1
|
Vrettou M, Lager S, Toffoletto S, Iliadis SI, Kallak TK, Agnafors S, Nieratschker V, Skalkidou A, Comasco E. Peripartum depression symptom trajectories, telomere length and genotype, and adverse childhood experiences. BMC Psychiatry 2024; 24:661. [PMID: 39379870 PMCID: PMC11462957 DOI: 10.1186/s12888-024-06115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND As a biological marker for cellular senescence, telomere length (TL) has been linked to a variety of psychiatric disorders and adverse childhood experiences (ACE), though only preliminarily to peripartum depression (PPD). The present study sought to examine the association between TL and PPD, assessing the moderating role of ACE and genetic polymorphic variations related with the telomere machinery. METHODS Adversity was self-reported, likewise were depressive symptoms evaluated at pregnancy week 17 and 32, as well as six-weeks and six-months postpartum. TL was assessed by use of qPCR in blood samples collected during delivery from females with antenatal depression resolving postpartum, females with depression persisting to postpartum, and healthy controls. Twenty haplotype-tagging Single Nucleotide Polymorphisms in the Telomerase Reverse Transcriptase (TERT) and three in the Telomerase RNA Component (TERC) genes were genotyped. RESULTS TL was negatively correlated with severity of PPD symptoms at pregnancy week 32 and postpartum week 6. PPD was associated with shorter TL. Lastly, ACE, but not the TERT/TERC genotype, moderated the TL-trajectory association; with increasing ACE, individuals with persistent PPD symptoms had shorter TL, whereas the opposite pattern (longer TL) was observed in the controls. CONCLUSIONS The findings contribute to further understanding of PPD underpinnings, suggesting a negative relationship with TL.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Box 593, Uppsala, 751 24, Sweden
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Simone Toffoletto
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Box 593, Uppsala, 751 24, Sweden
| | - Stavros I Iliadis
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - Sara Agnafors
- Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Linköping University, Linköping, Sweden
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical University Hospital Tübingen, German Center for Mental Health (DZPG), partner site Tübingen, Germany
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Box 593, Uppsala, 751 24, Sweden.
| |
Collapse
|
2
|
Konishi K, Jacobs EG, Aroner S, De Vivo I, Smith B, Scribner-Weiss B, Makris N, Seitz-Holland J, Remington A, Aizley H, Kubicki M, Goldstein JM. Leukocyte telomere length and memory circuitry and cognition in early aging: Impact of sex and menopausal status. Horm Behav 2024; 165:105631. [PMID: 39232410 PMCID: PMC11438173 DOI: 10.1016/j.yhbeh.2024.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Telomere length (TL) is an important cellular marker of biological aging impacting the brain and heart. However, how it is related to the brain (e.g., cognitive function and neuroanatomic architecture), and how these relationships may vary by sex and reproductive status, is not well established. Here we assessed the association between leukocyte TL and memory circuitry regional brain volumes and memory performance in early midlife, in relation to sex and reproductive status. Participants (N = 198; 95 females, 103 males; ages 45-55) underwent structural MRI and neuropsychological assessments of verbal, associative, and working memory. Overall, shorter TL was associated with smaller white matter volume in the parahippocampal gyrus and dorsolateral prefrontal cortex. In males, shorter TL was associated with worse working memory performance and corresponding smaller white matter volumes in the parahippocampal gyrus, anterior cingulate cortex, and dorsolateral prefrontal cortex. In females, the impact of cellular aging was revealed over the menopausal transition. In postmenopausal females, shorter TL was associated with poor associative memory performance and smaller grey matter volume in the right hippocampus. In contrast, TL was not related to memory performance or grey and white matter volumes in any memory circuitry region in pre/perimenopausal females. Results demonstrated that shorter TL is associated with worse memory function and smaller volume in memory circuitry regions in early midlife, an association that differs by sex and reproductive status. Taken together, TL may serve as an early indicator of sex-dependent brain abnormalities in early midlife.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara 93111, United States of America
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Immaculata De Vivo
- Department of Epidemiology, T.H. Chan School of Public Health, Boston, MA 02120, United States of America
| | - Brianna Smith
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Blair Scribner-Weiss
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, United States of America
| | - Nikos Makris
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Johanna Seitz-Holland
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Harlyn Aizley
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Marek Kubicki
- Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America
| | - Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States of America; Harvard Medical School, Boston, MA 02120, United States of America; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, United States of America; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
3
|
Apetroaei MM, Fragkiadaki P, Velescu BȘ, Baliou S, Renieri E, Dinu-Pirvu CE, Drăgănescu D, Vlăsceanu AM, Nedea MI(I, Udeanu DI, Docea AO, Tsatsakis A, Arsene AL. Pharmacotherapeutic Considerations on Telomere Biology: The Positive Effect of Pharmacologically Active Substances on Telomere Length. Int J Mol Sci 2024; 25:7694. [PMID: 39062937 PMCID: PMC11276808 DOI: 10.3390/ijms25147694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Telomeres are part of chromatin structures containing repeated DNA sequences, which function as protective caps at the ends of chromosomes and prevent DNA degradation and recombination, thus ensuring the integrity of the genome. While telomere length (TL) can be genetically inherited, TL shortening has been associated with ageing and multiple xenobiotics and bioactive substances. TL has been characterised as a reliable biomarker for the predisposition to developing chronic pathologies and their progression. This narrative review aims to provide arguments in favour of including TL measurements in a complex prognostic and diagnostic panel of chronic pathologies and the importance of assessing the effect of different pharmacologically active molecules on the biology of telomeres. Medicines used in the management of cardiovascular diseases, diabetes, schizophrenia, hormone replacement therapy at menopause, danazol, melatonin, and probiotics have been studied for their positive protective effects against TL shortening. All these classes of drugs are analysed in the present review, with a particular focus on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Stella Baliou
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Cristina Elena Dinu-Pirvu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Ana Maria Vlăsceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Artistidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| |
Collapse
|
4
|
Ozturk S. The close relationship between oocyte aging and telomere shortening, and possible interventions for telomere protection. Mech Ageing Dev 2024; 218:111913. [PMID: 38307343 DOI: 10.1016/j.mad.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
As women delay childbearing due to socioeconomic reasons, understanding molecular mechanisms decreasing oocyte quantity and quality during ovarian aging becomes increasingly important. The ovary undergoes biological aging at a higher pace when compared to other organs. As is known, telomeres play crucial roles in maintaining genomic integrity, and their shortening owing to increased reactive oxygen species, consecutive cellular divisions, genetic and epigenetic alterations is associated with loss of developmental competence of oocytes. Novel interventions such as antioxidant treatments and regulation of gene expression are being investigated to prevent or rescue telomere attrition and thereby oocyte aging. Herein, potential factors and molecular mechanisms causing telomere shortening in aging oocytes were comprehensively reviewed. For the purpose of extending reproductive lifespan, possible therapeutic interventions to protect telomere length were also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| |
Collapse
|
5
|
Speer H, McKune AJ, Woodward AP. The long and the short of it: Salivary telomere length as a candidate biomarker for hypertension and age-related changes in blood pressure. Physiol Rep 2024; 12:e15910. [PMID: 38225201 PMCID: PMC10789652 DOI: 10.14814/phy2.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Hypertension becomes more prevalent with increasing age. Telomere length (TL) has been proposed as a candidate biomarker and can be accessibly extracted from saliva. However, clarity is needed to evaluate the suitability of using TL as a predictor in such instances. This study investigated salivary TL in a cohort of older adults from the 2008 Health and Retirement Study (n = 3329; F: 58%, mean age: 69.4, SD: 10.3 years) to examine any associations with blood pressure (BP). A Bayesian robust regression model was fit using weakly informative priors to predict the effects of TL with age, sex, systolic BP (SBP), diastolic BP (DBP), and treatment status. There were small effects of treatment (β: -0.07, 95% CrI [-0.33, 0.19], pd: 71.91%) and sex (β: -0.10, 95% CrI [-0.27, 0.07], pd: >86.78%). Population effects showed a reduction of 0.01 log2 units in TL with each year of advancing age (95% CrI [-0.01, -0.00]). Conditional posterior predictions suggest that females, and treated individuals, experience greater change in TL with increasing age. Bayes R2 was ~2%. TL declines with increasing age, differs between sexes, and appears to be influenced by antihypertensive drugs. Overall, all effects were weak. The data do not currently support the suitability of salivary TL as a biomarker to predict or understand any age-related changes in BP.
Collapse
Affiliation(s)
- Hollie Speer
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of CanberraBruceAustralian Capital TerritoryAustralia
| | - Andrew J. McKune
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of CanberraBruceAustralian Capital TerritoryAustralia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Andrew P. Woodward
- Faculty of HealthUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| |
Collapse
|
6
|
Fan G, Liu Q, Bi J, Qin X, Fang Q, Wang Y, Song L. Association between female-specific reproductive factors and leukocyte telomere length. Hum Reprod 2023; 38:2239-2246. [PMID: 37671590 DOI: 10.1093/humrep/dead176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
STUDY QUESTION What are the associations between female-specific reproductive factors and leukocyte telomere length (LTL)? SUMMARY ANSWER Early menarche, early menopause, short reproductive lifespan, early age at first birth, multiparity, and use of oral contraceptives (OCs) and hormone replacement therapy (HRT) were associated with shorter LTL. WHAT IS KNOWN ALREADY Reproductive factors have been associated with age-related diseases, but their associations with cellular aging, as indicated by LTL, are unclear. STUDY DESIGN, SIZE, DURATION This population-based study included 224 965 women aged 40-69 years from the UK Biobank between 2006 and 2010. PARTICIPANTS/MATERIALS, SETTING, METHODS Women aged 40-69 were included. Female-specific reproductive factors, including age at menarche, age at natural menopause, reproductive lifespan, number of live births, age at first live birth, history of stillbirth, history of miscarriage, and use of OCs and HRT were self-reported. LTL was measured using a validated polymerase chain reaction method. Multiple linear regression and restricted cubic spline models were applied to explore the association between each reproductive factor and LTL. MAIN RESULTS AND THE ROLE OF CHANCE After adjustment for potential confounders, early menarche (<12 years; percent change, per unit change in LTL Z score: -1.29%, 95% CI: -2.32%, -0.26%), early menopause (<45 years; percent change: -7.18%, 95% CI: -8.87%, -5.45%), short reproductive lifespan (<30 years; percent change: -6.10%, 95% CI: -8.14%, -4.01%), multiparity (percent change: -3.38%, 95% CI: -4.38%, -2.37%), early age at first live birth (<20 years; percent change: -4.46%, 95% CI: -6.00%, -2.90%), and use of OCs (percent change: -1.10%, 95% CI: -2.18%, -0.02%) and HRT (percent change: -3.72%, 95% CI: -4.63%, -2.80%) were all significantly associated with shorter LTL. However, no significant association was found for history of miscarriage and stillbirth. We observed nonlinear relationships of age at menarche, age at natural menopause, reproductive lifespan, and age at first live birth with LTL (Pnonlinear < 0.05). LIMITATIONS, REASONS FOR CAUTION Considering that the participants were predominantly of European ethnicity, the findings may not be generalizable to women of other ethnic backgrounds. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that early menarche, early menopause, short reproductive lifespan, early age at first birth, multiparity, and use of OCs and HRT were associated with shorter LTL, which has been linked to various chronic diseases. The accelerated shortening of telomeres may potentially contribute to the development of chronic diseases related to reproductive factors. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the National Natural Science Foundation of China (82003479, 82073660), Hubei Provincial Natural Science Foundation of China (2023AFB663), and the China Postdoctoral Science Foundation (2019M662646, 2020T130220). The authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology 2023; 484:153413. [PMID: 36581016 DOI: 10.1016/j.tox.2022.153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.
