1
|
Wolfrum S, Siegert W, Rubio-Cervantes I, Feuerstein D, Camarinha-Silva A, Rodehutscord M. Effects of feed particle size, calcium concentration and phytase supplementation on InsP 6 degradation in broiler chickens fed pelleted diets. Br Poult Sci 2025; 66:245-255. [PMID: 39417807 DOI: 10.1080/00071668.2024.2412096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
1. The objective of the trial was to study the single and interactive effects of feed particle size in pelleted feed, dietary calcium (Ca) concentration and microbial phytase supplementation in broiler chickens. The studied traits were myo-inositol (1,2,3,4,5,6) hexakis (dihydrogen phosphate) (InsP6) degradation, pre-caecal digestibility of phosphorus (P), Ca and amino acids (AA) and retention of P, Ca and nitrogen (N).2. Male Ross 308 broiler chickens were housed in metabolism units in groups of 10 and allocated to one of eight diets with seven pen replicates per diet. The 2 × 2 × 2-factorial arrangement included coarse and fine feed particle size (309 or 222 µm), low and high Ca concentration (4.9 and 7.2 g/kg) and without or with phytase supplementation (1,000 FTU/kg).3. Pre-caecal InsP6 disappearance was higher with coarse than fine feed particle size when no phytase was added (54 vs. 48%) but not when phytase was added (74%; p = 0.046). High dietary Ca feeds decreased pre-caecal InsP6 disappearance (67 to 59%) and P digestibility (65 to 55%; p < 0.001). Gizzard pH was lower with coarse than fine feed particle size and higher with high Ca than low Ca (p < 0.001). Pre-caecal digestibility of most AA was approximately 3.5%-points lower with high Ca without phytase compared to the other treatments (p ≤ 0.047). Coarse feed particle size caused higher pre-caecal AA digestibility than fine particle size (~2%-points; p ≤ 0.031). InsP6 disappearance in the crop increased at high Ca concentration when phytase was added (22 vs. 37%; p = 0.011).4. Coarser feed particle size in pellets increased gastrointestinal InsP6 degradation and nutrient digestibility, likely owing to effects on the gizzard functions. Additional Ca supply exerted antinutritive effects that was not compensated for by using coarser feed particles.
Collapse
Affiliation(s)
- S Wolfrum
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - W Siegert
- Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - I Rubio-Cervantes
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - A Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - M Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Salisbury F, Gous RM, Cowieson AJ, Jansen Van Rensburg C, Rochell SJ, Walters H. Evaluation of body calcium and phosphorus composition of the Cobb 700 genotype during growth. Br Poult Sci 2025; 66:116-123. [PMID: 39382394 DOI: 10.1080/00071668.2024.2394976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/04/2024] [Indexed: 10/10/2024]
Abstract
1. The amount of calcium and phosphorus in the empty, feather-free bodies of Cobb 700 breed males and females was measured from hatch to 15 weeks of age.2. A four-phase ad libitum feeding programme was used to feed 400 chicks of each sex. Feeds contained commercial levels of calcium and phosphorus which met or exceeded the requirements for energy, protein and amino acids. All birds were weighed weekly. Ten birds per sex were sampled at 0, 7, 14, 28, 42, 56, 70, 84 and 105 d of age. Defeathered birds were minced, freeze-dried and then analysed for protein, ash, calcium and phosphorus content.3. Amounts of Ca in males and females at 105 d averaged 54 and 37 g, respectively, and 105 d P content in males and females averaged 35 and 27 g, respectively. The allometry of ash, Ca and P with empty, feather-free body protein was assessed. Ash was isometric with body protein, while an allometric exponent greater than 1 was established for Ca and P with body protein.4. The allometric models and means for Ca and P relative to body protein were compared with models and means found in the literature. Comparison of the Ca/protein ratios with previous data suggested that modern broilers may not reach their potential bone mineral deposition with current dietary guidelines, even when growth rates were maximised.5. Theoretical allometric relationships between Ca and P in bone and bone-free body and body protein have now been proposed. The allometric relationship between Ca and P and empty, feather-free body protein offers a suitable way to model the growth of these minerals in the broiler body.
Collapse
Affiliation(s)
- F Salisbury
- Department of Animal Science, University of Pretoria, Pretoria, South Africa
| | - R M Gous
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - A J Cowieson
- Department of Animal Nutrition and Health, DSM-Firmenich Nutritional Products, Kaiseraugst, Switzerland
| | | | - S J Rochell
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
3
|
Sommerfeld V, Hanauska A, Huber K, Bennewitz J, Camarinha-Silva A, Feger M, Föller M, Oster M, Ponsuksili S, Schmucker S, Seifert J, Stefanski V, Wimmers K, Rodehutscord M. Effects of myo-inositol supplementation in the diet on myo-inositol concentrations in the intestine, blood, eggs, and excreta of laying hens. Poult Sci 2025; 104:104545. [PMID: 39579515 PMCID: PMC11617940 DOI: 10.1016/j.psj.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024] Open
Abstract
The objectives of this study were to investigate whether an increased dietary myo-inositol (MI) supply translates into changes in MI concentrations and endogenous mucosal phosphatase activities in the intestine of laying hens and whether different laying hen strains respond differently to MI supplementation. The diets were corn-soybean meal-based and supplemented without (MI0) or with 1 (MI1), 2 (MI2), or 3 (MI3) g MI/kg feed. Ten hens per strain (Lohmann Brown-classic (LB) and Lohmann LSL-classic (LSL)) and diet were sacrificed at the age of 30 wk following a 4-wk stay in a metabolic unit. The blood plasma, digesta of the duodenum+jejunum and distal ileum, mucosa of the duodenum, and eggs were collected at wk 30. The concentration of MI in the blood plasma was increased by MI supplementation (P < 0.001); however, that of MI3 did not further increase compared with MI2. The concentration of MI in the duodenum+jejunum and ileum increased steadily (P < 0.001). The MI concentration in the duodenum+jejunum was higher in LB than in LSL hens (P = 0.017). The MI concentration in egg yolk was increased by MI supplementation (P < 0.001) and was higher in LB than in LSL hens (P = 0.015). Strain or diet did not affect mucosal phosphatase activity. Myo-inositol flow at the terminal ileum and postileal disappearance increased with each increment in MI supplementation (P < 0.001) and was higher in LB than in LSL hens (P ≤ 0.041). Regression analysis indicated that, on average, 84% of supplemented MI was retained in the body or metabolized and excreted in a different form. Based on the measured MI concentrations in the blood and eggs, dietary MI was not completely absorbed in the small intestine and, to a different extent, in the two laying hen strains. A higher dietary MI supply was followed by higher intestinal absorption or metabolism by microorganisms. The fate of supplemented MI and its relevance to birds warrant further research.
Collapse
Affiliation(s)
- Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anna Hanauska
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Martina Feger
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Sonja Schmucker
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
4
|
Venter KM, Angel R, Fourie J, Plumstead PW, Li W, Enting H, Dersjant-Li Y, Jansen van Rensburg C. Determination of Calcium and Phosphorus Digestibility of Individual Feed Ingredients as Affected by Limestone, in the Presence and Absence of Phytase in Broilers. Animals (Basel) 2024; 14:3603. [PMID: 39765507 PMCID: PMC11672401 DOI: 10.3390/ani14243603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
To begin formulating broiler diets on a digestible calcium (Ca) basis, robust Ca digestibility values for ingredients and factors affecting this digestibility are needed. This study had three main objectives: (1) determine the standardized ileal digestibility (SID) of Ca and phosphorus (P) for seven plant-based feed ingredients in broilers, (2) assess the impact of phytate source on SID Ca from limestone (LS), and (3) evaluate the effect of phytase on SID Ca and P for the different ingredients. Two experiments were conducted to satisfy these objectives. In Experiment 1, a 4 × 2 × 2 factorial design was used, with four plant-based feed ingredients (corn, wheat, sorghum, and full-fat soybean meal (FFS)), two LS inclusions in the diet (absence of LS and the inclusion of LS required to achieve 0.65% Ca in the final diet), and two phytase doses (0 and 1000 FTU/kg diet). Experiment 2 utilized a 3 × 2 × 2 factorial design with three plant-based ingredients (soybean meal (SBM), rapeseed meal (RSM), and sunflower meal (SFM)), two LS inclusions in the diet (absence of LS and the inclusion of LS required to achieve 0.65% Ca in the final diet), and two phytase doses (0 and 1000 FTU/kg diet). The trial had eight replicate pens (6 broilers/replicate) per treatment. Data were analyzed using a factorial analysis in JMP Pro 16.0 with means separation performed when p < 0.05, using Tukey HSD. The SID Ca in the absence of phytase for wheat (72.9%) and FFS (69.9%) was higher (p < 0.05) than for sorghum (54.5%) and corn (46.3%). In Experiment 2, the SID Ca in the absence of phytase from SFM (61.0%) was higher (p < 0.01) than RSM (42.7%) and SBM (46.8%). The SID Ca from added LS was affected by the ingredient, with diets containing wheat and FFS resulting in the lowest (p < 0.05) SID Ca versus those containing corn and sorghum irrespective of phytase dose in Experiment 1, and the lowest (p < 0.05) for SBM and RSM vs. SFM in the absence of phytase in Experiment 2. Phytase supplementation increased (p < 0.01) SID Ca and SID P across all feed ingredients compared to non-supplemented diets. There was a two-way interaction (p < 0.01) of LS addition and ingredient on SID P in both experiments. The results of this study provide SID Ca and SID P values from the selected ingredients and show that phytate from different ingredients reacts differently with Ca from LS and should be considered when developing SID coefficients of Ca and P for use in commercial broiler feed formulation. The SID coefficients of Ca and P for the individual feed ingredients evaluated in this study will allow for the further development and transition towards dCa and dP in commercial feed formulation.
Collapse
Affiliation(s)
- Kyle Marcus Venter
- Neuro Livestock Research, Kameeldrift, Brits 0250, South Africa; (K.M.V.); (J.F.); (P.W.P.)
- Department of Animal Science, University of Pretoria, Pretoria 0002, South Africa;
| | - Roselina Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Jamie Fourie
- Neuro Livestock Research, Kameeldrift, Brits 0250, South Africa; (K.M.V.); (J.F.); (P.W.P.)
- Department of Animal Science, University of Pretoria, Pretoria 0002, South Africa;
| | | | - Wenting Li
- Danisco Animal Nutrition & Health (IFF), Wilmington, DE 19803, USA;
| | - Henk Enting
- Cargill Animal Nutrition and Health, Veilingweg 23, 5334 LD Velddriel, The Netherlands;
| | - Yueming Dersjant-Li
- Danisco Animal Nutrition & Health (IFF), 2342 BH Oegstgeest, The Netherlands;
| | | |
Collapse
|
5
|
Sommerfeld V, Bennewitz J, Camarinha-Silva A, Feger M, Föller M, Huber K, Oster M, Ponsuksili S, Schmucker S, Seifert J, Stefanski V, Wimmers K, Rodehutscord M. Effects of feeding diets without mineral P supplement on intestinal phytate degradation, blood concentrations of Ca and P, and excretion of Ca and P in two laying hen strains before and after onset of laying activity. Poult Sci 2024; 103:104407. [PMID: 39489035 PMCID: PMC11566335 DOI: 10.1016/j.psj.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
The objective of this study was to characterize intestinal phytate degradation and mineral utilization by 2 laying hen strains before and after the onset of egg laying using diets without or with a mineral phosphorus (P) supplement. One offspring of 10 roosters per strain (Lohmann Brown-classic [LB] and Lohmann LSL-classic [LSL]) was sacrificed before (wk 19) and after (wk 24) the onset of egg-laying activity and following 4 wk placement in a metabolic unit. Diets were corn-soybean meal-based and without supplemented P (P-) or with 1 g/kg supplemented P (P+) from monocalcium phosphate. In wk 19 and 24, the blood plasma and digesta of duodenum+jejunum and distal ileum were collected. The concentration of P in blood plasma was higher in hens fed P+ than P- (P < 0.001). In duodenum + jejunum and ileum content, the concentrations of InsP6, Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 were lower in P- than in P+ (P ≤ 0.009). In duodenum+jejunum, the concentrations of InsP6, Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 were lower in wk 24 than 19 and lower in LSL than LB hens (P < 0.001). The concentration of myo-inositol (MI) in duodenum + jejunum content was lower in wk 19 than 24 (P < 0.001). Following a 4-d total excreta collection, the retained amount of P was higher in P+ than P- (P < 0.001). Phosphorus retention was lower in LB hens fed P- than in other treatments (P × strain: P = 0.039). In the jejunal tissue, some genes related to intracellular InsP metabolism were higher expressed in LB than LSL hens. The renunciation of mineral P increased endogenous phytate degradation, but more P was retained with supplemented P. Differences in endogenous phytate degradation between the periods before and after the onset of egg laying might be attributed to different Ca concentrations in intestinal digesta caused by different Ca needs in both periods.
