been established earlier, certain aspects of its usage such as the impact of standard-of-care parameters, effect of EPL on quality of life (QoL) and change in symptoms evaluation in patients with MASLD remain unexplored. The proposed trial aims to assess the efficacy and safety of EPL and the subsequent QoL of patients with MASLD associated with type 2 diabetes mellitus (T2DM) and/or hyperlipidemia and/or obesity. METHODS This is a multicenter, multinational, double-blind, randomized, two-arm, placebo-controlled, parallel-group, phase IV clinical trial. The trial is being conducted in approximately 190 patients who are randomized on a 1:1 basis either to the EPL arm (Essentiale® 1800 mg/day orally + standard of care) or placebo arm (placebo + standard of care). The primary outcome is to assess the efficacy of EPL on hepatic steatosis, as measured by transient elastography, from baseline to 6 months. The secondary outcomes include change in QoL parameters, as measured by the Chronic Liver Disease Questionnaire-metabolic dysfunction-associated steatotic liver disease/ metabolic dysfunction-associated steatohepatitis and change in symptom evaluation (using the Global Overall Symptom scale) from baseline to 6 months for symptoms, including asthenia, feeling depressed, abdominal pain/discomfort, or fatigue. DISCUSSION The current protocol design will allow to comprehensively explore the efficacy of EPL added to the standard of care on hepatic steatosis and QoL and its safety in patients with MASLD associated with T2DM and/or hyperlipidemia and/or obesity by assessing various outcome measures. TRIAL REGISTRATION European Union Clinical Trials Register, EudraCT, 2021-006069-39. Registered on March 13, 2022.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.
| | - Marek Hartleb
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
7
|
Zuo Q, Park NH, Lee JK, Santaliz-Casiano A, Madak-Erdogan Z. Navigating nonalcoholic fatty liver disease (NAFLD): Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids 2024; 203:109330. [PMID: 37923152 DOI: 10.1016/j.steroids.2023.109330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The pursuit of studying this subject is driven by the urgency to address the increasing global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) and its profound health implications. NAFLD represents a significant public health concern due to its association with metabolic disorders, cardiovascular complications, and the potential progression to more severe conditions like non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Liver estrogen signaling is important for maintaining liver function, and loss of estrogens increases the likelihood of NAFLD in postmenopausal women. Understanding the multifaceted mechanisms underlying NAFLD pathogenesis, its varied treatment strategies, and their effectiveness is crucial for devising comprehensive and targeted interventions. By unraveling the intricate interplay between genetics, lifestyle, hormonal regulation, and gut microbiota, we can unlock insights into risk stratification, early detection, and personalized therapeutic approaches. Furthermore, investigating the emerging pharmaceutical interventions and dietary modifications offers the potential to revolutionize disease management. This review reinforces the role of collaboration in refining NAFLD comprehension, unveiling novel therapeutic pathways, and ultimately improving patient outcomes for this intricate hepatic condition.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
8
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
M B, S S, R R. Lobeglitazone and Its Therapeutic Benefits: A Review. Cureus 2023; 15:e50085. [PMID: 38186506 PMCID: PMC10770577 DOI: 10.7759/cureus.50085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Lobeglitazone is a newer oral hypoglycemic agent that has been tested in type 2 diabetes mellitus (T2DM). We aim to conduct a narrative review to find out the therapeutic benefits of lobeglitazone in patients with T2DM. We scientifically searched the electronic database of PubMed from inception until September 12, 2023, using Medical Subject Heading (MeSH) keywords. Additionally, we searched for pre-clinical trials related to lobeglitazone. We retrieved all available results of phase 1 to phase 3 studies of lobeglitazone in T2DM. Subsequently, we reviewed the results narratively. Three double-blind, randomized, placebo-controlled studies and a phase 3 trial of lobeglitazone showed that 0.5 mg daily dose exhibits effective therapeutic activity in glycemic, lipid, and hepatic control, and is also used as a secondary treatment in non-alcoholic fatty liver disease. Lobeglitazone exhibits as much antidiabetic activity as other thiazolidinediones such as pioglitazone and rosiglitazone. Side effects of lobeglitazone included peripheral edema, weight gain, and bone mineral density, which did not require hospitalization for these effects. This article highlights the pharmacological, pre-clinical, clinical, and safety pharmacology of novel thiazolidinedione lobeglitazone.
Collapse
Affiliation(s)
- Balamurugan M
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Sarumathy S
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Robinson R
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
10
|
Deng M, Wen Y, Yan J, Fan Y, Wang Z, Zhang R, Ren L, Ba Y, Wang H, Lu Q, Fan H. Comparative effectiveness of multiple different treatment regimens for nonalcoholic fatty liver disease with type 2 diabetes mellitus: a systematic review and Bayesian network meta-analysis of randomised controlled trials. BMC Med 2023; 21:447. [PMID: 37974258 PMCID: PMC10655371 DOI: 10.1186/s12916-023-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are closely related and mutually contribute to the disease's development. There are many treatment options available to patients. We provide a comprehensive overview of the evidence on the treatment effects of several potential interventions for NAFLD with T2DM. METHODS This systematic review and network meta-analysis included searches of PubMed, Embase, Cochrane Library, and Web of Science from inception to June 30, 2023, for randomised controlled trials of treatment of NAFLD with T2DM. We performed Bayesian network meta-analyses to summarise effect estimates of comparisons between interventions. We applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) frameworks to rate all comparative outcomes' certainty in effect estimates, categorise interventions, and present the findings. This study was registered with PROSPERO, CRD42022342373. RESULTS Four thousand three hundred and sixty-nine records were retrieved from the database and other methods, of which 24 records were eligible for studies enrolling 1589 participants. Eight clinical indicators and 14 interventions were finally in focus. Referring to the lower surface under the cumulative ranking curves (SUCRA) and the league matrix table, exenatide and liraglutide, which are also glucagon-like peptide-1 receptor agonists (GLP-1RAs), showed excellent potential to reduce liver fat content, control glycemia, reduce body weight, and improve liver function and insulin resistance. Exenatide was more effective in reducing glycated haemoglobin (HbA1c) (mean difference (MD) 0.32, 95%CI 0.12 to 0.52), lowering BMI (MD 0.81, 95%CI 0.18 to 1.45), and lowering alanine transaminase (ALT) (MD 10.96, 95%CI 5.27 to 16.66) compared to liraglutide. However, this evidence was assessed as low certainty. Omega-3 was the only intervention that did not have a tendency to lower HbA1c, with standard-treatment (STA-TRE) as reference (MD - 0.17, 95%CI - 0.42 to 0.07). Glimepiride is the only intervention that causes an increase in ALT levels, with standard-treatment (STA-TRE) as reference (MD - 11.72, 95%CI - 17.82 to - 5.57). Based on the available evidence, the treatment effects of pioglitazone, dapagliflozin, and liraglutide have a high degree of confidence. CONCLUSIONS The high confidence mandates the confident application of these findings as guides for clinical practice. Dapagliflozin and pioglitazone are used for glycaemic control in patients with NAFLD combined with T2DM, and liraglutide is used for weight loss therapy in patients with abdominal obesity. The available evidence does not demonstrate the credibility of the effectiveness of other interventions in reducing liver fat content, visceral fat area, ALT, and insulin resistance. Future studies should focus on the clinical application of GLP-1Ras and the long-term prognosis of patients.
Collapse
Affiliation(s)
- Manjun Deng
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yonghao Wen
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - JingXin Yan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Department of Interventional Therapy, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Yichen Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Ruixia Zhang
- Department of Endocrinology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yinggui Ba
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Qian Lu
- Department of Hepatopancreatobiliary Surgery, Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China.
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China.
| |
Collapse
|
11
|
Bołdys A, Bułdak Ł, Maligłówka M, Surma S, Okopień B. Potential Therapeutic Strategies in the Treatment of Metabolic-Associated Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1789. [PMID: 37893507 PMCID: PMC10608225 DOI: 10.3390/medicina59101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Metabolic-associated Fatty Liver Disease is one of the outstanding challenges in gastroenterology. The increasing incidence of the disease is undoubtedly connected with the ongoing obesity pandemic. The lack of specific symptoms in the early phases and the grave complications of the disease require an active approach to prompt diagnosis and treatment. Therapeutic lifestyle changes should be introduced in a great majority of patients; but, in many cases, the adherence is not satisfactory. There is a great need for an effective pharmacological therapy for Metabolic-Associated Fatty Liver Disease, especially before the onset of steatohepatitis. Currently, there are no specific recommendations on the selection of drugs to treat liver steatosis and prevent patients from progression toward more advanced stages (steatohepatitis, cirrhosis, and cancer). Therefore, in this Review, we provide data on the clinical efficacy of therapeutic interventions that might improve the course of Metabolic-Associated Fatty Liver Disease. These include the drugs used in the treatment of obesity and hyperlipidemias, as well as affecting the gut microbiota and endocrine system, and other experimental approaches, including functional foods. Finally, we provide advice on the selection of drugs for patients with concomitant Metabolic-Associated Fatty Liver Disease.