Collapse
|
8
|
Guran E, Hu J, Wefel JS, Chung C, Cata JP. Perioperative considerations in patients with chemotherapy-induced cognitive impairment: a narrative review. Br J Anaesth 2022; 129:909-922. [PMID: 36270848 DOI: 10.1016/j.bja.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022] Open
Abstract
Patients with cancer may suffer from a decline in their cognitive function after various cancer therapies, including surgery, radiation, and chemotherapy, and in some cases, this decline in cognitive function persists even years after completion of treatment. Chemobrain or chemotherapy-induced cognitive impairment, a well-established clinical syndrome, has become an increasing concern as the number of successfully treated cancer patients has increased significantly. Chemotherapy-induced cognitive impairment can originate from direct neurotoxicity, neuroinflammation, and oxidative stress, resulting in alterations in grey matter volume, white matter integrity, and brain connectivity. Surgery has been associated with exacerbating the inflammatory response associated with chemotherapy and predisposes patients to develop postoperative cognitive dysfunction. As the proportion of patients living longer after these therapies increases, the magnitude of impact and growing concern of post-treatment cognitive dysfunction in these patients has also come to the fore. We review the clinical presentation, potential mechanisms, predisposing factors, diagnostic methods, neuropsychological testing, and imaging findings of chemotherapy-induced cognitive impairment and its intersection with postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Ekin Guran
- Department of Anaesthesiology and Reanimation, University of Health Sciences, Ankara Oncology Training and Research Hospital, Ankara, Turkey; Anaesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan P Cata
- Anaesthesiology and Surgical Oncology Research Group, Houston, TX, USA; Department of Anaesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Pölönen J, Pinola P, Ronkainen J, Blakemore AI, Buxton JL, Tapanainen JS, Franks S, Piltonen TT, Sebert S, Morin-Papunen L. Polycystic ovary syndrome and leukocyte telomere length: cross-sectional and longitudinal changes. Eur J Endocrinol 2022; 187:651-661. [PMID: 36074951 PMCID: PMC9578080 DOI: 10.1530/eje-22-0462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Telomeres are DNA-protein complexes that protect chromosome ends from DNA damage and are surrogate biomarkers of cellular aging. Current evidence, almost entirely from cross-sectional observations, supports negative associations between leukocyte telomere length (LTL) and adverse lifestyle factors and cardiometabolic risk factors. Polycystic ovary syndrome (PCOS), the most common gynecological endocrine disorder, is associated with inflammation and oxidative stress, both factors associated with accelerated telomere attrition. We therefore hypothesized that LTL would be shorter and decrease more rapidly in women with PCOS in comparison to a control population. DESIGN This is a population-based cohort study comprising women of Northern Finland Birth Cohort 1966, with clinical examinations at ages 31 and 46. The sample included self-reported PCOS (age 31, n = 190; age 46, n = 207) and referent women (age 31, n = 1054; age 46, n = 1324) with data on LTL. METHODS The association between LTL and PCOS at ages 31 and 46 was analyzed by linear regression models adjusted for BMI, smoking, alcohol consumption and socioeconomic status at the corresponding age. RESULTS Women with PCOS had similar mean LTL at ages 31 and 46 (P > 0.4 for both). The mean LTL change between ages 31 and 46 did not differ between groups (P = 0.19). However, we observed a significant LTL attrition between ages 31 and 46 in the reference population (P < 0.001), but not in women with PCOS (P = 0.96). CONCLUSIONS This finding may suggest a difference in the LTL attrition rate in women with PCOS, an unexpected finding that might affect their risk of age-related disease. Further research is needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Johanna Pölönen
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
| | - Pekka Pinola
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
- Correspondence should be addressed to P Pinola or S Franks; or
| | - Justiina Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Alex I Blakemore
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jessica L Buxton
- Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London, UK
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Stephen Franks
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
- Correspondence should be addressed to P Pinola or S Franks; or
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Laure Morin-Papunen
- Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|
11
|
Григорян ОР, Фролова ТМ, Михеев РК, Шереметьева ЕВ, Абсатарова ЮС, Ужегова ЖА, Андреева ЕН, Мокрышева НГ. [The dual role of the menopausal hormonal therapy as the enhancer of pleiotropic telomere rejuvenation and the silencer of cellular aging (literature review)]. PROBLEMY ENDOKRINOLOGII 2022; 68:105-112. [PMID: 35841174 PMCID: PMC9762536 DOI: 10.14341/probl12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Present worldwide healthcare researches prove that female patients are more sensitive to the population aging. Menopause or climacteria (climax) - is not as ageing itself, but a physiological unstoppable process. The main task for a physician is to improve life quality for female despite of ageing problems. Menopausal hormone therapy (MHT) due to the estrogen component has an anti-inflammatory, antioxidant effect and promotes the expression of telomerase, which together changes the homeostasis and integrity of telomeres. The use of MHT for five years or more can not only significantly change the quality of life, but also increase its duration. Literature search was carried out in national (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English. The priority was free access to the full text of articles. The choice of sources was prioritized for the period from 2019 to 2021. However, taking into account the insufficient knowledge of the chosen topic, the choice of sources dates back to 1989.
Collapse
Affiliation(s)
- О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | - Т. М. Фролова
- Национальный медицинский исследовательский центр эндокринологии
| | - Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - Ж. А. Ужегова
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии; Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
12
|
Sexual Dimorphism in Telomere Length in Childhood Autism. J Autism Dev Disord 2022; 53:2050-2061. [PMID: 35220523 DOI: 10.1007/s10803-022-05486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Autism spectrum disorders (ASD) are strikingly more prevalent in males, but the molecular mechanisms responsible for ASD sex-differential risk are poorly understood. Abnormally shorter telomeres have been associated with autism. Examination of relative telomere lengths (RTL) among non-syndromic male (N = 14) and female (N = 10) children with autism revealed that only autistic male children had significantly shorter RTL than typically-developing controls (N = 24) and paired siblings (N = 10). While average RTL of autistic girls did not differ significantly from controls, it was substantially longer than autistic boys. Our findings indicate a sexually-dimorphic pattern of RTL in childhood autism and could have important implications for RTL as a potential biomarker and the role/s of telomeres in the molecular mechanisms responsible for ASD sex-biased prevalence and etiology.
Collapse
|
13
|
Machan M, Tabor JB, Wang M, Sutter B, Wiley JP, Mychasiuk R, Debert CT. The Impact of Concussion, Sport, and Time in Season on Saliva Telomere Length in Healthy Athletes. Front Sports Act Living 2022; 4:816607. [PMID: 35243342 PMCID: PMC8886719 DOI: 10.3389/fspor.2022.816607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
To date, sport-related concussion diagnosis and management is primarily based on subjective clinical tests in the absence of validated biomarkers. A major obstacle to clinical validation and application is a lack of studies exploring potential biomarkers in non-injured populations. This cross-sectional study examined the associations between saliva telomere length (TL) and multiple confounding variables in a healthy university athlete population. One hundred eighty-three (108 male and 75 female) uninjured varsity athletes were recruited to the study and provided saliva samples at either pre- or mid-season, for TL analysis. Multiple linear regression was used to determine the associations between saliva TL and history of concussion, sport contact type, time in season (pre vs. mid-season collection), age, and sex. Results showed no significant associations between TL and history of concussion, age, or sport contact type. However, TL from samples collected mid-season were longer than those collected pre-season [β = 231.4, 95% CI (61.9, 401.0), p = 0.008], and males had longer TL than females [β = 284.8, 95% CI (111.5, 458.2), p = 0.001] when adjusting for all other variables in the model. These findings population suggest that multiple variables may influence TL. Future studies should consider these confounders when evaluating saliva TL as a plausible fluid biomarker for SRC.
Collapse
Affiliation(s)
- Matthew Machan
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jason B. Tabor
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Meng Wang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Bonnie Sutter
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J. Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chantel T. Debert
| |
Collapse
|
14
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Gandy K, Scoggins MA, Jacola LM, Litten M, Reddick WE, Krull KR. Structural and Functional Brain Imaging in Long-Term Survivors of Childhood Acute Lymphoblastic Leukemia Treated With Chemotherapy: A Systematic Review. JNCI Cancer Spectr 2021; 5:pkab069. [PMID: 34514328 PMCID: PMC8421809 DOI: 10.1093/jncics/pkab069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background The effect of chemotherapy on brain development in long-term survivors of pediatric acute lymphoblastic leukemia (ALL) was systematically reviewed. Methods A systematic search of Pubmed, Scopus, and PsycINFO databases was conducted to identify articles published between January 2000 and February 2020 that implemented magnetic resonance imaging to assess brain structure and function in pediatric ALL survivors (diagnosed younger than 21 years of age). The review included articles that were published on children diagnosed with ALL between 0 and 21 years of age and treated with chemotherapy-only protocols. Articles meeting the inclusion criteria described survivors on average of 5 years or more from diagnosis and were peer-reviewed articles and original studies. Results The search yielded 1975 articles with 23 articles meeting inclusion criteria. The review revealed that survivors had statistically significant alterations in brain anatomy, most commonly a smaller hippocampus and impaired microstructural white matter integrity in frontal brain regions. Survivors also had impaired brain function including lower brain network efficiency and altered resting state connectivity. Survivors also displayed widespread reductions in brain activation (ie, frontal, temporal, parietal brain regions) during cognitive tasks. Conclusion Although the neurotoxic effects of cancer treatment are reduced in the absence of cranial radiation, survivors treated on chemotherapy-only protocols still display long-term alterations in brain structure and function, which contribute to lifelong neurocognitive late effects.