Collapse
Affiliation(s)
- Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | | | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, 70599, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, 70599, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Sonja Schmucker
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - Volker Stefanski
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany.
| |
Collapse
|
6
|
Sharma R, Mittal A, Gupta V, Aggarwal NK. Production, purification and characterization of phytase from Pichia kudriavevii FSMP-Y17and its application in layers feed. Braz J Microbiol 2024; 55:3097-3115. [PMID: 39162933 PMCID: PMC11711429 DOI: 10.1007/s42770-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Phytase, recognized for its ability to enhance the nutritional value of phytate-rich foods, has has gained significant prominence. The production of this enzyme has been significantly boosted while preserving economic efficiency by utilizing natural substrates and optimizing essential factors. This study focuses on optimizing phytase production through solid-state fermentation and evaluating its effectiveness in enhancing nutrient utilization in chicken diets. OBJECTIVE The objective is to optimize phytase production via solid-state fermentation, characterize purified phytase properties, and assess its impact on nutrient utilization in chicken diets. Through these objectives, we aim to deepen understanding of phytase's role in poultry nutrition and contribute to more efficient feed formulations for improved agricultural outcomes. METHODOLOGY We utilized solid-state fermentation with Pichia kudriavzevii FSMP-Y17 yeast on orange peel substrate, optimizing variables like temperature, pH, incubation time, and supplementing with glucose and ammonium sulfate. Following fermentation, we purified the phytase enzyme using standard techniques, characterizing its properties, including molecular weight, optimal temperature and pH, substrate affinity, and kinetic parameters. RESULTS The optimized conditions yielded a remarkable phytase yield of 7.0 U/gds. Following purification, the enzyme exhibited a molecular weight of 64 kDa and displayed optimal activity at 55 °C and pH 5.5, with kinetic parameters (Km = 3.39 × 10-3 M and a Vmax of 7.092 mM/min) indicating efficient substrate affinity. CONCLUSION The addition of purified phytase to chicken diets resulted in significant improvements in nutrient utilization and overall performance, including increased feed intake, improved feed conversion ratio, enhanced bird growth, better phosphorus retention, and improved egg production and quality. By addressing challenges associated with phytate-rich diets, such as reduced nutrient availability and environmental pollution, phytase utilization promotes animal welfare and sustainability in poultry production.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Arpana Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Varun Gupta
- Gobind Ballabh Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
7
|
Venter K, Li W, Angel R, Plumstead PW, Proszkowiec-Weglarz M, Enting H, Ellestad LE. Calcium and phosphorus digestibility in broilers as affected by varying phytate concentrations from corn. Poult Sci 2024; 103:104191. [PMID: 39217662 PMCID: PMC11639728 DOI: 10.1016/j.psj.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Dietary phytate P (PP) concentration impacts Ca and P digestibility in broilers. Research was conducted to determine the impact of increasing concentration of dietary PP, with and without phytase, on broiler standardized ileal digestibility (SID) of Ca and P. Digestible (Dig) Ca and P were calculated by multiplying SID and the analyzed dietary Ca and P concentrations. The experiment was a factorial arrangement of 2 phytase (0 and 1,000 U/kg) and 4 PP (0.16, 0.23, 0.29, and 0.34%) concentrations. Treatments were fed for 36 h from 20 to 22 d of age (4 b/pen, n ≥ 7 replicate pens/treatment). Different ratios of corn and corn germ were used to achieve the desired PP concentrations. A limestone with 800 µm geometric mean diameter was used as the sole Ca source to achieve 0.7% Ca in the final diets (96% Ca from limestone). An additional diet was fed that was N, Ca- and P-free, for the determination of endogenous losses of each nutrient. Distal ileal digesta were pooled from all birds in a pen. There were no interactions between PP and phytase on SID Ca or Dig Ca from limestone. Irrespective of phytase inclusion, increasing PP from 0.16 to 0.34% decreased SID Ca from 53.8 to 38.1% (P < 0.05). The SID Ca averaged 41.5 and 51.4% in diets containing 0 and 1000 U phytase/kg, respectively, across all PP concentrations (P < 0.05). Interactions were seen between PP and phytase on SID and Dig P (P < 0.05) with SID P of 31.1, 24.0, 20.1, and 16.3% for broilers fed 0.16, 0.23, 0.29, and 0.34% PP diets without phytase, respectively. When phytase was included at 1000 U/kg, SID P was 89.9, 87.5, 73.9 and 60.4% for diets containing 0.16, 0.23, 0.29 and 0.34% PP, respectively (P < 0.05). Overall, phytase improved SID Ca and P independent of PP concentration. However, with increasing PP concentration, both SID Ca and P were negatively affected.
Collapse
Affiliation(s)
- K Venter
- Department of Wildlife and Animal Sciences, University of Pretoria, Hatfield 0028, South Africa; Neuro Livestock Research, Kameeldrift, Brits 0250, South Africa
| | - W Li
- Danisco Animal Nutrition & Health (IFF), Wilmington, DE 19803, USA.
| | - R Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - P W Plumstead
- Neuro Livestock Research, Kameeldrift, Brits 0250, South Africa
| | - M Proszkowiec-Weglarz
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, Beltsville, MD 20705, USA
| | - H Enting
- Cargill Animal Nutrition and Health, Veilingweg 5334, The Netherlands
| | - L E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Philippi H, Sommerfeld V, Monteiro A, Rodehutscord M, Olukosi OA. Impact of Trace Mineral Source and Phytase Supplementation on Prececal Phytate Degradation and Mineral Digestibility, Bone Mineralization, and Tissue Gene Expression in Broiler Chickens. Biol Trace Elem Res 2024; 202:5235-5250. [PMID: 38329568 PMCID: PMC11442561 DOI: 10.1007/s12011-024-04076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The objective of this study was to determine how different sources of Zn, Mn, and Cu in the feed without and with phytase affect prececal myo-inositol hexakisphosphate (InsP6) breakdown to myo-inositol (MI), prececal P digestibility, bone mineralization, and expression of mineral transporters in the jejunum of broiler chickens. A total of 896 male broiler chicks (Cobb 500) were distributed to 7 diets with 8 replicate pens (16 birds per floor pen). Experimental diets were fed from day 0 to 28. Diets were without or with phytase supplementation (0 or 750 FTU/kg) and were supplemented with three different trace mineral sources (TMS: sulfates, oxides, or chelates) containing 100 mg/kg Zn, 100 mg/kg Mn, and 125 mg/kg Cu. Prececal InsP6 disappearance and P digestibility were affected by interaction (phytase × TMS: P ≤ 0.010). In diets without phytase supplementation, prececal InsP6 disappearance and P digestibility were greater (P ≤ 0.001) in birds fed chelated minerals than in birds fed sulfates or oxides. However, no differences were observed between TMS in diets with phytase supplementation. Ileal MI concentration was increased by exogenous phytase but differed depending on TMS (phytase × TMS: P ≤ 0.050). Tibia ash concentration as well as Zn and Mn concentration in tibia ash were increased by phytase supplementation (P < 0.010), but the Cu concentration in tibia ash was not (P > 0.050). Gene expression of the assayed mineral transporters in the jejunum was not affected by diet (P > 0.050), except for Zn transporter 5 (phytase × TMS: P = 0.024). In conclusion, the tested TMS had minor effects on endogenous phytate degradation in the digestive tract of broiler chickens. However, in phytase-supplemented diets, the choice of TMS was not relevant to phytate degradation under the conditions of this study.
Collapse
Affiliation(s)
- Hanna Philippi
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | | | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
De Souza TPP, Cantão LXS, Rodrigues MQRB, Gonçalves DB, Nagem RAP, Rocha REO, Godoi RR, Lima WJN, Galdino AS, Minardi RCDM, Lima LHFD. Glycosylation and charge distribution orchestrates the conformational ensembles of a biotechnologically promissory phytase in different pHs - a computational study. J Biomol Struct Dyn 2024; 42:5030-5041. [PMID: 37325852 DOI: 10.1080/07391102.2023.2223685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Phytases [myo-inositol(1,2,3,4,5,6) hexakisphosphate phosphohydrolases] are phytate-specific phosphatases not present in monogastric animals. Nevertheless, they are an essential supplement to feeding such animals and for human special diets. It is crucial, hence, the biotechnological use of phytases with intrinsic stability and activity at the acid pHs from gastric environments. Here we use Metadynamics (METADY) simulations to probe the conformational space of the Aspergillus nidulans phytase and the differential effects of pH and glycosylation in this same space. The results suggest that strategic combinations of pH and glycosylation affect the stability of native-like conformations and alternate these structures from a metastable to a stable profile. Furthermore, the protein segments previously reported as more thermosensitive in phytases from this family present a pivotal role in the conformational changes at different conditions, especially H2, H5-7, L8, L10, L12, and L17. Also, the glycosylations and the pH-dependent charge balance modulate the mobility and interactions at these same regions, with consequences for the surface solvation and active site exposition. Finally, although the glycosylations have stabilized the native structure and improved the substrate docking at all the studied pHs, the data suggest a higher phytate receptivity at catalytic poses for the unglycosylated structure at pH 6.5 and the glycosylated one at pH 4.5. This behavior agrees with the exact change in optimum pH reported for this enzyme, expressed on low or high glycosylating systems. We hope the results and insights presented here will be helpful in future approaches for rational engineering of technologically promising phytases and intelligent planning of their heterologous expression systems and conditions for use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thaís P P De Souza
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Letícia Xavier Silva Cantão
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Bonoto Gonçalves
- Department of Biosystems Engineering, Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Ronaldo Alves Pinto Nagem
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Eduardo Oliveira Rocha
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| | - Renato Ramos Godoi
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - William James Nogueira Lima
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Campus Regional de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Raquel Cardoso de Melo Minardi
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Henrique França de Lima
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| |
Collapse
|
10
|
Philippi H, Sommerfeld V, Monteiro A, Rodehutscord M, Olukosi OA. Bone characteristics, pre-caecal phytate degradation, mineral digestibility and tissue expression were marginally affected by zinc level and source in phytase-supplemented diets in 21-day-old broiler chickens. Br Poult Sci 2024; 65:331-341. [PMID: 38393942 DOI: 10.1080/00071668.2024.2311290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
1. This study determined the effect of dietary Zn concentration and source in phytase-supplemented diets on bone mineralisation, gastrointestinal phytate breakdown, mRNA-level gene expression (in jejunum, liver and Pectoralis major muscle) and growth performance in broiler chickens.2. Male Cobb 500 broilers were housed in floor pens (d 0-d 21) to test seven treatments with six replicate pens (12 birds per pen). Diets were arranged in a 2 × 3 + 1-factorial arrangement. The experimental factors were Zn source (Zn-oxide (ZnO) or Zn-glycinate (ZnGly) and Zn supplementation level (10, 30 or 50 mg/kg of diet). A maize-soybean meal-based diet without supplementation and formulated to contain 28 mg Zn/kg (analysed to be 35 mg Zn/kg), served as a control.3. Zinc source and level did not influence (p > 0.05) bone ash concentration and quantity or mineral concentrations in bone ash. Tibia thickness was greater in the treatment ZnO10 than in the treatments ZnO30 and ZnGly50 (Zn level × Zn source: p = 0.036), but width and breaking strength were not affected.4. Pre-caecal P digestibility and concentrations of phytate breakdown products in the ileum, except for InsP5, were not affected by Zn source or level. Only the expression of EIF4EBP1 (eukaryotic translation initiation factor 4E-binding protein 1) and FBXO32 (F-box only protein 32) in Pectoralis major muscle was affected by source, where expression was increased in ZnO compared to ZnGly diets (p < 0.05).5. In conclusion, Zn level and source did not affect gastrointestinal phytate degradation and bone mineralisation in phytase-supplemented diets. The intrinsic Zn concentration appeared to be sufficient for maximum bone Zn deposition under the conditions of the present study but requires validation in longer-term trials.
Collapse
Affiliation(s)
- H Philippi
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - V Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - M Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - O A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Haetinger VS, Sung JY, Adedokun SA, Dozier WA, Parsons CM, Rodehutscord M, Adeola O. Ileal phosphorus digestibility of soybean meal for broiler chickens remains consistent across institutions in a collaborative study regardless of non-phytate phosphorus concentration in the pre-experimental starter diet. Poult Sci 2024; 103:103602. [PMID: 38484566 PMCID: PMC10950890 DOI: 10.1016/j.psj.2024.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024] Open
Abstract
The same experimental protocol was used in 4 institutions to evaluate the impact of non-phytate phosphorus (nPP) concentration in the starter diet on regression method-derived ileal P digestibility of soybean meal (SBM) during the subsequent grower phase. A total of 1,536 Ross 308 male broiler chickens on d 0 post hatching were allotted to 2 pre-experimental starter diets that contained 3.5 or 4.5 g nPP/kg (96 replicate cages per diet, 8 birds per cage) for 18 d. Subsequently, 576 birds from each starter diet were selected and allocated to 3 experimental semi-purified grower diets containing 400, 510, or 620 g SBM/kg (32 replicate cages per diet, 6 birds per cage) for 3 d until collection of ileal digesta. Statistical analysis was conducted as a randomized complete block design with the starter period as whole plot and the grower period as split-plot. The only significant 2-way interaction was between grower diet and experimental institution (P < 0.05) on BW gain and gain to feed ratio. The main effect of institution and grower diet impacted (P < 0.05) feed intake, the digestibility of DM, P, and calcium, and disappearance of inositol hexakisphosphate (InsP6) in the grower diets. Birds fed the 3.5 g nPP/kg starter diet had lower (P < 0.05) BW gain and feed intake during the grower period, but presented higher (P < 0.05) digestibility of P and disappearance of InsP6 compared with the birds that were fed the 4.5 g nPP/kg starter diet. Regression method-derived ileal P digestibility of SBM was determined to be 46 or 42% for the respective 3.5 or 4.5 g nPP/kg pre-experimental starter diet and was not affected by the nPP concentration or by the institution. In conclusion, the experimental protocol used in the current study resulted in similar estimates across multiple institutions and is thus endorsed for future application in studies that aim to expand the database of digestible P content in plant source feed ingredients.
