1
|
Spatial Variability of External Egg Quality in Vertical Naturally Ventilated Caged Aviaries. Animals (Basel) 2023; 13:ani13040750. [PMID: 36830538 PMCID: PMC9952415 DOI: 10.3390/ani13040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
External egg quality is an essential parameter of egg production as it relates directly to economic losses. This study evaluated the spatial variability of external egg quality in five naturally ventilated caged vertical aviaries. Differences caused by bird age and thermal and luminous variability within aviaries during winter and summer were analyzed. Data on aviary air temperature, relative humidity, light intensity, and external egg quality were collected at evenly distributed points along the aviary length within three levels of cages. The experimental design was completely randomized in a factorial scheme. In the summer, the highest air temperature and lowest relative humidity were found in central cages, mainly in upper center cages; hens produced eggs with a lower weight and shape index in this area. Similar results were obtained in the winter. In the summer, eggs with lower shell weight and thickness were also produced by hens housed in the central cages, but in the winter, the opposite result was obtained. This study of the spatial variability of external egg quality proved efficient in detecting areas within an aviary with poor quality eggs; improvements to design and management in these areas could help management improve production efficiency and contribute to a sustainable egg supply.
Collapse
|
2
|
Effect of Providing Environmental Enrichment into Aviary House on the Welfare of Laying Hens. Animals (Basel) 2022; 12:ani12091165. [PMID: 35565591 PMCID: PMC9103546 DOI: 10.3390/ani12091165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the effects of providing environmental enrichment materials—pumice stone and alfalfa hay—to laying hens in the aviary system. A total of 2196 40-week-old Hy-Line Brown laying hens were randomly allotted to three treatment groups: (1) no enrichment (control; CON), (2) enrichment with pumice stone (PS), and (3) enrichment with alfalfa hay (HAY). Each treatment comprised four replicates of 183 hens each, and four of the same materials were provided per replicate. The experiment lasted for 26 weeks. Feed and water were provided ad libitum. As a result, the PS and HAY groups demonstrated increased egg production (p < 0.001). The HAY group showed a reduced rate of mislaid eggs (p < 0.01) and produced low egg weight and pale-yellow yolk (p < 0.05). Both enrichment materials decreased blood creatinine (CRE) or lactate dehydrogenase (LDH) in the blood and resulted in a significantly lower corticosterone (CORT) level (p < 0.05). However, the feather condition scores for the laying hens were similar across all treatments (p > 0.05). In summary, although pumice stone and alfalfa hay are effective in alleviating stress and improving the production of laying hens, additional environmental improvement studies are needed to contribute to reducing pecking behaviors in poultry farming.
Collapse
|
3
|
Hu J, Xiong Y, Gates RS, Cheng HW. Perches as Cooling Devices for Reducing Heat Stress in Caged Laying Hens: A Review. Animals (Basel) 2021; 11:ani11113026. [PMID: 34827759 PMCID: PMC8614426 DOI: 10.3390/ani11113026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 01/10/2023] Open
Abstract
Heat stress is one of the most detrimental environmental challenges affecting the biological process and the related production performance of farm animals, especially in poultry. Commercial laying hens have been bred (selected) for high egg production, resulting in increased sensitivity to heat stress due to breeding-linked metabolic heat production. In addition, laying hens are prone to heat stress due to their inadequate species-specific cooling mechanisms resulting in low heat tolerance. In addition, hens have no sweat glands and feathering covers almost their entire body to minimize body heat loss. The poultry industry and scientists are developing cooling methods to prevent or reduce heat stress-caused damage to chicken health, welfare, and economic losses. We have designed and tested a cooling system using perches, in which chilled water (10 °C) circulates through a conventional perch passing through the layer cages to offer the cooling potential to improve hen health, welfare, and performance during acute and chronic periods of heat stress (35 °C). This review summarizes the outcomes of a multi-year study using the designed cooled perch system. The results indicate that conducting heat from perching hens directly onto the cooled perch system efficiently reduces heat stress and related damage in laying hens. It provides a novel strategy: perches, one key furnishment in cage-free and enriched colony facilities, could be modified as cooling devices to improve thermal comfort for hens during hot seasons, especially in the tropical and subtropical regions.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Yijie Xiong
- Departments of Animal Science, and Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Richard S. Gates
- Departments of Animal Science, and Agricultural and Biosystems Engineering, Egg Industry Center, Iowa State University, Ames, IA 50011, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