Collapse
Affiliation(s)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
12
|
Choi JH, Lee KA, Moon JH, Chon S, Kim DJ, Kim HJ, Kim NH, Seo JA, Kim MK, Lim JH, Song Y, Yang YS, Kim JH, Lee YB, Noh J, Hur KY, Park JS, Rhee SY, Kim HJ, Kim HM, Ko JH, Kim NH, Kim CH, Ahn J, Oh TJ, Kim SK, Kim J, Han E, Jin SM, Choi WS, Moon MK. 2023 Clinical Practice Guidelines for Diabetes Mellitus of the Korean Diabetes Association. Diabetes Metab J 2023; 47:575-594. [PMID: 37793979 PMCID: PMC10555541 DOI: 10.4093/dmj.2023.0282] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
In May 2023, the Committee of Clinical Practice Guidelines of the Korean Diabetes Association published the revised clinical practice guidelines for Korean adults with diabetes and prediabetes. We incorporated the latest clinical research findings through a comprehensive systematic literature review and applied them in a manner suitable for the Korean population. These guidelines are designed for all healthcare providers nationwide, including physicians, diabetes experts, and certified diabetes educators who manage patients with diabetes or individuals at risk of developing diabetes. Based on recent changes in international guidelines and the results of a Korean epidemiological study, the recommended age for diabetes screening has been lowered. In collaboration with the relevant Korean medical societies, recently revised guidelines for managing hypertension and dyslipidemia in patients with diabetes have been incorporated into this guideline. An abridgment containing practical information on patient education and systematic management in the clinic was published separately.
Collapse
Affiliation(s)
- Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Joon Ho Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Hyun Lim
- Department of Food Service and Nutrition Care, Seoul National University Hospital, Seoul, Korea
| | - YoonJu Song
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, Korea
| | - Ye Seul Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junghyun Noh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Suk Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Hae Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chong Hwa Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo-Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jaehyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eugene Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Committee of Clinical Practice Guidelines
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
- Department of Endocrinology and Metabolism, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Food Service and Nutrition Care, Seoul National University Hospital, Seoul, Korea
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Korean Diabetes Association
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
- Department of Endocrinology and Metabolism, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Food Service and Nutrition Care, Seoul National University Hospital, Seoul, Korea
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Kamata S, Honda A, Ishii I. Current Clinical Trial Status and Future Prospects of PPAR-Targeted Drugs for Treating Nonalcoholic Fatty Liver Disease. Biomolecules 2023; 13:1264. [PMID: 37627329 PMCID: PMC10452531 DOI: 10.3390/biom13081264] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The number of patients with nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) is increasing globally and is raising serious concerns regarding the increasing medical and economic burden incurred for their treatment. The progression of NASH to more severe conditions such as cirrhosis and hepatocellular carcinoma requires liver transplantation to avoid death. Therefore, therapeutic intervention is required in the NASH stage, although no therapeutic drugs are currently available for this. Several anti-NASH candidate drugs have been developed that enable treatment via the modulation of distinct signaling cascades and include a series of drugs targeting peroxisome proliferator-activated receptor (PPAR) subtypes (PPARα/δ/γ) that are considered to be attractive because they can regulate both systemic lipid metabolism and inflammation. Multiple PPAR dual/pan agonists have been developed but only a few of them have been evaluated in clinical trials for NAFLD/NASH. Herein, we review the current clinical trial status and future prospects of PPAR-targeted drugs for treating NAFLD/NASH. In addition, we summarize our recent findings on the binding modes and the potencies/efficacies of several candidate PPAR dual/pan agonists to estimate their therapeutic potentials against NASH. Considering that the development of numerous PPAR dual/pan agonists has been abandoned because of their serious side effects, we also propose a repositioning of the already approved, safety-proven PPAR-targeted drugs against NAFLD/NASH.
Collapse
Affiliation(s)
| | | | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan; (S.K.); (A.H.)
| |
Collapse
|
14
|
Niranjan S, Phillips BE, Giannoukakis N. Uncoupling hepatic insulin resistance - hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1193373. [PMID: 37396181 PMCID: PMC10313404 DOI: 10.3389/fendo.2023.1193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.
Collapse
Affiliation(s)
- Sitara Niranjan
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Abu Hassan MR, Hj Md Said R, Zainuddin Z, Omar H, Md Ali SM, Aris SA, Chan HK. Effects of one-year supplementation with Phyllanthus niruri on fibrosis score and metabolic markers in patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. Heliyon 2023; 9:e16652. [PMID: 37313177 PMCID: PMC10258366 DOI: 10.1016/j.heliyon.2023.e16652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Background and purpose and purpose: Non-alcoholic fatty liver disease (NAFLD) is a significant global health concern with limited pharmacotherapy options. This study aimed to evaluate the effectiveness of a standardized extract of Phyllanthus niruri in mild-to-moderate NAFLD. Materials and methods This was a 12-month randomized controlled trial, in which adults with a controlled attenuation parameter (CAP) score >250 dB/m and a fibrosis score <10 kPa were randomly assigned to receive a standardized P. niruri extract at a dose of 3,000 mg daily (n = 112) or a placebo (n = 114). The primary outcomes were changes in CAP score and liver enzyme levels, while the secondary outcomes were changes in other metabolic parameters. The analysis was performed on an intention-to-treat basis. Results After 12 months, there was no significant difference in the change of CAP score between the intervention and control groups (-15.05 ± 36.76 dB/m vs. -14.74 ± 41.08 dB/m; p = 0.869). There was also no significant difference in the changes of liver enzyme levels between the two groups. However, the intervention group showed a significant reduction in fibrosis score, which was not observed in the control group (-0.64 ± 1.66 kPa versus 0.10 ± 1.61 kPa; p = 0.001). No major adverse events were reported in either group. Conclusion This study showed that P. niruri did not significantly reduce CAP score and liver enzyme levels in patients with mild-to-moderate NAFLD. However, a significant improvement in fibrosis score was observed. Further research is needed to determine its clinical benefits at different dosages for NAFLD treatment.
Collapse
Affiliation(s)
- Muhammad Radzi Abu Hassan
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Rosaida Hj Md Said
- Medical Department, Hospital Ampang, Jalan Mewah Utara, Taman Pandan Mewah, 68000, Ampang Jaya, Selangor, Malaysia
| | - Zalwani Zainuddin
- Medical Department, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Haniza Omar
- Medical Department, Hospital Selayang, Jalan Lingkaran Tengah 2, 68100 Batu Caves, Selangor, Malaysia
| | - Siti Maisarah Md Ali
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Siti Aishah Aris
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Huan-Keat Chan
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| |
Collapse
|
16
|
Yoo J, Jeon J, Baik M, Kim J. Lobeglitazone, a novel thiazolidinedione, for secondary prevention in patients with ischemic stroke: a nationwide nested case-control study. Cardiovasc Diabetol 2023; 22:106. [PMID: 37147722 PMCID: PMC10163714 DOI: 10.1186/s12933-023-01841-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
INTRODUCTION Ischemic stroke patients with diabetes are at high risk for recurrent stroke and cardiovascular complications. Pioglitazone, a type of thiazolidinedione, has been shown to reduce cardiovascular complications in patients with ischemic stroke and type 2 diabetes (T2D) or insulin resistance. Lobeglitazone is a novel thiazolidinedione agent that improves insulin resistance and has similar glycemic efficacy to pioglitazone. Using population-based health claims data, we evaluated whether lobeglitazone has secondary cardiovascular preventive effects in patients with ischemic stroke and T2D. METHODS This study has a nested case-control design. From nationwide health claims data in Korea, we identified patients with T2D admitted for acute ischemic stroke in 2014-2018. Cases were defined who suffered the primary outcome (a composite of recurrent stroke, myocardial infarction, and all-cause death) before December 2020. Three controls were selected by incidence density sampling for each case from those who were at risk at the time of their case occurrence with exact matching on sex, age, the presence of comorbidities, and medications. As a safety outcome, we also evaluated the risk of heart failure (HF) according to the use of lobeglitazone. RESULTS From the cohort of 70,897 T2D patients with acute ischemic stroke, 20,869 cases and 62,607 controls were selected. In the multivariable conditional logistic regression, treatment with lobeglitazone (adjusted OR 0.74; 95% CI 0.61-0.90; p = 0.002) and pioglitazone (adjusted OR 0.71; 95% CI 0.64-0.78; p < 0.001) were significantly associated with a lower risk for the primary outcome. In a safety outcome analysis for HF, treatment with lobeglitazone did not increase the risk of HF (adjusted OR 0.90; 95% CI 0.66-1.22; p = 0.492). CONCLUSIONS In T2D patients with ischemic stroke, lobeglitazone reduced the risk of cardiovascular complications similar to that of pioglitazone without an increased risk of HF. There is a need for further studies on the cardioprotective role of lobeglitazone, a novel thiazolidinedione.