Collapse
Affiliation(s)
- V S Haetinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Y Sung
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - S A Adedokun
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - W A Dozier
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - C M Parsons
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - O Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Walk CL, Mullenix GJ, Maynard CW, Greene ES, Maynard C, Ward N, Dridi S. Novel 4th-generation phytase improves broiler growth performance and reduces woody breast severity through modulation of muscle glucose uptake and metabolism. Front Physiol 2024; 15:1376628. [PMID: 38559573 PMCID: PMC10978611 DOI: 10.3389/fphys.2024.1376628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
The objective of the present study was to determine the effect of a novel (4th generation) phytase supplementation as well as its mode of action on growth, meat quality, and incidence of muscle myopathies. One-day old male broilers (n = 720) were weighed and randomly allocated to 30 floor pens (24 birds/pen) with 10 replicate pens per treatment. Three diets were fed from hatch to 56- days-old: a 3-phase corn-soy based diet as a positive control (PC); a negative control (NC) formulated to be isocaloric and isonitrogenous to the PC and with a reduction in Ca and available P, respectively; and the NC supplemented with 2,000 phytase units per kg of diet (NC + P). At the conclusion of the experiment, birds fed with NC + P diet were significantly heavier and had 2.1- and 4.2-points better feed conversion ratio (FCR) compared to birds offered NC and PC diets, respectively. Processing data showed that phytase supplementation increased live weight, hot carcass without giblets, wings, tender, and skin-on drum and thigh compared to both NC and PC diets. Macroscopic scoring showed that birds fed the NC + P diet had lower woody breast (WB) severity compared to those fed the PC and NC diets, however there was no effect on white striping (WS) incidence and meat quality parameters (pH, drip loss, meat color). To delineate its mode of action, iSTAT showed that blood glucose concentrations were significantly lower in birds fed NC + P diet compared to those offered PC and NC diets, suggesting a better glucose uptake. In support, molecular analyses demonstrated that the breast muscle expression (mRNA and protein) of glucose transporter 1 (GLUT1) and glucokinase (GK) was significantly upregulated in birds fed NC + P diet compared to those fed the NC and PC diets. The expression of mitochondrial ATP synthase F0 subunit 8 (MT-ATP8) was significantly upregulated in NC + P compared to other groups, indicating intracellular ATP abundance for anabolic pathways. This was confirmed by the reduced level of phosphorylated-AMP-activated protein kinase (AMPKα1/2) at Thr172 site, upregulation of glycogen synthase (GYS1) gene and activation of mechanistic target of rapamycin and ribosomal protein S6 kinase (mTOR-P70S6K) pathway. In conclusion, this is the first report showing that in-feed supplementation of the novel phytase improves growth performance and reduces WB severity in broilers potentially through enhancement of glucose uptake, glycolysis, and intracellular ATP production, which used for muscle glycogenesis and protein synthesis.
Collapse
Affiliation(s)
| | - Garrett J. Mullenix
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Craig W. Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elisabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Clay Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nelson Ward
- DSM Nutritional Products, Jerusalem, OH, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
13
|
Walk CL, Osunbami OT, Adeola O. Description of 3 failed attempts to estimate the calcium equivalency of phytase for growth performance and tibia ash of broiler chickens when using graded dietary levels of limestone. Poult Sci 2024; 103:103330. [PMID: 38113707 PMCID: PMC10770738 DOI: 10.1016/j.psj.2023.103330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
Three broiler experiments were conducted to estimate the Ca equivalency of a novel phytase using direct and indirect methods. All 3 experiments employed 4 concentrations of limestone to create 4 reference diets, deficient in nonphytate P, with increasing dietary Ca. Phytase was supplemented to the lowest Ca reference diet at 350, 700, 1,400, or 2,800 FYT/kg in experiment (Exp.) 1 and Exp. 2 and at 500, 1,000, 2,000, or 4,000 FYT/kg in Exp. 3. Broilers were fed from d 8 to 10 and 20 to 24, 19 to 21, or 7 to 10 and 7 to 21 posthatching in Exp. 1, 2, or 3, respectively. Diet did not affect growth performance or tibia ash in Exp. 1. Reducing the dietary Ca linearly (P < 0.05) increased body weight gain (BWG) and feed intake (FI) in Exp. 2 or Exp. 3. Feed conversion ratio (FCR) was decreased (linear or quadratic, P < 0.05) as dietary Ca was reduced in Exp. 2 or Exp. 3 (d 7-21). Tibia ash percent linearly (P < 0.05) decreased as dietary Ca decreased in Exp. 3 but only from d 7 to 21 and phytase increased (linear or quadratic, P < 0.05) FI and BWG, and decreased FCR. In Exp. 1 (d 8-10) and Exp. 2, apparent ileal digestibility (AID), total tract retention, and apparent digested and retained Ca or P increased (linear or quadratic, P < 0.05) as dietary Ca decreased. Phytase increased (linear or quadratic, P < 0.05) AID and apparent digested and retained Ca or P in Exp. 1 or Exp. 2. Due to the nature of the effect of dietary Ca on performance or tibia ash, it was not possible to use the indirect method to estimate the Ca equivalence of phytase in the current experiments. The total and digestible Ca equivalence of phytase could be estimated using the direct method. These experiments highlight challenges to consider when designing experiments to estimate the Ca equivalency for phytase in the future.
Collapse
|
14
|
Walk CL, Veluri S, Olukosi OA. Ileal mineral digestibility and expression of nutrient transporter genes of broiler chickens in response to variable dietary total Ca and phytase supplementation are influenced by time on experimental diet and age of the birds. Poult Sci 2024; 103:103326. [PMID: 38157789 PMCID: PMC10790082 DOI: 10.1016/j.psj.2023.103326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Two experiments were conducted to determine the impact of Ca, phytase, sampling time, and age on the digestibility (AID) of Ca and P and the expression of their transporters. Cobb 500 male chicks (N = 600) were used in each experiment and allocated to cages with 10 (Exp 1, 8-11 d) or 5 (Exp 2, 21-24 d) birds/cage and 10 (Exp 1) or 20 (Exp 2) reps/treatment. Treatments were a 2 × 3 factorial arrangement, with low (LOW) or standard (STD) Ca level and 3 phytase (PHY) levels (0, 300, or 3,000 FYT/kg). Ileal digesta were collected at 8, 12, 24, 48, and 72 h, and jejunum tissues at 12, 48, and 72 h after the start of feeding experimental diets. In Exp 1, there was no effect of Ca or phytase on the AID of Ca at 8, 12, or 24 h. Phytase increased the AID of P (P < 0.05) at all time points, and the magnitude was influenced by Ca. At 12 h, the mRNA level of P (NaPi-IIb) and Ca (CaSR) transporters was greatest in the LOW diets without phytase (Ca × PHY, P ≤ 0.06). In Exp 2, the STD diet decreased the AID of Ca and P (P < 0.05) at 8, 24, 48, or 72 h. Phytase increased the AID of Ca (P < 0.05) at 8, 12, and 24 h, and decreased the AID of Ca (quadratic, P < 0.05) in the STD diet (48 h). The AID of P (P < 0.05) increased with phytase at all sampling times. At 48 h, 3,000 FYT/kg decreased (P < 0.05) mRNA expression of NaPi-IIb and Ca transporter ATP2B1 in the STD diet (Ca × PHY, P < 0.05). In conclusion, to avoid adaptation of broilers to Ca and P deficiencies, the optimal time on experimental diets is ≤ 48 h for young broilers and ≤ 24 h in older birds due to up- or down-regulation of Ca and P transporters in response to dietary Ca, P, and phytase.
Collapse
Affiliation(s)
| | - Shravani Veluri
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
15
|
Klein N, Sarpong N, Feuerstein D, Camarinha-Silva A, Rodehutscord M. Effect of dietary calcium source, exogenous phytase, and formic acid on inositol phosphate degradation, mineral and amino acid digestibility, and microbiota in growing pigs. J Anim Sci 2024; 102:skae227. [PMID: 39113412 PMCID: PMC11347780 DOI: 10.1093/jas/skae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
The choice of the calcium (Ca) source in pig diets and the addition of formic acid may affect the gastrointestinal inositol phosphate (InsP) degradation and thereby, phosphorus (P) digestibility in pigs. This study assessed the effects of different Ca sources (Ca carbonate, Ca formate), exogenous phytase, and chemical acidification on InsP degradation, nutrient digestion and retention, blood metabolites, and microbiota composition in growing pigs. In a randomized design, 8 ileal-cannulated barrows (24 kg initial BW) were fed 5 diets containing Ca formate or Ca carbonate as the only mineral Ca addition, with or without 1,500 FTU/kg of an exogenous hybrid 6-phytase. A fifth diet was composed of Ca carbonate with phytase but with 8 g formic acid/kg diet. No mineral P was added to the diets. Prececal InsP6 disappearance and P digestibility were lower (P ≤ 0.032) in pigs fed diets containing Ca formate. In the presence of exogenous phytase, InsP5 and InsP4 concentrations in the ileal digesta were lower (P ≤ 0.019) with Ca carbonate than Ca formate. The addition of formic acid to Ca carbonate with phytase diet resulted in greater (P = 0.027) prececal InsP6 disappearance (87% vs. 80%), lower (P = 0.001) InsP5 concentration, and greater (P ≤ 0.031) InsP2 and myo-inositol concentrations in the ileal digesta. Prececal P digestibility was greater (P = 0.004) with the addition of formic acid compared to Ca carbonate with phytase alone. Prececal amino acid (AA) digestibility of some AA was greater with Ca formate compared to Ca carbonate but only in diets with phytase (P ≤ 0.048). The addition of formic acid to the diet with Ca carbonate and phytase increased (P ≤ 0.006) the prececal AA digestibility of most indispensable AA. Exogenous phytase affected more microbial genera in the feces when Ca formate was used compared to Ca carbonate. In the ileal digesta, the Ca carbonate diet supplemented with formic acid and phytase led to a similar microbial community as the Ca formate diets. In conclusion, Ca formate reduced prececal InsP6 degradation and P digestibility, but might be of advantage in regard to prececal AA digestibility in pigs compared to Ca carbonate when exogenous phytase is added. The addition of formic acid to Ca carbonate with phytase, however, resulted in greater InsP6 disappearance, P and AA digestibility values, and changed ileal microbiota composition compared to Ca carbonate with phytase alone.
Collapse
Affiliation(s)
- Nicolas Klein
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Naomi Sarpong
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research (HoLMiR), University of Hohenheim, Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research (HoLMiR), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Promkhun K, Suwanvichanee C, Tanpol N, Katemala S, Thumanu K, Molee W, Kubota S, Uimari P, Molee A. Effect of carnosine synthesis precursors in the diet on jejunal metabolomic profiling and biochemical compounds in slow-growing Korat chicken. Poult Sci 2023; 102:103123. [PMID: 37832192 PMCID: PMC10568557 DOI: 10.1016/j.psj.2023.103123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
The slow-growing Korat chicken (KR) has been developed to provide an alternative breed for smallholder farmers in Thailand. Carnosine enrichment in the meat can distinguish KR from other chicken breeds. Therefore, our aim was to investigate the effect of enriched carnosine synthesis, obtained by the β-alanine and L-histidine precursor supplementation in the diet, on changes to metabolomic profiles and biochemical compounds in slow-growing KR jejunum tissue. Four hundred 21-day-old female KR chickens were divided into 4 experimental groups: a group with a basal diet, a group with a basal diet supplemented with 1.0% β-alanine, 0.5% L-histidine, and a mix of 1.0% β-alanine and 0.5% L-histidine. The feeding trial lasted 70 d. Ten randomly selected chickens from each group were slaughtered. Metabolic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. In total, 28 metabolites were identified. Significant changes in the concentrations of these metabolites were detected between the groups. Partial least squares discriminant analysis was used to distinguish the metabolites between the experimental groups. Based on the discovered metabolites, 34 potential metabolic pathways showed differentiation between groups, and 8 pathways (with impact values higher than 0.05, P < 0.05, and FDR < 0.05) were affected by metabolite content. In addition, biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy. Supplementation of β-alanine alone in the diet increased the β-sheets and decreased the α-helix content in the amide I region, and supplementation of L-histidine alone in the diet also increased the β-sheets. Furthermore, the relationship between metabolite contents and biochemical compounds were confirmed using principal component analysis (PCA). Results from the PCA indicated that β-alanine and L-histidine precursor group was highly positively correlated with amide I, amide II, creatine, tyrosine, valine, isoleucine, and aspartate. These findings can help to understand the relationships and patterns between the spectral and metabolic processes related to carnosine synthesis.
Collapse
Affiliation(s)
- Kasarat Promkhun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chanadda Suwanvichanee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nathawat Tanpol
- Department of Animal Production Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Sasikan Katemala
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
17
|
Philippi H, Sommerfeld V, Olukosi OA, Windisch W, Monteiro A, Rodehutscord M. Effect of dietary zinc source, zinc concentration, and exogenous phytase on intestinal phytate degradation products, bone mineralization, and zinc status of broiler chickens. Poult Sci 2023; 102:103160. [PMID: 37856908 PMCID: PMC10591006 DOI: 10.1016/j.psj.2023.103160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to determine the effect of Zn source and dietary level on intestinal myo-inositol hexakisphosphate (InsP6) disappearance, intestinal accumulation of lower InsP and myo-inositol (MI), prececal mineral digestibility, bone mineralization, and Zn status of broilers without and with exogenous phytase in the feed. Male Ross 308 broilers were allocated in groups of 10 to 8 treatments with 8 pens each. Experimental diets were fed from d 7 to d 28 and contained 33 mg/kg dry matter plant-intrinsic Zn. Experimental factors were phytase supplementation (0 or 750 FTU/kg) and Zn source (none [0 mg/kg Zn], Zn-sulfate [30 mg/kg Zn], Zn-oxide [30 mg/kg Zn]). Additional treatments with 90 mg/kg Zn as Zn-sulfate or Zn-oxide and phytase were included to test the effect of Zn level. No Zn source or Zn level effects were observed for ADG, feed conversion ratio, prececal P digestibility, intestinal InsP6 disappearance, and bone ash concentration. However, those measurements were increased by exogenous phytase (P < 0.001), except the feed conversion ratio, which was decreased (P < 0.001). Ileal MI concentrations were affected by phytase × Zn source interaction (P < 0.030). Birds receiving exogenous phytase and Zn supplementation had the highest MI concentrations regardless of exogenous Zn source, whereas MI concentrations were intermediate for birds receiving exogenous phytase only. Exogenous phytase and exogenous Zn source increased the Zn concentration in bone and blood of broilers (P < 0.001). In conclusion, measures of exogenous phytase efficacy were not affected by phytase × Zn source interaction. Further studies are needed to rule out an effect from Zn sources other than those tested in this study and to investigate the effect of Zn supplementation on endogenous phosphatases. The missing effect of increasing Zn supplementation from 30 to 90 mg/kg in phytase-supplemented diets gives reason to reconsider the Zn supplementation level used by the industry.
