1
|
Olukosi OA, Philippi H, Veluri S, Kasireddy B, Ajao AM, Pilevar M, Oluseyifunmi IW. Assessment of two diet types in reduced-crude protein diets with or without phytase supplementation - implications on key phenotypic responses in 21-day-old broiler chickens. Br Poult Sci 2024:1-10. [PMID: 39399981 DOI: 10.1080/00071668.2024.2412136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
1. Two concurrent experiments were conducted to investigate the effect of using the crude protein (CP) value of supplemental amino acids (AA) in formulating reduced-crude protein (RCP) diets. The RCP diets formulated without accounting for CP values of supplemental AA (RCPN) or otherwise (RCPY) or a positive control (PC) diet were fed without (Experiment 1) or with (Experiment 2) phytase.2. Each experiment utilised 105 male broiler chicks. Birds were provided a common starter diet from d 0-7. On d 21, ileal digesta were collected from the distal half of the ileum. For mRNA expression analysis, tissues were collected from the mid-jejunum and the liver. Excreta grab samples were collected for analysis for N content.3. In Experiment 1, there was a stepwise decrease (p < 0.01) in weight gain and excreta N for birds receiving PC, RCPN and RCPY diets. The coefficients of ileal digestibility of His, Leu, Phe and Trp were greater (p < 0.05) in birds that received RCPY rather than the PC diets. The relative mRNA expression of CAT1 was greater (p < 0.05) for birds that received the PC diet.4. In Experiment 2, growth performance and excreta N were not different between the PC and RCPN diets, but weight gain, feed intake and excreta N were greater (p < 0.01) in birds receiving PC or RCPN diets. The coefficients of digestibility were greater (p < 0.01) in RCP than PC diets for Lys, Thr, Cys, Gly and Ser. The mRNA expression for S6kinase and PRKAβ2 was greater (p < 0.05) for birds fed RCPN compared to PC.5. In conclusion, accounting for the N content of supplemental AA during feed formulation for RCP diets will influence the effect of CP reduction on growth performance and ileal amino acid digestibility.
Collapse
Affiliation(s)
- O A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - H Philippi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - S Veluri
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - B Kasireddy
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - A M Ajao
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - M Pilevar
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - I W Oluseyifunmi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Goo D, Singh AK, Choi J, Sharma MK, Paneru D, Lee J, Katha HR, Zhuang H, Kong B, Bowker B, Kim WK. Different dietary branched-chain amino acid ratios, crude protein levels, and protein sources can affect the growth performance and meat yield in broilers. Poult Sci 2024; 103:104313. [PMID: 39357235 PMCID: PMC11474198 DOI: 10.1016/j.psj.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Balanced ratios of branched-chain amino acids (BCAAs) can enhance chicken growth, immunity, and muscle synthesis. However, these ratios can be affected by changes in crude protein (CP) levels or the substitution of protein sources, leading to BCAA antagonism. This, in turn, can have a negative impact on chicken growth. In Experiment 1, a total of 960 0-d-old male Cobb 500 broilers were divided into 6 treatments with 8 replicates. Three different BCAA ratios were used in High or Low CP diets as follows: 1) Low Leu group (Low level of leucine with increased valine and isoleucine levels), 2) Med Leu group, and 3) High Leu group (High level of leucine with reduced valine and isoleucine levels) for a total of 6 diets. In Experiment 2, a total of 640 0-d-old male Cobb 500 broilers were divided into 4 treatments with 8 replicates. The four diets had either High or Low CP and one of two protein sources with the same medium levels of BCAAs: 1) the soybean meal (SBM) group, which had SBM as the main protein source (protein bound AA), and 2) the wheat middlings with non-bound AAs (WM+AA) group (non-bound AA), which had additional non-bound AAs to replace SBM. The High Leu diet had a negative effect on overall growth performance, carcass weight, breast muscle weight, and body mineral composition compared to the Low Leu and Med Leu groups, particularly in the High CP diet (P < 0.05). The SBM group showed increased growth performance, breast muscle weight, expression levels of genes promoting muscle growth, and improved bone mineral composition compared to the WM+AA group, and the High CP group intensified the negative effect of the WM+AA diet (P < 0.05). In summary, balanced BCAA ratios and SBM-based diets have positive effects on chicken growth and muscle accretion, whereas excessive leucine and non-bound AA levels in the diets may negatively affect growth performance and meat yield in chickens.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Amit K Singh
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Hemanth R Katha
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Brian Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Selle PH, Macelline SP, Toghyani M, Liu SY. The potential of glutamine supplementation in reduced-crude protein diets for chicken-meat production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:49-56. [PMID: 39022775 PMCID: PMC466976 DOI: 10.1016/j.aninu.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 07/20/2024]
Abstract
This review explores the potential of including glutamine, a so-called non-essential amino acid, in the formulation of reduced-crude protein (CP) diets for broiler chickens. There is a precedent for benefits when including glycine and serine in reduced-CP diets. Fundamentally this is due to decreases in non-essential amino acid concentrations in reduced-CP diets - an unavoidable consequence of reducing CP without amino acid supplementation. The situation for glutamine is complicated because analysed dietary concentrations are very rarely provided as standard assays do not differentiate between glutamine and glutamate and are reported on a combined basis as glutamic acid. The dietary requirement for glutamic acid is approximately 36.3 g/kg but it is increasingly unlikely that this requirement will be met as dietary CP levels are progressively reduced. Glutamine is an abundant and versatile amino acid and constitutes 50.5 mg/g of whole-body chicken protein and is the dominant free amino acid in systemic plasma where it has been shown to provide 22.6% (139.9 of 620.3 μg/mL) of the total in birds offered 215 g/kg CP, wheat-based diets. In addition to dietary intakes, glutamine biosynthesis is derived mainly from the condensation of glutamate and ammonia (NH3) catalysed by glutamine synthetase, a reaction that is pivotal to NH3 detoxification. Glutamate and NH3 are converted to glutamine by phosphate-dependent glutaminase in the reciprocal reaction; thus, glutamine and glutamate are interchangeable amino acids. However, the rate of glutamine biosynthesis may not be adequate in rapidly growing broiler chickens and exogenous and endogenous glutamine levels are probably insufficient in birds offered reduced-CP diets. The many functional roles of glutamine, including NH3 detoxification and maintenance of acid-base homeostasis, then become relevant. Twenty feeding studies were identified where dietary glutamine supplementation, usually 10 g/kg, was evaluated in birds kept under thermoneutral conditions. On balance, the outcomes were positive, but the average dietary CP was 213 g/kg across the twenty feeding studies, which indicates that CP and, in turn, glutamine concentrations would have been adequate. This suggests that glutamine inclusions in reduced-CP diets hold potential and consideration is given to how this may be best confirmed.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Shemil P. Macelline
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Mehdi Toghyani
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Sonia Yun Liu
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
4
|
Chang C, Zhao W, Zhang Q, Wang X, Zhang J, Yan Z, Cao J, Liu H, Geng A. Dietary Crude Protein and Lysine Levels Affect Meat Quality and Myofiber Characteristic of Slow-Growing Chicken. Animals (Basel) 2024; 14:2068. [PMID: 39061530 PMCID: PMC11273887 DOI: 10.3390/ani14142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate the effects of dietary crude protein (CP) and lysine levels on growth performance, slaughter performance, meat quality, and myofiber characteristics of slow-growing chicken. A 3 × 3 factorial experiment was arranged, and the chickens were fed with 3 levels of dietary CP (16.0%, 17.0%, 18.0%) and 3 levels of dietary lysine (0.69%, 0.84%, 0.99%). A total of 540 8-week-old Beijing-You Chicken (BYC) female growing chickens were randomly allocated to 9 groups, 5 replicates per group, and 12 chickens per replicate. The birds were randomly allocated to one of the 9 experimental diets. Growth performance, slaughter performance, meat quality, and myofiber characteristics were determined at 16 weeks of age. The results showed that dietary CP level and the interaction of dietary CP and lysine levels affected average feed intake (AFI) (p < 0.05). The AFI in the 16.0% CP and 17.0% CP groups was higher than in the 18.0% CP group (p < 0.05). Dietary CP levels significantly affected body weight gain (BWG) (p < 0.05) at 9 to 16 weeks. The 18.0% CP group had the highest BWG (93.99 g). Dietary CP levels affected the percentage of leg muscle yield, and the percentage of leg muscle yield of the 16.0% CP group was significantly lower than that in the other two groups (p < 0.05). Dietary CP and lysine levels alone and their interactions did not affect pH24h, drip loss, and cooking loss of breast muscle (p > 0.05). The shear force of the 18.0% CP group (29.55 N) was higher than that in the other two groups (p < 0.01). Dietary CP level affected myofiber characteristic (p < 0.01), with the lowest myofiber density (846.35 p·mm-2) and the largest myofiber diameter (30.92 μm) at 18.0% CP level. Dietary lysine level affected myofiber diameter, endomysium thickness, perimysium thickness (p < 0.01), with the largest myofiber diameter (29.29 μm) obtained at 0.84% lysine level, the largest endomysium thickness (4.58 μm) at 0.69% lysine level, and the largest perimysium thickness (9.26 μm) at 0.99% lysine level. Myofiber density was negatively correlated with myofiber diameter and endomysium thickness (R = -0.883, R = -0.523, p < 0.01); perimysium thickness had a significant negative correlation with shear force (R = -0.682, p < 0.05). Therefore, reducing dietary CP level and adding appropriate lysine can reduce myofiber diameter and increase perimysium thickness, reducing shear force and improving meat tenderness. A high lysine level (0.99%) in the low-CP (16.0%) diet can improve meat tenderness by regulating the myofiber characteristic without affecting production performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.C.); (W.Z.); (Q.Z.); (X.W.); (J.Z.); (Z.Y.); (J.C.)