Collapse
Affiliation(s)
- Kellen Gandy
- Department of Epidemiology and Cancer Control, St. Jude’s Children’s Research Hospital, Memphis, TN, USA
| | - Matthew A Scoggins
- Department of Diagnostic Imaging, St. Jude’s Children’s Research Hospital, Memphis, TN, USA
| | - Lisa M Jacola
- Department of Psychology, St. Jude’s Children’s Research Hospital, Memphis, TN, USA
| | - Molly Litten
- Department of Epidemiology and Cancer Control, St. Jude’s Children’s Research Hospital, Memphis, TN, USA
| | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude’s Children’s Research Hospital, Memphis, TN, USA
| | - Kevin R Krull
- Department of Epidemiology and Cancer Control, St. Jude’s Children’s Research Hospital, Memphis, TN, USA
- Department of Psychology, St. Jude’s Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Molecular Pathogenesis and Peripheral Monitoring of Adult Fragile X-Associated Syndromes. Int J Mol Sci 2021; 22:ijms22168368. [PMID: 34445074 PMCID: PMC8395059 DOI: 10.3390/ijms22168368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.
Collapse
|
17
|
Chico-Sordo L, Córdova-Oriz I, Polonio AM, S-Mellado LS, Medrano M, García-Velasco JA, Varela E. Reproductive aging and telomeres: Are women and men equally affected? Mech Ageing Dev 2021; 198:111541. [PMID: 34245740 DOI: 10.1016/j.mad.2021.111541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Successful reproduction is very important for individuals and for society. Currently, the human health span and lifespan are the object of intense and productive investigation with great achievements, compared to the last century. However, reproduction span does not progress concomitantly with lifespan. Reproductive organs age, decreasing the levels of sexual hormones, which are protectors of health through their action on several organs of the body. Thus, this is the starting point of the organismal decay and infertility. This starting point is easily detected in women. In men, it goes under the surface, undetected, but it goes, nevertheless. Regarding fertility, aging alters the hormonal equilibrium, decreases the potential of reproductive organs, diminishes the quality of the gametes and worsen the reproductive outcomes. All these events happen at a different pace and affecting different organs in women and men. The question is what molecular pathways are involved in reproductive aging and if there is a possible halting or even reversion of the aging events. Answers to all these points will be explained in the present review.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Isabel Córdova-Oriz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Alba María Polonio
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Lucía Sánchez S-Mellado
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Marta Medrano
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; IVIRMA Madrid, Spain.
| | - Juan Antonio García-Velasco
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Madrid, Spain; Rey Juan Carlos University, Madrid, Spain.
| | - Elisa Varela
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rey Juan Carlos University, Madrid, Spain.
| |
Collapse
|
18
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S. Telomere length determinants in childhood. Clin Chem Lab Med 2021; 58:162-177. [PMID: 31465289 DOI: 10.1515/cclm-2019-0235] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Collapse
Affiliation(s)
| | | | | | - Sophie Visvikis-Siest
- University of Lorraine, Inserm, IGE-PCV, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
19
|
Velazquez ME, Millan AL, Rojo M, Abruzzese GA, Cocucci SE, Iglesias Molli AE, Frechtel GD, Motta AB, Cerrone GE. Telomere Length Differently Associated to Obesity and Hyperandrogenism in Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:604215. [PMID: 34054718 PMCID: PMC8162376 DOI: 10.3389/fendo.2021.604215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) often present metabolic disorders and hyperandrogenism (HA), facts that may influence the telomere length (TL). AIMS To compare the absolute TL (aTL) between women with PCOS and control women, and their association with the presence of obesity and HA parameters. MATERIALS AND METHODS The PCOS group included 170 unrelated women outpatients and the control group, 64 unrelated donor women. Anthropometric, biochemical-clinical parameters and androgen profile were determined. The PCOS patients were divided accordingly to the presence of obesity and androgenic condition. The aTL was determined from peripheral blood leukocytes by Real Time quantitative PCR. RESULTS Women with PCOS exhibited a significantly longer aTL than controls after age adjustment (p=0.001). A stepwise multivariate linear regression in PCOS women, showed that WC (waist circumference) contributed negatively (b=-0.17) while testosterone levels contributed positively (b=7.24) to aTL. The non-Obese PCOS (noOB-PCOS) presented the longest aTL when compared to controls (p=0.001). Meanwhile, the aTL was significantly higher in the hyperandrogenic PCOS phenotype (HA-PCOS) than in the controls (p=0.001) and non hyperandrogenic PCOS phenotype (NHA-PCOS) (p=0.04). Interestingly, when considering obesity and HA parameters in PCOS, HA exerts the major effect over the aTL as non-obese HA exhibited the lengthiest aTL (23.9 ± 13.13 Kbp). Conversely, the obese NHA patients showed the shortest aTL (16.5 ± 10.59 Kbp). CONCLUSIONS Whilst a shorter aTL could be related to the presence of obesity, a longer aTL would be associated with HA phenotype. These findings suggest a balance between the effect produced by the different metabolic and hormonal components, in PCOS women.
Collapse
Affiliation(s)
- Mariela Edith Velazquez
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea L. Millan
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Mailén Rojo
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Giselle Adriana Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Ema Cocucci
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
| | - Andrea Elena Iglesias Molli
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Gustavo Daniel Frechtel
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gloria Edith Cerrone
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
- *Correspondence: Gloria Edith Cerrone,
| |
Collapse
|
20
|
Wong SK, Ima-Nirwana S, Chin KY. Can telomere length predict bone health? A review of current evidence. Bosn J Basic Med Sci 2020; 20:423-429. [PMID: 32156247 PMCID: PMC7664788 DOI: 10.17305/bjbms.2020.4664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Telomeres are repetitive DNA sequences located at the end of chromosomes that serve as a protective barrier against chromosomal deterioration during cell division. Approximately 50–200 base pairs of nucleotides are lost per cell division, and new repetitive nucleotides are added by the enzyme telomerase, allowing telomere maintenance. Telomere shortening has been proposed as an indicator for biological aging, but its relationship with age-related osteoporosis is ambiguous. We summarize the current evidence on the relationship between telomere length and bone health in experimental and epidemiological studies, which serve as a scientific reference for the development of novel diagnostic markers of osteoporosis or novel therapeutics targeting telomere and telomerase of bone cells to treat osteoporosis.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Effects chronic administration of corticosterone and estrogen on HPA axis activity and telomere length in brain areas of female rats. Brain Res 2020; 1750:147152. [PMID: 33049239 DOI: 10.1016/j.brainres.2020.147152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
Chronic stress is related to the acceleration of telomere shortening. Recent work showed a correlation between chronic psychosocial stress and reduced telomere length in certain cells. The exposure of T lymphocytes to cortisol promoted a significant reduction in telomerase activity. Although stress can promote changes in telomere length, whether increased glucocorticoid concentrations alter telomere length in brain tissue cells is unclear. In addition to modulating the activity of the stress system, estrogen also influences telomere length. The objective of this study was to verify whether chronic exposure to glucocorticoids promotes changes in the telomere length of encephalic areas involved in the control of HPA axis activity and whether estrogen affects these changes. Wistar rats were ovariectomized and treated with estradiol cypionate [(50 or 100 μg/kg, subcutaneously)] or oil and 20 mg/kg corticosterone or vehicle (isotonic saline with 2% Tween 80, subcutaneously) for 28 days. On the day after the end of the hormonal treatment, the animals were euthanized for collection of blood, brain and pituitary gland samples. Estrogen modulated the activity of the HPA axis. CRH, AVP and POMC mRNA levels were reduced by estrogen. At least in doses and treatment time used, there was no correlation between effects of exposure to glucocorticoids and estrogen on telomere length in the brain areas of female rats. However, estrogen treatment reduced the telomere length in the central amygdala and dorsal hippocampus, but not in the PVN, indicating a variation of reaction of telomeres for estrogen in different brain areas.
Collapse
|
22
|
Thomas N, Hudaib AR, Romano-Silva M, Bozaoglu K, H X Thomas E, Rossell S, Kulkarni J, Gurvich C. Influence of cortisol awakening response on telomere length: Trends for males and females. Eur J Neurosci 2020; 55:2794-2803. [PMID: 33012014 DOI: 10.1111/ejn.14996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/29/2022]
Abstract
Although telomere attrition is associated with the process of normal ageing, shorter telomere length (TL) has been associated with acute and chronic stressors. A neurobiological factor hypothesised to be responsible for this accelerated attrition is the dysregulation of the cortisol stress response, which can induce DNA damage affecting DNA telomeric caps. Marked sex differences are reported in both the cortisol stress response and telomere dynamics, yet no explicit investigation of sex specificity on the relationship between cortisol and TL exists. This study used mathematical equation modelling to describe the relationship between diurnal cortisol levels and telomere length within the context of sex, in a healthy population. Cortisol awakening responses (CAR) were measured via ELISA methodology in fifty-one healthy participants (28 males, 23 females). qPCRs determined TL from genomic DNA extracted from saliva. To assess the effect of free cortisol on relative TL ratio, a semi-log regression plot of the two variables trended for sex were fitted using spline curves. Results demonstrated significant differences between males and females in the relationship defining CAR and TL association (p = 0.03). These results suggest the relationship is not linear and can be represented as a complex arcsin function, and that the patterns are opposite in males and females. Males demonstrate a positive correlation, with higher levels of CAR being associated with longer telomere sequences. Females demonstrated a negative correlation. Future studies must carefully take into consideration moderating factors such as sex, and sex hormones across the lifespan when investigating telomere length.