Collapse
Affiliation(s)
- Hanna Philippi
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Wilhelm Windisch
- Chair of Animal Nutrition, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | | | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany.
| |
Collapse
|
18
|
Moura TF, Reis MP, Horna FA, Nóbrega IPT, Bello A, Donato DCZ, White E, Desjant-Li Y, Sakomura NK. A novel consensus bacterial 6-phytase variant improves the responses of laying hens fed an inorganic phosphorus-free diet with reduced energy and nutrients from 23 to 72 wk of age. Poult Sci 2023; 102:102949. [PMID: 37540948 PMCID: PMC10407903 DOI: 10.1016/j.psj.2023.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
The objective of this study was to evaluate the effect of a novel consensus bacterial 6-phytase variant (PhyG) on egg productivity, eggshell quality, and body composition of laying hens fed inorganic phosphate-free diets with reduced energy and nutrients from 23 to 72 wk of age. Five treatments were randomly assigned, performing 28 replicates per treatment with 4 hens each, totaling 560 Hy-Line W80 birds. A positive control (PC) feed was formulated to contain adequate levels of energy and nutrients. A negative control (NC) feed was formulated without added inorganic phosphate (0.12% nonphytic phosphorus [nPP]) and reduced in Ca, Na, dig AA, and metabolizable energy in comparison with PC feed. Phytase was supplemented in the NC feed at 0, 300, 600, and 900 FTU/kg of feed. The responses evaluated were performance, egg quality, economic analysis, body composition, and tibia composition. Data were analyzed by a 2-factor (diet and age) repeated measure analysis. Overall, the feed intake, hen-day egg production, egg mass, and egg revenue were reduced by the complete removal of dicalcium phosphate (DCP) (P < 0.05). Supplement phytase in the NC diet elicits a positive response on each one of those variables. Laying hens consuming the NC feed with 900 FTU/kg of phytase produced more eggs per hen-housed compared with the phytase dosages of 300 and 600 FTU/kg. Body composition was not affected by dietary nPP, Ca, Na, dig AA, and energy reductions (P > 0.05). At 72-wk-old, tibia ash was reduced in hens consuming the NC diet vs. PC (P < 0.05) and no difference was observed between hens supplemented with phytase and the PC feed. Margin over feeding cost increased in a dose-dependent manner with phytase supplementation. Supplementation with 900 FTU/kg of phytase is recommended to improve the number of eggs produced per hen-housed and the number of marketable eggs produced through 23 to 72 wk of age, under this dietary setting.
Collapse
Affiliation(s)
- Thaila F Moura
- Department of Animal Science, Universidade Estadual Paulista "Julio de Mesquita, Filho", FCAV/UNESP, São Paulo, Brazil
| | - Matheus P Reis
- Department of Animal Science, Universidade Estadual Paulista "Julio de Mesquita, Filho", FCAV/UNESP, São Paulo, Brazil
| | - Freddy A Horna
- Department of Animal Science, Universidade Estadual Paulista "Julio de Mesquita, Filho", FCAV/UNESP, São Paulo, Brazil
| | - Ingryd Palloma T Nóbrega
- Department of Animal Science, Universidade Estadual Paulista "Julio de Mesquita, Filho", FCAV/UNESP, São Paulo, Brazil
| | - Abiodun Bello
- Danisco Animal Nutrition & Health, IFF, Wilmington DE, 19803, USA
| | | | - Emma White
- Danisco Animal Nutrition & Health, IFF, Marlborough, SN8 1NY, United Kingdom
| | - Yueming Desjant-Li
- Danisco Animal Nutrition & Health, IFF, Oegstgeest, 2342 BH, The Netherlands
| | - Nilva K Sakomura
- Department of Animal Science, Universidade Estadual Paulista "Julio de Mesquita, Filho", FCAV/UNESP, São Paulo, Brazil.
| |
Collapse
|
19
|
Böswald LF, Wenderlein J, Siegert W, Straubinger RK, Kienzle E. True mineral digestibility in C57Bl/6J mice. PLoS One 2023; 18:e0290145. [PMID: 37585435 PMCID: PMC10431658 DOI: 10.1371/journal.pone.0290145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Data on mineral digestibility is key to understand mineral homeostasis and refine the recommendations for the dietary intake of these nutrients. In farm animals and pets, there is plenty of data on mineral digestibility and influencing factors. In laboratory mice, however, there is a lack of information on mineral digestibility under maintenance conditions, although this should be the basis for studies on mineral homeostasis under experimental conditions. The aim of the present study was to analyse data on intake, faecal excretion, and apparent digestibility of calcium, phosphorus, sodium, potassium, and magnesium in C57BL/6J mice fed different maintenance diets with varying voluntary dry matter intake. Lucas-tests were used to quantify true digestibility and describe correlations between dietary intake and excretion/absorption of the nutrients. Calcium, phosphorus, and magnesium showed a linear correlation between intake and faecal excretion (R2: 0.77, 0.93 and 0.91, respectively). Intake and apparently digested amounts of sodium and potassium were correlated linearly (R2: 0.86 and 0.98, respectively). These data show that intake is the major determinant of absorption in the minerals listed above. Faecal calcium and phosphorus excretion were correlated as well (R2 = 0.75).
Collapse
Affiliation(s)
- Linda F. Böswald
- Chair for Animal Nutrition and Dietetics, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU München, München, Germany
| | - Jasmin Wenderlein
- Chair of Bacteriology and Mycology, Institute of Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU München, München, Germany
| | - Wolfgang Siegert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Reinhard K. Straubinger
- Chair of Bacteriology and Mycology, Institute of Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU München, München, Germany
| | - Ellen Kienzle
- Chair for Animal Nutrition and Dietetics, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU München, München, Germany
| |
Collapse
|
20
|
C T, D S, S T A, J Joseph S, Ali D, Alarfi S, Rembulan GD, Jones S, Yadav KK, Ramanujam GM, Chang SW, Balasubramani R. Defluoridation of potable water employed by natural polysaccharide isolated from Tamarindus indica L. CHEMOSPHERE 2023:138931. [PMID: 37245596 DOI: 10.1016/j.chemosphere.2023.138931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
The current study evaluated the effectiveness of Tamarindus indica L. seed polysaccharides in removing fluoride from potable water collected from Sivakasi,Viruthunagar district, Tamil Nadu, India. The physiochemical properties of the water samples were examined, and each parameter was compared to the standard prescribed by Bureau of Indian standards. Most of the parameters were within the permissible limit except for fluoride levels in the Sivakasi water sample. Polysaccharides were isolated from Tamarindus indica L. seeds and the fluoride removal efficacy of the polysaccharides was evaluated. The optimum treatment dosage of the isolated seed polysaccharides was determined using aqueous fluoride solutions of various ppm concentrations (1, 2, 3, 4, and 5 ppm). Tamarindus polysaccharides were added to the aqueous solutions in varying doses (0.02, 0.04, 0.06, 0.08, 1.0, and 1.2 g), and 0.04 g was observed to be the most effective at removing fluoride (by 60%). It was selected as the optimum dose for treating the fluoride-contaminated water sample. Following the treatment, fluoride concentration in the water sample dropped from 1.8 mg/L to 0.91 mg/L, falling below the BIS standard limit. The findings from the study demonstrated the use of T. indica L. seed polysaccharides as an effective natural coagulant for removing fluoride from potable water. GC-MS and FTIR analysis of the isolated polysaccharide samples were performed. The FTIR results revealed the functional groups that might attribute to the fluoride removal activity of the isolated polysaccharides. The observations from the study suggested that Tamarindus polysaccharides might be used as an alternative to chemical agent used for fluoride removal in order to preserve the environment and human welfare.
Collapse
Affiliation(s)
- Thamaraiselvi C
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.
| | - Srija D
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
| | - Athira S T
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Saud Alarfi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | | | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Ganesh Munusamy Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Ins Titute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Ravindran Balasubramani
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
21
|
Adekoya AA, Adeola O. Energy and phosphorus utilization of pulses fed to broiler chickens. Poult Sci 2023; 102:102615. [PMID: 36989854 PMCID: PMC10060102 DOI: 10.1016/j.psj.2023.102615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Energy and P utilization in faba beans and peas were evaluated in 3 broiler chicken experiments. In Exp. 1, 240 birds were allotted to 5 diets in a randomized complete block design with BW as a blocking factor on d 18 post hatching to determine the regression-derived energy utilization of faba beans (FB) and field peas (FP). In each of the respective Exp. 2 and 3, regression-derived P utilization in FB and FP were determined with 162 birds assigned to each of 3 diets in a randomized complete block design with BW as a blocking factor on d 19 post hatching. There were 8 replicate cages with 6 birds per cage in Exp. 1, and 6 replicate cages with 9 birds per cage in Exp. 2 and 3. The test ingredients were added to a corn-soybean meal-based diet at 15% or 30% in Exp. 1, whereas FB was included at 21%, 42%, or 63% and FP at 16%, 32%, or 48% in Exp. 2 and 3, respectively. In Exp. 1, the apparent ileal digestibility (AID) of gross energy (GE) and the ileal digestible energy (IDE) in the diets decreased linearly (P < 0.01). There was a quadratic response or a linear decrease (P < 0.05) with increasing concentrations of FB or FP, respectively, on the apparent total tract utilization (ATTU) of GE, metabolizable energy (ME), and nitrogen-corrected ME (MEn). The respective IDE, ME, and MEn determined were 2,541, 2,628, and 2,394 kcal/kg DM in FB and 2,254, 2,540, and 2,331 kcal/kg DM in FP. In Exp. 2 and 3, the ileal digestible and retainable P intake were linearly increased (P < 0.01). The estimated true ileal digestibility and true total tract utilization of P in FB were 66.5% and 66.7%, respectively. The respective corresponding values for FP were 73.4% and 73.8%. In conclusion, the information on utilization of energy and P in FB and FP provided could enhance proper diet formulation when using these ingredients.
Collapse
|
22
|
Moradi S, Abdollahi MR, Moradi A, Jamshidi L. Effect of Bacterial Phytase on Growth Performance, Nutrient Utilization, and Bone Mineralization in Broilers Fed Pelleted Diets. Animals (Basel) 2023; 13:ani13091450. [PMID: 37174487 PMCID: PMC10177589 DOI: 10.3390/ani13091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023] Open
Abstract
The influence of a bacterial 6-phytase on growth performance, coefficient of apparent ileal digestibility (CAID) of nutrients, blood parameters, and bone mineralization in broilers was evaluated. A total of 630 one-day-old male broilers were allocated to 7 dietary treatments, including positive control (PC) diet containing dicalcium phosphate, the PC marginally reduced in available P (avP) by 0.1% and calcium (Ca) by 0.2% vs. PC (NC1) or moderately reduced by 0.15 and 0.3% vs. PC (NC2), respectively, and four further diets comprising the NC1 and NC2 supplemented with 500 or 1000 FTU/kg of phytase in starter and finisher phases. A constant Ca to avP ratio was maintained across all diets. The body weight gain (BWG) and feed per unit gain (FCR) of birds fed NC1 and NC2 diets supplemented with phytase (500 and 1000 U/kg) was equivalent to that of birds fed the PC diet at 35 days. Phytase supplementation in the NC1 diet linearly increased the CAID of nitrogen (N) (p < 0.01), phosphorus (P) (p < 0.01), and Ca (p < 0.05). Additionally, phytase reduced (p < 0.01) excreta P concentration by approximately 27%, improved (p < 0.001) toe ash, and tended to increase tibia ash (p = 0.08), comparable with the PC. In conclusion, the addition of bacterial 6-phytase dosed in the range of 500-1000 FTU/kg was effective in replacing 1.5 g/kg avP and 3 g/kg Ca in broilers fed pelleted diets, using bone quality, BWG, and FCR as outcome measures.
Collapse
Affiliation(s)
- Soudabeh Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah 85438-67156, Iran
| | - Mohammad Reza Abdollahi
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Arash Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah 85438-67156, Iran
| | - Leili Jamshidi
- Department of Animal Science, College of Agriculture, Ilam University, Ilam 516-69315, Iran
| |
Collapse
|
23
|
Novotny M, Sommerfeld V, Krieg J, Kühn I, Huber K, Rodehutscord M. Comparison of mucosal phosphatase activity, phytate degradation, and nutrient digestibility in 3-week-old turkeys and broilers at different dietary levels of phosphorus and phytase. Poult Sci 2023; 102:102457. [PMID: 36641994 PMCID: PMC9860161 DOI: 10.1016/j.psj.2022.102457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
A comparison between 3-wk-old female turkeys (B.U.T. 6) and broilers (Ross 308) was performed to study the effects of species, dietary P, Ca, and phytase levels on gut mucosal phosphatase activity, myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, digestibility of P, Ca, and amino acids, and concentrations of myo-inositol in the digesta and blood. The experimental diets were corn-soybean meal-based and identical for both species. Two dietary P and Ca concentrations (CaP-: 4.1 g P/kg, 5.5 g Ca/kg and CaP+: 9.0 g P/kg, 12.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were used in a 2 × 2 factorial design and fed to the animals for 7 d in their third week of age. Each diet was randomly assigned to 6 broiler and 6 turkey pens, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and mucosa from the jejunum were collected. When fed CaP- without phytase supplementation, there were no differences between species in gut mucosal phosphatase activity, prececal InsP6 disappearance, and P and Ca digestibility, indicating a similar intrinsic capacity for phytate degradation in both species. When fed CaP+ without phytase supplementation, turkeys showed higher prececal InsP6 disappearance than broilers. Phytase supplementation increased prececal InsP6 disappearance and digestibility of P and Ca in both species. However, the phytase-induced increase in prececal InsP6 disappearance was more pronounced in broilers than in turkeys, possibly due to more adequate conditions for phytase activity in the broiler crop. In broilers, phytase supplementation increased amino acid digestibility overall, whereas, in turkeys, it increased with CaP+ and decreased with CaP-. In addition, the relationship between myo-inositol concentration in the ileum and blood differed between species, indicating differences in myo-inositol metabolism. It was concluded that 3-week-old turkeys and broilers differ in nutrient digestibility and InsP degradation in some segments of the digestive tract but have similar endogenous InsP6 degradation when fed low P and Ca diets.