| | - Ailian Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.C.); (W.Z.); (Q.Z.); (X.W.); (J.Z.); (Z.Y.); (J.C.)
| |
Collapse
|
5
|
El-far AS, Kamiya M, Saneyasu T, Honda K. Effects of Amino Acid Supplementation to a Low-Protein Diet on the Growth Performance and Protein Metabolism-related Factors in Broiler Chicks. J Poult Sci 2024; 61:2024014. [PMID: 38726100 PMCID: PMC11074001 DOI: 10.2141/jpsa.2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
A low-protein (LP) diet may alleviate the environmental impact of chicken meat production by reducing nitrogen excretion and ammonia emissions. Thus, this study investigated the effect of a 15% reduced protein diet with or without amino acid (AA) supplementation on the growth performance of broiler chicks from 10 to 35 days of age and the underlying mechanism for loss of skeletal muscle mass. Thirty-six male broiler chicks were allocated to three experimental groups based on body weight: control, LP, and essential AA-supplemented LP (LP+AA). The body weight gain, feed conversion ratio, and weight of breast muscles and legs significantly decreased only in the LP group at the end of the feeding period. Plasma uric acid levels were significantly lower in the LP+AA group than those of the other groups. In the LP group, mRNA levels of microtubule-associated protein 1 light chain 3 isoform B were significantly higher in the pectoralis major, whereas those of atrogin-1, muscle RING-finger protein-1, and myoblast determination protein 1 were significantly higher in the biceps femoris compared to those in the control group. There were no significant differences in insulin-like growth factor 1 mRNA levels in the liver or skeletal muscle between groups. These findings suggested that supplementation with essential AAs ameliorated the impaired effects of an LP diet on growth performance in broiler chicks, and that the transcriptional changes in proteolytic genes in skeletal muscles might be related to the impaired effects of the LP diet.
Collapse
Affiliation(s)
- Asmaa S. El-far
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
- Faculty of
Veterinary Medicine, Damanhour University,
Damanhour, Egypt
| | - Maho Kamiya
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
| | - Takaoki Saneyasu
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
| |
Collapse
|
6
|
Strifler P, Horváth B, Such N, Dublecz K, Pál L. Effects of different dietary threonine and glycine supplies in broilers fed low-protein diets. Front Vet Sci 2024; 11:1373348. [PMID: 38590541 PMCID: PMC10999546 DOI: 10.3389/fvets.2024.1373348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
The reduction of crude protein (CP) content of broiler diets with balanced amino acid supply can increase the nitrogen (N) utilization efficiency and reduce ammonia emission, the risk of many health problems in birds. Feeding low protein (LP) diets without the impairment of performance traits needs the optimized dietary levels of threonine (Thr) and the non-essential amino acid (AA) glycine (Gly) and serine (Ser). However, the required concentrations and interactions of Thr and Gly + Ser, expressed as Gly equivalent (Glyequi), in LP diets are not fully understood. Therefore, the aim of this study was to investigate the effects of three LP (LP1-3) grower (11-24 days) and finisher (25-35 days) diets with 2% CP reduction compared to the control (C), differing in standardized ileal digestible (SID) Thr to lysine (Lys) ratio (C, LP1, LP3: 63%, LP2: 72%) and Glyequi levels (C: 15.65 g/kg, LP1: 13.74 g/kg, LP2: 13.70 g/kg, LP3: 15.77). The LP treatments did not impair the performance traits of broilers. The LP2 treatment with increased SID Thr-to-Lys ratio (+9.0%) resulted in significantly higher body weight gain and a more advantageous feed conversion ratio in the whole fattening compared to the control treatment with normal CP level (p < 0.05). The LP3 treatment containing swine meat meal with similar Glyequi levels compared to the normal CP treatment led to the most advantageous feed conversion ratio in the finisher phase and the highest nitrogen retention efficiency (p < 0.05). However, the LP3 treatment with a high starch-to-CP ratio negatively influenced the relative carcass weight and the ratio of abdominal fat of broilers (p < 0.05).
Collapse
Affiliation(s)
| | | | | | | | - László Pál
- Department of Nutrition and Nutritional Physiology, Institute of Physiology and Nutrition, Hungarian University and Agriculture and Life Sciences, Keszthely, Hungary
| |
Collapse
|
7
|
England AD, Heras-Saldana SDL, Gharib-Naseri K, Kheravii SK, Wu SB. The effect of sex and dietary crude protein level on nutrient transporter gene expression and cecal microbiota populations in broiler chickens. Poult Sci 2024; 103:103268. [PMID: 38035473 PMCID: PMC10698011 DOI: 10.1016/j.psj.2023.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 12/02/2023] Open
Abstract
It is well known that male and female broilers differ in their growth performance and that many physiological factors contribute to this difference. The aim of this experiment is to investigate if there are differences between male and female broilers in cecal microbiota and nutrient transporter gene expression and if these differences play a role in the growth performance of broilers. The possible effect of protein level and its interaction with sex on microbiota and expression of the nutrient transporters were also investigated. Samples were collected from male and female birds fed either standard crude protein (SCP) or reduced crude protein diets (RCP) at the age of d 35. The experiment was designed as a 2 × 2 factorial arrangement of treatments consisting of 448 Cobb 500 broilers assigned to 32-floor pens with 4 treatments, 8 replicates, and 14 birds per pen for performance measurements. The factors were sex (male or female) and dietary crude protein (CP) level (standard or reduced). Body weight gain (BWG), feed intake and feed conversion ratio were recorded for each pen. Sex had a significant effect on BWG and FCR (P < 0.001) where males had a significantly higher BWG and better FCR compared to females. There was a significant interaction between sex and protein level on feed intake (FI) (P < 0.05), where male birds had a higher FI compared to female birds only when the birds were fed SCP but not RCP diets. There was a significant interaction between CP level and sex on the expression of CAT2 (P = 0.02) and PEPT2 (P = 0.026) where the genes were significantly upregulated in females but only when the RCP diet was fed. The RCP diet upregulated the expression of BoAT (P = 0.03) as a main effect. Female birds had significantly higher expression of the PepT-2 gene compared to the males. The alpha diversity of the cecal microbiota showed differences among the treatments. The Shannon diversity index was statistically higher (P = 0.036) for males fed the SCP diet and the Chao1 index for evenness was statistically higher (P = 0.027) in females fed the SCP diet. There was also a difference in the relative abundance of the 15 most common genera found in the cecal content of the broilers in this experiment and lastly, the differential composition of microbiota between the different treatments was also significantly different. This study suggests that chickens are able to compensate for a reduction in AA substrates when fed a low CP diet through the upregulation of certain AA transporters, females may adapt to low CP diets better by such upregulation compared to males, and lastly, sex has an effect on the cecal microbial population and these differences contribute towards the performance differences between male and female broilers.