Collapse
Affiliation(s)
- Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Jimin Jeon
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Minyoul Baik
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
17
|
Gangopadhyay KK, Singh AK. Will lobeglitazone rival pioglitazone? A systematic review and critical appraisal. Diabetes Metab Syndr 2023; 17:102747. [PMID: 36966544 DOI: 10.1016/j.dsx.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
BACKGROUND AND AIMS Lobeglitazone (LGZ), a newly researched thiazolidinedione (TZD) thought to have lesser side effects compared with pioglitazone (PGZ), has been recently approved for the treatment of type 2 diabetes (T2D) in India. We aim to conduct an updated systematic review of LGZ to critically appraise its efficacy and safety in the context of PGZ. METHODS A systematic literature search was carried out in the electronic database of PubMed until Jan 15, 2023, using specific keywords and MeSH terms. All studies which evaluated LGZ in people with T2D were retrieved and data were synthesized with regard to its efficacy and safety. A comparative critical appraisal was additionally made in the context of PGZ in T2D. RESULTS Four randomized controlled, one prospective observational, and two real-world studies have evaluated the safety and efficacy of LGZ against placebo or active comparators either as monotherapy or in combination therapy. HbA1c reduction with LGZ 0.5 mg was superior to the placebo but similar to PGZ 15 mg and sitagliptin (SITA) 100 mg. Weight gain with LGZ was significantly higher compared to placebo and SITA but similar to PGZ. Edema was more frequently observed with LGZ compared to placebo, PGZ, and SITA. CONCLUSION No substantial evidence is yet available that suggests LGZ could be a better alternative to PGZ both in the context of glycemic or extra-glycemic effects. At least in the short-term, adverse events of LGZ are indifferent from PGZ. More data is additionally needed to claim any advantage of LGZ over PGZ.
Collapse
|
18
|
Dutta D, Bhattacharya S, Kumar M, Datta PK, Mohindra R, Sharma M. Efficacy and safety of novel thiazolidinedione lobeglitazone for managing type-2 diabetes a meta-analysis. Diabetes Metab Syndr 2023; 17:102697. [PMID: 36580702 DOI: 10.1016/j.dsx.2022.102697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS No meta-analysis has analysed the safety and efficacy of lobeglitazone in type-2 diabetes (T2DM). We undertook this meta-analysis to address this knowledge-gap. METHODS Electronic databases were searched for RCTs involving type-2 diabetes patients receiving lobeglitazone in intervention arm, and placebo/active comparator in control arm. Primary outcome was to evaluate changes in HbA1c. Secondary outcomes were to evaluate alterations in glucose, lipids and adverse events. RESULTS From initially screened 65 articles, data from 4 RCTs (828 patients) which fulfilled all criteria was analysed. Over 24 weeks, when compared to sitagliptin 100 mg/d and half maximal pioglitazone dose (15 mg/d), lobeglitazone 0.5 mg/day had comparable impact on HbA1c [MD 0.03% (95%CI: 0.11-0.17); P = 0.65; I2 = 0%], fasting glucose [MD 1.47 mg/dl (95%CI: 4.66-7.60); P = 0.64; I2 = 0%], triglycerides [MD-9.96 mg/dl (95%CI: 43.55-23.62); P = 0.56; I2 = 81%], LDL-cholesterol [MD0.74 mg/dl (95%CI: 4.60-6.09); P = 0.79; I2 = 0%] and HDL-cholesterol [MD1.55 mg/dl (95%CI: 3.72-6.82); P = 0.56]. Occurrence of treatment-emergent adverse events (AEs) [RR 1.07 (95% CI:0.78-1.47); P = 0.67; I2 = 0%] and severe AEs [RR 1.05(95%CI: 0.42-2.65); P = 0.91; I2 = 0%] were similar. Edema and weight gain were significantly higher with lobeglitazone compared to controls [RR 2.58 (95%CI: 1.08-6.17); P = 0.03; I2 = 0%]. Lobeglitazone 0.5 mg/d compared to half-maximal pioglitazone (15 mg/d), had similar edema and weight gain [RR 1.65 95% CI: 0.78-1.47)]. BMD percent changes at neck of femur was comparable in both groups [MD 0.07% (95%CI: 0.19-0.33); P = 0.60; I2 = 91%]. Low dose lobeglitazone (0.25 mg/d) was inferior to high dose lobeglitazone (0.5 mg/d) with regards to glycaemic efficacy with advantage of lower weight gain and edema. CONCLUSION The current evidence makes lobeglitazone unlikely to replace pioglitazone as the preferred thiazolidinedione in T2DM.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology, CEDAR Superspeciality Healthcare, Dwarka, New Delhi, India.
| | | | - Manoj Kumar
- Department of Endocrinology, CEDAR Superspeciality Healthcare, Zirakpur, Punjab, India.
| | - Priyankar K Datta
- Department of Anaesthesiology, Critical Care and Pain Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Ritin Mohindra
- Department of Medicine, Post-graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Meha Sharma
- Department of Rheumatology, CEDAR Superspeciality Healthcare, Dwarka, New Delhi, India.
| |
Collapse
|
19
|
Xie Y, Zhou Q, He Q, Wang X, Wang J. Opportunities and challenges of incretin-based hypoglycemic agents treating type 2 diabetes mellitus from the perspective of physiological disposition. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Cazac GD, Lăcătușu CM, Mihai C, Grigorescu ED, Onofriescu A, Mihai BM. Ultrasound-Based Hepatic Elastography in Non-Alcoholic Fatty Liver Disease: Focus on Patients with Type 2 Diabetes. Biomedicines 2022; 10:biomedicines10102375. [PMID: 36289643 PMCID: PMC9598125 DOI: 10.3390/biomedicines10102375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and is the hepatic expression of metabolic syndrome. The development of non-invasive methods for the diagnosis of hepatic steatosis and advanced fibrosis in high-risk patients, especially those with type 2 diabetes mellitus, is highly needed to replace the invasive method of liver biopsy. Elastographic methods can bring significant added value to screening and diagnostic procedures for NAFLD in patients with diabetes, thus contributing to improved NAFLD management. Pharmacological development and forthcoming therapeutic measures that address NAFLD should also be based on new, non-invasive, and reliable tools that assess NAFLD in at-risk patients and be able to properly guide treatment in individuals with both diabetes and NAFLD. This is the first review aiming to outline and discuss recent studies on ultrasound-based hepatic elastography, focusing on NAFLD assessment in patients with diabetes.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac
- Unit of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (C.-M.L.); (E.-D.G.); Tel.: +40-72-321-1116 (C.-M.L.); +40-74-209-3749 (E.-D.G.)
| | - Cătălina Mihai
- Unit of Medical Semiology and Gastroenterology, Faculty of Medicine,, “Grigore T. Popa”, University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Emergency Hospital, 700111 Iași, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (C.-M.L.); (E.-D.G.); Tel.: +40-72-321-1116 (C.-M.L.); +40-74-209-3749 (E.-D.G.)