Collapse
Affiliation(s)
- Moritz Novotny
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jochen Krieg
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
24
|
Novotny M, Sommerfeld V, Krieg J, Kühn I, Huber K, Rodehutscord M. Mucosal phosphatase activity, phytate degradation, and mineral digestibility in 6-week-old turkeys and broilers at different dietary levels of phosphorus and phytase and comparison with 3-week-old animals. Poult Sci 2023; 102:102476. [PMID: 36716675 PMCID: PMC9922952 DOI: 10.1016/j.psj.2023.102476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
Female turkeys (B.U.T. 6) and broilers (Ross 308) were compared at 6 wk of age to evaluate the effects of species, dietary P, Ca, and phytase levels on myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, gut mucosal phosphatase activity, P and Ca digestibility, and myo-inositol concentrations in the digesta and blood. The environmental conditions and experimental corn-soybean meal-based diets were the same for both species. Four diets with either combination of 2 levels of P and Ca (CaP-: 4.0 g P/kg, 5.4 g Ca/kg and CaP+: 6.0 g P/kg, 8.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were fed to the animals for 7 d at their sixth wk of age. Each diet was randomly assigned to 6 pens per species, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and jejunal mucosa were collected. Endogenous mucosal phosphatase activity in the jejunum was higher in turkeys than in broilers. Prececal InsP6 disappearance was also higher in turkeys than in broilers when phytase was not supplemented. Phytase supplementation led to a higher prececal InsP6 disappearance in broilers than in turkeys, likely due to different crop conditions such as moisture content. However, prececal P digestibility was higher in turkeys than broilers. Different relationships between myo-inositol concentration in the ileum digesta and blood were found, depending on the species. A comparison of the results with those obtained in 3-wk-old birds of a companion study showed that in diets with low Ca and P levels, prececal InsP6 disappearance increased with age in turkeys, but not in broilers. This coincided with changes in the conditions of the digestive tract, such as the water content in the crop, gizzard pH, and mucosal phosphatase activity. In conclusion, occurrence of differences in phytate degradation between turkeys and broilers, fed the same feed, depended on age and can be explained by different physiological development of the digestive tract.
Collapse
Affiliation(s)
- Moritz Novotny
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jochen Krieg
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
25
|
Klein N, Sarpong N, Melzer T, Feuerstein D, Heyer CME, Camarinha-Silva A, Rodehutscord M. Effect of dietary calcium concentration and exogenous phytase on inositol phosphate degradation, mineral digestibility, and gut microbiota in growing pigs. J Anim Sci 2023; 101:skad254. [PMID: 37526942 PMCID: PMC10464513 DOI: 10.1093/jas/skad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023] Open
Abstract
Variations in the dietary Ca concentration may affect inositol phosphate (InsP) degradation, and thereby, P digestibility in pigs. This study assessed the effects of dietary Ca concentration and exogenous phytase on InsP degradation, nutrient digestion and retention, blood metabolites, and microbiota composition in growing pigs with ileal cannulation. In a completely randomized row-column design with four periods, eight ileal-cannulated barrows (initial body weight 27 kg) were fed four corn-soybean- and rapeseed meal-based diets containing 5.5 or 8.5 g Ca/kg dry matter (DM), with or without 1,500 FTU of an exogenous hybrid-6-phytase/kg diet. No mineral P was added and the P concentration in the feed was 4.8 g P/kg DM. Prececal InsP6 disappearance in pigs fed diets containing exogenous phytase was lower (P = 0.022) with additional Ca than without. Concentrations of InsP2-4 isomers and myo-inositol in the distal ileal digesta and prececal P digestibility were greater (P < 0.001) with exogenous phytase than without exogenous phytase. In feces, InsP6 disappearance was lower (P < 0.002) and concentration of InsP5 and InsP4 isomers was higher (P ≤ 0.031) with additional Ca compared to without additional Ca. The prececal amino acid digestibility, energy digestibility, and hindgut disappearance of energy did not differ. The Shannon diversity index of the microbiota in the distal ileal digesta and feces was similar among the diets but was lower in the distal ileal digesta than in the feces (P < 0.001). Permutation analysis of variance revealed no dietary differences between the bacterial groups within the ileal digesta and fecal samples (P > 0.05). In conclusion, additional Ca reduced the effect of exogenous phytase on prececal InsP6 degradation. Endogenous InsP degradation was impaired by additional Ca only in the hindgut but the abundance of bacterial genera in feces was not affected.
Collapse
Affiliation(s)
- Nicolas Klein
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Naomi Sarpong
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Tanja Melzer
- Core Facility Hohenheim, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Charlotte M E Heyer
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
26
|
Siegert W, Sommerfeld V, Schollenberger M, Rodehutscord M. Research Note: Influence of monocalcium phosphate and phytase in the diet on phytate degradation in cecectomized laying hens. Poult Sci 2023; 102:102470. [PMID: 36645959 PMCID: PMC9852950 DOI: 10.1016/j.psj.2022.102470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
This study investigated the effects of phytase and monocalcium phosphate supplementation on the dephosphorylation of phytic acid [myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate); InsP6] in cecectomized laying hens using total excreta collection. Four corn-soybean meal-rapeseed meal-based diets were mixed with or without 6 g of monocalcium phosphate/kg, with or without supplementation of 1,500 FTU phytase/kg, and had the same calcium concentration at 39 g/kg of feed. Each diet was tested in 5 replicates using a row-column design with 10 cecectomized laying hens in 2 periods. The hens received 120 g/d of feed while being housed individually in metabolism units, and total excreta were collected for a period of 4 d. The monocalcium phosphate × phytase interaction was not significant for InsP6 degradation (P = 0.054). Phytase increased InsP6 disappearance from 13% to 83% (P < 0.001), whereas monocalcium phosphate had no effect. Concentrations of most of the lower inositol phosphate isomers in excreta were higher when monocalcium phosphate was added to the diets. The concentration of Ins(1,2,5,6)P4 in excreta was the highest among the studied partially dephosphorylated inositol phosphates with phytase supplementation and was higher than in diets without phytase supplementation (P < 0.001). Supplementation with phytase increased myo-inositol concentration in excreta (P = 0.002), whereas monocalcium phosphate had no effect. Phosphorus utilization ranged from 4% to 18% and was not significantly affected by the treatments. These results suggest that phytase supplementation markedly increased InsP6 degradation in laying hens. The cecectomized laying hen assay may be suitable for studying the effects of phytase supplementation on phytate dephosphorylation under dietary conditions when performance and phosphorus excretion are unlikely to be affected.
Collapse
|
27
|
Bello A, Kwakernaak C, Dersjant-Li Y. Effects of limestone solubility on the efficacy of a novel consensus bacterial 6-phytase variant to improve mineral digestibility, retention, and bone ash in young broilers fed low-calcium diets containing no added inorganic phosphate. J Anim Sci 2022; 100:skac337. [PMID: 36239636 PMCID: PMC9746795 DOI: 10.1093/jas/skac337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
This study evaluated the effect of limestone solubility on the capacity of a novel consensus bacterial 6-phytase variant (PhyG) to improve phosphorus (P) and calcium (Ca) digestibility, retention, and utilization in low-Ca broiler diets containing no added inorganic phosphate (Pi). Male Ross 308 broilers (n = 1,152) were fed one of 16 experimental diets from 11 to 21 d of age in a randomized complete design (12 birds/cage, 6 cages/treatment). Diets comprised three positive controls (PC3, PC2, and PC1) containing 1.8, 1.2, or 0.6 g/kg MCP-P and 7.7, 7.0, or 6.2 g/kg Ca, respectively, and a negative control (NC) containing no added Pi (4.4 g/kg P; 2.8 g/kg phytate-P) and 5.5 g/kg Ca from either low or high solubility limestone (LSL or HSL, respectively, [with 42% and 97% solubility after 5 min at pH 3.0]), supplemented with 0, 250, 500, 1,000, or 2,000 FTU/kg of PhyG. Fecal samples collected on days 18 to 20 and ileal digesta collected on day 21 were analyzed for titanium dioxide, Ca, P, and phytate (IP6, inositol hexakisphosphate). Tibias (day 21) were analyzed for ash content. Data were analyzed by factorial analysis (2 limestone solubilities × 4 MCP-P levels and 2 limestone solubilities × 5 phytase dose levels) and exponential regression. Increasing dose levels of PhyG resulted in an exponential increase (P < 0.01) in the apparent ileal digestibility (AID) of P, ileal digestible P content of the diet, ileal IP6 content, and IP6 disappearance in birds fed either HSL or LSL diets, but AID Ca and ileal digestible Ca were exponentially increased by the phytase only in HSL diets (P < 0.01). Relative to HSL, the LSL increased AID P, ileal digestible P, and IP6 disappearance (P < 0.05) but reduced AID Ca, ileal digestible Ca, and retainable Ca (P < 0.05), resulting in reduced retainable P and tibia ash. Phytase exponentially increased the apparent total tract digestibility of P, retainable P, and tibia ash in HSL and LSL diets, but at or above 500 FTU/kg values were higher in HSL than LSL (interaction P < 0.05). The findings highlight that phytase dose-response effects on mineral digestibility and utilization are different for high- and low-solubility limestones, and it is therefore recommended to use digestible rather than total Ca content during diet formulation to ensure an optimal balance of Ca and P, especially in low-Ca diets. In diets containing HSL, higher phytase dose levels may be needed to compensate for the low digestible P content of the basal diet.
Collapse
Affiliation(s)
- Abiodun Bello
- Danisco Animal Nutrition and Health, IFF, Wilmington, 19803 DE, USA
| | | | - Yueming Dersjant-Li
- Danisco Animal Nutrition and Health, IFF, 2342 BH Oegstgeest, The Netherlands
| |
Collapse
|
28
|
Omotoso AO, Reyer H, Oster M, Maak S, Ponsuksili S, Wimmers K. Broiler physiological response to low phosphorus diets at different stages of production. Poult Sci 2022; 102:102351. [PMID: 36481711 PMCID: PMC9731856 DOI: 10.1016/j.psj.2022.102351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
Phosphorus (P) inclusion in broiler diets needs to meet the physiological demands at a specific developmental stage to ensure the performance, health, and welfare of the birds and minimize nutrient losses. Toward a more efficient utilization of P in broiler husbandry, a timed nutritional conditioning strategy might enhance the endogenous mechanisms of mineral homeostasis and thus reduce dietary P supply of mineral sources. In this study, following a variable P supply in the starter phase, the effects of a dietary P depletion of broiler chickens were investigated at different developmental stages. Physiological adaptation mechanisms were elucidated based on zootechnical performance, endocrine parameters, regulation of intestinal P transport, bone characteristics, and health aspects. The results revealed a marked response to P depletion at the earliest developmental phase, after which indications of effective compensatory mechanism were detectable with advancing ages. Potential mechanisms that enable broilers to maintain mineral homeostasis primarily include endocrine control mediated by calcitriol actions, as well as intestinal P uptake and mineral mobilization from the bone. Conclusively, the precise timing, duration, and extent of a P depletion strategy in the broiler chicken might be considered for optimized nutrient utilization.
Collapse
Affiliation(s)
- Adewunmi O. Omotoso
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Steffen Maak
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany,Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany,Corresponding author:
| |
Collapse
|
29
|
Mirisakhani L, Taheri H. Interactive effect of calcium, citric acid, and high-dose phytase on performance of broiler chicken fed diet severely limited in phosphorus. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Sprigg C, Whitfield H, Burton E, Scholey D, Bedford MR, Brearley CA. Phytase dose-dependent response of kidney inositol phosphate levels in poultry. PLoS One 2022; 17:e0275742. [PMID: 36260560 PMCID: PMC9581429 DOI: 10.1371/journal.pone.0275742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Phytases, enzymes that degrade phytate present in feedstuffs, are widely added to the diets of monogastric animals. Many studies have correlated phytase addition with improved animal productivity and a subset of these have sought to correlate animal performance with phytase-mediated generation of inositol phosphates in different parts of the gastro-intestinal tract or with release of inositol or of phosphate, the absorbable products of phytate degradation. Remarkably, the effect of dietary phytase on tissue inositol phosphates has not been studied. The objective of this study was to determine effect of phytase supplementation on liver and kidney myo-inositol and myo-inositol phosphates in broiler chickens. For this, methods were developed to measure inositol phosphates in chicken tissues. The study comprised wheat/soy-based diets containing one of three levels of phytase (0, 500 and 6,000 FTU/kg of modified E. coli 6-phytase). Diets were provided to broilers for 21 D and on day 21 digesta were collected from the gizzard and ileum. Liver and kidney tissue were harvested. Myo-inositol and inositol phosphates were measured in diet, digesta, liver and kidney. Gizzard and ileal content inositol was increased progressively, and total inositol phosphates reduced progressively, by phytase supplementation. The predominant higher inositol phosphates detected in tissues, D-and/or L-Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5, differed from those (D-and/or L-Ins(1,2,3,4)P4, D-and/or L-Ins(1,2,5,6)P4, Ins(1,2,3,4,6)P5, D-and/or L-Ins(1,2,3,4,5)P5 and D-and/or L-Ins(1,2,4,5,6)P5) generated from phytate (InsP6) degradation by E. coli 6-phytase or endogenous feed phytase, suggesting tissue inositol phosphates are not the result of direct absorption. Kidney inositol phosphates were reduced progressively by phytase supplementation. These data suggest that tissue inositol phosphate concentrations can be influenced by dietary phytase inclusion rate and that such effects are tissue specific, though the consequences for physiology of such changes have yet to be elucidated.