Collapse
Affiliation(s)
- Ashley D England
- School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Sara de Las Heras-Saldana
- Animal Genetics and Breeding Unit, School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Kosar Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia.
| |
Collapse
|
8
|
Cho I, An SH, Yoon JH, Namgung N, Kong C. Growth performance and nitrogen excretion of broiler chickens fed low protein diets supplemented with crystalline amino acids. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:145-155. [PMID: 38618035 PMCID: PMC11007463 DOI: 10.5187/jast.2023.e131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 04/16/2024]
Abstract
This study was conducted to determine the effects of amino acid (AA) supplementation in low-protein (LP) diets on growth performance and nitrogen (N) excretion. A total of 175 7-day-old Ross 308 male broilers, with a mean body weight (BW) of 165 g (standard deviation = 11.2 g), were grouped into five blocks by BW and allocated to seven treatments according to a randomized complete block design with five replicate cages at five birds per cage. Dietary treatments comprised a control diet containing 20.0% crude protein (CP) and six LP diets containing either 18.5% or 17.0% CP. These LP diets were supplemented with either no AA supplementation, indispensable AA, or both indispensable and dispensable AA (glutamic acid and glycine). Birds were fed experimental grower diets from day 7 to 21 and then commercial finisher diets until day 28. During the grower period (day 7 to 21), birds fed LP diets supplemented with indispensable AA exhibited greater (p < 0.05) BW, body weight gain (BWG), feed intake (FI), and gain-to-feed ratio (G:F) than birds fed LP diets without crystalline AA and were comparable to birds fed the control diet. During the finisher period (day 21 to 28), birds fed LP diets supplemented with indispensable AA showed greater (p < 0.05) BW than birds fed LP diets without crystalline AA, and their growth performance was comparable to birds fed the control diet. Throughout the overall period, supplementing indispensable AA in LP diets resulted in elevated (p < 0.05) BWG, FI, and G:F more than those of LP diets without crystalline AA and were comparable to those of the control diet. Supplementing indispensable AA in LP diets decreased amount and coefficient of N excretion as much as the control diet. Dispensable AA supplementation in LP diets did not influence growth performance and N excretion. In conclusion, supplementing indispensable AA in LP diets maintains growth performance and N excretion until the dietary CP lowers from 20.0% to 17.0% during the grower period. As long as dietary CP is above 17.0%, dispensable AA may not be deficient in LP diets during the grower period.
Collapse
Affiliation(s)
- Inho Cho
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Su Hyun An
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal
Science, Kyungpook National University, Sangju 37224,
Korea
| | - June Hyeok Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Nyun Namgung
- Livestock Science R&D Center, Easy
Holdings Co., Ltd., Seoul 06253, Korea
| | - Changsu Kong
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal
Science, Kyungpook National University, Sangju 37224,
Korea
- Department of Animal Science, Kyungpook
National University, Sangju 37224, Korea
| |
Collapse
|
9
|
Macelline SP, Kidd MT, Chrystal PV, Toghyani M, Selle PH, Liu SY. The influence of non-bound amino acid inclusions and starch-protein digestive dynamics on growth performance of broiler chickens offered wheat-based diets with two crude protein concentrations. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:399-408. [PMID: 38058566 PMCID: PMC10695844 DOI: 10.1016/j.aninu.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 12/08/2023]
Abstract
The primary objective of this study was to investigate the influence of high and low inclusions of non-bound amino acid (NBAA) in standard and reduced-crude protein (CP), wheat-based diets on growth performance in broiler chickens. Dietary treatments were formulated to either 210 or 180 g/kg CP. The 210 g/kg CP diets contained either 12.1 or 21.1 g/kg NBAA and 180 g/kg CP diets contained either 44.0 or 55.5 g/kg NBAA. The formulations also generated different dietary starch:protein ratios which impacted on starch-protein digestive dynamics. Each of the four dietary treatments were offered to 7 replicates of 15 birds housed in floor pens from 14 to 35 days post-hatch or a total of 420 male Ross 308 chickens. Growth performance, relative abdominal fat-pad weights, breast muscle and leg shank yields were determined. Ileal starch and protein (N) digestibility coefficients, disappearance rates and starch:protein disappearance rate ratios were defined. Apparent ileal digestibility coefficients and disappearance rates of 16 amino acids were determined at 35 days post-hatch and free concentrations of 20 amino acids in systemic plasma were determined at 34 days post-hatch. The transition from 210 to 180 g/kg CP diets depressed weight gain by 11.3% (1742 versus 1964 g/bird) and FCR by 10.4% (1.606 versus 1.455), although both parameters were subject to treatment interactions. The treatment interaction (P < 0.001) observed for FCR was because high NBAA inclusions significantly improved FCR by 4.17% (1.424 versus 1.486) in birds offered 210 g/kg CP diets, but significantly depressed FCR by 3.36% (1.632 versus 1.579) in 180 g/kg CP diets. A quadratic relationship (r = 0.860; P < 0.001) between dietary NBAA inclusions and FCR was detected, which indicated that when NBAA inclusions exceed 18.5 g/kg efficiency of feed conversion deteriorated. However, a multiple linear regression (r = 0.913; P < 0.001) was detected for FCR where both NBAA inclusions and analysed dietary starch:protein ratios were significantly (P < 0.001) related to FCR. This relationship indicates that growth performance of broiler chickens offered wheat-based diets is strongly influenced by dietary NBAA inclusions coupled with dietary starch:protein ratios and consideration is given to the possible underlying mechanisms.
Collapse
Affiliation(s)
- Shemil P. Macelline
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Michael T. Kidd
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Peter V. Chrystal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
- Complete Feed Solutions, Howick, 2145, New Zealand
| | - Mehdi Toghyani
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Peter H. Selle
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Sonia Y. Liu
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
10
|
Zhu X, Gao K, Qi Y, Yang G, Liu H. Enzymolytic soybean meal improves growth performance, economic efficiency and organ development associated with cecal fermentation and microbiota in broilers offered low crude protein diets. Front Vet Sci 2023; 10:1293314. [PMID: 38046570 PMCID: PMC10693456 DOI: 10.3389/fvets.2023.1293314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
The objective of this experiment was to determine the effect of low crude protein (CP) diets containing increasing amounts of enzymolytic soybean meal (ESBM) on growth performance, economic benefit and organ development and the role of cecal fermentation and microbiota in broilers. A total of 360 one-day-old Arbor Acres chicks were randomly allocated into 6 groups with 6 replicates and 10 chicks each. The six dietary treatments consisted of a standard high-CP diet (PC), a low-CP diet (NC), and an NC diet with 0.5, 1.0, 1.5%, or 2.0% ESBM. The experiment lasted for 42 days. Compared to PC, NC showed decreased (p < 0.05) average daily gain (ADG) in broilers from 22 to 42 days and from 1 to 42 days, while increasing levels of ESBM quadratically increased (p < 0.05) ADG from 1 to 42 days. Feed cost and total revenue in the NC were lower (p < 0.05) than that in the PC, while supplementation with ESBM in the NC linearly increased (p < 0.05) net profit and economic efficiency in broilers. There were significant differences (p < 0.05) in the liver, proventriculus and gizzard indices between the PC and NC groups, and supplementation with ESBM linearly increased (p < 0.05) the relative weights of liver, pancreas, proventriculus and gizzard in broilers at 42 days of age. The PC group had a higher cecal acetic acid concentration at 21 days and propionic acid concentration at both 21 and 42 days than the NC group (p < 0.05). Cecal acetic acid and propionic acid concentrations linearly increased (p < 0.05) with increasing levels of ESBM in broilers at 42 days of age. No significant differences in ACE, Chao1, Shannon and Simpson indices were observed among groups (p > 0.05), while the cecal abundances of Bacteroides, Faecalibacterium and Clostridium IV increased (p < 0.05) with the increasing level of ESBM in the low-CP diets. In conclusion, feeding ESBM improved economic efficiency, digestive organ development, cecal fermentation and microbial community composition, and up to 2.0% ESBM addition had no negative effect on the growth performance in broilers fed low CP diets.