Collapse
Affiliation(s)
- Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Abdul-Rahman Hudaib
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Marco Romano-Silva
- Department of Saude Mental, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Kiymet Bozaoglu
- Neurogenetic Research, Murdoch Children's Research Institute, The Department of Paediatrics University of Melbourne, Melbourne, Vic, Australia
| | - Elizabeth H X Thomas
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Susan Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Vic, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| |
Collapse
|
23
|
Giller A, Andrawus M, Gutman D, Atzmon G. Pregnancy as a model for aging. Ageing Res Rev 2020; 62:101093. [PMID: 32502628 DOI: 10.1016/j.arr.2020.101093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/21/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
The process of aging can be defined as the sum accumulation of damages and changes in metabolism during the life of an organism, due to both genetic predisposition and stochastic damage. During the gestational period and following parturition, similar damage can be seen due to the strenuous effect on the maternal body, exhibited on both the physiological and cellular level. In this review, we will focus on the similar physiological and cellular characteristics exhibited during pregnancy and aging, including induction of and response to oxidative stress, inflammation, and degradation of telomeres. We will evaluate any similar processes between aging and pregnancy by comparing common biomarkers, pathologies, and genetic and epigenetic effects, to establish the pregnant body as a model for aging. This review will approach the connection both in respect to current theories on aging as a byproduct of natural selection, and regarding unrelated biochemical similarities between the two, drawing on existing studies and models in humans and other species where relevant alike. Furthermore, we will show the response of the pregnant body to these changes, and through that illuminate unique areas of potential study to advance our knowledge of the maladies relating to aging and pregnancy, and an avenue for solutions.
Collapse
Affiliation(s)
- Abram Giller
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Mariana Andrawus
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Danielle Gutman
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel; Departments of Genetics and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, 10461, USA.
| |
Collapse
|
24
|
Qin Y, An D, Xu W, Qi X, Wang X, Chen L, Chen L, Sha S. Estradiol Replacement at the Critical Period Protects Hippocampal Neural Stem Cells to Improve Cognition in APP/PS1 Mice. Front Aging Neurosci 2020; 12:240. [PMID: 32903757 PMCID: PMC7438824 DOI: 10.3389/fnagi.2020.00240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that there is a critical window for estrogen replacement therapy (ERT) in postmenopausal women with Alzheimer’s disease (AD); however, supporting evidence is lacking. To address this issue, we investigated the effective period for estradiol (E2) treatment using a mouse model of AD. Four-month-old female APPswe/PSEN1dE9 (APP/PS1) mice were ovariectomized (OVX) and treated with E2 for 2 months starting at the age of 4 months (early period), 6 months (mid-period), or 8 months (late period). We then evaluated hippocampal neurogenesis, β-amyloid (Aβ) accumulation, telomerase activity, and hippocampal-dependent behavior. Compared to age-matched wild type mice, APP/PS1 mice with intact ovaries showed increased proliferation of hippocampal neural stem cells (NSCs) at 8 months of age and decreased proliferation of NSCs at 10 months of age; meanwhile, Aβ accumulation progressively increased with age, paralleling the reduced survival of immature neurons. OVX-induced depletion of E2 in APP/PS1 mice resulted in elevated Aβ levels accompanied by elevated p75 neurotrophin receptor (p75NTR) expression and increased NSC proliferation at 6 months of age, which subsequently declined; accelerated reduction of immature neurons starting from 6 months of age, and reduced telomerase activity and worsened memory performance at 10 months of age. Treatment with E2 in the early period post-OVX, rather than in the mid or late period, abrogated these effects, and p75NTR inhibition reduced the overproliferation of NSCs in 6-month-old OVX-APP/PS1 mice. Thus, E2 deficiency in young APP/PS1 mice exacerbates cognitive deficits and depletes the hippocampal NSC pool in later life; this can be alleviated by E2 treatment in the early period following OVX, which prevents Aβ/p75NTR-induced NSC overproliferation and preserves telomerase activity.
Collapse
Affiliation(s)
- Yaoyao Qin
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dong An
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiuting Qi
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Passi GR, Shamim U, Rathore S, Joshi A, Mathur A, Parveen S, Sharma P, Crow YJ, Faruq M. An Indian child with Coats plus syndrome due to mutations in STN1. Am J Med Genet A 2020; 182:2139-2144. [PMID: 32627942 DOI: 10.1002/ajmg.a.61737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
The role of the CTC1-STN1-TEN1 (CST) complex in Coats plus syndrome (CP), as well as other telomeropathy-phenotypes and disorders of genome instability is well documented. We report an Indian child with a clinical diagnosis of CP who presented to us with retinal exudates, extensive cerebral calcification, developmental delay and severe anemia consequent upon chronic gastrointestinal (GI) bleeding. Whole exome sequencing revealed compound heterozygous variants in STN1 as the probable genetic cause leading to CP in the present case. Of the two variants, the nonsense variant c.397C>T (p.Arg133*) was a truncating variant leading to loss of full protein length whereas the second variant c.985G>C (p.Ala329Pro) was novel and neither reported in ExAC, 1KGP or gnomAD. The deleteriousness of the novel variant was explored through molecular dynamics simulation analysis where p.Ala329Pro mutation affected C-terminal domain interaction between STN1 and TEN1 complex. Hormonal therapy using ethinyl estradiol and norethisterone was apparently associated with a clinically useful, although poorly sustained, decrease in blood transfusion requirement in the proband.
Collapse
Affiliation(s)
- Gouri Rao Passi
- Department of Pediatrics, Choithram Hospital & Research Centre, Indore, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Surabhi Rathore
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Aditi Joshi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Aradhana Mathur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Shaista Parveen
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris, France.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
26
|
Fang C, Huang H, Zhang Q, Wang N, Jing X, Guo J, Ferianc M, Xu Z. Relation between sex hormones and leucocyte telomere length in men with idiopathic pulmonary fibrosis. Respirology 2020; 25:1265-1273. [PMID: 32583532 PMCID: PMC7754418 DOI: 10.1111/resp.13871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Background and objective IPF is an ageing‐related lung disorder featuring progressive lung scarring. IPF patients are frequently identified with short telomeres but coding mutations in telomerase can only explain a minority of cases. Sex hormones regulate telomerase activity in vitro and levels of sex hormones are related to LTL. The objective of this study was to explore whether sex hormones were associated with LTL, whether they interacted with genetic variants in telomerase and whether polymorphisms in the exon of androgen metabolism genes were associated with plasma testosterone concentrations in male IPF patients. Methods A case–control study was performed on 101 male IPF subjects and 51 age‐matched healthy controls. Early morning plasma sex hormones were quantified, and whole‐exome sequencing was used to identify rare protein‐altering variants of telomerase and SNP in the exon of androgen metabolism genes. LTL was analysed by PCR and expressed as a T/S ratio. Results LTL, testosterone and DHT were decreased significantly in the IPF group. After adjustments for age and variant status in telomerase‐related genes, only testosterone was positively associated with LTL (P = 0.001). No significant interaction (P = 0.661) was observed between rare protein‐altering variants of telomerase and testosterone. No coding SNP in androgen metabolism genes were significantly associated with testosterone concentrations. Conclusion Plasma testosterone is associated with LTL independent of age or rare protein‐altering variants of telomerase. No genetic variations of androgen‐related pathway genes are associated with androgen concentrations. Further studies are warranted to examine whether hormonal interventions might retard telomere loss in male IPF patients.
Collapse
Affiliation(s)
- Chuling Fang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Wang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Guo
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Martin Ferianc
- Electronic and Electrical Engineering Department, University College London, London, UK
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Rocca MS, Foresta C, Ferlin A. Telomere length: lights and shadows on their role in human reproduction. Biol Reprod 2020; 100:305-317. [PMID: 30277496 DOI: 10.1093/biolre/ioy208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Telomeres are repeated DNA sequences whose main function is to preserve genome stability, protecting chromosomes ends from shortening caused by progressive loss during each cell replication or DNA damage. Telomere length regulation is normally achieved by telomerase enzyme, whose activity is progressively shut off during embryonic differentiation in somatic tissues, whereas it is maintained in germ cells, activated lymphocytes, and certain types of stem cell populations. The maintenance of telomerase activity for a longer time is necessary for germ cells to delay telomere erosion, thus avoiding chromosome segregation defects that could contribute to aneuploid or unbalanced gametes. Over the last few years, telomere biology has become an important topic in the field of human reproduction, encouraging several studies to focus on the relation between telomere length and spermatogenesis and male fertility, embryo development and quality during assisted reproductive treatment, and female pathologies as polycystic ovary, premature ovarian insufficiency, and endometriosis. This review analyzes whether telomere length in germ cells is related to reproduction fitness, whether telomere length is related to pathologies associated with male and female fertility, and whether measurement of telomere length could represent a biomarker of germ cell and embryo quality. Telomere length could be considered a molecular marker of spermatogenesis and sperm quality and is somewhat related to male fertility potential. Fewer evidence, although promising, is available for oocytes, female (in)fertility, and embryo quality. The increasing evidence for a role of telomeres and telomere length in human reproduction, indeed, has expanded the historical view of considering them just a marker of aging. Telomere length might have in the future a prognostic potential in couple infertility, especially useful to select best germ cells with the greatest potential of fertilization.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Yang ZY, Kao TW, Peng TC, Chen YY, Yang HF, Wu CJ, Chen WL. Examining the association between serum phosphate levels and leukocyte telomere length. Sci Rep 2020; 10:5438. [PMID: 32214202 PMCID: PMC7096403 DOI: 10.1038/s41598-020-62359-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
Accelerated telomere attrition is related to various diseases, and multiple factors have been reported to influence telomere length. However, little attention has focused on the relationship between serum phosphate levels and mean telomere length. The purpose of this study was to explore the relationship between serum phosphate levels and mean telomere length in the US general population. A total of 7,817 participants from the 1999–2002 NHANES were included. The association between serum phosphate levels and mean telomere length was investigated using regression models. A remarkably positive relationship between serum phosphate levels and mean telomere length emerged after adjustments were made for covariates. The adjusted β coefficient of serum phosphate levels for mean telomere length was 0.038 (95% confidence intervals (CIs), 0.022 to 0.095, p = 0.002). A longer telomere length was observed in participants with serum phosphate levels in the highest quartiles, and a dose-dependent association was observed. Our study demonstrated that higher quartiles of phosphate had a remarkable correlation with longer telomere length.