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
21
|
Liu TT, Qiu H, Liu SY, Chien C, Wang JH, Wong MW, Yi CH, Lin L, Lei WY, Liang SW, Hung JS, Huang JF, Chen CL, Han MAT. Modifications decrease hepatic steatosis in Taiwanese with metabolic-associated fatty liver disease. Kaohsiung J Med Sci 2022; 38:1012-1019. [PMID: 35993503 DOI: 10.1002/kjm2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a growing global problem associated with increasing obesity prevalence. Lifestyle modifications are currently recommended, including weight reduction, exercise, and diet control. This study evaluated the short-term effect of lifestyle modifications on transient elastography (TE) values in an obese population with MAFLD. Thirty-two MAFLD patients were recruited for this prospective study and all subjects participated in a 3-month program of lifestyle modification. Sequential demographic parameters and biochemical tests were compared before and after program completion. Liver fat and fibrosis changes were measured using TE with controlled attenuated parameter (CAP) and liver stiffness measurements (LSM). The mean age was 38.7 years old (10 males). The body weight (88.09 kg vs. 80.35 kg), body mass index (32.24 kg/m2 vs. 29.4 kg/m2 ), waist (103.19 cm vs. 95.75 cm), and hip circumference (111.67 cm vs. 104.75 cm), and blood pressure (128/78 mmHg vs. 119/71 mmHg) significantly improved before and after the intervention, respectively. Aspartate aminotransaminase (24.06 U/L vs. 18.91 U/L), alanine aminotransaminase (33 U/L vs. 23.72 U/L), creatinine (0.75 mg/dl vs. 0.70 mg/dl), cholesterol (176.41 mg/dl vs. 166.22 m/dl), gamma-glutamyl transferase (26.59 IU/L vs. 19.81 IU/L), and low-density lipoprotein cholesterol (115.63 mg/dl vs. 103.19 mg/dl) also improved after the 3-month intervention. The average CAP significantly decreased after intervention (297.5 dB/m vs. 255.0 dB/m), however, no significant difference in LSM was observed (5.24 kPa vs. 4.82 kPa). The current study suggests that short-term lifestyle modification can effectively improve hepatic steatosis, and TE may serve as a monitoring tool for therapeutic intervention.
Collapse
Affiliation(s)
- Tso-Tsai Liu
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - He Qiu
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shi-Yu Liu
- Department of Nutrition, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chieh Chien
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ming-Wun Wong
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Hsun Yi
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Lin Lin
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Shu-Wei Liang
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jui-Sheng Hung
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Lin Chen
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ma Ai Thanda Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Banner University Medical Center, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Rhee EJ. Extra-Glycemic Effects of Anti-Diabetic Medications: Two Birds with One Stone? Endocrinol Metab (Seoul) 2022; 37:415-429. [PMID: 35798548 PMCID: PMC9262696 DOI: 10.3803/enm.2022.304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
The world is suffering from a rapid increase in the number of people with diabetes due to the increased prevalence of obesity and lengthened life span. Since the development of insulin thanks to the efforts of Prof. Banting and Dr. Best in 1922, for which they won the Nobel Prize, remarkable developments in anti-diabetic medications have dramatically lengthened the lifespan of patients with diabetes. However, the control rate of hyperglycemia in patients with diabetes remains unsatisfactory, since glycemic control requires both medication and lifestyle modifications to slow the deterioration of pancreatic beta-cell function and prevent diabetic complications. From the initial "triumvirate" to the "ominous octet," and now the "egregious eleven," the number of organs recognized as being involved in hyperglycemia and diabetes has increased with the development of anti-diabetic medications. Recent unexpected results from outcome trials of anti-diabetic medications have enabled anti-diabetic medications to be indicated for the prevention of chronic kidney disease and heart failure, even in patients without diabetes. In this review, I would like to summarize the extra-glycemic effects of anti-diabetic medications.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). BIOLOGY 2022; 11:biology11050792. [PMID: 35625520 PMCID: PMC9138523 DOI: 10.3390/biology11050792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In the context of liver disease, one of the more growing public health problems is the transition from simple steatosis to non-alcoholic steatohepatitis. Profound metabolic dysregulations linked to inflammation and hepatic injury are features of non-alcoholic steatohepatitis. Since the peroxisomal-proliferator-activated receptor alpha has long been considered one of the key transcriptional factors in hepatic metabolism, its role in the pathogenesis of non-alcoholic steatohepatitis is discussed in this review. Abstract The strong relationship between metabolic alterations and non-alcoholic steatohepatitis (NASH) suggests a pathogenic interplay. However, many aspects have not yet been fully clarified. Nowadays, NASH is becoming the main cause of liver-associated morbidity and mortality. Therefore, an effort to understand the mechanisms underlying the pathogenesis of NASH is critical. Among the nuclear receptor transcription factors, peroxisome-proliferator-activated receptor alpha (PPARα) is highly expressed in the liver, where it works as a pivotal transcriptional regulator of the intermediary metabolism. In this context, PPARα’s function in regulating the lipid metabolism is essential for proper liver functioning. Here, we review metabolic liver genes under the control of PPARα and discuss how this aspect can impact the inflammatory condition and pathogenesis of NASH.
Collapse
|
24
|
Lange NF, Graf V, Caussy C, Dufour JF. PPAR-Targeted Therapies in the Treatment of Non-Alcoholic Fatty Liver Disease in Diabetic Patients. Int J Mol Sci 2022; 23:ijms23084305. [PMID: 35457120 PMCID: PMC9028563 DOI: 10.3390/ijms23084305] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors of the nuclear hormone receptor superfamily, have been identified as key metabolic regulators in the liver, skeletal muscle, and adipose tissue, among others. As a leading cause of liver disease worldwide, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) cause a significant burden worldwide and therapeutic strategies are needed. This review provides an overview of the evidence on PPAR-targeted treatment of NAFLD and NASH in individuals with type 2 diabetes mellitus. We considered current evidence from clinical trials and observational studies as well as the impact of treatment on comorbid metabolic conditions such as obesity, dyslipidemia, and cardiovascular disease. Future areas of research, such as possible sexually dimorphic effects of PPAR-targeted therapies, are briefly reviewed.
Collapse
Affiliation(s)
- Naomi F. Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| | - Vanessa Graf
- Department of Diabetes, Endocrinology, Clinical Nutrition, and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Cyrielle Caussy
- Univ Lyon, CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69495 Pierre-Bénite, France;
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Jean-François Dufour
- Centre des Maladies Digestives, 1003 Lausanne, Switzerland
- Swiss NASH Foundation, 3011 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| |
Collapse
|
25
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
26
|
El-Kady RR, Ali AK, El Wakeel LM, Sabri NA, Shawki MA. Nicotinamide supplementation in diabetic nonalcoholic fatty liver disease patients: randomized controlled trial. Ther Adv Chronic Dis 2022; 13:20406223221077958. [PMID: 35222903 PMCID: PMC8874180 DOI: 10.1177/20406223221077958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Nicotinamide has been reported to protect against liver steatosis and metabolic imbalances in nonalcoholic fatty liver disease (NAFLD) in animal models. Objectives: The objective was to investigate the efficacy and safety of nicotinamide supplementation in diabetic NAFLD patients. Design: This is a prospective randomized controlled open label study. Methods: Seventy diabetic NAFLD patients were randomly assigned either to the nicotinamide group (n = 35) who received nicotinamide 1000 mg once daily for 12 weeks in addition to their antidiabetic therapy or the control group (n = 35) who received their antidiabetic therapy only. The primary outcome was improvement in steatosis score, while secondary outcomes included assessment of liver stiffness, liver enzymes, lipid profile, insulin resistance, serum malondialdehyde, serum adiponectin, and patients’ quality of life (QOL). Results: Only 61 patients completed the study; 31 in the nicotinamide group and 30 in the control group. Comparisons between groups and within groups revealed nonsignificant changes in steatosis and fibrosis scores. However, significant reduction was observed in liver enzymes with a median decrease in alanine transaminase of 26.6% versus 0.74% in nicotinamide and control groups, respectively. After 12 weeks of treatment, the nicotinamide group showed significantly lower levels of low-density lipoprotein cholesterol (p value = 0.004), total cholesterol (p value = 0.006), and insulin resistance marker (p value = 0.005) compared with control. Serum triglycerides, malondialdehyde, and adiponectin levels were all comparable between the two groups. Regarding QOL, a significant improvement was detected in the total scores and the activity and fatigue domains scores. Conclusion: Nicotinamide at a dose of 1000 mg daily was tolerable, improved metabolic abnormalities and QOL of diabetic NAFLD patients with no effect on liver fibrosis or steatosis. Trial Registration: The study was registered at clinicaltrials.gov and given the ID number: ‘NCT03850886’. https://clinicaltrials.gov/ct2/show/NCT03850886.