Collapse
Affiliation(s)
| | | | | | | | - Haiying Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Macelline SP, Chrystal PV, Toghyani M, Selle PH, Liu SY. Dietary crude protein reductions in wheat-based diets with two energy densities compromised performance of broiler chickens from 15 to 36 days post-hatch. Poult Sci 2023; 102:102932. [PMID: 37517362 PMCID: PMC10400805 DOI: 10.1016/j.psj.2023.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
This study was designed to investigate the impacts of 2 energy densities (13.0 and 12.5 MJ/kg ME) in wheat-based diets with 3 tiers of CP concentrations (210, 190, and 170 g/kg) on the performance of broiler chickens. The parameters assessed included growth performance (15-36 d posthatch), carcass traits, nutrient utilization, starch-protein digestive dynamics, apparent ileal amino acid digestibility coefficients, and the free amino acid and ammonia (NH3) concentrations in systemic plasma. Also, the feasibility of substituting soybean meal with canola meal in 190 g/kg CP diets was investigated. The dietary CP reduction from 210 to 170 g/kg significantly compromised weight gain by 12.4% (1,890 vs. 2158 g/bird) and FCR by 5.33% (1.501 vs. 1.425). The 0.5 MJ energy density reduction compromised FCR by 3.25% (1.525 vs. 1.477; P = 0.013) in birds offered 170 g/kg CP diets. Reducing dietary CP and energy densities interactively influenced (P = 0.027) apparent metabolizable energy (AME) and nitrogen corrected metabolizable energy (AMEn) (P = 0.022) such that reducing dietary CP increased these parameters but reducing dietary energy densities decreased AME and AMEn. The 150 g/kg canola meal inclusion with the elimination of soybean meal displayed some promise. Dietary CP reductions (and increased nonbound amino acid inclusions) linearly associated with increased plasma ammonia (NH3) concentrations (r = -0.607; P = 0.010) and plasma NH3 was linearly related to depressed weight gains (r = -0.565; P = 0.018). The association of dietary non-protein-bound amino acid (NPBAA) inclusions and elevated plasma NH3 concentrations have profound implications for the successful development of reduced-CP, wheat-based broiler diets.
Collapse
Affiliation(s)
- Shemil P Macelline
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia; Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
| | - Peter V Chrystal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia; Complete Feed Solutions, Hornsby NSW 2071, Australia; Howick 2145, New Zealand
| | - Mehdi Toghyani
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia; Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
| | - Peter H Selle
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia; Sydney School of Veterinary Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Sonia Y Liu
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia; Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia.
| |
Collapse
|
12
|
Dao HT, Moss AF, Bradbury EJ, Swick RA. Effects of L-arginine, guanidinoacetic acid and L-citrulline supplementation in reduced-protein diets on bone morphology and mineralization of laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:225-234. [PMID: 37484992 PMCID: PMC10362165 DOI: 10.1016/j.aninu.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 07/25/2023]
Abstract
The alterations in feed ingredients and the nutrient matrix to produce reduced-protein diets may affect bone morphology and mineralization in laying hens. This study was implemented to determine the effects of L-arginine (Arg), guanidinoacetic acid (GAA), and L-citrulline (Cit) supplementation to Arg-deficient reduced-protein diets on bone morphology, strength, and mineralization status of laying hens. Individually housed Hy-Line Brown laying hens were evenly distributed to five dietary treatments with 25 replicates per treatment from 20 to 40 wk of age. Treatments consisted of a standard protein diet (17% crude protein, SP), a reduced-protein diet deficient in Arg (13% crude protein, RP), and RP supplemented with Arg (0.35% Arg, RP-Arg), GAA (0.46% GAA equivalent to 0.35% Arg, RP-GAA), or Cit (0.35% Cit equivalent to 0.35% Arg, RP-Cit) to reach the Arg level of SP diets. Birds fed the SP diet had similar bone weight, ash, length, width, Seedor index, breaking strength, and serum mineral concentration, but higher toe B level (P < 0.001) compared to those fed the RP diet at wk 40. Birds fed the SP diet consumed more but also excreted more K and B compared to those fed the RP diet (P < 0.01). Birds fed the SP diet had lower Cu digestibility (P = 0.01) and higher B retention (P < 0.01) compared to those offered the RP diet. Supplementation of Arg, GAA, and Cit to the RP diet increased relative femur weight and length (P < 0.001). Citrulline supplementation also increased relative tibia and femur ash, and Zn digestibility (P < 0.05). Supplementation of GAA to the RP diet decreased serum Ca, P, and Mg levels, decreased tibia Fe and Mg levels and toe Mg level, but increased Al, Fe, Zn, and Mn digestibility (P < 0.05). The current findings demonstrated the capacity of laying hens to adapt to low mineral intake by increasing mineral utilization. Overall, bone morphology and breaking strength, and serum mineral level in laying hens were not influenced by dietary CP levels. Dietary Arg, GAA, or Cit supplementation were effective in improving bone morphology and mineralization in laying hens fed Arg-deficient RP diets.
Collapse
Affiliation(s)
- Hiep Thi Dao
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, 2351, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, 100000, Vietnam
| | - Amy F. Moss
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, 2351, Australia
| | - Emma J. Bradbury
- Baiada Poultry Pty Limited, Pendle Hill, New South Wales, 2145, Australia
| | - Robert A. Swick
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
13
|
Macelline SP, Chrystal PV, Inanan C, Toghyani M, Selle PH, Liu SY. The influence of dietary crude protein concentrations, grain types and arginine:lysine ratios on the performance of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:259-268. [PMID: 37600840 PMCID: PMC10432908 DOI: 10.1016/j.aninu.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 08/22/2023]
Abstract
The objective of this study was to investigate the effects of dietary crude protein (CP) concentrations, grain types and arginine:lysine ratios on performance parameters of broiler chickens. The 2 × 2 × 2 factorial array of dietary treatments harnessed two CP concentrations (210 and 170 g/kg), two feed grains (wheat and sorghum), and two arginine:lysine ratios (104 and 110). Each dietary treatment was offered to 7 replicates of 14 birds per floor pen, a total of 784 off-sex male, Ross 308 broilers, from 14 to 35 d post-hatch. The dietary CP reduction compromised weight gain by 10.0% (2078 versus 2310 g/bird) as a main effect and FCR by 7.51% (1.474 versus 1.371), subject to an interaction. In a three-way interaction (P = 0.008), expanded arginine:lysine ratios improved FCR by 2.30% in 170 g/kg CP, sorghum-based diets but compromised FCR by 2.12% in corresponding wheat-based diets. Sorghum was the more suitable feed grain in reduced-CP diets as sorghum generated significant advantages in weight gain of 7.59% (2154 versus 2002 g/kg) and FCR of 6.94% (1.421 versus 1.527) in birds offered 170 g/kg CP diets. Both dietary CP and feed grain generated significant and divergent impacts in apparent ileal digestibility coefficients for the majority of 16 assessed amino acids. Dietary CP reductions increased non-bound amino acid inclusions (NBAA) in wheat-based diets (48.96 versus 9.80 g/kg) to a greater extent than sorghum-based diets (35.3 versus 9.50 g/kg) and increasing dietary NBAA inclusions were linearly associated with compromised weight gain (r = -0.834; P < 0.001) and FCR (r = 0.862; P < 0.001). Increasing ratios of free arginine to lysine plasma concentrations were linearly (r = -0.466; P = 0.004) related to improvements in FCR. The implications of the observed outcomes are discussed and possible explanations are advanced.