Collapse
Affiliation(s)
- Zhe-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Clinical Medical, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tao-Chun Peng
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yuan-Yuei Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Pathology, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hui-Fang Yang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chen-Jung Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
29
|
Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers (Basel) 2020; 12:cancers12030594. [PMID: 32150919 PMCID: PMC7139681 DOI: 10.3390/cancers12030594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Leukocyte telomere length (LTL) has been associated with the risks of several cancers in observational studies. Mendelian randomization (MR) studies, using genetic variants as instrumental variables, have also shown associations of genetically predicted LTL with cancer risks. In this study, we performed the first MR analysis on soft tissue sarcoma (STS) to investigate the causal relationship between LTL and the risk of STS. Methods: Genotypes from eleven LTL-associated single nucleotide polymorphisms (SNPs) in 821 STS cases and 851 cancer-free controls were aggregated into a weighted genetic risk score (GRS) to predict LTL. Multivariate logistic regression was used to assess the association of STS risk with individual SNPs and aggregated GRS. Results: Four SNPs displayed evidence for an individual association between long LTL-conferring allele and increased STS risk: rs7675998 (odds ratio (OR) = 1.21, 95% confidence interval (CI) = 1.02–1.43), rs9420907 (OR = 1.31, 95% CI = 1.08–1.59), rs8105767 (OR = 1.18, 95% CI = 1.02–1.37), and rs412658 (OR = 1.18, 95% CI = 1.02–1.36). Moreover, longer genetically predicted LTL, calculated as GRS, was strongly associated with an increased risk of STS (OR = 1.44, 95% CI = 1.18–1.75, p < 0.001), and there was a significant dose-response association (p for trend <0.001 in tertile and quartile analyses). The association of longer LTL with higher STS risk was more evident in women than in men. In stratified analyses by major STS subtypes, longer LTL was significantly associated with higher risks of leiomyosarcoma and gastrointestinal stromal tumors. Conclusions: Longer LTL is associated with increased risks of STS.
Collapse
|
30
|
Association between leucocyte telomere length and cardiovascular disease in a large general population in the United States. Sci Rep 2020; 10:80. [PMID: 31919463 PMCID: PMC6952450 DOI: 10.1038/s41598-019-57050-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Leucocyte telomere length (LTL) has been reported to be linked to ageing, cancer and cardiovascular disease (CVD). This study aimed to explore the association between LTL and CVD risk in a nationally representative sample of U.S. adults. Complex associations, including nonlinearity and interaction, were also examined. A total of 7,378 subjects from the National Health and Nutrition Examination Survey (NHANES) 1999-2002 were collected. Telomere length was detected from DNA samples and expressed as the mean T/S ratio (telomere repeats per single-copy gene). We performed multiple logistic regression models and interactive analysis to explore the associations between LTL and CVD risk by adjusting for potential confounders. We also performed a sensitivity analysis to investigate the robustness of our results. Among all participants, LTL was associated with the risk of CVD (OR = 0.79, 95% CI: 0.63~0.98, P = 0.033) in a linear manner rather than in a nonlinear manner (P = 0.874). Interaction effects of LTL with both education (P = 0.017) and hypertension (P = 0.007) were observed. Furthermore, using subgroup analyses, protective effects of LTL on CVD risk were found in females and in individuals who were college graduates or above, had serum cotinine >10 ng/ml, did not have hypertension, or had normal white blood cell levels. LTL is linearly inversely associated with CVD risk in the general population of the United States.
Collapse
|
31
|
Kresovich JK, Parks CG, Sandler DP, Taylor JA. Reproductive history and blood cell telomere length. Aging (Albany NY) 2019; 10:2383-2393. [PMID: 30243019 PMCID: PMC6188490 DOI: 10.18632/aging.101558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022]
Abstract
Telomeres are repetitive nucleotide sequences that protect against chromosomal shortening. They are replenished by telomerase, an enzyme that may be activated by estrogen. Women have longer telomeres than men; this difference might be due to estrogen exposure. We hypothesized that reproductive histories reflecting greater estrogen exposure will be associated with longer blood cell telomeres. Among women in the Sister Study (n= 1,048), we examined telomere length in relation to self-reported data on reproductive history. The difference between age at menarche and last menstrual period was used to approximate the reproductive period. Relative telomere length (rTL) was measured using qPCR. After adjustment, rTL decreased with longer reproductive period (β= -0.019, 95% CI: -0.04, -0.00, p= 0.03). Premenopausal women had shorter rTL than postmenopausal women (β= -0.051, 95% CI: -0.12, 0.01, p= 0.13). Longer breastfeeding duration was associated with longer rTL (β= 0.027, 95% CI: 0.01, 0.05, p=0.01); increasing parity was associated with shorter rTL (β = -0.016, 95% CI: -0.03, 0.00, p=0.07). Duration of exogenous hormone use was not associated with rTL. Reproductive histories reflecting greater endogenous estrogen exposure were associated with shorter rTL. Our findings suggest that longer telomeres in women are unlikely to be explained by greater estrogen exposure.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.,Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Grieshober L, Wactawski-Wende J, Hageman Blair R, Mu L, Liu J, Nie J, Carty CL, Hale L, Kroenke CH, LaCroix AZ, Reiner AP, Ochs-Balcom HM. A Cross-Sectional Analysis of Telomere Length and Sleep in the Women's Health Initiative. Am J Epidemiol 2019; 188:1616-1626. [PMID: 31145433 PMCID: PMC6736371 DOI: 10.1093/aje/kwz134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Telomere length is a heritable marker of cellular age that is associated with morbidity and mortality. Poor sleep behaviors, which are also associated with adverse health events, may be related to leukocyte telomere length (LTL). We studied a subpopulation of 3,145 postmenopausal women (1,796 European-American (EA) and 1,349 African-American (AA)) enrolled in the Women's Health Initiative in 1993-1998 with data on Southern blot-measured LTL and self-reported usual sleep duration and sleep disturbance. LTL-sleep associations were analyzed separately for duration and disturbance using weighted and confounder-adjusted linear regression models in the entire sample (AAs + EAs; adjusted for race/ethnicity) and in racial/ethnic strata, since LTL differs by ancestry. After adjustment for covariates, each additional daily hour of sleep beyond 5 hours, approximately, was associated with a 27-base-pair (95% confidence interval (CI): 6, 48) longer LTL in the entire sample. Associations between sleep duration and LTL were strongest among AAs (adjusted β = 37, 95% CI: 4, 70); a similar, nonsignificant association was observed for EAs (adjusted β = 20, 95% CI: -7, 48). Sleep disturbance was not associated with LTL in our study. Our models did not show departure from linearity (quadratic sleep terms: P ≥ 0.55). Our results suggest that longer sleep duration is associated with longer LTL in postmenopausal women.
Collapse
Affiliation(s)
- Laurie Grieshober
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Jingmin Liu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jing Nie
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Cara L Carty
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lauren Hale
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Candyce H Kroenke
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Andrea Z LaCroix
- Division of Epidemiology, Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, California
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
33
|
Ghimire S, Hill CV, Sy FS, Rodriguez R. Decline in telomere length by age and effect modification by gender, allostatic load and comorbidities in National Health and Nutrition Examination Survey (1999-2002). PLoS One 2019; 14:e0221690. [PMID: 31469870 PMCID: PMC6716670 DOI: 10.1371/journal.pone.0221690] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study aims to assess the decline in telomere length (TL) with age and evaluate effect modification by gender, chronic stress, and comorbidity in a representative sample of the US population. METHODS Cross-sectional data on 7826 adults with a TL measurement, were included from the National Health and Nutrition Examination Survey, years 1999-2002. The population rate of decline in TL across 10-year age categories was estimated using crude and adjusted regression. RESULTS In an adjusted model, the population rate of decline in TL with age was consistent and linear for only three age categories: 20-29 (β = -0.0172, 95% CI: -0.0342, -0.0002), 50-59 (β = -0.0182, 95% CI: -0.0311, -0.0054) and 70-79 (β = -0.0170, 95% CI: -0.0329, -0.0011) years. The population rate of decline in TL with age was significantly greater for males and those with high allostatic load and a history of comorbidities. When the population rate of decline in TL was analyzed by gender in 10-year age bins, a fairly consistent yet statistically non-significant decline for males was observed; however, a trough in the rate was observed for females in the age categories 20-29 years (β = -0.0284, 95% CI: -0.0464, -0.0103) and 50-59 years (β = -0.0211, 95% CI: -0.0391, -0.0032). To further elucidate the gender difference observed in the primary analyses, secondary analyses were conducted with reproductive and hormonal status; a significant inverse association was found between TL and parity, menopause, and age at menopause. CONCLUSIONS TL was shorter with increasing age and this decline was modified by gender, chronic stress and comorbidities; individuals with chronic morbidity and/or chronic stress and females in their twenties and fifties experienced greater decline. Female reproductive factors, i.e., parity and menopause, were associated with TL.
Collapse
Affiliation(s)
- Saruna Ghimire
- Department of Sociology and Gerontology, Miami University, Oxford, OH, United States of America
- School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, United States of America
- * E-mail:
| | - Carl V. Hill
- Office of Special Populations, National Institute of Aging, Bethesda, MD, United States of America
| | - Francisco S. Sy
- School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | | |
Collapse
|
34
|
González-Giraldo Y, Garzón-Benitez AV, Forero DA, Barreto GE. TERT inhibition leads to reduction of IL-6 expression induced by palmitic acid and interferes with the protective effects of tibolone in an astrocytic cell model. J Neuroendocrinol 2019; 31:e12768. [PMID: 31278797 DOI: 10.1111/jne.12768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
Although it has been shown that telomerase has neuroprotective effects, mainly as a result of its non-canonical functions in neuronal cells, its role with respect to glial cells remains unknown. There is growing evidence indicating that telomerase plays an important role with respect to inflammation, especially in the regulation of pro-inflammatory cytokine gene expression. The present study aimed to evaluate the role of telomerase in an astrocyte cell model treated with palmitic acid (PA) and tibolone. Cell death, reactive oxygen species production and interleukin-6 expression were evaluated under telomerase inhibition with the BIBR1532 compound in T98G cells treated with tibolone and PA, using fluorometry, flow cytometry, enzyme-linked immunosorbent assays and the quantitative polymerase chain reaction. The results obtained showed that telomerase protein was increased by PA after 36 hours, alone or in combination with tibolone, and that its activity was affected by PA. Telomerase inhibition reduced interleukin-6 expression and it interfered with the protective effects of tibolone on cell death. Moreover, tibolone increased Tyr707 phosphorylation in PA-treated cells. In the present study, we provide novel findings about the regulation of telomerase by PA and tibolone. Telomerase was involved in inflammation by PA and in protective effects of tibolone. Therefore, we conclude that telomerase could play a dual role in these cells.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Angie V Garzón-Benitez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| |
Collapse
|
35
|
Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun 2019; 79:39-55. [PMID: 30872093 PMCID: PMC6591071 DOI: 10.1016/j.bbi.2019.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.