Collapse
Affiliation(s)
- Colleen Sprigg
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | - Dawn Scholey
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | | | - Charles A. Brearley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Shi H, Wang J, Teng PY, Tompkins YH, Jordan B, Kim WK. Effects of phytase and coccidial vaccine on growth performance, nutrient digestibility, bone mineralization, and intestinal gene expression of broilers. Poult Sci 2022; 101:102124. [PMID: 36130448 PMCID: PMC9489506 DOI: 10.1016/j.psj.2022.102124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
A study was conducted to evaluate effects of phytase and coccidial vaccine on growth performance, bone mineralization, nutrient digestibility, and intestinal gene expression of broiler chickens. The experiment was conducted in a 2 × 4 completely randomized factorial arrangement with 6 replicates per treatment and 10 birds each. Applications of coccidiosis vaccine and different dietary treatments were the 2 main factors in the current study. The dietary treatments included 1) a positive control (PC; 0.90% Ca and 0.45% available P: avP); 2) a negative control (NC; 0.75% Ca and 0.30% AvP); 3) NC + 500 FTU/kg of phytase (NC + 500PHY); and 4) NC + 1500 FTU/kg of phytase (NC + 1500PHY). Data were analyzed using SAS by 2-way ANOVA via GLM procedure. The statistical significance was set at P ≤ 0.05, and means were further separated using Tukey's Test. The results indicated that vaccination had no effect on growth performance except for feed intake from 0 to 14 d but negatively (P < 0.05) regulated bone ash and Ca digestibility. Birds fed with the Ca and P-reduced diet (NC) showed a lower BWG and bone ash compared to birds fed with the normal diet (PC), but supplementing phytase mitigated the negative effects on those birds. Broilers fed the NC diet had higher (P < 0.05) total Ca and P digestibility, and phytate degradation; supplementing phytase further increased P digestibility and phytate degradation of the broilers. A significant interaction (P < 0.05) between phytase and vaccination was observed, suggesting the vaccinated birds fed the PC diet and the unvaccinated birds fed the NC + 1500PHY increased calcium-sensing receptor gene expression compared with the unvaccinated birds fed the PC diet. In conclusion, in spite of coccidiosis vaccine, supplementing phytase at 1,500 FTU/kg alleviated the negative effects on growth performance, bone mineralization, and apparent ileal digestibility of P and phytate.
Collapse
|
32
|
Pirgozliev VR, Mansbridge SC, Kendal T, Watts ES, Rose SP, Brearley CA, Bedford MR. Rapeseed meal processing and dietary enzymes modulate excreta inositol phosphate profile, nutrient availability and production performance of broiler chickens. Poult Sci 2022; 101:102067. [PMID: 36041390 PMCID: PMC9449655 DOI: 10.1016/j.psj.2022.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/18/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to assess the effect of rapeseed meal (RSM) processing method, where solvent extraction occurred under standard industry conditions (ST) or cold-pressed hexane extraction was employed (MT), and exogenous enzyme supplementation (phytase [PHY] and xylanase [XYL]) alone or in combination on key nutritional factors of broiler chickens. A randomized control experiment was performed using 144 male Ross 308 broilers in a 2 × 2 × 3 factorial arrangement. Three diets including a nutritionally complete wheat-based basal diet (BD), a diet containing 200 g/kg of RSM extracted under ST and another diet containing 200 g/kg of RSM extracted under MT were produced. Each diet was then split into 4 parts and was fed as is, or supplemented with PHY at 1,500 FTU/kg or XYL at 16,000 BXU/kg, alone or in combination, resulting in 12 diets in total. Response criteria: feed intake (FI), weight gain (WG), and feed conversion ratio (FCR), from 7 to 21 d age, AMEn, retention coefficients for dry matter (DMR), nitrogen (NR), fat (FR), and the profile of inositol phosphate esters (IP2-6) and myo-inositol (MI) in excreta. Diets containing MT had higher AMEn compared to ST diets (P < 0.05). There was RSM by PHY interaction for FI, as only birds fed MT diet responded to PHY supplementation with reduced FI and FCR (P < 0.001). Feeding XYL reduced overall FI and FCR (P < 0.05). Feeding PHY reduced IP6 and increased MI in excreta (P < 0.001). Feeding XYL and PHY in combination reduced MI in excreta compared to PHY only (P = 0.05). Compared to BD, birds fed RSM diets had an increased IP6 (P < 0.05) and MI concentration in excreta (P < 0.01). This may be due to IP ester differences in RSM and BD.
Collapse
Affiliation(s)
- V R Pirgozliev
- The National Institute of Poultry Husbandry, Harper Adams University, Shropshire, Edgmond, TF10 8NB, UK.
| | - S C Mansbridge
- The National Institute of Poultry Husbandry, Harper Adams University, Shropshire, Edgmond, TF10 8NB, UK
| | - T Kendal
- The National Institute of Poultry Husbandry, Harper Adams University, Shropshire, Edgmond, TF10 8NB, UK
| | - E S Watts
- The National Institute of Poultry Husbandry, Harper Adams University, Shropshire, Edgmond, TF10 8NB, UK
| | - S P Rose
- The National Institute of Poultry Husbandry, Harper Adams University, Shropshire, Edgmond, TF10 8NB, UK
| | - C A Brearley
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire, SN8 4AN, UK
| |
Collapse
|
33
|
The impact of dietary calcium and phosphorus on mitochondrial-linked gene expression in five tissues of laying hens. PLoS One 2022; 17:e0270550. [PMID: 35749523 PMCID: PMC9231785 DOI: 10.1371/journal.pone.0270550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondria and the energy metabolism are linked to both, the availability of Ca and P to provide the eukaryotic cell with energy. Both minerals are commonly used supplements in the feed of laying hens but little is known about the relationship between the feed content, energy metabolism and genetic background. In this study, we provide a large-scaled gene expression analysis of 31 mitochondrial and nuclear encoded genes in 80 laying hens in the context of dietary P and Ca concentrations. The setup included five tissues and gene expression was analysed under four different diets of recommended and reduced Ca and P concentrations. Our study shows, that mitochondrial gene expression is reacting to a reduction in P and that an imbalance of the nutrients has a higher impact than a combined reduction. The results suggest, that both strains (Lohmann Brown and Lohmann Selected Leghorn) react in a similar way to the changes and that a reduction of both nutrients might be possible without crucial influence on the animals’ health or gene expression.
Collapse
|
34
|
Gulizia J, Rueda M, Ovi F, Bonilla S, Prasad R, Jackson M, Gutierrez O, Pacheco W. Evaluate the effect of a commercial heat stable phytase on broiler performance, tibia ash, and mineral excretion from 1 to 49 days of age assessed using nutrient reduced diets. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Ogunribido TZ, Bedford MR, Adeola O, Ajuwon KM. Effect of supplemental myo-inositol on growth performance and apparent total tract digestibility of weanling piglets fed reduced protein high phytate diets and intestinal epithelial cell proliferation and function. J Anim Sci 2022; 100:6589538. [PMID: 35589552 DOI: 10.1093/jas/skac187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Myo-inositol is a breakdown product of phytate produced in the gut through the action of phytase. Although the effect of phytase-released phosphorus (P) on growth performance of animals has been well characterized, there is still little understanding of effect of myo-inositol. The first objective of this study was to determine the effects of added myo-inositol to a phytate rich low protein diet on growth performance and apparent total tract digestibility (ATTD) in growing piglets. The second objective was to determine whether myo-inositol could directly affect intestinal epithelial cell proliferation and function for which we used intestinal porcine epithelial cells (IPEC-J2). A total of 128 weanling piglets were allotted to four dietary treatments consisting of eight replicates per treatment and four piglets per replicate in a randomized complete block design for four weeks. The four experimental diets comprised the positive control (PC; 20% crude protein (CP), negative control (NC; 17% CP), negative control plus 2.0g/kg myo-inositol (NC+INO; 17% CP) and negative control plus 3000FTU/kg phytase (NC+PHY; 17% CP). Average daily feed intake (ADFI), average daily gain (ADG), gain-feed ratio (G: F) were recorded. Phytase supplementation in the protein-deficient NC diet increased the G:F ratio (P < 0.05) without myo-inositol effect on growth performance. Phosphorus digestibility in the phytase supplemented group increased compared to the PC, NC, and NC+INO groups whereas plasma myo-inositol concentration was significantly higher (P < 0.05) in the NC+INO group. Due to lack of myo-inositol effect on growth performance, an additional in vitro study was conducted to determine direct effect of myo-inositol on the intestinal epithelium that might not be reflected in growth performance. Myo-inositol increased the mRNA abundance of selected nutrient transporters in a concentration-dependent manner (P < 0.05). Myo-inositol also enhanced barrier integrity in the IPEC-J2 monolayer by increasing the transepithelial electrical resistance (TEER) with reduced paracellular permeability of FITC-dextran (P < 0.05). In conclusion, despite the lack of myo-inositol effect on animal performance, the in vitro data indicates that myo-inositol may directly regulate gut barrier integrity. Addition of myo-inositol to pig diets at levels that enhance intestinal epithelial cell function may result in effects on growth performance and gut health of pigs.
Collapse
Affiliation(s)
- Tobi Z Ogunribido
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | | | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
36
|
Heyer CME, Fouhse JM, Vasanthan T, Zijlstra RT. Cereal grain fiber composition modifies phosphorus digestibility in grower pigs. J Anim Sci 2022; 100:6586060. [PMID: 35569054 PMCID: PMC9169987 DOI: 10.1093/jas/skac181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Increased fermentable carbohydrates (e.g., β-glucan, amylose) may increase endogenous losses including for P, and thereby reduce apparent total tract digestibility (ATTD) of P. The present study assessed effects of barley cultivars varying in fermentable starch and fiber on apparent ileal digestibility (AID) and ATTD of P, myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate; InsP6) and Ca, and standardized total tract digestibility (STTD) of P and the presence of lower inositol phosphates (InsP) compared to wheat. In a 6 (period) × 5 (diet) Youden square, 7 ileal-cannulated barrows (initial BW, 27.7 kg) were fed diets containing 80% of 1 of 5 cereal grains differing in amylose, β-glucan, and fiber content: 1) high-fermentable, high-β-glucan, hull-less barley (HFB); 2) high-fermentable, high-amylose, hull-less barley (HFA); 3) moderate-fermentable, hull-less barley (MFB); 4) low-fermentable, hulled barley (LFB); and 5) low-fermentable, hard red spring wheat (LFW). On dry matter (DM) basis, cereal grains contained between 0.32 to 0.53% total P and 0.24 to 0.50% InsP6-P. The InsP6-2-P was calculated as the sum of all detected InsP-P (InsP6-P to InsP2-P) in the sample. The P release of degraded InsP-P was calculated by using the following equation: sum InsP6-2-Pdiet (g/kg DM) × (AID or ATTD sum InsP6-2-P (%) / 100). Data were analyzed using a mixed model with diet as fixed effect, and pig and period as random effects. On DM basis, diets contained 41.4 to 50.6% starch, 0.88 to 8.54% β-glucan, 0.81 to 0.89% total P, and 0.19 to 0.35% InsP6-P. The MFB, LFB, and LFW had greater (P < 0.05) diet AID of P than HFB and HFA, and MFB had greater (P < 0.05) diet ATTD and STTD of P than HFB. The ATTD of InsP6-P was greater (P < 0.05) for HFB than LFB and the ATTD of the sum InsP6-2-P was greater (P < 0.05) for HFB and HFA than LFB. Total tract P release was greater (P < 0.001) for HFB, HFA, and LFW than MFB and LFB. The LFW had greater (P < 0.05) ATTD of Ca than LFB. Diet β-glucan content was not correlated with STTD of P (R 2 = 0.03) or ATTD of InsP6 (R 2 = 0.05). In conclusion, cereal grains high in fermentable fiber, e.g., amylose and β-glucans included in specific hull-less barley cultivars, had lower diet AID, ATTD, and STTD of P, but greater ATTD of InsP6-P and sum InsP6-2-P. Carbohydrate fermentation thus results in greater total tract P release from InsP-P hydrolysis.
Collapse
Affiliation(s)
- Charlotte M E Heyer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Janelle M Fouhse
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Thava Vasanthan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
37
|
Dang DX, Chun SG, Kim IH. Feeding broiler chicks with S. pombe-expressed phytase-containing diet improves growth performance, phosphorus digestibility, toe ash, and footpad lesions. Anim Biosci 2022; 35:1390-1399. [PMID: 35507852 PMCID: PMC9449394 DOI: 10.5713/ab.21.0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/28/2022] [Indexed: 11/27/2022] Open
|
38
|
Whitfield H, Laurendon C, Rochell S, Dridi S, Lee S, Dale T, York T, Kuehn I, Bedford M, Brearley C. Effect of phytase supplementation on plasma and organ myo-inositol content and erythrocyte inositol phosphates as pertaining to breast meat quality issues in chickens. JOURNAL OF APPLIED ANIMAL NUTRITION 2022. [DOI: 10.3920/jaan2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
‘Woody breast’ (WB) and ‘white striping’ in broiler meat is a global problem. With unknown etiology, WB negatively impacts bird health, welfare and is a significant economic burden to the poultry industry. New evidence has shown that WB is associated with dysregulation in systemic and breast muscle-oxygen homeostasis, resulting in hypoxia and anaemia. However, it has been observed that phytase (Quantum Blue (QB) a modified, E. coli-derived 6-phytase) super dosing can reverse dysregulation of muscle-oxygen homeostasis and reduces WB severity by ~5%. The objective of this study was to assess whether levels of Ins(1,3,4,5,6)P5, the main allosteric regulator of haemoglobin, are influenced by changes in plasma myo-inositol arising from super dosing with phytase. To enable this, methods suitable for measurement of myo-inositol in tissues and inositol phosphates in blood were developed. Data were collected from independent trials, including male Ross 308 broilers fed low and adequate calcium/available phosphate (Ca/AvP) diets supplemented with QB at 1,500 phytase units (FTU)/kg, which simultaneously decreased gizzard InsP6 (P<0.001) and increased gizzard myo-inositol (P<0.001). Similarly, male Cobb 500 broiler chicks fed a negative control (NC) diet deficient in AvP, Ca and sodium or diet supplemented with the QB phytase at 500, 1000 or 2,000 FTU/kg increased plasma (P<0.001) and liver (P=0.007) myo-inositol of 18d-old birds at 2,000 FTU/kg. Finally, QB supplementation of Cobb 500 breeder flock diet at 1,250 FTU/kg increased blood myo-inositol (P<0.001) and erythrocyte Ins(1,3,4,5,6)P5 (P=0.011) of their 1d-old hatchlings. These data confirmed the ability of phytase to modulate inositol phosphate pathways by provision of metabolic precursors of important signalling molecules. The ameliorations of WB afforded by super doses of phytase may include modulation of hypoxia pathways that also involve inositol signalling molecules. Elevations of erythrocyte Ins(1,3,4,5,6)P5 by phytase supplementation may enhance systemic oxygen carrying capacity, an important factor in the amelioration of WB and WS myopathy.