Collapse
Affiliation(s)
- Shemil P. Macelline
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, 2006, NSW, Australia
- Poultry Research Foundation within The University of Sydne, Camden, 2570, NSW, Australia
| | - Peter V. Chrystal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, 2006, NSW, Australia
- Poultry Research Foundation within The University of Sydne, Camden, 2570, NSW, Australia
- Complete Feed Solutions, Howick, 2145, New Zealand
| | - Chanon Inanan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, 2006, NSW, Australia
| | - Mehdi Toghyani
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, 2006, NSW, Australia
- Poultry Research Foundation within The University of Sydne, Camden, 2570, NSW, Australia
| | - Peter H. Selle
- Poultry Research Foundation within The University of Sydne, Camden, 2570, NSW, Australia
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, 2570, NSW, Australia
| | - Sonia Yun Liu
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, 2006, NSW, Australia
- Poultry Research Foundation within The University of Sydne, Camden, 2570, NSW, Australia
| |
Collapse
|
14
|
Lindberg JE. Review: Nutrient and energy supply in monogastric food producing animals with reduced environmental and climatic footprint and improved gut health. Animal 2023; 17 Suppl 3:100832. [PMID: 37210231 DOI: 10.1016/j.animal.2023.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 05/22/2023] Open
Abstract
With more efficient utilisation of dietary nutrients and energy, diversified production systems, modifications of diet composition with respect to feedstuffs included and the use of free amino acids, the negative impact of animal food production on the environment and climate can be reduced. Accurate requirements for nutrients and energy for animals with differing physiological needs, and the use of robust and accurate feed evaluation systems are key for more efficient feed utilisation. Data on CP and amino acid requirements in pigs and poultry indicate that it should be possible to implement indispensable amino acid-balanced diets with low- or reduced-protein content without any reduction in animal performance. Potential feed resources, not competing with human food security, can be derived from the traditional food- and agroindustry, such as various waste streams and co-products of different origins. In addition, novel feedstuffs emerging from aquaculture, biotechnology and innovative new technologies may have potential to provide the lack of indispensable amino acids in organic animal food production. High fibre content is a nutritional limitation of using waste streams and co-products as feed for monogastric animals as it is associated with decreased nutrient digestibility and reduced dietary energy values. However, minimum levels of dietary fibre are needed to maintain the normal physiological function of the gastro-intestinal tract. Moreover, there may be positive effects of fibre in the diet such as improved gut health, increased satiety, and an overall improvement of behaviour and well-being.
Collapse
Affiliation(s)
- J E Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, PO Box 7024, 75007 Uppsala, Sweden.
| |
Collapse
|
15
|
Strifler P, Horváth B, Such N, Farkas V, Wágner L, Dublecz K, Pál L. Effects of Feeding Low Protein Diets with Different Energy-to-Protein Ratios on Performance, Carcass Characteristics, and Nitrogen Excretion of Broilers. Animals (Basel) 2023; 13:ani13091476. [PMID: 37174513 PMCID: PMC10177200 DOI: 10.3390/ani13091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This study shows the effects of feeding low protein (LP) diets with different energy-to-protein ratios were evaluated on the production parameters, carcass composition, meat quality, nitrogen retention, and excreta composition of broilers. A total of 576-day-old Ross 308 broilers were fed a control diet (C) and three LP diets containing 1.5% less crude protein than diet C for 41 days. The LP1 treatment was isocaloric with diet C, while the dietary apparent metabolizable energy corrected by nitrogen (AMEn) levels in the case of the LP2 and LP3 treatments were reduced by 1.5% and 3%, respectively. The LP diets were supplemented with six crystalline essential amino acids (AA) to meet the standardized ileal digestible AA requirements of broilers. The LP1 treatment did not affect the performance parameters of broilers and increased the breast meat yield, the nitrogen retention and decreased drip loss of breast meat and the total-N and uric acid-N nitrogen excretion of birds in comparison with the C group. Although the energy-reduced LP2 and LP3 diets resulted in lower final body weight, they did not affect the carcass composition, breast meat quality, nitrogen retention, and excreta composition of birds compared with the control treatment.
Collapse
Affiliation(s)
- Patrik Strifler
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
| | | | - Nikoletta Such
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
| | - Valéria Farkas
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
| | - László Wágner
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
| | - László Pál
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
| |
Collapse
|
16
|
Selle PH, Macelline SP, Chrystal PV, Liu SY. The Contribution of Phytate-Degrading Enzymes to Chicken-Meat Production. Animals (Basel) 2023; 13:ani13040603. [PMID: 36830391 PMCID: PMC9951704 DOI: 10.3390/ani13040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The contribution that exogenous phytases have made towards sustainable chicken-meat production over the past two decades has been unequivocally immense. Initially, their acceptance by the global industry was negligible, but today, exogenous phytases are routine additions to broiler diets, very often at elevated inclusion levels. The genesis of this remarkable development is based on the capacity of phytases to enhance phosphorus (P) utilization, thereby reducing P excretion. This was amplified by an expanding appreciation of the powerful anti-nutritive properties of the substrate, phytate (myo-inositol hexaphosphate; IP6), which is invariably present in all plant-sourced feedstuffs and practical broiler diets. The surprisingly broad spectra of anti-nutritive properties harbored by dietary phytate are counteracted by exogenous phytases via the hydrolysis of phytate and the positive consequences of phytate degradation. Phytases enhance the utilization of minerals, including phosphorus, sodium, and calcium, the protein digestion, and the intestinal uptakes of amino acids and glucose to varying extents. The liberation of phytate-bound phosphorus (P) by phytase is fundamental; however, the impacts of phytase on protein digestion, the intestinal uptakes of amino acids, and the apparent amino acid digestibility coefficients are intriguing and important. Numerous factors are involved, but it appears that phytases have positive impacts on the initiation of protein digestion by pepsin. This extends to promoting the intestinal uptakes of amino acids stemming from the enhanced uptakes of monomeric amino acids via Na+-dependent transporters and, arguably more importantly, from the enhanced uptakes of oligopeptides via PepT-1, which is functionally dependent on the Na+/H+ exchanger, NHE. Our comprehension of the phytate-phytase axis in poultry nutrition has expanded over the past 30 years; this has promoted the extraordinary surge in acceptance of exogenous phytases, coupled with the development of more efficacious preparations in combination with the deflating inclusion costs for exogenous phytases. The purpose of this paper is to review the progress that has been made with phytate-degrading enzymes since their introduction in 1991 and the underlying mechanisms driving their positive contribution to chicken-meat production now and into the future.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
- Correspondence:
| | - Shemil P. Macelline
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Peter V. Chrystal
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- Complete Feed Solutions, Pakuranga, Auckland 2140, New Zealand
| | - Sonia Yun Liu
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
17
|
Mousa MA, Asman AS, Ali RMJ, Sayed RKA, Majrashi KA, Fakiha KG, Alhotan RA, Selim S. Impacts of Dietary Lysine and Crude Protein on Performance, Hepatic and Renal Functions, Biochemical Parameters, and Histomorphology of Small Intestine, Liver, and Kidney in Broiler Chickens. Vet Sci 2023; 10:vetsci10020098. [PMID: 36851402 PMCID: PMC9965792 DOI: 10.3390/vetsci10020098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The present study aimed to investigate the effects of increasing dietary lysine (Lys) levels with an adequate dietary crude protein (CP) content, as well as the effects of a reduction in dietary CP content with the recommended amino acid (AAs) level, on the performance, blood biochemical parameters, and histomorphology of the duodenum, liver, and kidney in broiler chickens. A total of 500 broiler chickens were randomly distributed into five dietary treatment groups, following a completely randomized design, where, at the beginning, the control group (C) was fed a diet containing the standard CP and Lys levels: 23% CP with 1.44% Lys during the starter period; 21.5% CP with 1.29% Lys during the growing period; and 19.5% CP with 1.16% Lys during the finishing period. The Lys content was increased by 10% above the recommended control basal requirements in the second group (Gr1) and by 20% in the third group (Gr2), while using the same recommended CP percentage as the C group. The fourth group (Gr3) had a 1% lower CP content and the fifth group had a 2% lower CP content than the C group, with the same recommended AA level as the C group. Increasing the Lys content in the Gr1 group improved the broilers' weight gains (p < 0.05) during the starter, growing, and finishing periods. Decreasing dietary CP with the standard AA levels (Gr3 and Gr4) did not significantly affect (p > 0.05) the live weight gain, feed intake, or feed conversion ratio (FCR) of the broilers compared with those fed with the C diet. Blood total bilirubin, direct and indirect bilirubin, triglycerides, cholesterol, low-density lipoprotein (LDL), and very LDL were not different among the experimental groups. However, blood aspartate aminotransferase levels were increased (p < 0.05) in the Gr1 and Gr3 groups compared with the other treatment groups. All dietary treatments decreased the serum creatinine levels (p < 0.05) compared with the C group. The Gr2 broilers had greater serum total protein and globulin (p < 0.05) than those receiving the other treatments. Increasing dietary Lys levels resulted in a significant improvement in duodenum villus height and width (p < 0.05), while the low-CP diets resulted in shorter villi length and width, along with degenerated areas and lymphocytic infiltration. Low dietary CP content induced hepatocyte disorganization and moderate degeneration, along with vacuolated hepatic cells, excessive connective tissue, and lymphocytic infiltration. The cortical regions of the kidney exhibited obvious alterations in the Gr3 and Gr4 groups and large interstitial spaces were found between tubules. Renal tubules in the Gr3 and Gr4 groups were smaller in size and some of these tubules were atrophied. In conclusion, reducing dietary CP levels to 1% or 2% lower than the recommended level did not negatively affect growth performance, inducing minimal influence on the blood metabolic indicators of health status, and resulting in moderate alterations to the histomorphology of the duodenum, liver, and kidney. Furthermore, increasing the Lys content by 10% above the recommended level improved the growth performance, health status, and histomorphology of the duodenum, liver, and kidney in broiler chickens.