Collapse
Affiliation(s)
- Rasha R. El-Kady
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani K. Ali
- Department of Internal Medicine, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Lamia M. El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - May A. Shawki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
27
|
Prikhodko VA, Bezborodkina NN, Okovityi SV. Pharmacotherapy for Non-Alcoholic Fatty Liver Disease: Emerging Targets and Drug Candidates. Biomedicines 2022; 10:274. [PMID: 35203484 PMCID: PMC8869100 DOI: 10.3390/biomedicines10020274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by high global incidence and prevalence, a tight association with common metabolic comorbidities, and a substantial risk of progression and associated mortality. Despite the increasingly high medical and socioeconomic burden of NAFLD, the lack of approved pharmacotherapy regimens remains an unsolved issue. In this paper, we aimed to provide an update on the rapidly changing therapeutic landscape and highlight the major novel approaches to the treatment of this disease. In addition to describing the biomolecules and pathways identified as upcoming pharmacological targets for NAFLD, we reviewed the current status of drug discovery and development pipeline with a special focus on recent evidence from clinical trials.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
| | - Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya emb., 199034 St. Petersburg, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
28
|
Mastrototaro L, Roden M. Insulin resistance and insulin sensitizing agents. Metabolism 2021; 125:154892. [PMID: 34563556 DOI: 10.1016/j.metabol.2021.154892] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of obesity and type 2 diabetes, but novel approaches of diabetes subtyping (clustering) revealed variable degrees of insulin resistance in people with diabetes. Specifically, the severe insulin resistant diabetes (SIRD) subtype not only exhibits metabolic abnormalities, but also bears a higher risk for cardiovascular, renal and hepatic comorbidities. In humans, insulin resistance comprises dysfunctional adipose tissue, lipotoxic insulin signaling followed by glucotoxicity, oxidative stress and low-grade inflammation. Recent studies show that aside from metabolites (free fatty acids, amino acids) and signaling proteins (myokines, adipokines, hepatokines) also exosomes with their cargo (proteins, mRNA and microRNA) contribute to altered crosstalk between skeletal muscle, liver and adipose tissue during the development of insulin resistance. Reduction of fat mass mainly, but not exclusively, explains the success of lifestyle modification and bariatric surgery to improve insulin sensitivity. Moreover, some older antihyperglycemic drugs (metformin, thiazolidinediones), but also novel therapeutic concepts (new peroxisome proliferator-activated receptor agonists, incretin mimetics, sodium glucose cotransporter inhibitors, modulators of energy metabolism) can directly or indirectly reduce insulin resistance. This review summarizes molecular mechanisms underlying insulin resistance including the roles of exosomes and microRNAs, as well as strategies for the management of insulin resistance in humans.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
29
|
Phrueksotsai S, Pinyopornpanish K, Euathrongchit J, Leerapun A, Phrommintikul A, Buranapin S, Chattipakorn N, Thongsawat S. The effects of dapagliflozin on hepatic and visceral fat in type 2 diabetes patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2021; 36:2952-2959. [PMID: 34129252 DOI: 10.1111/jgh.15580] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Sodium-glucose cotransporter 2 inhibitors have shown excellent results in glucose control in type 2 diabetes mellitus (T2DM) patients, while also promoting weight loss. These mechanisms may be beneficial in the treatment of non-alcoholic fatty liver disease (NAFLD). Our study aims to investigate the effect of dapagliflozin on hepatic and visceral fat contents and related biochemical markers in T2DM with NAFLD patients. METHODS This is a double-blinded placebo-controlled randomized, single-center study. Non-insulin-dependent T2DM patients with NAFLD were prospectively enrolled and randomly assigned to receive either dapagliflozin (10 mg/day) or placebo for 12 weeks. The primary end-point was the changes in intrahepatic lipid contents, evaluated by the liver attenuation index. RESULTS Of 40 patients enrolled, 38 patients completed the study (dapagliflozin group, n = 18; placebo group, n = 20). Baseline demographic and laboratory findings were similar in both groups. After 12 weeks of treatment, dapagliflozin significantly decreased intrahepatic lipid contents demonstrated by an increase in liver attenuation index in comparison with the placebo treatment (5.8 ± 5.1 vs 0.5 ± 6.1 Hounsfield units, P = 0.006). Significant reduction in bodyweight, bodyfat, visceral fat/subcutaneous fat ratio, hemoglobin A1c, and alanine aminotransferase were also observed in the dapagliflozin-treated group as compared with the placebo group (all P < 0.05). There was no significant difference in adipokines including adiponectin, leptin, and tumor necrosis factor-α changes between the dapagliflozin-treated group and the placebo group (all P = nonsignificant). CONCLUSION Dapagliflozin treatment for 12 weeks is associated with improvement in hepatic fat content, a decrease in visceral fat and bodyweight, enhanced glycemic control, and improved liver biochemistry among T2DM patients with NAFLD.
Collapse
Affiliation(s)
- Susrichit Phrueksotsai
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Juntima Euathrongchit
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apinya Leerapun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arintaya Phrommintikul
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Supawan Buranapin
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
Han E, Kim MK, Jang BK, Kim HS. Albuminuria Is Associated with Steatosis Burden in Patients with Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease. Diabetes Metab J 2021; 45:698-707. [PMID: 33517613 PMCID: PMC8497925 DOI: 10.4093/dmj.2020.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to investigate the association between hepatic steatosis burden and albuminuria in Korean patients with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). METHODS We recruited 100 patients with both T2DM and NAFLD, but without chronic kidney disease. Albuminuria was defined as a spot urinary albumin-to-creatinine ratio (ACR) ≥30 mg/g. Transient elastography was performed, and the steatosis burden was quantified by controlled attenuation parameter (CAP) with significant steatosis defined as CAP >302 dB/m. RESULTS The prevalence of significant steatosis and albuminuria was 56.0% and 21.0%, respectively. Subjects with significant steatosis were significantly younger and had a significantly shorter duration of T2DM, greater waist circumference, and higher body mass index, total cholesterol, triglyceride, and low density lipoprotein cholesterol levels, than subjects without severe NAFLD (all P<0.05). Albuminuria was higher in patients with significant steatosis than in patients without significant steatosis (32.1% vs. 6.8%, P=0.002). Urinary ACR showed a correlation with CAP (r=0.331, P=0.001), and multiple linear regression analysis revealed a significant association between a high degree of albuminuria and high CAP value (r=0.321, P=0.001). Additionally, multivariate logistic regression analysis demonstrated the independent association between urinary ACR and significant steatosis after adjustment for confounding factors including age, body mass index, duration of T2DM, low density lipoprotein level, and renin-angiotensin system blocker use (odds ratio, 1.88; 95% confidence interval, 1.31 to 2.71; P=0.001). CONCLUSION T2DM patients with NAFLD had a higher prevalence of albuminuria, which correlated with their steatosis burden.
Collapse
Affiliation(s)
- Eugene Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Mi Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Byoung Kuk Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Soon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Corresponding author: Hye Soon Kim https://orcid.org/0000-0001-6298-3506 Department of Internal Medicine, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea E-mail:
| |
Collapse
|
31
|
Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab 2021; 50:101122. [PMID: 33220492 PMCID: PMC8324683 DOI: 10.1016/j.molmet.2020.101122] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) comprises hepatic alterations with increased lipid accumulation (steatosis) without or with inflammation (nonalcoholic steatohepatitis, NASH) and/or fibrosis in the absence of other causes of liver disease. NAFLD is developing as a burgeoning health challenge, mainly due to the worldwide obesity and diabetes epidemics. SCOPE OF REVIEW This review summarizes the knowledge on the pathogenesis underlying NAFLD by focusing on studies in humans and on hypercaloric nutrition, including effects of saturated fat and fructose, as well as adipose tissue dysfunction, leading to hepatic lipotoxicity, abnormal mitochondrial function, and oxidative stress, and highlights intestinal dysbiosis. These mechanisms are discussed in the context of current treatments targeting metabolic pathways and the results of related clinical trials. MAJOR CONCLUSIONS Recent studies have provided evidence that certain conditions, for example, the severe insulin-resistant diabetes (SIRD) subgroup (cluster) and the presence of an increasing number of gene variants, seem to predispose for excessive risk of NAFLD and its accelerated progression. Recent clinical trials have been frequently unsuccessful in halting or preventing NAFLD progression, perhaps partly due to including unselected cohorts in later stages of NAFLD. On the basis of this literature review, this study proposed screening in individuals with the highest genetic or acquired risk of disease progression, for example, the SIRD subgroup, and developing treatment concepts targeting the earliest pathophysiolgical alterations, namely, adipocyte dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
32
|
Zhang C, Yang M. Current Options and Future Directions for NAFLD and NASH Treatment. Int J Mol Sci 2021; 22:ijms22147571. [PMID: 34299189 PMCID: PMC8306701 DOI: 10.3390/ijms22147571] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
33
|
Gastaldelli A, Stefan N, Häring HU. Liver-targeting drugs and their effect on blood glucose and hepatic lipids. Diabetologia 2021; 64:1461-1479. [PMID: 33877366 PMCID: PMC8187191 DOI: 10.1007/s00125-021-05442-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
The global epidemic of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) and the high prevalence among individuals with type 2 diabetes has attracted the attention of clinicians specialising in liver disorders. Many drugs are in the pipeline for the treatment of NAFLD/NASH, and several glucose-lowering drugs are now being tested specifically for the treatment of liver disease. Among these are nuclear hormone receptor agonists (e.g. peroxisome proliferator-activated receptor agonists, farnesoid X receptor agonists and liver X receptor agonists), fibroblast growth factor-19 and -21, single, dual or triple incretins, sodium-glucose cotransporter inhibitors, drugs that modulate lipid or other metabolic pathways (e.g. inhibitors of fatty acid synthase, diacylglycerol acyltransferase-1, acetyl-CoA carboxylase and 11β-hydroxysteroid dehydrogenase type-1) or drugs that target the mitochondrial pyruvate carrier. We have reviewed the metabolic effects of these drugs in relation to improvement of diabetic hyperglycaemia and fatty liver disease, as well as peripheral metabolism and insulin resistance.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy.