4
|
Hu JY, Cheng HW. Warm perches: a novel approach for reducing cold stress effect on production, plasma hormones, and immunity in laying hens. Poult Sci 2021; 100:101294. [PMID: 34237550 PMCID: PMC8267593 DOI: 10.1016/j.psj.2021.101294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Cold temperature is a common environmental stressor that induces pathophysiological stress in birds with profound economic losses. Current methods used for preventing cold stress, such as reducing ventilation and using gas heaters, are facing challenges due to poor indoor air quality and deleterious effects on bird and caretaker health. The aim of this study was to examine if the novel designed warmed perch system, as a thermal device, can reduce cold stress-associated adverse effects on laying hens. Seventy-two 32-week-old DeKalb hens were randomly assigned to 36 cages arranged to 3 banks. The banks were assigned to 1 of 3 treatments: cages with warmed perches (WP; perches with circulating water at 30°C), air perches (AP, regular perches only), or no perches (NP) for a 21-d trial. The room temperature was set at 10°C during the entire experimental period. Rectal temperature and body weight were measured from the same bird of each cage at d 1, 8, 15, and 21 during the cold exposure. Egg production was recorded daily. Feed intake, egg and eggshell quality were determined during the 1st and 3rd wk of cold stress. Plasma levels of corticosterone, thyroid hormones (3, 3’, 5-triiodothyronine and thyroxine), interleukin (IL)-6 and IL-10, were determined after 1 d and 21 d of cold exposure. Compared to both AP and NP hens, WP hens were able to maintain their body temperature without increasing feed intake and losing BW. The eggs from WP hens had thicker eggshell during the 3rd wk of cold exposure. Warmed perch hens also had a lower thyroxine conversion rate (3, 3’, 5-triiodothyronine/thyroxine) at d 1, while higher plasma concentrations of IL-6 at d 21. Plasma levels of corticosterone, 3, 3’, 5-triiodothyronine, and IL-10 were not different among treatments. Our results indicate that the warmed perch system can be used as a novel thermal device for preventing cold stress-induced negative effects on hen health and welfare through regulating immunity and metabolic hormonal homeostasis.
Collapse
Affiliation(s)
- J Y Hu
- Department of Animal Sciences, Purdue University, West Lafayette IN 47907, USA
| | - H W Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Edwards LE, Hemsworth PH. The impact of management, husbandry and stockperson decisions on the welfare of laying hens in Australia. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present review examines the impact of management and husbandry decisions on the welfare of laying hens in Australia. The literature on many of these aspects is lacking for the Australian egg industry, and, indeed, for the egg industry in general. Management decisions that can affect hen welfare relate to the initial farm design, husbandry routines, and staff selection and training. As modern laying houses represent a considerable financial investment, the decisions made during the design phase are likely to affect both the hens and stockpeople for substantial periods. Hens in cage systems may benefit from fewer tiers and greater space allowances. In non-cage systems, the brown genotypes used in the Australian egg industry may benefit from lower structures that accommodate their heavier and less agile bodies. Keel fractures can be reduced by improving the skeletal health and spatial cognition of laying hens during the rearing period, in addition to minimising the distances they need to jump when navigating aviary structures. The addition of a wintergarden to fixed free-range systems appears to be beneficial. Housing hens in mobile units on free-range farms may challenge their welfare, particularly in relation to heat stress. There is also room for improvement in biosecurity practices and health monitoring of hens, as these appear to be lacking at some farms. The current strains of hen used in free-range systems may not be best suited to these conditions, on the basis of their body condition and flock uniformity. Feed quality may also need to be monitored for quality assurance and optimal hen nutrition. Hen welfare during depopulation can be improved through staff training and by reducing staff fatigue. Euthanising spent hens on farm offers welfare benefits over transporting spent hens to an abattoir. Both hen welfare and working conditions for stock people should be considered when designing laying houses to provide suitable conditions for both hens and stockpeople. This will help improve the job satisfaction of stockpeople, which may translate into better care for the hens and may aid in retaining quality staff. Stockpeople must be recognised as vital contributors to hen welfare in the egg industry, and it is important for the egg industry to continue to attract, train and retain skilled stockpeople to ensure that they enjoy their job and are motivated to apply best-practice care for their flocks. Promoting the animal-care aspect of stockmanship in combination with a supportive managerial environment with optimal working conditions may increase the attractiveness of the egg industry as a place to work.