Collapse
Affiliation(s)
- Mohamed A. Mousa
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Sohag University, Sohag 82425, Egypt
| | - Ahamed S. Asman
- Department of Biochemistry, Faculty of Veterinary Medicine, Sohag University, Sohag 82425, Egypt
| | - Reham M. J. Ali
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Sohag University, Sohag 82425, Egypt
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82425, Egypt
| | - Kamlah A. Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Khloud G. Fakiha
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom 32514, Egypt
- Correspondence:
| |
Collapse
|
18
|
Costa JHS, Saraiva EP, Santos LDFDD, Neves RDS, Nascimento GVD, Miranda JR, Ribeiro NL. Threonine-to-lysine ratio in laying hens: physiological parameters and organ weight. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v45i1.58218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The objective of this study was to evaluate the effect of threonine:digestible lysine ratio in the diet on the physiological variables and weight of organs of light laying hens. Two hundred and ten 47 week-old Dekalb White laying hens were distributed in a completely randomized design, with five levels of threonine (0.507; 0.552; 0.597; 0.642 and 0.677%) and seven replicates of six birds each. The experimental period was 10 weeks, totaling 62 days and more eight days for the animals to adapt. The physiological parameters of cloacal temperature (CT), respiratory rate (RR) and average surface temperature (AST) were recorded weekly (7:00 am, 10:00 am, 1:00 pm, 4:00 pm, and 7:00 pm); after solid and water fasting, the birds were slaughtered to assess the absolute weight of the organs. The time of day influenced (p < 0.05) the physiological parameters RR and AST, and CT showed a significant effect (p < 0.05) of increasing levels of digestible threonine. The total weight of the pancreas, proventriculus and lung showed a significant effect (p < 0.05) of the increase in the levels of digestible threonine. The respiratory rate is affected by the levels of threonine in the diet. The 0.687% level promoted hypertrophy of the pancreas, proventriculus and lung, promoting more significant activity of these organs.
Collapse
|
19
|
England A, Gharib-Naseri K, Kheravii SK, Wu SB. Influence of sex and rearing method on performance and flock uniformity in broilers-implications for research settings. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:276-283. [PMID: 36712408 PMCID: PMC9869427 DOI: 10.1016/j.aninu.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Male and female broiler chickens differ in their growth performance, carcass part weights and nutrient requirements. The potential reasons for these differences have been explored by looking at differences in nutrient digestibility, nutrient transporter gene expression as well as gut microbiota populations between male and female birds. Studies have shown that male broilers have higher crude protein requirements compared to female broilers. The expression of monosaccharide and amino acid transporters show conflicting results as expression depends on the interactions between sex and bird age and breed as well as which tissue is sampled. Differences in microbiota populations between the genders were reported which may contribute towards performance differences, however research in this area is limited. The differences observed between the sexes contribute to increased variation in nutrition trials, and the potential to rear birds as equally mixed-sex becomes an option to reduce the variation introduced by the sex effect. Difference in rearing options obviously would only be feasible provided a quick, practical and cost-effective method of sexing birds is available, a topic that is also discussed in this review.
Collapse
|
20
|
Interactive effects of high temperature and crude protein levels on growth performance, nitrogen excretion, and fecal characteristics of broilers. Trop Anim Health Prod 2022; 54:392. [DOI: 10.1007/s11250-022-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
|
21
|
England AD, Gharib-Naseri K, Kheravii SK, Wu SB. Rearing broilers as mixed or single-sex: relevance to performance, coefficient of variation and flock uniformity. Poult Sci 2022; 101:102176. [PMID: 36215743 PMCID: PMC9554804 DOI: 10.1016/j.psj.2022.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
With known variation in performance between male and female broilers and the fact that sourcing single-sex birds for use in research is becoming increasingly difficult, it becomes important to determine the effect of rearing method with male and female broilers on between-pen variation and body weight (BW) uniformity. We evaluated the performance response of broilers reared as single or mixed-sex to standard and reduced crude protein (CP) diets. The study was designed as a 2 × 3 factorial arrangement of treatments consisting of 672 Cobb-500 broilers assigned to 48 floor pens with 6 treatments, 8 replicates, and 14 birds per pen. The factors were rearing method (male single-sex, female single-sex, or equally mixed-sex) and dietary CP level (standard or reduced). For the overall period of the trial (d 0–35) there was a significant effect (P < 0.001) of rearing method and CP level on feed intake (FI) and feed conversion ratio (FCR). There was also a significant interaction between rearing method and CP level for BWG during d 0 to 35 (P < 0.01). There was a significant interaction between CP level and sex on d 34 BW (P < 0.01) where the reduced CP diet decreased the BW of both males and females, but to a greater extent the BW of the female birds. Dietary CP level had a significant effect on relative breast and drumstick weights with birds fed the reduced CP diet having significantly lower breast weights (P < 0.001) and higher drumstick weights (P < 0.01).This study suggests that male and female broilers have different CP requirements, and rearing birds as equally mixed-sex results in the lowest CV% for performance parameters and best BW uniformity compared to single-sex birds. Furthermore, when low CP diets are fed to broilers, they will prioritize the growth of more important body parts such as the legs.