Collapse
Affiliation(s)
- R M Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH 43210, United States
| | - P J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK; Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang 314400, PR China
| | - K M Lenz
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychology, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, United States
| | - L Pyter
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. 3083, Australia.
| |
Collapse
|
36
|
Sayban S, Mirfakhraie R, Omrani MD, Ghaedi H, Heidary H, Yaghoobi H, Azizi F, Pouresmaeili F. Idiopathic Premature Ovarian Failure and its association to the abnormal longitudinal changes of telomere length in a population of Iranian Infertile Women: A pilot study. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Song Y, Cho M, Brennan KM, Chen BH, Song Y, Manson JE, Hevener AL, You NCY, Butch AW, Liu S. Relationships of sex hormone levels with leukocyte telomere length in Black, Hispanic, and Asian/Pacific Islander postmenopausal women. J Diabetes 2018; 10:502-511. [PMID: 28609023 PMCID: PMC6499547 DOI: 10.1111/1753-0407.12577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 05/15/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sex hormones may play important roles in sex-specific biological aging. In the study, we specifically examined associations between circulating sex hormone concentrations and leukocyte telomere length (TL). METHODS A cross-sectional study was conducted among 1124 Black, 444 Hispanic, and 289 Asian/Pacific Islander women in the Women's Health Initiative Observational Cohort. Estradiol and testosterone concentrations were measured using electrochemiluminescence immunoassays; TL was measured using quantitative polymerase chain reaction. RESULTS Women in the study were aged 50-79 years. Estradiol concentrations were not significantly associated with TL in this sample. The associations between total and free testosterone and TL differed by race/ethnicity (Pinteraction = 0.03 and 0.05 for total and free testosterone, respectively). Total and free testosterone concentrations were not associated with TL in Black and Hispanic women, whereas in Asian/Pacific Islander women their concentrations were inversely associated with TL (Ptrend = 0.003 for both). These associations appeared robust in multiple subgroup analyses and multivariable models adjusted for potential confounding factors. In Asian/Pacific Islander women, a doubling of serum free and total testosterone concentrations was associated with a 202-bp shorter TL (95% confidence interval [CI] 51-353 bp) and 203-bp shorter TL (95% CI 50-355 bp), respectively. CONCLUSIONS Serum estradiol concentrations were not associated with leukocyte TL in this large sample of postmenopausal women. Total and free testosterone concentrations were inversely associated with TL in Asian/Pacific Islander women, but not in Black and Hispanic women, although future studies to replicate our observations are warranted particularly to address potential ethnicity-specific relationships.
Collapse
Affiliation(s)
- Yan Song
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Michele Cho
- Department of Gynecology and Obstetrics, University of California, Los Angeles, California, USA
| | - Kathleen M Brennan
- Department of Gynecology and Obstetrics, University of California, Los Angeles, California, USA
| | - Brian H Chen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Yiqing Song
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, University of California, Los Angeles, California, USA
| | - Nai-Chieh Y You
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Anthony W Butch
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island, USA
- Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Telomere attrition and dysfunction has become a well established pathway involved in organismal aging, not only because it imposes a limitation to cell division and therefore, tissue regeneration but also because telomere homeostasis influences other pathways involved in aging. However, the implication of telomere biology in ovarian aging and fertility is barely starting to be unveiled. RECENT FINDINGS During the last years, mounting evidence in favor of the relationship between the accumulation of short telomeres and ovarian senescence has emerged. Telomere attrition and the loss of telomerase activity in ovarian cell types is a common characteristic of female infertility. SUMMARY Recent findings regarding telomere attrition in the ovary open the possibility of both, finding new molecular biomarkers related to telomere homeostasis that make possible the early detection of ovarian dysfunction before the ovarian reserve has vanished, and the search of new therapies to preserve or set up ovarian cell types so that new and better quality oocytes can be generated in aged ovaries to improve IVF outcomes.
Collapse
|
39
|
Critically short telomeres and toxicity of chemotherapy in early breast cancer. Oncotarget 2017; 8:21472-21482. [PMID: 28423524 PMCID: PMC5400599 DOI: 10.18632/oncotarget.15592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/27/2017] [Indexed: 01/31/2023] Open
Abstract
Cumulative toxicity from weekly paclitaxel (myalgia, peripheral neuropathy, fatigue) compromises long-term administration. Preclinical data suggest that the burden of critically short telomeres (< 3 kilobases, CSTs), but not average telomere length by itself, accounts for limited tissue renewal and turnover capacity. The impact of this parameter (which can be modified with different therapies) in chemotherapy-derived toxicity has not been studied. Blood from 115 treatment-naive patients from a clinical trial in early HER2-negative breast cancer that received weekly paclitaxel (80 mg/m2 for 12 weeks) either alone or in combination with nintedanib and from 85 healthy controls was prospectively obtained and individual CSTs and average telomere lenght were determined by HT Q-FISH (high-throughput quantitative FISH). Toxicity was graded according to NCI common toxicity criteria for adverse events (NCI CTCAE V.4.0). The variable under study was “number of toxic episodes” during the 12 weeks of therapy. The percentage of CSTs ranged from 6.5%–49.4% and was directly associated with the number of toxic events (R2 = 0.333; P < 0.001). According to a linear regression model, each 18% increase in the percentage of CSTs was associated to one additional toxic episode during the paclitaxel cycles; this effect was independent of the age or treatment arm. Patients in the upper quartile (> 21.9% CSTs) had 2-fold higher number of neuropathy (P = 0.04) or fatigue (P = 0.019) episodes and >3-fold higher number of myalgia episodes (P = 0.005). The average telomere length was unrelated to the incidence of side effects. The percentage of CSTs, but not the average telomere size, is associated with weekly paclitaxel-derived toxicity.
Collapse
|
40
|
Albizua I, Rambo-Martin BL, Allen EG, He W, Amin AS, Sherman SL. Women who carry a fragile X premutation are biologically older than noncarriers as measured by telomere length. Am J Med Genet A 2017; 173:2985-2994. [PMID: 28941155 DOI: 10.1002/ajmg.a.38476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/12/2017] [Accepted: 08/21/2017] [Indexed: 01/25/2023]
Abstract
Women who carry a fragile X premutation, defined as having 55-200 unmethylated CGG repeats in the 5' UTR of the X-linked FMR1 gene, have a 20-fold increased risk for primary ovarian insufficiency (FXPOI). We tested the hypothesis that women with a premutation + FXPOI have shorter telomeres than those without FXPOI because they are "biologically older." Using linear regression, we found that women carrying a premutation (n = 172) have shorter telomeres and hence, are "biologically older" than women carrying the normal size allele (n = 81). Strikingly, despite having shorter telomeres, age was not statistically associated with their telomere length, in contrast to non-carrier controls. Further, telomere length within premutation carriers was not associated with repeat length but was associated with a diagnosis of FXPOI, although the latter finding may depend on FXPOI age of onset.
Collapse
Affiliation(s)
- Igor Albizua
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ashima S Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
41
|
Cheng YY, Kao TW, Chang YW, Wu CJ, Peng TC, Wu LW, Yang HF, Liaw FY, Chen WL. Examining the gender difference in the association between metabolic syndrome and the mean leukocyte telomere length. PLoS One 2017; 12:e0180687. [PMID: 28686726 PMCID: PMC5501587 DOI: 10.1371/journal.pone.0180687] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022] Open
Abstract
The mechanism of cellular aging likely involves decreased telomere length and is associated with age-related diseases such as cardiovascular disease. Metabolic syndrome (MetS) is an important risk factor for CVD. The purpose of this study was to investigate the association between LTL and MetS. We evaluated 7370 participants in the National Health and Nutrition Examination Survey (1999-2002). The association between LTL and individual MetS components and the number of MetS components was analyzed by multivariable regression models, adjusting for gender, race/ethnicity, albumin, C-reactive protein, alanine transaminase, uric acid and medical condition. An increase in the number of MetS components was strongly associated with shorter telomere length, especially in female participants (p for trend < 0.05). In addition, triglycerides were negatively associated with LTL in female participants (p < 0.001). Waist circumstance was associated with decreased LTL (p < 0.05) in both males and females. In summary, our study indicated that an increment of MetS component is strongly associated with shorter LTL, especially in the female population.
Collapse
Affiliation(s)
- Yuan-Yuei Cheng
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yaw-Wen Chang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China
| | - Chen-Jung Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, Republic of China
| | - Tao-Chun Peng
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Li-Wei Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China
| | - Hui-Fang Yang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fang-Yih Liaw
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China
- * E-mail:
| |
Collapse
|
42
|
Telomere length is short in PCOS and oral contraceptive does not affect the telomerase activity in granulosa cells of patients with PCOS. J Assist Reprod Genet 2017; 34:849-859. [PMID: 28477298 DOI: 10.1007/s10815-017-0929-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Our study aimed to investigate the association of telomerase activity (TA) and telomere length (TL) in granulosa cells (GCs) with IVF outcomes of polycystic ovary syndrome (PCOS) patients, and the effects of oral contraceptive pill (OCP) pretreatment on these two parameters. METHODS One hundred sixty-three infertile women were enrolled and divided into a PCOS group (n = 65) and a non-PCOS group (n = 98). The PCOS group was further divided into an OCP pretreatment group (n = 35) and a non-OCP pretreatment group (n = 30), a TA <0.070 group (n = 34) and a TA ≥0.070 group (n = 31), and a TL <1 group (n = 41) and a TL ≥1 group (n = 24), respectively. RESULTS No obvious differences were observed in TA between these groups. The TL was 0.971 in PCOS group and 1.118 in non-PCOS group (P = 0.005). The patients with TL ≥1 accounted for 36.9% in PCOS group and 54.1% in non-PCOS group (P = 0.032). The average duration of infertility for PCOS patients was 5 years in TA <0.070 group and 4 years in TA ≥0.070 group (P = 0.038), and 5 years in TL <1 group and 3 years in TL ≥1 group (P = 0.006), respectively. No obvious differences were observed in IVF outcomes between these groups. No obvious differences were observed in TA, TL, or IVF outcomes between OCP pretreatment group and non-OCP pretreatment group in PCOS patients. CONCLUSIONS Shorter TL was found in PCOS patients. The TA levels did not change significantly in PCOS patients. PCOS patients with a lower TA level and shorter telomeres had an earlier onset of infertility symptoms. No predictive value was found for TA and TL in terms of embryo quality or IVF outcomes in PCOS patients, and no effect OCP pretreatment was observed on either TA and TL.