Collapse
Affiliation(s)
- H. Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - C. Laurendon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - S.J. Rochell
- University of Arkansas, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-406, Fayetteville, AR 72701, USA
| | - S. Dridi
- University of Arkansas, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-406, Fayetteville, AR 72701, USA
| | - S.A. Lee
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - T. Dale
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - T. York
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - I. Kuehn
- AB Vista, Feldbergstrasse 78, 64293 Darmstadt, Germany
| | - M.R. Bedford
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - C.A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
39
|
Haas V, Vollmar S, Preuß S, Rodehutscord M, Camarinha-Silva A, Bennewitz J. Composition of the ileum microbiota is a mediator between the host genome and phosphorus utilization and other efficiency traits in Japanese quail (Coturnix japonica). Genet Sel Evol 2022; 54:20. [PMID: 35260076 PMCID: PMC8903610 DOI: 10.1186/s12711-022-00697-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Phosphorus is an essential nutrient in all living organisms and, currently, it is the focus of much attention due to its global scarcity, the environmental impact of phosphorus from excreta, and its low digestibility due to its storage in the form of phytates in plants. In poultry, phosphorus utilization is influenced by composition of the ileum microbiota and host genetics. In our study, we analyzed the impact of host genetics on composition of the ileum microbiota and the relationship of the relative abundance of ileal bacterial genera with phosphorus utilization and related quantitative traits in Japanese quail. An F2 cross of 758 quails was genotyped with 4k genome-wide single nucleotide polymorphisms (SNPs) and composition of the ileum microbiota was characterized using target amplicon sequencing. Heritabilities of the relative abundance of bacterial genera were estimated and quantitative trait locus (QTL) linkage mapping for the host was conducted for the heritable genera. Phenotypic and genetic correlations and recursive relationships between bacterial genera and quantitative traits were estimated using structural equation models. A genomic best linear unbiased prediction (GBLUP) and microbial (M)BLUP hologenomic selection approach was applied to assess the feasibility of breeding for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota. RESULTS Among the 59 bacterial genera examined, 24 showed a significant heritability (nominal p ≤ 0.05), ranging from 0.04 to 0.17. For these genera, six genome-wide significant QTL were mapped. Significant recursive effects were found, which support the indirect host genetic effects on the host's quantitative traits via microbiota composition in the ileum of quail. Cross-validated microbial and genomic prediction accuracies confirmed the strong impact of microbial composition and host genetics on the host's quantitative traits, as the GBLUP accuracies based on the heritable microbiota-mediated components of the traits were similar to the accuracies of conventional GBLUP based on genome-wide SNPs. CONCLUSIONS Our results revealed a significant effect of host genetics on composition of the ileal microbiota and confirmed that host genetics and composition of the ileum microbiota have an impact on the host's quantitative traits. This offers the possibility to breed for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota.
Collapse
Affiliation(s)
- Valentin Haas
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Solveig Vollmar
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
40
|
Effects of added phytase on growth performance, carcass traits, and tibia ash of broiler chickens fed diets with reduced amino acid, crude protein, and phosphorus concentration. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Kristoffersen S, Wiśniewska Z, Kaczmarek S, Gjefsen T, Kjos NP, Cowieson AJ, Svihus B. Assessment of crop usage in ad libitum fed birds and short-term phytase efficiency as affected by acid addition. Br Poult Sci 2021; 63:414-420. [PMID: 34870526 DOI: 10.1080/00071668.2021.2012126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. A field assessment was performed to map the extent of crop usage and thus retention time in broiler chickens. In addition, a broiler experiment was carried out to study the short-term effect of acid addition on phytase efficacy in the crop.2. In the field assessment, the crop content of 40 ad libitum fed broiler chickens from four different farms were sampled at 10, 20 and 30 d of age. The dry matter (DM) content varied from zero to 32 g.3. From 11 d of age, 120 individually caged chickens were intermittently fed a high phytate-P diet with either no addition or 500 FYT C. braakii-derived phytase added or both phytase and 1.4 % formic acid added. Excreta were collected for assessment of phosphorus (P) retention. At 20 and 21 d of age, starved birds were fed for 1 h, and thereafter crop and gizzard contents were collected every 20 min until 140 min after start of the feeding. At 60 and 140 min, the contents from the jejunum and ileum were collected.4. All diets reduced the concentration of phytate in the crop, however the combination of acid and phytase resulted in a higher degradation (P<0.05) than the other diets from 20 min after the start of feeding. Simultaneously, the concentration of the smaller inositol phosphate isomers, such as inositol-5-phosphate, increased (P<0.05). Phytase increased (P<0.05) P retention, and the combination of acid and phytase increased jejunal P digestibility (P<0.05) compared to the other diets.5. The results indicated that lower pH in the crop due to acid addition improved phytase efficacy and increased P digestibility in the anterior digestive tract, even with short retention times.
Collapse
Affiliation(s)
- Siril Kristoffersen
- Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway and Felleskjøpet Rogaland Agder, Sandvikveien 21, N-4002 Stavanger, Norway
| | - Zuzanna Wiśniewska
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Sebastian Kaczmarek
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Torger Gjefsen
- Felleskjøpet Rogaland Agder, Sandvikveien 21, N-4002 Stavanger, Norway
| | - Nils Petter Kjos
- Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| | - Aaron J Cowieson
- DSM Nutritional Products, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Birger Svihus
- Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
42
|
Moita VHC, Duarte ME, Kim SW. Supplemental Effects of Phytase on Modulation of Mucosa-Associated Microbiota in the Jejunum and the Impacts on Nutrient Digestibility, Intestinal Morphology, and Bone Parameters in Broiler Chickens. Animals (Basel) 2021; 11:3351. [PMID: 34944129 PMCID: PMC8698009 DOI: 10.3390/ani11123351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to determine supplemental effects of phytase on modulation of the mucosa-associated microbiota in the jejunum, intestinal morphology, nutrient digestibility, bone parameters, and growth performance of broiler chickens. Three hundred and sixty newly hatched broiler chickens (Ross 308) (44 ± 2 g BW) were randomly allotted in 6 treatments with 10 birds per cage based on a completely randomized design and fed for 27 d. The treatments consisted of one negative control (NC), diet formulated meeting the requirements suggested by Ross recommendations (2019), and without phytase supplementation. The other treatments consisted of a positive control diet (PC) formulated with 0.15% deficient Ca and P and split into 5 treatments with different phytase inclusion levels (0, 500, 1000, 2000, 4000 FTU/kg feed). Titanium dioxide (0.4%) was added to feeds as an indigestible marker to measure apparent ileal digestibility (AID) of nutrients. On d 27, 3 birds were randomly selected from each cage and euthanized to collect samples for analyzing the mucosa-associated microbiota in the jejunum, oxidative stress status, AID, and bone parameters. Data were analyzed using the proc Mixed of SAS 9.4. Phytase supplementation tended to have a quadratic effect (p = 0.078) on the overall ADG (maximum: 41 g/d at 2833 FTU/kg of feed). Supplementation of phytase at 2,000 FTU/kg increased (p < 0.05) the relative abundance of Lactobacillus and reduced (p < 0.05) Pelomonas. Moreover, it tended to reduce Helicobacter (p = 0.085), Pseudomonas (p = 0.090) Sphingomonas (p = 0.071). Phytase supplementation increased (p < 0.05) the villus height and the AID of CP; and tended to increase (p = 0.086) the AID of P. Phytase supplementation increased (p < 0.05) breaking strength and P content in the tibia. In conclusion, phytase supplementation showed potential benefits on the modulation of the mucosa-associated microbiota in the jejunum by tending to reduce harmful bacteria (Pelomonas, Helicobacter, and Pseudomonas) and increase beneficial bacteria (Lactobacillus). In addition, it showed positive effects increasing apparent ileal digestibility of CP and P, enhancing intestinal morphology (villus height), and improving the bone parameters (bone breaking strength, ash, and P content). Phytase supplementation at a range of 38 to 59 FTU/d or 600 to 950 FTU/kg of feed provided the most benefits related to nutrient digestibility.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (V.H.C.M.); (M.E.D.)
| |
Collapse
|
43
|
Hu YX, van Harn J, Hendriks WH, van Baal J, Dijkslag MA, van Krimpen MM, Bikker P. Low-calcium diets increase duodenal mRNA expression of calcium and phosphorus transporters and claudins but compromise growth performance irrespective of microbial phytase inclusion in broilers. Poult Sci 2021; 100:101488. [PMID: 34731739 PMCID: PMC8572882 DOI: 10.1016/j.psj.2021.101488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
The hypothesis that dietary inclusion of microbial phytase improves apparent calcium (Ca) digestibility thereby allowing a lower dietary Ca inclusion without compromising growth performance was tested. One-day-old male Ross 308 broilers (25 birds/pen, 9 pens/treatment) were assigned to 8 experimental diets containing one of 4 dietary Ca to retainable P (rP) ratios (1.3, 1.8, 2.3, and 2.8) with (1,000 FTU/kg) or without microbial phytase. On d 21 to 23, digesta from different intestinal segments of 8 birds per pen were collected to determine apparent Ca and P digestibility. Mid duodenal mucosa was collected for expression of Ca (CaBP-D28k, PMCA1) and P (NaPi-IIb, PiT-1, PiT-2, and XPR1) transporters by RT-qPCR. Dietary phytase inclusion in low Ca/rP diets increased Ca digestibility in the distal ileum (Pinteraction = 0.023) but not the proximal or distal jejunum. Broilers receiving the lowest Ca/rP displayed the lowest body weight gain, highest feed conversion ratio (P < 0.001), and lowest tibia strength, irrespective of dietary phytase inclusion. Incremental dietary Ca/rP linearly reduced P digestibility to a greater extent in the absence of phytase in the distal jejunum and ileum (Pinteraction = 0.021 and 0.001, respectively). Incremental dietary Ca/rP linearly reduced serum P more in phytase-free diets (Pinteraction < 0.001), and lowered duodenal expression of P transporters NaPi-IIb, PiT-2, and XPR1 (P = 0.052, 0.071 and 0.028, respectively). Incremental dietary Ca/rP linearly increased (P < 0.001) serum Ca irrespective of phytase inclusion, accompanied by a lower (P < 0.001) duodenal expression of Ca transporters CaSR, CaBP-D28k and PMCA1 and Ca-pore forming claudins CLDN-2 and CLDN-12. Dietary phytase increased (P = 0.026) NaPi-IIb but reduced (P = 0.029) CLDN-2 expression. Incremental Ca/rP reduced Ca and P digestibility, increased serum Ca, lowered serum P and inhibited mRNA levels of Ca and P-related transporters, indicating that these transporters and CLDN contribute to the observed effect of dietary Ca and phytase on Ca and P absorption. Despite the improvement in Ca digestibility, dietary phytase did not restore the compromised growth performance and tibia strength of broilers fed a Ca-deficient diet, leading to rejection of the hypothesis.
Collapse
Affiliation(s)
- Y X Hu
- Wageningen University & Research, Wageningen Livestock Research, Wageningen, 6700 AH, the Netherlands; Wageningen University & Research, Animal Nutrition Group, Wageningen, 6700 AH, the Netherlands
| | - J van Harn
- Wageningen University & Research, Wageningen Livestock Research, Wageningen, 6700 AH, the Netherlands
| | - W H Hendriks
- Wageningen University & Research, Animal Nutrition Group, Wageningen, 6700 AH, the Netherlands
| | - J van Baal
- Wageningen University & Research, Animal Nutrition Group, Wageningen, 6700 AH, the Netherlands
| | | | - M M van Krimpen
- Wageningen University & Research, Wageningen Livestock Research, Wageningen, 6700 AH, the Netherlands
| | - P Bikker
- Wageningen University & Research, Wageningen Livestock Research, Wageningen, 6700 AH, the Netherlands.
| |
Collapse
|
44
|
Klein N, Papp M, Rosenfelder-Kuon P, Schroedter A, Avenhaus U, Rodehutscord M. Phosphorus digestibility and phytate degradation in pigs fed wheat-based diets with different intrinsic phytase activity and added microbial phytase. Arch Anim Nutr 2021; 75:450-464. [PMID: 34724855 DOI: 10.1080/1745039x.2021.1988814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of this study was to investigate the effect of variation in wheat-derived phytase activity on myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) degradation, inositol phosphate (InsP) isomer concentration and phosphorus (P) digestibility in pigs fed wheat-based diets. Additional effects of a microbial phytase supplementation were also studied. Three wheat genotypes (W1-W3) with an analysed phytase activity between 2760 and 3700 FTU/kg were used to formulate four experimental diets that included soybean meal and rapeseed meal but did not contain a mineral P supplement. DietW1-DietW3 only differed in the included wheat genotypes (W1-W3) at an inclusion level of 400 g/kg. DietW3+ contained W3 and a commercial 6-phytase supplementation at 500 FTU/kg diet. Eight barrows with an initial body weight of 27 kg were fitted with a simple T-cannula at the distal ileum and assigned to the four dietary treatments in a completely randomised row column design. The experiment included four periods of 12 d each. The first 5 d of each period were for diet adaptation, followed by collection of faeces (4 d), ileal digesta (2 d), and blood (last day). In DietW1-DietW3, the mean precaecal (pc) InsP6 disappearance was 48% and the mean pc P digestibility was 37% without a significant effect of the wheat genotype. The InsP6 disappearance measured in the faeces was close to complete in all treatments, and faecal P digestibility was not significantly affected by the wheat genotype (36% overall). The addition of microbial phytase caused a significant increase in pc InsP6 degradation (to 79%) and pc and total tract P digestibility (to 53% and 52%, respectively). The concentration of InsP6 degradation products in ileal digesta was not significantly affected by the wheat genotype, except for that of Ins(1,2,3,4,6)P5 and myo-inositol, which were higher in DietW3 than in DietW1 and DietW2. The added microbial phytase significantly reduced the concentration of InsP5 isomers in the ileal digesta and increased the concentrations of lower InsP isomers and myo-inositol. There were no significant effects of the added microbial phytase on pc amino acid digestibility; however, the wheat genotype exerted significant effects on the pc digestibility of Cys, Gly and Val. It was concluded that an increase in the intrinsic phytase activity of wheat achieved by crossbreeding was not reflected in InsP6 degradation and P digestibility in pigs fed wheat-based diets.