Collapse
|
22
|
Maynard CW, Kidd MT, Chrystal PV, McQuade LR, McInerney BV, Selle PH, Liu SY. Assessment of limiting dietary amino acids in broiler chickens offered reduced crude protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:1-11. [PMID: 35601257 PMCID: PMC9111891 DOI: 10.1016/j.aninu.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/20/2023]
Abstract
As lowering crude protein (CP) in poultry diets continues to minimize amino acid excess, it is important to understand the limiting order of amino acids and the impact of their deficiencies. Therefore, a pair of experiments were conducted to observe the effects of individual amino acid deletions on growth performance, carcass traits, and nutrient utilization. Both experiments involved 3 control diets based on wheat and soybean meal, including a 210.0 g/kg CP industry control (IC), 186.7 g/kg CP positive control (PC) supplemented with feed-grade amino acids to match the IC amino acid profile, 186.7 g/kg CP negative control (NC) with reducing N corrected apparent metabolizable energy (AMEN) by 0.5 MJ/kg and removing feed-grade amino acids beyond L-Lys-HCl, DL-Met, and L-Thr from PC. Ten deletion diets where the following supplemented amino acids were individually removed from the PC: Val, Ile, Leu, Trp, Arg, His, Phe + Tyr, glycine equivalence (Glyequi), Pro, and Energy (0.5 MJ/kg reduction in AMEN of the PC). All diets were formulated to contain similar concentrations of digestible Lys, total sulfur amino acid (TSAA) and Thr. Experimental diets were offered to broiler chickens from 15 to 22 d post–hatch in a cage study (Exp. 1) to gain digestibility and nutrient utilization data; whereas they were offered from 15 to 35 d post–hatch in a floor-pen study (Exp. 2) to gain performance and carcass yield data. The removal of supplemented Val, Arg, and Ile resulted in reduction on broiler performance (P < 0.05), and the removal of Val, Arg, Ile, and Glyequi negatively influenced carcass traits (P < 0.05). Results from both experiments indicate that Val and Arg are co-limiting in wheat-soybean meal diets, but that Ile and Glyequi may potentially limit breast and thigh development.
Collapse
Affiliation(s)
- Craig W Maynard
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, 72701, United States.,Poultry Research Foundation, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, 72701, United States
| | - Peter V Chrystal
- Poultry Research Foundation, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Leon R McQuade
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bernie V McInerney
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Peter H Selle
- Poultry Research Foundation, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sonia Y Liu
- Poultry Research Foundation, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
23
|
Lambert W, Chalvon-Demersay T, Bouvet R, Grandmaison JLC, Fontaine S. Reducing dietary crude protein in broiler diets does not compromise performance and reduces environmental impacts, independently from the amino acid density of the diet. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Selle PH, Macelline SP, Greenhalgh S, Chrystal PV, Liu SY. Identifying the shortfalls of crude protein-reduced, wheat-based broiler diets. ANIMAL NUTRITION 2022; 11:181-189. [PMID: 36263404 PMCID: PMC9562441 DOI: 10.1016/j.aninu.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
The objective of this review is to identify the shortfalls of wheat-based, crude protein (CP)-reduced diets for broiler chickens as wheat is inferior to maize in this context but to inconsistent extents. Inherent factors in wheat may be compromising gut integrity; these include soluble non-starch polysaccharides (NSP), amylase trypsin inhibitors (ATI) and gluten. Soluble NSP in wheat induce increased gut viscosities, which can lead to compromised gut integrity, which is not entirely ameliorated by NSP-degrading feed enzymes. Wheat ATI probably compromise gut integrity and may also have the capacity to increase endogenous amino acid flows and decrease apparent starch and protein digestibilities. Gluten inclusions of 20 g/kg in a maize-soy diet depressed weight gain and feed intake and higher gluten inclusions have been shown to activate inflammatory cytokine-related genes in broiler chickens. Further research is required, perhaps particularly in relation to wheat ATI. The protein content of wheat is typically higher than maize; importantly, this results in higher inclusions of non-bound amino acids in CP-reduced broiler diets. These higher inclusions could trigger post-enteral amino acid imbalances, leading to the deamination of surplus amino acids and the generation of ammonia (NH3) which, if not adequately detoxified, results in compromised growth performance from NH3 overload. Thus, alternatives to non-bound amino acids to meet amino acid requirements in birds offered CP-reduced, wheat-based diets merit evaluation. The digestion of wheat starch is more rapid than that of maize starch which may be a disadvantage as the provision of some slowly digestible starch in broiler diets may enhance performance. Alternatively, slowly digestible starch may result in more de novo lipogenesis. Therefore, it may prove instructive to evaluate CP-reduced diets based on maize-wheat and/or sorghum–wheat blends rather than entirely wheat. This would reduce non-bound amino acid inclusions by lowering dietary CP derived from feed grains and may enhance starch digestive dynamics by retarding starch digestion rates. Also, the use of biomarkers to monitor gut integrity in broiler chickens is examined where calprotectin, ovotransferrin and possibly citrulline appear to hold promise, but their validation requires further research.
Collapse
|
25
|
Greenhalgh S, Lemme A, Dorigam JCDP, Chrystal PV, Macelline SP, Liu SY, Selle PH. Dietary crude protein concentrations, feed grains and whey protein interactively influence apparent digestibility coefficients of amino acids, protein, starch and performance of broiler chickens. Poult Sci 2022; 101:102131. [PMID: 36115254 PMCID: PMC9485194 DOI: 10.1016/j.psj.2022.102131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to investigate the impacts of dietary crude protein (CP) concentrations (220 and 180 g/kg) in either maize- or wheat-based diets, without or with 25 g/kg inclusions of whey powder (WP) concentrate on performance parameters and apparent amino acid digestibility coefficients in broiler chickens. The maize and wheat used in this study had CP levels of 84 and 119 g/kg, respectively. The 2 × 2 × 2 factorial array of 8 dietary treatments was offered to a total of 336 off-sex, male Ross 308 chicks from 7 to 35 d post-hatch with 7 replicate cages (6 birds per cage) per treatment. A treatment interaction (P = 0.016) between dietary CP and feed grains was detected for weight gains, where birds offered 180 g/kg maize-based diets displayed a weight gain advantage of 6.74% (2,628 vs. 2,462 g/bird) compared to their wheat-based counterparts. An interaction (P = 0.022) between feed grains and whey protein was observed for FCR as the addition of WP to maize-based diets improved FCR by 3.45% (1.314 vs. 1.361), but compromised FCR in wheat-based diets by 2.98% (1.415 vs. 1.374). A treatment interaction (P = 0.038) between dietary CP and feed grains was recorded for relative abdominal fat-pad weights weight gains as birds offered 180 g/kg CP maize-based diets had 43.4% (11.17 vs. 7.79 g/kg) heavier fat-pads than their wheat-based counterparts. Following the reduction in dietary-CP, apparent amino acid digestibility coefficients were depressed to greater extents in wheat-based diets. However, significant interactions between CP and feed grains were found in 14 of the 16 amino acids assessed and significant interactions between CP and WP were observed for 15 amino acids. Maize was the more suitable feed grain in terms of weight gain and FCR in 180 g/kg CP diets despite causing greater fat deposition. The inclusion of WP in reduced-CP diets did not enhance bird performance. Data generated indicate concentrations of microbial amino acids in distal ileal digesta were depressing apparent amino acid digestibility coefficients, which was more evident in wheat-based diets. Higher gut viscosities in birds offered wheat-based diets may have facilitated the proliferation of microbiota along the small intestine.
Collapse
|
26
|
Brink M, Janssens GP, Demeyer P, Bağci Ö, Delezie E. Reduction of dietary crude protein and feed form: Impact on broiler litter quality, ammonia concentrations, excreta composition, performance, welfare, and meat quality. ANIMAL NUTRITION 2022; 9:291-303. [PMID: 35600550 PMCID: PMC9097624 DOI: 10.1016/j.aninu.2021.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Nitrogen (N) excreted by poultry is converted to ammonia (NH3), presenting an environmental risk and a health risk to the farmer and animals. A study was performed to investigate the effect of reduced CP and feed form on broiler performance and welfare, meat and litter quality, N utilization, and NH3 concentrations at litter level. A total of 2,232 Ross 308 male broilers was divided into 6 treatments and 6 replicates, which was fed diets in both pellet and mash forms with different CP levels of 205.0 g/kg (H, high), 187.5 g/kg (M, intermediate) and 175.0 g/kg (L, low) in the grower phase and 195.0 g/kg (H), 180.0 g/kg (M) and 165.6 g/kg (L) in the finisher phase. Individual amino acids (AA) were supplemented to maintain digestible AA-to-digestible lysine ratios. Decreasing dietary CP content to 187.5 g/kg in the grower phase and 180.0 g/kg in the finisher phase reduced NH3 concentrations at litter level (P < 0.001), but a further reduction in dietary CP had no additional effect. Mash treatments had better litter qualities and lower incidences of foot and hock lesions than pellet treatments at d 38 (P < 0.001). In addition, treatments with reduced CP had lower incidence of foot lesions at d 38 (P < 0.001). Broilers fed pelleted diets had higher ADFI, ADG, and final BW, improved feed conversion ratio (FCR), and heavier carcasses (P < 0.001) than those fed mash diets over a production period of 39 d. Performance could not be maintained when birds were fed L CP pelleted diets. This study demonstrated that, with the supplementation of AA to meet requirements, the concentration of dietary CP can be reduced to 187.5 and 180.0 g/kg in the grower and finisher phases respectively, without impairing broiler performance, meat yield and quality. Mash diets were favorable when considering the overall litter quality and welfare of the birds. However, they could not maintain the same broiler performance and slaughter yield as pelleted diets. Results from the present study may assist the poultry sector towards a socially acceptable low-emission farming system.