Collapse
|
43
|
Loprinzi PD, Loenneke JP. Leukocyte telomere length and mortality among U.S. adults: Effect modification by physical activity behaviour. J Sports Sci 2017; 36:213-219. [DOI: 10.1080/02640414.2017.1293280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Paul D. Loprinzi
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
44
|
Leukocyte and Skeletal Muscle Telomere Length and Body Composition in Monozygotic Twin Pairs Discordant for Long-term Hormone Replacement Therapy. Twin Res Hum Genet 2017; 20:119-131. [PMID: 28193312 DOI: 10.1017/thg.2017.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen-based hormone replacement therapy (HRT) may be associated with deceleration of cellular aging. We investigated whether long-term HRT has effects on leukocyte (LTL) or mean and minimum skeletal muscle telomere length (SMTL) in a design that controls for genotype and childhood environment. Associations between telomeres, body composition, and physical performance were also examined. Eleven monozygotic twin pairs (age 57.6 ± 1.8 years) discordant for HRT were studied. Mean duration of HRT use was 7.3 ± 3.7 years in the user sister, while their co-twins had never used HRT. LTL was measured by qPCR and SMTLs by southern blot. Body and muscle composition were estimated by bioimpedance and computed tomography, respectively. Physical performance was measured by jumping height and grip strength. HRT users and non-users did not differ in LTL or mean or minimum SMTL. Within-pair correlations were high in LTL (r = 0.69, p = .020) and in mean (r = 0.74, p = .014) and minimum SMTL (r = 0.88, p = .001). Body composition and performance were better in users than non-users. In analyses of individuals, LTL was associated with BMI (r 2 = 0.30, p = .030), percentage total body (r 2 = 0.43, p = .014), and thigh (r 2 = 0.55, p = .004) fat, while minimum SMTL was associated with fat-free mass (r 2 = 0.27, p = .020) and thigh muscle area (r 2 = 0.42, p = .016). We found no associations between HRT use and telomere length. Longer LTLs were associated with lower total and regional fat, while longer minimum SMTLs were associated with higher fat-free mass and greater thigh muscle area. This suggests that telomeres measured from different tissues may have different associations with measures of body composition.
Collapse
|
45
|
Wang J, Dong X, Cao L, Sun Y, Qiu Y, Zhang Y, Cao R, Covasa M, Zhong L. Association between telomere length and diabetes mellitus: A meta-analysis. J Int Med Res 2016; 44:1156-1173. [PMID: 28322101 PMCID: PMC5536737 DOI: 10.1177/0300060516667132] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023] Open
Abstract
Objective We investigated the relationship between diabetes and telomere length by meta-analysis. Methods We searched five popular databases for articles published between 1990 and 2015 using "diabetes" and "telomere" as search terms. Data were processed with RevMan5, and random- or fixed-effects meta-analysis was applied. The effects of geographical region, diabetes type, body mass index (BMI), age and sex were examined. Funnel plots were applied to evaluate publication bias. Results Seventeen articles were obtained from 571 references. We identified a significant association between telomere length and diabetes mellitus (standardized mean difference [SMD]: -3.41; 95% confidence interval [CI]: -4.01, -2.80; heterogeneity, I2 = 99%) by comparing 5575 patients with diabetes and 6349 healthy individuals. The pooled SMD by geographic region indicated a significant association between shortened telomere length and diabetes mellitus (SMD: -3.41; 95% CI: -4.01, -2.80; heterogeneity, I2 = 99%). In addition, telomere length was significantly associated with age (SMD: -3.41; 95% CI: -4.01, -2.80), diabetes type (SMD: -3.41; 95% CI: -4.01, -2.80), BMI (SMD: -1.61; 95% CI: -1.98, -1.23) and sex (SMD: -4.94; 95% CI: -9.47, -0.40). Conclusions The study demonstrated a close relationship between diabetes mellitus and telomere length, which was influenced by region, age, diabetes type, BMI and sex.
Collapse
Affiliation(s)
- Jianfei Wang
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Xu Dong
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Li Cao
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Yangyang Sun
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Yu Qiu
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Yi Zhang
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Ruoqiong Cao
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
| | - Mihai Covasa
- Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, USA
- University “Stefan cel Mare” Suceava, Romania
| | - Li Zhong
- Laboratory of Biology Chip, College of Life Sciences, Hebei University, Baoding, China
- Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, USA
| |
Collapse
|
46
|
Xu X, Chen X, Zhang X, Liu Y, Wang Z, Wang P, Du Y, Qin Y, Chen ZJ. Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum Reprod 2016; 32:201-207. [PMID: 27836977 DOI: 10.1093/humrep/dew283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 09/29/2016] [Accepted: 10/28/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are telomere length and telomerase activity associated with biochemical primary ovarian insufficiency (POI)? SUMMARY ANSWER Shortened telomere length and diminished telomerase activity were associated with biochemical POI. WHAT IS KNOWN ALREADY POI is a result of pathological reproductive aging and encompasses occult, biochemical and overt stages. Studies have indicated telomere length as a biomarker for biological aging. STUDY DESIGN, SIZE, DURATION A total of 120 patients with biochemical POI and 279 control women were recruited by the Center for Reproductive Medicine of Shandong University. PARTICIPANTS/MATERIALS, SETTING, METHODS Telomere length in peripheral blood leukocytes (LTL) and granulosa cells (GTL) was measured using a modified Quantitative Polymerase Chain Reaction technique. The relative telomerase activity (RTA) in granulosa cells was detected using a modified quantitative-telomeric repeat amplification protocol assay. MAIN RESULTS AND THE ROLE OF CHANCE After adjusting for age, patients with biochemical POI (n = 120) exhibited significantly shorter LTLs (0.75 ± 0.09 vs 1.79 ± 0.12, P < 0.001; OR = 0.54, 95% CI = 0.43-0.68) and GTLs (0.78 ± 0.09 vs 1.90 ± 0.23, P < 0.001; OR = 0.54, 95% CI = 0.41-0.70) than the controls (n = 279 for LTLs; n = 90 for GTLs). Significantly diminished RTAs in granulosa cells were detected in patients with biochemical POI (n = 31) compared with the controls (n = 38) (1.57 ± 0.59 vs 4.63 ± 0.93, P = 0.025; OR = 0.84, 95% CI = 0.72-0.98). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The cross-sectional nature of this study might have its limit in telomere length as well as telomerase activity along with the progressing decline in ovarian function. WIDER IMPLICATIONS OF THE FINDINGS These findings suggest that telomere length and telomerase activity may be considered as indicators for progression of ovarian decline. STUDY FUNDING/COMPETING INTERESTS This research was supported by the National Basic Research Program of China (973 Program) (2012CB944700), Science research foundation item of no-earnings health vocation (201402004) and the National Natural Science Foundation of China (31471352, 81270662, 81471509, 81300461, 81522018). The authors have no potential conflict of interest to declare.
Collapse
Affiliation(s)
- Xiaofei Xu
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, P.R. China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, P.R. China.,The Key laboratory of Reproductive Endocrinology (Shandong University) Jinan, P.R. China
| | - Xinxia Chen
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, P.R. China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, P.R. China.,The Key laboratory of Reproductive Endocrinology (Shandong University) Jinan, P.R. China
| | - Xiruo Zhang
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, P.R. China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, P.R. China.,The Key laboratory of Reproductive Endocrinology (Shandong University) Jinan, P.R. China
| | - Yixun Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zhao Wang
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, P.R. China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, P.R. China.,The Key laboratory of Reproductive Endocrinology (Shandong University) Jinan, P.R. China
| | - Peng Wang
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, P.R. China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, P.R. China.,The Key laboratory of Reproductive Endocrinology (Shandong University) Jinan, P.R. China
| | - Yanzhi Du
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Yingying Qin
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, P.R. China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, P.R. China.,The Key laboratory of Reproductive Endocrinology (Shandong University) Jinan, P.R. China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, P.R. China .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, P.R. China.,The Key laboratory of Reproductive Endocrinology (Shandong University) Jinan, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China.,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
47
|
Falandry C, Horard B, Bruyas A, Legouffe E, Cretin J, Meunier J, Alexandre J, Delecroix V, Fabbro M, Certain MN, Maraval-Gaget R, Pujade-Lauraine E, Gilson E, Freyer G. Telomere length is a prognostic biomarker in elderly advanced ovarian cancer patients: a multicenter GINECO study. Aging (Albany NY) 2016; 7:1066-76. [PMID: 26638179 PMCID: PMC4712332 DOI: 10.18632/aging.100840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose Age induces a progressive decline in functional reserve and impacts cancer treatments. Telomere attrition leads to tissue senescence. We tested the hypothesis that telomere length (TL) could predict patient vulnerability and outcome with cancer treatment. Patients and methods An ancillary study in the Elderly Women GINECO Trial 3 was performed to evaluate the impact of geriatric covariates on survival in elderly advanced ovarian cancer patients receiving six cycles of carboplatin. TL was estimated from peripheral blood at inclusion using standard procedures. Results TL (in base pairs) was estimated for 109/111 patients (median 6.1 kb; range [4.5-8.3 kb]). With a cut-off of 5.77 kb, TL discriminated two patient groups, long telomere (LT) and short telomeres (ST), with significantly different treatment completion rates of 0.80 (95%CI [0.71-0.89]) and 0.59 (95%CI [0.41-0.76]), respectively (odds ratio [OR]=2.8, p=0.02). ST patients were at higher risk of serious adverse events (SAE, OR=2.7; p=0.02) and had more unplanned hospital admissions (OR=2.1; p=0.08). After adjustment on FIGO stage, TL shorter than 6 kb was a risk factor of premature death (HR=1.57; p=0.06). Conclusion This exploratory study identifies TL as predictive factor of decreased treatment completion, SAE risk, unplanned hospital admissions and OS after adjustment on FIGO stage.