| | - Norbert Stefan
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
34
|
Abdallah MS, Eldeen AH, Tantawy SS, Mostafa TM. The leukotriene receptor antagonist montelukast in the treatment of non-alcoholic steatohepatitis: A proof-of-concept, randomized, double-blind, placebo-controlled trial. Eur J Pharmacol 2021; 906:174295. [PMID: 34214585 DOI: 10.1016/j.ejphar.2021.174295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with fat accumulation in the liver which can progress into non-alcoholic steatohepatitis (NASH). There is no specific treatment strategy for NASH. In this context, this study aimed at evaluating the efficacy and safety of montelukast in the treatment of patients with NASH. In this randomized double-blind placebo-controlled study, 52 overweight/obese patients with NASH were randomized into group 1 (n = 26) which received montelukast 10 mg tablets once daily and group 2 (n = 26) which received placebo tablets once daily for 12 weeks. The fibro-scan was used to assess liver stiffness as a primary outcome at baseline and 12 weeks post-treatment. Furthermore, patients were assessed for biochemical analysis of liver aminotransferases, metabolic parameters, TNF-α, 8-hydroxy-2'-deoxyguanosine (8-OHdG), liver fibrosis biomarkers including hyaluronic acid (HA) and transforming growth factor beta-1 (TGF-β1). Beck depression inventory questionnaire was used to report depressive symptoms. Data were statistically analyzed by paired and unpaired student's t-test, and Chi-square test. A total number of 44 patients completed the study. The two groups were statistically similar at baseline. After treatment and as compared to baseline data and placebo, montelukast showed a statistically significant improvement in liver stiffness, liver enzymes, metabolic parameters (except LDL-C), TNF-α, 8-OHdG, and liver fibrosis biomarkers (HA and TGF-β1). Furthermore, montelukast was well tolerated and didn't provoke depression. In this proof-of-concept study, treatment with montelukast may represent a promising therapeutic strategy for patients with non-alcoholic steatohepatitis secondary to its efficacy and safety. Clinicaltrial.gov ID: NCT04080947.
Collapse
Affiliation(s)
- Mahmoud Samy Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Menoufia, 32897, Egypt.
| | - Ahmed Hossam Eldeen
- Department of Hepatology, National Liver Institute, Menoufia University, Egypt.
| | - Sally Said Tantawy
- Shebin El-Kom Hospital of Fever, Gastrointestinal and Hepatic Diseases, Menoufia, Egypt.
| | | |
Collapse
|
35
|
Ding TT, Liu YY, Zhang LM, Shi JR, Xu WR, Li SY, Cheng XC. Exploring dual agonists for PPARα/γ receptors using pharmacophore modeling, docking analysis and molecule dynamics simulation. Comb Chem High Throughput Screen 2021; 25:1450-1461. [PMID: 34182904 DOI: 10.2174/1386207324666210628114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor family. The roles of PPARα in fatty acid oxidation and PPARγ in adipocyte differentiation and lipid storage have been widely characterized. Compounds with dual PPARα/γ activity have been proposed, combining the benefits of insulin sensitization and lipid-lowering into one drug, allowing a single drug to reduce hyperglycemia and hyperlipidemia while preventing the development of cardiovascular complications. METHODS The new PPARα/γ agonists were screened through virtual screening of pharmacophores and molecular dynamics simulations. First, in the article, the constructed pharmacophore was used to screen the Ligand Expo Components-pub database to obtain the common structural characteristics of representative PPARα/γ agonist ligands. Then, the obtained ligand structure was modified and replaced to obtain 12 new compounds. Using molecular docking, ADMET and molecular dynamics simulation methods, the designed 12 ligands were screened, their docking scores were analyzed when they bound to the PPARα/γ dual targets, and also their stability and pharmacological properties were assessed when they were bound to the PPARα/γ dual targets. RESULTS We performed pharmacophore-based virtual screening for 22949 molecules in the Ligand Expo Components-pub database. Structural analysis and modification were performed on the compounds that were superior to the original ligand , and a series of compounds with novel structures were designed. Using precise docking, ADMET prediction and molecular dynamics methods, newly designed compounds were screened and verified, and the above compounds showed higher docking scores and lower side effects. CONCLUSION 9 new PPARα/γ agonists were obtained by pharmacophore modeling, docking analysis and molecule dynamics simulation.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ya-Ya Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Li-Ming Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Rui Shi
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Shao-Yong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
36
|
Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Different Disease States: Recent Updates. Curr Med Chem 2021; 28:3193-3215. [PMID: 32674727 DOI: 10.2174/0929867327666200716113136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARβ), and PPAR gamma (PPARγ). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
37
|
Bae J, Park T, Kim H, Lee M, Cha BS. Lobeglitazone: A Novel Thiazolidinedione for the Management of Type 2 Diabetes Mellitus. Diabetes Metab J 2021; 45:326-336. [PMID: 33866775 PMCID: PMC8164939 DOI: 10.4093/dmj.2020.0272] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and β-cell dysfunction. Among available oral antidiabetic agents, only the thiazolidinediones (TZDs) primarily target insulin resistance. TZDs improve insulin sensitivity by activating peroxisome proliferator-activated receptor γ. Rosiglitazone and pioglitazone have been used widely for T2DM treatment due to their potent glycemic efficacy and low risk of hypoglycemia. However, their use has decreased because of side effects and safety issues, such as cardiovascular concerns and bladder cancer. Lobeglitazone (Chong Kun Dang Pharmaceutical Corporation), a novel TZD, was developed to meet the demands for an effective and safe TZD. Lobeglitazone shows similar glycemic efficacy to pioglitazone, with a lower effective dose, and favorable safety results. It also showed pleiotropic effects in preclinical and clinical studies. In this article, we summarize the pharmacologic, pharmacokinetic, and clinical characteristics of lobeglitazone.
Collapse
Affiliation(s)
- Jaehyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Taegyun Park
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyeyoung Kim
- Medical information and Pharmacovigilance Team, CKD Pharmaceutical Corp., Seoul, Korea
| | - Minyoung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bong-Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Corresponding author: Bong-Soo Cha https://orcid.org/0000-0003-0542-2854 Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea E-mail:
| |
Collapse
|
38
|
Chehrehgosha H, Sohrabi MR, Ismail-Beigi F, Malek M, Reza Babaei M, Zamani F, Ajdarkosh H, Khoonsari M, Fallah AE, Khamseh ME. Empagliflozin Improves Liver Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Ther 2021; 12:843-861. [PMID: 33586120 PMCID: PMC7882235 DOI: 10.1007/s13300-021-01011-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION To evaluate the efficacy of empagliflozin compared to pioglitazone in patients with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM). METHODS In this prospective randomized, double-blind, placebo-controlled trial, we assigned 106 patients with NAFLD and T2DM to receive empagliflozin 10 mg (n = 35), pioglitazone 30 mg (n = 34), or placebo (n = 37) for 24 weeks. Liver fat content and liver stiffness were measured using fibroscans. Body composition assessment was performed by dual-energy x-ray absorptiometry (DEXA) scans. The primary end point was change from baseline in liver steatosis, using the controlled attenuation parameter (CAP) score. RESULTS A borderline significant decrease in CAP score was observed with empagliflozin compared to placebo, mean difference: - 29.6 dB/m (- 39.5 to - 19.6) versus - 16.4 dB/m (- 25.0 to - 7.8), respectively; p = 0.05. Using multivariate analysis, we observed a significant reduction in the placebo-corrected change in liver stiffness measurement (LSM) with empagliflozin compared to pioglitazone: - 0.77 kPa (- 1.45, - 0.09), p = 0.02, versus 0.01 kPa (95% CI - 0.70, 0.71, p = 0.98), p for comparison = 0.03. Changes in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), fasting insulin, homeostatic model assessment for insulin resistance (HOMA-IR), HOMA2-IR, fibrosis-4 index (FIB4 index), NAFLD fibrosis score, aspartate aminotransferase to platelet ratio index (APRI), android/gynecoid ratio (A/G ratio), and skeletal muscle index (SMI) were comparable between the two treatment groups, while significant reductions of the body weight and visceral fat area were observed only in the empagliflozin group (p < 0.001 and p = 0.01, respectively) and both were increased in the placebo and pioglitazone groups. There were no serious adverse events in either group. CONCLUSION Treatment for 24 weeks with empagliflozin, in contrast to pioglitazone, was associated with improvement of liver steatosis and fibrosis in patients with NAFLD and T2DM. In addition, body weight and abdominal fat area were decreased in the empagliflozin group. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT), IRCT20190122042450N3.