Collapse
Affiliation(s)
- Nicolas Klein
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Marius Papp
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Annika Schroedter
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ulrike Avenhaus
- W. von Borries-Eckendorf GmbH & Co. KG, Leopoldshöhe, Germany
| | | |
Collapse
|
45
|
Papp M, Sommerfeld V, Schollenberger M, Avenhaus U, Rodehutscord M. Phytate degradation and phosphorus utilisation by broiler chickens fed diets containing wheat with increased phytase activity. Br Poult Sci 2021; 63:375-385. [PMID: 34378995 DOI: 10.1080/00071668.2021.1966756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The objective of this study was to investigate wheat genotypes bred for increased intrinsic phytase activity for InsP6 disappearance and the formation of lower inositol phosphates in such wheat-fed broiler chickens. The influence of monocalcium phosphate (MCP) supplementation on these characteristics and the utilisation of P and Ca were also determined. A three-step in vitro assay and a broiler trial were performed.2. In the 63 wheat genotypes tested in vitro, phytase activity varied from 1900 FTU/kg to 5200 FTU/kg, and InsP6 disappearance increased with higher phytase activity of wheat in a linear manner. The addition of MCP significantly reduced in vitro InsP6 disappearance by one-third, independent of the inclusion level of wheat in the feed. When exogenous phytase was added to wheat, in vitro InsP6 disappearance increased independently of the phytase activity of the wheat used.3. In the broiler trial, four wheat genotypes with phytase activities between 2400 and 3700 FTU/kg were included at 400 g/kg in diets with and without MCP. The diets were not pelleted. Separately, wheat 1, without MCP, was tested with the addition of exogenous phytase. Unsexed Ross 308 broiler chickens were allocated to 72 metabolic units of 10 birds each and assigned one of the nine diets. Mineral utilisation was measured based on excreta collection from 20 to 23 d of age. Digesta from the crop and terminal ileum were collected on d 24.4. In the crop and ileum, InsP6 disappearance was not affected by the wheat genotypes, but the addition of MCP significantly decreased InsP6 disappearance. Precaecal P disappearance was significantly reduced by the addition of MCP, with wheat genotypes exerting an effect. Wheat genotypes and the addition of exogenous phytase significantly affected P utilisation. Exogenous phytase had no effect on InsP6 disappearance in the crop but did up to the terminal ileum, the precaecal InsP6 and P disappearance increased with the addition of exogenous phytase.5. Although the intrinsic wheat phytase activity exerted distinct effects on in vitro InsP6 disappearance, no such effect was found in the broiler trial. The addition of MCP significantly inhibited InsP6 degradation in vitro and in vivo.
Collapse
Affiliation(s)
- M Papp
- Institut für Nutztierwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| | - V Sommerfeld
- Institut für Nutztierwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| | - M Schollenberger
- Institut für Nutztierwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| | - U Avenhaus
- W. von Borries-Eckendorf GmbH & Co. KG, 33818 Leopoldshöhe, Germany
| | - M Rodehutscord
- Institut für Nutztierwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
46
|
Siegert W, Krieg J, Sommerfeld V, Borda-Molina D, Feuerstein D, Camarinha-Silva A, Rodehutscord M. Phytase Supplementation Effects on Amino Acid Digestibility in Broiler Chickens are Influenced by Dietary Calcium Concentrations but not by Acid-Binding Capacity. Curr Dev Nutr 2021; 5:nzab103. [PMID: 34447898 PMCID: PMC8382274 DOI: 10.1093/cdn/nzab103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Responses to dietary calcium (Ca) and supplemented phytase on prececal amino acid digestibility (pcAAD) in broiler chickens vary among studies. The variation may arise from the dietary acid-binding capacity (ABC) that influences the activity of enzymes in the digestive tract and from microbial activity. OBJECTIVE This study aimed to investigate whether the ABC influences phytase effects on pcAAD and whether microbial activity contributes to this. METHODS Male Ross 308 broiler chickens were provided 1 of 12 diets in 72 pens (15/pen) from day 16 of age until the end of the experiment on days 21 or 22. In a 3 × 2 × 2-factorial arrangement, the ABC was varied by replacing calcium carbonate (CaCO3) with Ca-formate or by adding formic acid to CaCO3-containing diets, and contained 5.6 or 8.2 g Ca/kg and 0 or 1500 phytase units/kg. The ileum content was collected for pcAAD measurement and microbial community composition was used to investigate whether changes in pcAAD are related to the microbiota. RESULTS Three-factor ANOVA showed that reducing the ABC increased pcAAD (average 1.1 percentage points) and no significant interaction of the ABC with Ca concentration and phytase supplementation including 3-way interactions. Without phytase, increasing dietary Ca concentration decreased pcAAD (average 3.1 percentage points). Phytase supplementation increased pcAAD (average 2.1 and 5.0 percentage points at low and high Ca concentrations, respectively), to reach the same level for both Ca concentrations. Microbial functional predictions pointed towards an influence of the microbiota in the crop and ileum content on amino acid concentrations, as indicated by different relative abundances of predicted genes related to amino acid biosynthesis, degradation, and metabolism. CONCLUSIONS Dietary Ca concentrations but not the ABC modulates the effect of supplemented phytase on pcAAD in broiler chickens. The microbiota might contribute to differences in pcAAD by changing the amino acid composition of the digesta. The extent of this effect is still unknown.
Collapse
Affiliation(s)
- Wolfgang Siegert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jochen Krieg
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
47
|
Reyer H, Oster M, Ponsuksili S, Trakooljul N, Omotoso AO, Iqbal MA, Muráni E, Sommerfeld V, Rodehutscord M, Wimmers K. Transcriptional responses in jejunum of two layer chicken strains following variations in dietary calcium and phosphorus levels. BMC Genomics 2021; 22:485. [PMID: 34187361 PMCID: PMC8243909 DOI: 10.1186/s12864-021-07814-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of biological processes. Disturbances in Ca and P homeostasis in chickens are associated with a decline in growth and egg laying performance and environmental burden due to excessive P excretion rates. Improved utilization of minerals in particular of P sources contributes to healthy growth while preserving the finite resource of mineral P and mitigating environmental pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) hens at peak laying performance were examined to approximate the consequences of variable dietary Ca and P supply. The experimental design comprised four dietary groups with standard or reduced levels of either Ca or P or both (n = 10 birds per treatment group and strain) in order to stimulate intrinsic mechanisms to maintain homeostasis. Jejunal transcriptome profiles and the systemic endocrine regulation of mineral homeostasis were assessed (n = 80). RESULTS Endogenous mechanisms to maintain mineral homeostasis in response to variations in the supply of Ca and P were effective in both laying hen strains. However, the LSL and LB appeared to adopt different molecular pathways, as shown by circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level of paracellular transport and immunocompetence. Endogenous mechanisms in LB appeared to involve a restructuring of the epithelium, which may allow adaptation of absorption capacity via improved micro-anatomical characteristics. CONCLUSIONS The results suggest that LSL and LB hens may exhibit different Ca, P, and vitamin D requirements, which have so far been neglected in the supply recommendations. There is a demand for trial data showing the mechanisms of endogenous factors of Ca and P homeostasis, such as vitamin D, at local and systemic levels in laying hens.
Collapse
Affiliation(s)
- Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Adewunmi O Omotoso
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm- Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Faculty of Agricultural and Environmental Sciences, University Rostock, Justus-von-Liebig- Weg 7, 18059, Rostock, Germany.
| |
Collapse
|
48
|
Sommerfeld V, Santos RR. In vitro assays for evaluating phytate degradation in non-ruminants: chances and limitations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3117-3122. [PMID: 33336397 DOI: 10.1002/jsfa.11020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The positive effects of phytases on the environment, animal welfare and animal feed costs have resulted in the continuous development and improvement of these enzymes in the non-ruminant feed market. To test the efficacy of these phytases, a large number of experimental animals are necessary, antagonising the animal welfare aspect of these enzymes. In the present review, we summarise the most prominent available in vitro assays for evaluating phytase enzymes and how far they can reduce the number of in vivo experiments. Several in vitro assays exist that differ in their setup, extent and conditions depending on the animal of interest and the research question. With the in vitro assays described, it is not possible to fully replace in vivo trials. However, for the investigation of phytase effects in feedstuffs, the use of an in vitro assay has several advantages. In vitro assays have the potential to be used for ranking feed enzymes and as screening tools. Applying in vitro protocols will result in a reduction in the number of animals or treatments usually necessary for an in vivo trial, thus acting towards the three Rs. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
49
|
Ponsuksili S, Hadlich F, Reyer H, Oster M, Trakooljul N, Iqbal MA, Sommerfeld V, Rodehutscord M, Wimmers K. Genetic background and production periods shape the microRNA profiles of the gut in laying hens. Genomics 2021; 113:1790-1801. [PMID: 33848585 DOI: 10.1016/j.ygeno.2021.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
There is growing evidence of the importance of miRNAs for intestinal functional properties and nutritional uptake. Comparative miRNAs profiles of the jejunal mucosa were established against two genetic backgrounds (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which are similar in egg production but differ in physiological traits including mineral utilization, along the production periods of laying hens. The target genes of miRNAs higher expressed in LB vs. LSL (miR-126-3p, miR-214, miR-24-3p, miR-726-5p, miR-29b-3p) were enriched for energy pathways at all stages. The target genes of the miRNAs higher in LSL (miR-1788-5p, miR-103-3p, miR-22-5p, miR-221-3p, miR-375) were more enriched for immune and the bone signalling pathways. The most prominent expression differences were between 16 and 24 weeks of age before and after onset of laying. Our results evidence central roles of intestinal miRNAs as regulators of gene expression, influencing intestinal homeostasis and adaptation to environment in different strains and production phases.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| |
Collapse
|
50
|
David LS, Abdollahi MR, Bedford MR, Ravindran V. True ileal calcium digestibility in soybean meal and canola meal, and true ileal phosphorous digestibility in maize-soybean meal and maize-canola meal diets, without and with microbial phytase, for broiler growers and finishers. Br Poult Sci 2021; 62:293-303. [PMID: 33196290 DOI: 10.1080/00071668.2020.1849559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
1. Published data on the ileal Ca digestibility in soybean meal (SBM) and canola meal (CM), and the effect of microbial phytase on the Ca digestibility of these ingredients are limited. Therefore, two experiments were conducted, with the primary objective of determining the true ileal digestibility of calcium (Ca) in SBM and CM, without and with microbial phytase, during broiler grower (Experiment 1) and finisher (Experiment 2) periods. A secondary objective was to investigate the influence of microbial phytase on the true ileal digestibility of phosphorus (P), apparent digestibility of nitrogen (N) and minerals, and phytate disappearance in maize-SBM and maize-CM diets. Six experimental diets based on SBM and CM, with three phytase doses (0, 500 and 2000 FTU/kg), were fed to broilers from day 18 to 21 (Experiment 1) or 39 to 42 (Experiment 2) post-hatch. A Ca- and P-free diet, with no added phytase, was also developed to determine the endogenous Ca and P losses. Titanium dioxide was incorporated in all diets as an indigestible indicator. Each experimental diet was randomly allocated to six replicate cages (eight birds per cage). Apparent ileal digestibility was calculated using the indicator method and the true ileal digestibility was calculated by correcting for endogenous losses. Apparent total tract retention (ATTR) of Ca and P was also measured.2. Ileal endogenous losses of Ca and P were determined to be 236 and 310 mg/kg of dry matter intake (DMI), respectively, in broiler growers and 29 and 130 mg/kg of DMI, respectively, in broiler finishers. True ileal Ca digestibility coefficients of SBM and CM, without added phytase, were determined to be 0.51 and 0.53, respectively, in broiler growers and 0.33 and 0.22, respectively, in broiler finishers. Increasing phytase doses increased (P < 0.05) the true ileal Ca digestibility of CM in both broiler growers and finishers, but Ca digestibility of SBM increased (P < 0.05) only at the superdose (2000 FTU/kg) in broiler finishers. The ATTR of Ca (P < 0.001) in growers was higher in CM than in SBM and was increased in both ingredients by increasing phytase doses. In finishers, the ATTR of Ca was increased (P < 0.001) by both phytase doses in CM, but only by the superdose in SBM, resulting in an ingredient × phytase interaction (P < 0.001).3. True ileal P digestibility coefficients of maize-SBM and maize-CM diets, without added phytase, were determined to be 0.89 and 0.66, respectively, in broiler growers and 0.82 and 0.57, respectively, in broiler finishers. Supplemental phytase increased (P < 0.05) the true ileal P digestibility of the maize-CM diet in both broiler growers and finishers. However, the P digestibility of the maize-SBM diet was increased (P < 0.05) in broiler finishers only at the superdose (2000 FTU/kg). The ATTR of P was higher (P < 0.001) in the maize-SBM diet during both periods.4. The apparent ileal digestibility of N, Mg, K and Mn was higher (P < 0.001) in the maize-SBM diet for broiler growers and finishers. Phytase addition had no effect (P > 0.05) on the apparent digestibility of N and minerals in growers and finishers.5. Increasing phytase doses increased IP6 disappearance in the maize-CM diet, but not in the maize-SBM diet, resulting in an ingredient × phytase interaction (P < 0.001) for growers and finishers.6. In conclusion, true ileal Ca digestibility coefficients of SBM and CM for broilers were determined in this study. The findings confirmed the influence of broiler age of Ca digestibility. Superdosing of phytase increased the digestibility and ATTR of Ca in CM and SBM by two-fold compared to the normal phytase dose.
Collapse
Affiliation(s)
- L S David
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - M R Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | | | - V Ravindran
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|