Collapse
|
6
|
Kim DH, Lee YK, Lee SD, Kim SH, Lee SR, Lee HG, Lee KW. Changes in Production Parameters, Egg Qualities, Fecal Volatile Fatty Acids, Nutrient Digestibility, and Plasma Parameters in Laying Hens Exposed to Ambient Temperature. Front Vet Sci 2020; 7:412. [PMID: 32766297 PMCID: PMC7379879 DOI: 10.3389/fvets.2020.00412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The present study was undertaken to investigate the impact of heat stress on nutrient digestibility and tibia and reproductive traits, and changes in laying performance, egg qualities, fecal volatile fatty acids, and plasma parameters in laying hens. One-hundred twenty 52-week-old laying hens were raised in three temperature-controlled facilities with constant humidity (50% RH), either normal temperature (LT; 22°C) or heat stress considered being moderate (MT; 27°C) or severe (HT; 32°C) for 42 days. Feed intakes were consistently low (p < 0.01) in HT hens compared with those in LT or MT over the period of 42 days. Egg production kept markedly (p < 0.05) or numerically (p > 0.05) low in hens exposed to HT vs. LT or MT. Egg mass and egg weight were consistently low (p < 0.01) in hens exposed to HT compared with those raised under LT or MT. On the other hand, feed conversion ratio and frequency of dirty and cracked eggs were not significantly affected (p > 0.05) during the experimental period. HT-exposed hens consistently had lowered (p < 0.05) eggshell thickness and breaking strength, eggshell weight, and plasma Ca, P, and Mg levels compared with LT- or MT-treated hens. HT hens had lower (p < 0.01) relative oviduct weight and less number of large yellow follicles compared with those raised under LT or MT conditions at 42 days. Tibia traits measured at 42 days were not affected by any of heat treatments. Fecal volatile fatty acids tended to be higher in HT-exposed laying hens throughout the experiment. It was noted that digestibilities of neutral detergent fiber and dry matter were lowest (p < 0.05) in hens exposed to HT vs. LT or MT environments. Our study suggests that heat stress could lower laying performance, egg quality, and physiological parameters that are coupled with alterations in gut metabolites and mineral/lipid metabolism. The findings emerged from this study will help us design the nutritional and environmental strategies to mitigate the negative effect of heat stress on laying hens.
Collapse
Affiliation(s)
- Da-Hye Kim
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Yoo-Kyung Lee
- National Institute of Animal Science, Rural Development of Administration, Jeonju-si, South Korea
| | - Sung-Dae Lee
- National Institute of Animal Science, Rural Development of Administration, Jeonju-si, South Korea
| | - Sang-Ho Kim
- National Institute of Animal Science, Rural Development of Administration, Jeonju-si, South Korea
| | - Sang-Rak Lee
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
7
|
Erensoy K, Noubandiguim M, Sarıca M, Aslan R. The effect of intermittent feeding and cold water on performance and carcass traits of broilers reared under daily heat stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:2031-2038. [PMID: 32164058 PMCID: PMC7649412 DOI: 10.5713/ajas.19.0980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
Objective This study aimed to determine the effect of intermittent feeding and cold water on performance and carcass traits in broiler chickens between 4 to 6 wk of age exposed to daily high temperature. Methods Broilers were assigned to four treatment groups according to a 2×2 factorial design between 22 to 42 d of age (80 broilers per treatment, 4 replications). Broilers were divided into two main groups as feeding type (ad-libitum [AL] and intermittent [IF] for 6 h daily) and sub-groups as water temperature (normal [NW], 24.9°C and cold [CW], 16.4°C). Heat treatment was applied between 11.00 to 17.00 h daily between 22 to 42 d of age. Results Live weight at 6th wk was not affected by feeding type and water temperature, but the live weight was significantly higher in IF chickens at the 5th wk (p<0.05). Average weekly gain of IF broiler chickens were higher compared to AL group at 4, 5, and 6 wk of age (p< 0.05). Although feeding type did not affect feed intake in 4 and 5th wk, feed intake was higher in IF chickens at 6th wk (p<0.01). In addition, feeding type and water temperature did not affect feed conversion ratio and interactions were not significant (p>0.05). Water temperature had no significant effect on heart, liver, gizzard, and abdominal fat percentages (p>0.05). Conclusion It is concluded that IF increased the average weekly gain in chickens reared under daily heat stress for 6 h between 22 to 42 d of age. IF in hot environmental conditions slightly increased performance without adversely affecting health, welfare, and physiological traits, whereas CW implementation had no significant effect on performance. It can also be said that IF suppresses a sudden increase in body temperature depending on age and live weight.
Collapse
Affiliation(s)
- Kadir Erensoy
- Department of Animal Science, Agricultural Faculty, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Moise Noubandiguim
- Department of Biology, Faculty of Art and Sciences, Ondokuz Mayis University, 55139 Samsun, Turkey.,National High Institute of Sciences and Techniques, Institut National Supérieur des Sciences et Techniques d'Abéché (INSTA), 40823 Abeche, Tchad
| | - Musa Sarıca
- Department of Animal Science, Agricultural Faculty, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Resul Aslan
- Department of Animal Science, Agricultural Faculty, Ondokuz Mayis University, 55139 Samsun, Turkey
| |
Collapse
|