Collapse
Affiliation(s)
- Haleh Chehrehgosha
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmood Khoonsari
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Afshin Eshghi Fallah
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
39
|
Kogachi S, Noureddin M. Noninvasive Evaluation for Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Clin Ther 2021; 43:455-472. [PMID: 33581876 DOI: 10.1016/j.clinthera.2021.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and has the potential risk for progressing to nonalcoholic steatohepatitis (NASH), which is associated with a greater risk for complications of chronic liver disease. Noninvasive testing has been evaluated for diagnosis, risk stratification, disease progression, and assessing response to therapy. The purpose of this narrative review was to outline the current noninvasive testing modalities for the diagnostic evaluation of NAFLD and NASH, while discussing possible markers that could be used for monitoring response to therapies. METHODS The PubMed and Cochrane databases were searched for relevant articles that evaluated the diagnosis of NAFLD/NASH with serum biomarkers and/or imaging. FINDINGS Serum biomarkers, imaging modalities, and combinations/serial algorithms involved in the diagnosis of NAFLD and NASH are outlined. In addition, noninvasive modalities that have been used for assessing response to therapies in clinical trials are discussed. IMPLICATIONS Liver biopsy currently remains the gold standard for diagnosis and is often used in clinical trials to assess treatment response. However, developing safe and accessible noninvasive modalities for diagnosis and monitoring will have greater impact and relevance, as biopsy may not always be feasible in all clinical settings.
Collapse
Affiliation(s)
- Shannon Kogachi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mazen Noureddin
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Yan H, Wu W, Chang X, Xia M, Ma S, Wang L, Gao J. Gender differences in the efficacy of pioglitazone treatment in nonalcoholic fatty liver disease patients with abnormal glucose metabolism. Biol Sex Differ 2021; 12:1. [PMID: 33397443 PMCID: PMC7784274 DOI: 10.1186/s13293-020-00344-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background Pioglitazone is a promising therapeutic method for nonalcoholic fatty liver disease (NAFLD) patients with or without type 2 diabetes. However, there is remarkable variability in treatment response. We analyzed our previous randomized controlled trial to examine the effects of gender and other factors on the efficacy of pioglitazone in treating Chinese nonalcoholic fatty liver disease (NAFLD) patients with abnormal glucose metabolism. Methods This is a post hoc analysis of a previous randomized, parallel controlled, open-label clinical trial (RCT) with an original purpose of evaluating the efficacy of berberine and pioglitazone on NAFLD. The total population (n = 185) was randomly divided into three groups: lifestyle intervention (LSI), LSI + pioglitazone (PGZ) 15 mg qd, and LSI + berberine (BBR) 0.5 g tid, respectively, for 16 weeks. The study used proton magnetic resonance spectroscopy (1H-MRS) to assess liver fat content. Results As compared with LSI, PGZ + LSI treatment further decreased liver fat content in women (− 15.24% ± 14.54% vs. − 8.76% ± 13.49%, p = 0.025), but less decreased liver fat content in men (− 9.95% ± 15.18% vs. − 12.64% ± 17.78%, p = 0.046). There was a significant interaction between gender and efficacy of pioglitazone before and after adjustment for age, smoking, drinking, baseline BMI, BMI change, treatment adherence, baseline liver fat content, and glucose metabolism. Conclusion The study recommends pioglitazone plus lifestyle intervention for Chinese NAFLD female patients with abnormal glucose metabolism. Trial registration Role of Pioglitazone and Berberine in Treatment of Non-Alcoholic Fatty Liver Disease, NCT00633282. Registered on 3 March 2008, https://register.clinicaltrials.gov.
Collapse
Affiliation(s)
- Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Fudan Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Weiyun Wu
- Department of Laboratory, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Fudan Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Fudan Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Sicheng Ma
- Shanghai Starriver Bilingual School, Shanghai, 201108, China
| | - Liu Wang
- Second Affiliated Hospital of Army Military Medical University, Chongqing, 400037, China.
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Kim KS, Hong S, Ahn HY, Park CY. Comparative Efficacy of Lobeglitazone Versus Pioglitazone on Albuminuria in Patients with Type 2 Diabetes Mellitus. Diabetes Ther 2021; 12:171-181. [PMID: 33099742 PMCID: PMC7843821 DOI: 10.1007/s13300-020-00948-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/10/2020] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION The aim of this analysis was to evaluate the efficacy of lobeglitazone on albuminuria at 24 weeks of follow-up in patients with type 2 diabetes mellitus (T2DM) compared with pioglitazone using data from a randomized, double-blinded phase III trial. METHODS In the phase III trial, patients who were inadequately controlled with metformin received 0.5 mg of lobeglitazone or 15 mg of pioglitazone for 24 weeks. Post hoc, exploratory analysis was used to investigate mean changes from baseline in the urine albumin-creatinine ratio (UACR) between the lobeglitazone (N = 104) and pioglitazone (N = 101) treatment groups. RESULTS After 24 weeks of treatment, UACR was slightly decreased in the lobeglitazone group (- 4.3 mg/g creatinine [Cr]) compared to baseline and slightly increased in the pioglitazone group (5.2 mg/g Cr), with no change in the estimated glomerular filtration rate in either group; this difference was not statistically significant (P = 0.476). The incidence of new-onset microalbuminuria (2.4%) and the progression of albuminuria by > 1 stage (2.9%) in the lobeglitazone group were lower than the respective values in the pioglitazone group (6.8 and 6.1%, respectively). Of the patients in the lobeglitazone group, 50% exhibited regression to normoalbuminuria, compared to 39.3% of the patients in the pioglitazone. In subjects in the lobeglitazone group with micro- and macroalbuminuria, UACR tended to be more decreased and HbA1c was more reduced compared to those with normoalbuminuria (P = 0.014). CONCLUSION Lobeglitazone had a tendency to improve albuminuria in patients with T2DM and had comparable effects on albuminuria as pioglitazone which has demonstrated beneficial effects. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01106131.
Collapse
Affiliation(s)
- Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sangmo Hong
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Hong-Yup Ahn
- Department of Statistics, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Cheol-Young Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Abstract
Adipose, or fat, tissue (AT) was once considered an inert tissue that primarily existed to store lipids, and was not historically recognized as an important organ in the regulation and maintenance of health. With the rise of obesity and more rigorous research, AT is now recognized as a highly complex metabolic organ involved in a host of important physiological functions, including glucose homeostasis and a multitude of endocrine capabilities. AT dysfunction has been implicated in several disease states, most notably obesity, metabolic syndrome and type 2 diabetes. The study of AT has provided useful insight in developing strategies to combat these highly prevalent metabolic diseases. This review highlights the major functions of adipose tissue and the consequences that can occur when disruption of these functions leads to systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
43
|
Taheri H, Malek M, Ismail-Beigi F, Zamani F, Sohrabi M, Reza babaei M, Khamseh ME. Effect of Empagliflozin on Liver Steatosis and Fibrosis in Patients With Non-Alcoholic Fatty Liver Disease Without Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv Ther 2020; 37:4697-4708. [PMID: 32975679 PMCID: PMC7547956 DOI: 10.1007/s12325-020-01498-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Introduction Despite the high prevalence of non-alcoholic fatty liver disease (NAFLD) and its associated co-morbidities, no efficient treatment in a high percentage of individuals is available. Beneficial effects of sodium–glucose co-transporter 2 inhibitors on fatty liver have been investigated in people with type 2 diabetes (T2DM). The aim of this study was to explore the effect of empagliflozin on liver steatosis and fibrosis in patients with NAFLD without T2DM. Methods In this prospective randomized, double-blind, placebo-controlled clinical trial, participants with NAFLD were randomized to empagliflozin (10 mg/day) (n = 43) or placebo (n = 47) for 24 weeks. Hepatic steatosis and fibrosis were assessed using transient elastography to measure the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). The primary outcome was the change in CAP score at 24 weeks. Results There was significant decrease in CAP score in both groups but no significant difference was observed between the two groups (P = 0.396). LSM was significantly decreased in the empagliflozin-treated group (6.03 ± 1.40 to 5.33 ± 1.08 kPa; P = 0.001), while no change was found in the placebo group. In subgroups analysis of patients with significant steatosis at baseline (CAP ≥ 302 dB/m), steatosis significantly improved in the empagliflozin group (37.2% vs. 17%; P = 0.035). There was a significant decrease in the grade of liver fat on visual analysis of ultrasound images, AST, ALT, and fasting insulin levels in the empagliflozin group, while no changes were observed in the placebo group. Conclusions Empagliflozin improves liver steatosis and, more importantly, measures of liver fibrosis in patients with NAFLD without T2DM. Trial registration ClinicalTrials.gov identifier, IRCT20190122042450N1.