Collapse
Affiliation(s)
- Claire Falandry
- Geriatrics and Oncology Unit, HCL Cancer Institute, LBMC, CarMEN Laboratory, Lyon 1 University, Lyon, France
| | - Béatrice Horard
- LBMC, ENS/Lyon, Lyon 1 University,CGphiMC Lyon 1 University, Lyon, France
| | - Amandine Bruyas
- Oncology Unit, Lyon Sud University Hospital, Lyon University, Pierre-Bénite, France
| | - Eric Legouffe
- Clinique Valdegour, Department of Medical Oncology, Nîmes, France
| | - Jacques Cretin
- Clinique Bonnefon, Oncology and Radiotherapy Department, Alès, France
| | - Jérôme Meunier
- Centre Hospitalier Régional d'Orléans, Department of Medical Oncology, Orléans, France
| | - Jérôme Alexandre
- Paris Descartes University, AP-HP, Hôpitaux Universitaires Paris Centre, Site Hôtel Dieu, Paris, France
| | - Valérie Delecroix
- Clinique Mutualiste de l'Estuaire, Cité Sanitaire, Department of Medical Oncology, Saint-Nazaire, France
| | - Michel Fabbro
- Institut du Cancer Montpellier, Medical Oncology, Montpellier, France
| | | | | | - Eric Pujade-Lauraine
- Paris Descartes University, AP-HP, Hôpitaux Universitaires Paris Centre, Site Hôtel Dieu, Paris, France
| | - Eric Gilson
- LBMC, Lyon 1 University, IRCAN, CNRS UMR 7284, INSERM U1081, Nice Sophia-Antipolis University; CHU of Nice, Nice, France
| | - Gilles Freyer
- HCL Cancer Institute, Department of Medical Oncology, Lyon 1 University, Lyon, France
| |
Collapse
|
48
|
Kaya Z, Akkiprik M, Karabulut S, Peker I, Gullu Amuran G, Ozmen T, Gulluoglu BM, Kaya H, Ozer A. Comparison of telomere length and insulin-like growth factor-binding protein 7 promoter methylation between breast cancer tissues and adjacent normal tissues in Turkish women. J Clin Lab Anal 2016; 31. [PMID: 27775181 DOI: 10.1002/jcla.22083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/18/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Both insulin-like growth factor-binding protein 7 (IGFBP7) and telomere length (TL) are associated with proliferation and senescence of human breast cancer. This study assessed the clinical significance of both TL and IGFBP7 methylation status in breast cancer tissues compared with adjacent normal tissues. We also investigated whether IGFBP7 methylation status could be affecting TL. METHODS Telomere length was measured by quantitative PCR to compare tumors with their adjacent normal tissues. The IGFBP7 promoter methylation status was evaluated by methylation-specific PCR and its expression levels were determined by western blotting. RESULTS Telomeres were shorter in tumor tissues compared to controls (P<.0001). The mean TL was higher in breast cancer with invasive ductal carcinoma (IDC; n=72; P=.014) compared with other histological type (n=29), and TL in IDC with HER2 negative (n=53; P=.017) was higher than TL in IDC with HER2 positive (n=19). However, telomeres were shortened in advanced stages and growing tumors. IGFBP7 methylation was observed in 90% of tumor tissues and 59% of controls (P=.0002). Its frequency was significantly higher in IDC compared with invasive mixed carcinoma (IMC; P=.002) and it was not correlated either with protein expression or the other clinicopathological parameters. CONCLUSION These results suggest that IGFBP7 promoter methylation and shorter TL in tumor compared with adjacent tissues may be predictive biomarkers for breast cancer. Telomere maintenance may be indicative of IDC and IDC with HER2 (-) of breast cancer. Further studies with larger number of cases are necessary to verify this association.
Collapse
Affiliation(s)
- Zehra Kaya
- Medical Biology Department, School of Medicine, Marmara University, Istanbul, Turkey.,Medical Biology Department, School of Medicine, Yüzüncü Yıl University, Van, Turkey
| | - Mustafa Akkiprik
- Medical Biology Department, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sevgi Karabulut
- Medical Biology Department, School of Medicine, Marmara University, Istanbul, Turkey.,Health Services Vocational School, Bayburt University, Bayburt, Turkey
| | - Irem Peker
- Medical Biology Department, School of Medicine, Marmara University, Istanbul, Turkey
| | - Gokce Gullu Amuran
- Medical Biology Department, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tolga Ozmen
- General Surgery, School of Medicine, Marmara University, Istanbul, Turkey
| | | | - Handan Kaya
- Pathology Department, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ayse Ozer
- Medical Biology Department, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
49
|
Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, Hardy N, Mihalek AD, Lingala S, Kim YJ, Yao J, Jones E, Gochuico BR, Heller T, Wu CO, Calado RT, Scheinberg P, Young NS. Danazol Treatment for Telomere Diseases. N Engl J Med 2016; 374:1922-31. [PMID: 27192671 PMCID: PMC4968696 DOI: 10.1056/nejmoa1515319] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic defects in telomere maintenance and repair cause bone marrow failure, liver cirrhosis, and pulmonary fibrosis, and they increase susceptibility to cancer. Historically, androgens have been useful as treatment for marrow failure syndromes. In tissue culture and animal models, sex hormones regulate expression of the telomerase gene. METHODS In a phase 1-2 prospective study involving patients with telomere diseases, we administered the synthetic sex hormone danazol orally at a dose of 800 mg per day for a total of 24 months. The goal of treatment was the attenuation of accelerated telomere attrition, and the primary efficacy end point was a 20% reduction in the annual rate of telomere attrition measured at 24 months. The occurrence of toxic effects of treatment was the primary safety end point. Hematologic response to treatment at various time points was the secondary efficacy end point. RESULTS After 27 patients were enrolled, the study was halted early, because telomere attrition was reduced in all 12 patients who could be evaluated for the primary end point; in the intention-to-treat analysis, 12 of 27 patients (44%; 95% confidence interval [CI], 26 to 64) met the primary efficacy end point. Unexpectedly, almost all the patients (11 of 12, 92%) had a gain in telomere length at 24 months as compared with baseline (mean increase, 386 bp [95% CI, 178 to 593]); in exploratory analyses, similar increases were observed at 6 months (16 of 21 patients; mean increase, 175 bp [95% CI, 79 to 271]) and 12 months (16 of 18 patients; mean increase, 360 bp [95% CI, 209 to 512]). Hematologic responses occurred in 19 of 24 patients (79%) who could be evaluated at 3 months and in 10 of 12 patients (83%) who could be evaluated at 24 months. Known adverse effects of danazol--elevated liver-enzyme levels and muscle cramps--of grade 2 or less occurred in 41% and 33% of the patients, respectively. CONCLUSIONS In our study, treatment with danazol led to telomere elongation in patients with telomere diseases. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT01441037.).
Collapse
Affiliation(s)
- Danielle M Townsley
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Bogdan Dumitriu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Delong Liu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Angélique Biancotto
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Barbara Weinstein
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Christina Chen
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Nathan Hardy
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Andrew D Mihalek
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Shilpa Lingala
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Yun Ju Kim
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Jianhua Yao
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Elizabeth Jones
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Bernadette R Gochuico
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Theo Heller
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Colin O Wu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Rodrigo T Calado
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Phillip Scheinberg
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Neal S Young
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| |
Collapse
|
50
|
Yeap BB, Knuiman MW, Divitini ML, Hui J, Arscott GM, Handelsman DJ, McLennan SV, Twigg SM, McQuillan B, Hung J, Beilby JP. Epidemiological and Mendelian Randomization Studies of Dihydrotestosterone and Estradiol and Leukocyte Telomere Length in Men. J Clin Endocrinol Metab 2016; 101:1299-306. [PMID: 26789780 DOI: 10.1210/jc.2015-4139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT Advancing age is accompanied by an accumulation of ill health and shortening of chromosomal telomeres signifying biological aging. T is metabolized to DHT by 5α-reductase (SRD5A2) and to estradiol (E2) by aromatase (CYP19A1). Telomerase preserves telomeres, and T and E2 regulate telomerase expression and activity in vitro. OBJECTIVE The objective of the study was to establish whether circulating T or its metabolites, DHT or E2, and single-nucleotide polymorphisms in SRD5A2 or CYP19A1 associate with leucocyte telomere length (LTL) in men. PARTICIPANTS AND METHODS Early-morning serum T, DHT, and E2 were assayed using mass spectrometry, and SRD5A2 and CYP19A1 single-nucleotide polymorphisms and LTL analyzed by PCR in 980 men from the Western Australian Busselton Health Survey who participated in the study. LTL was expressed as the T/S ratio. RESULTS Men were aged (mean ± SD) 53.7 ± 15.6 years. LTL decreased linearly with age, from the T/S ratio of 1.89 ± 0.41 at younger than 30 years to 1.50 ± 0.49 at 70 to younger than 80 years (r = -0.225, P < .0001). After adjustment for age, DHT and E2 were positively correlated with LTL (DHT, r = 0.069, P = .030; E2, r = 0.068, P = .034). The SRD5A2 rs9282858 polymorphism was associated with serum DHT but not with LTL. Three dominant alleles of CYP19A1 were each associated with lower serum E2 and shorter LTL: rs2899470 T (E2, 59.3 vs 68.6 pmol/L, P < .0001; T/S ratio, 1.54 vs 1.62, P = .045), rs10046 C (60.5 vs 68.1 pmol/L, P = .0005, 1.54 vs 1.62, P = .035), and rs700518 A (59.9 vs 68.9 pmol/L, P < .0001, 1.54 vs 1.63, P = .020). A single-copy haplotype C/T/I/A/T rs10046/rs2899470/rs11575899/rs700518/rs17703883 (52% prevalence) was associated with both lower E2 and shorter LTL. CONCLUSIONS In men, serum DHT and E2 correlate with LTL independently of age. Aromatase gene polymorphisms include three dominant alleles that are associated with both lower serum E2 and shorter LTL. E2 influences telomere length in vivo, thus warranting further studies to examine whether hormonal interventions might slow biological aging in men.
Collapse
Affiliation(s)
- Bu B Yeap
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Matthew W Knuiman
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark L Divitini
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jennie Hui
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gillian M Arscott
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - David J Handelsman
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Susan V McLennan
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen M Twigg
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Brendan McQuillan
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Joseph Hung
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| | - John P Beilby
- School of Medicine and Pharmacology (B.B.Y., B.M., J.Hun.), School of Population Health (M.W.K., M.L.D.), and School of Pathology and Laboratory Medicine (J.P.B.), University of Western Australia, Crawley, Western Australia 6009, Australia; PathWest Laboratory Medicine (J.Hui., G.M.A., J.P.B.) and Department of Cardiovascular Medicine (B.M., J.Hun.), Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Department of Endocrinology and Diabetes (B.B.Y.), Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia; ANZAC Research Institute (D.J.H.), Sydney, New South Wales 2138, Australia; and Department Endocrinology (S.V.M., S.M.T.), University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|