Collapse
|
44
|
Sharma VK, Barde A, Rattan S. A short review on synthetic strategies toward glitazone drugs. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1821223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vijay Kumar Sharma
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
- Integral BioSciences Pvt. Ltd, Phase-II Noida, Uttar Pradesh, India
| | - Anup Barde
- Integral BioSciences Pvt. Ltd, Phase-II Noida, Uttar Pradesh, India
| | - Sunita Rattan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
45
|
Athyros VG, Polyzos SA, Kountouras J, Katsiki N, Anagnostis P, Doumas M, Mantzoros CS. Non-Alcoholic Fatty Liver Disease Treatment in Patients with Type 2 Diabetes Mellitus; New Kids on the Block. Curr Vasc Pharmacol 2020; 18:172-181. [PMID: 30961499 DOI: 10.2174/1570161117666190405164313] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), affecting over 25% of the general population worldwide, is characterized by a spectrum of clinical and histological manifestations ranging from simple steatosis (>5% hepatic fat accumulation without inflammation) to non-alcoholic steatohepatitis (NASH) which is characterized by inflammation, and finally fibrosis, often leading to liver cirrhosis, and hepatocellular carcinoma. Up to 70% of patients with type 2 diabetes mellitus (T2DM) have NAFLD, and diabetics have much higher rates of NASH compared with the general non-diabetic population. OBJECTIVE The aim of this study is to report recent approaches to NAFLD/NASH treatment in T2DM patients. To-date, there are no approved treatments for NAFLD (apart from lifestyle measures). RESULTS Current guidelines (2016) from 3 major scientific organizations suggest that pioglitazone and vitamin E may be useful in a subset of patients for adult NAFLD/NASH patients with T2DM. Newer selective PPAR-γ modulators (SPPARMs, CHRS 131) have shown to provide even better results with fewer side effects in both animal and human studies in T2DM. Newer antidiabetic drugs might also be useful, but detailed studies with histological outcomes are largely lacking. Nevertheless, prior animal and human studies on incretin mimetics, glucagon-like peptide-1 receptor agonists (GLP-1 RA) approved for T2DM treatment, have provided indirect evidence that they may also ameliorate NAFLD/NASH, whereas dipeptidyl dipeptidase-4 inhibitors (DDP-4i) were not better than placebo in reducing liver fat in T2DM patients with NAFLD. Sodium-glucoseco-transporter-2 inhibitors (SGLT2i) have been reported to improve NAFLD/NASH. Statins, being necessary for most patients with T2DM, may also ameliorate NAFLD/NASH, and could potentially reinforce the beneficial effects of the newer antidiabetic drugs, if used in combination, but this remains to be identified. CONCLUSION Newer antidiabetic drugs (SPPARMs, GLP-1 RA and SGLT2i) alone or in combination and acting alone or with potent statin therapy which is recommended in T2DM, might contribute substantially to NAFLD/NASH amelioration, possibly reducing not only liver-specific but also cardiovascular morbidity. These observations warrant long term placebo-controlled randomized trials with appropriate power and outcomes, focusing on the general population and more specifically on T2DM with NAFLD/NASH. Certain statins may be useful for treating NAFLD/NASH, while they substantially reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Vasilios G Athyros
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jiannis Kountouras
- 2nd Department of Internal Medicine, Division of Gastroenterology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niki Katsiki
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | | | - Michael Doumas
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece.,VAMC and George Washington University, Washington, DC, United States
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
46
|
Kim KS, Lee BW. Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease. Clin Mol Hepatol 2020; 26:430-443. [PMID: 32791578 PMCID: PMC7641556 DOI: 10.3350/cmh.2020.0137] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder and is associated with various metabolic diseases, including type 2 diabetes mellitus. There are no approved drugs for NAFLD, and the only approved treatment option is weight reduction. As insulin resistance plays an important role in the development of NAFLD, many anti-diabetic drugs have been evaluated for the treatment of NAFLD. Improvement of liver enzymes has been demonstrated by many anti-diabetic drugs, but histological assessment still remains insufficient. Pioglitazone could become the first-line therapy for T2DM patients with NAFLD, based on evidence of histological improvement in patients with biopsy-proven nonalcoholic steatohepatitis (NASH). Liraglutide, another promising alternative, is not yet recommended in patients with NAFLD/NASH due to limited evidence. Therefore, well-designed randomized controlled trials should be performed in the near future to demonstrate if and how anti-diabetic drugs can play a role in the treatment of NAFLD.
Collapse
Affiliation(s)
- Kyung-Soo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. Int J Mol Sci 2020; 21:ijms21165820. [PMID: 32823659 PMCID: PMC7461212 DOI: 10.3390/ijms21165820] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation.
Collapse
|
48
|
Sharma VK, Barde A, Rattan S. An efficient and scalable approach for the synthesis of piperazine based glitazone and its derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1769133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vijay Kumar Sharma
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
- Integral BioSciences Pvt. Ltd, Noida, India
| | - Anup Barde
- Integral BioSciences Pvt. Ltd, Noida, India
| | - Sunita Rattan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
49
|
Smeuninx B, Boslem E, Febbraio MA. Current and Future Treatments in the Fight Against Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2020; 12:E1714. [PMID: 32605253 PMCID: PMC7407591 DOI: 10.3390/cancers12071714] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is recognised as a risk factor for many types of cancers, in particular hepatocellular carcinoma (HCC). A critical factor in the development of HCC from non-alcoholic fatty liver disease (NAFLD) is the presence of non-alcoholic steatohepatitis (NASH). Therapies aimed at NASH to reduce the risk of HCC are sparse and largely unsuccessful. Lifestyle modifications such as diet and regular exercise have poor adherence. Moreover, current pharmacological treatments such as pioglitazone and vitamin E have limited effects on fibrosis, a key risk factor in HCC progression. As NAFLD is becoming more prevalent in developed countries due to rising rates of obesity, a need for directed treatment is imperative. Numerous novel therapies including PPAR agonists, anti-fibrotic therapies and agents targeting inflammation, oxidative stress and the gut-liver axis are currently in development, with the aim of targeting key processes in the progression of NASH and HCC. Here, we critically evaluate literature on the aetiology of NAFLD-related HCC, and explore the potential treatment options for NASH and HCC.
Collapse
Affiliation(s)
| | | | - Mark A. Febbraio
- Cellular & Molecular Metabolism Laboratory, Monash Institute of Pharmacological Sciences, Monash University, Parkville, VIC 3052, Australia; (B.S.); (E.B.)
| |
Collapse
|
50
|
Lambrecht J, van Grunsven LA, Tacke F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother 2020; 21:1637-1650. [PMID: 32543284 DOI: 10.1080/14656566.2020.1774553] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic liver disease is due to various causes of persistent liver damage and will eventually lead to the development of liver fibrosis. If no treatment is initiated, this condition may progress to cirrhosis and hepatocellular carcinoma. Current treatments comprise the elimination of the cause of injury, such as by lifestyle changes, alcohol abstinence, and antiviral agents. However, such etiology-driven therapy is often insufficient in patients with late-stage fibrosis/cirrhosis, therefore maintaining the need for efficient antifibrotic pharmacotherapeutic interventions. AREAS COVERED The authors discuss the recent advances in the development of antifibrotic drugs, which target various pathways of the fibrogenesis process, including cell death, inflammation, gut-liver axis, and myofibroblast activation. Due to the significant burden of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), various agents which specifically target metabolic pathways and their related receptors/ligands have been developed. For some of them, e.g., obeticholic acid, advanced stage clinical trials indicate antifibrotic efficacy in NAFLD and NASH. EXPERT OPINION Significant advances have been made in the development of novel antifibrotic pharmacotherapeutics. The authors expect that the development of combinatorial therapies, which combine compounds that target various pathways of fibrosis progression, will have a major impact as future etiology-independent therapies.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center , Berlin, Germany
| |
Collapse
|