Collapse
|
27
|
Macelline SP, Chrystal PV, Selle PH, Liu SY. Protein sources and starch-protein digestive dynamics manipulate growth performance in broiler chickens defined by an equilateral-triangle response surface design. ANIMAL NUTRITION 2022; 9:204-213. [PMID: 35600555 PMCID: PMC9092981 DOI: 10.1016/j.aninu.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/28/2021] [Accepted: 01/27/2022] [Indexed: 12/01/2022]
Abstract
A total of 360 male, off-sex Ross 308 chicks were offered 10 dietary treatments from 14 to 35 d post–hatch in an equilateral-triangle response surface design feeding study in order to confirm the importance of protein and amino acid digestive dynamics in broiler chickens. The 3 apical diets were nutritionally-equivalent containing either soybean meal, non-bound amino acids or whey protein concentrate as the major source of dietary protein and amino acids. Appropriate blends of the 3 apical diets comprised the balance of 7 diets and each dietary treatment was offered to 6 replicate cages with 6 birds per cage. Growth performance, nutrient utilisation, apparent protein and starch digestibility coefficients were determined in 4 small intestinal segments. The optimal weight gain (2,085 g/bird) and feed conversion ratios (FCR, 1.397) were generated by Diet 50S50W which included a 50:50 blend of apical diets rich in whey protein concentrate and soybean meal. Broiler chickens offered Diet 50S50W also had the highest experimental and predicted jejunal digestibility (0.685 in proximal jejunum and 0.823 in distal jejunum). FCR was not correlated with apparent distal ileal digestibility coefficient (P > 0.05) of protein but was correlated with apparent protein digestibility in proximal jejunum (r = −0.369, P = 0.040) and distal jejunum (r = −0.316, P = 0.015). Surplus dietary starch was correlated with increased fat pad weight (r = 0.781, P = 0.008). The findings confirmed the relevance of protein digestion rate, reflected by jejunal digestibility, on feed conversion of broiler chickens. A balance between protein-bound and non-bound crystalline or synthetic amino acids may be required for optimal growth and protein digestion.
Collapse
Affiliation(s)
- Shemil P. Macelline
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Peter V. Chrystal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Peter H. Selle
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Sonia Y. Liu
- Poultry Research Foundation, The University of Sydney, Camden NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
- Corresponding author.
| |
Collapse
|
28
|
Abstract
Amino acids (AAs) are required for syntheses of proteins and low-molecular-weight substances with enormous physiological importance. Since 1912, AAs have been classified as nutritionally essential amino acids (EAAs) or nonessential amino acids (NEAAs) for animals. EAAs are those AAs that are either not synthesized or insufficiently synthesized de novo in the organisms. It was assumed that all NEAAs (now known as AAs that are synthesizable in animal cells de novo [AASAs]) were formed sufficiently in animals and were not needed in diets. However, studies over the past three decades have shown that sufficient dietary AASAs (e.g. glutamine, glutamate, glycine, and proline) are necessary for the maximum growth and optimum health of pigs, chickens, and fish. Thus, the concept of "ideal protein" (protein with an optimal EAA pattern that precisely meets the physiological needs of animals), which was originally proposed in the 1950s but ignored AASAs, is not ideal in animal nutrition. Ideal diets must provide all physiologically and nutritionally essential AAs. Improved patterns of AAs in diets for swine and chickens as well as zoo and companion animals have been proposed in recent years. Animal-sourced feedstuffs supply abundant EAAs and AASAs (including glutamate, glutamine, glycine, proline, 4-hydroxyproline, and taurine) for diets of swine, poultry, fish, and crustaceans to improve their growth, development, reproduction, and health, while sustaining global animal production. Nutritionists should move beyond the "ideal protein" concept to consider optimum ratios and amounts of all proteinogenic AAs in diets for mammals, birds, and aquatic animals, and, in the case of carnivores, also taurine.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Peng Li
- North American Renderers Association, Alexandria, VA 22314, USA
| |
Collapse
|
29
|
Alfonso-Avila AR, Cirot O, Lambert W, Létourneau-Montminy MP. Effect of low-protein corn and soybean meal-based diets on nitrogen utilization, litter quality, and water consumption in broiler chicken production: insight from meta-analysis. Animal 2022; 16:100458. [PMID: 35183011 DOI: 10.1016/j.animal.2022.100458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
The growing demand for high-value animal protein must be met using sustainable means that optimize the utilization of nutrients, especially nitrogen (N) so that excreta do not over-fertilize fields and end up causing soil acidification, waterway eutrophication and greenhouse gas emissions. Malodorous N compounds can cause respiratory diseases and poor growth in livestock. The increasing availability of feed-grade amino acids makes it possible to formulate low-protein diets for broilers and thereby reduce N excretion. However, published studies of the effects of such diets on broiler growth performance have been based on reducing CP contents gradually in a variety of ways that have given inconsistent results. Since the amount of published data is now large, a meta-analysis was performed in order to categorize diet formulation strategies and quantify their impact on N balance, water consumption, litter moisture, plasma uric acid. This showed that lowering the CP content of broiler diets generally means replacing some soybean meal with corn and hence increasing the starch content. However, since soybean meal is also a source of potassium, this reduces electrolyte balance. Lowering the CP content from 19% to 17% is associated with a 29% reduction of N excretion in broilers aged 0-21 d, and a 7% increase in N efficiency (N retention/N intake). Reducing the CP content from 19% to 17% decreases daily water consumption by 20.6 mL/bird, litter moisture by 2.2% and plasma uric acid by 0.56 mg/dL. This meta-analysis improves our understanding of the low-protein strategy and allows us to quantify its impact on N balance, litter quality and uric acid. It shows that managing N excretion is wholly beneficial and reduces litter wetness.
Collapse
Affiliation(s)
- A R Alfonso-Avila
- Centre de recherche en sciences animales de Deschambault, Deschambault, Quebec G0A 1S0, Canada; Département des sciences animales, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - O Cirot
- Département des sciences animales, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | | | | |
Collapse
|
30
|
Spirulina platensis meal inclusion effects on broilers fed a reduced protein diet. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2021.100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Broiler chicken production using dietary crude protein reduction strategy and free amino acid supplementation. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Dao HT, Clay JW, Sharma NK, Bradbury EJ, Swick RA. Effects of L-arginine and L-citrulline supplementation in reduced protein diets on cecal fermentation metabolites of broilers under normal, cyclic warm temperature and necrotic enteritis challenge. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Macelline SP, Chrystal PV, Greenhalgh S, Toghyani M, Selle PH, Liu SY. Evaluation of dietary crude protein concentrations, fishmeal, and sorghum inclusions in broiler chickens offered wheat-based diet via Box-Behnken response surface design. PLoS One 2021; 16:e0260285. [PMID: 34797900 PMCID: PMC8604292 DOI: 10.1371/journal.pone.0260285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to investigate the impacts of dietary crude protein (CP), fishmeal and sorghum on nutrient utilisation, digestibility coefficients and disappearance rates of starch and protein, amino acid concentrations in systemic plasma and their relevance to growth performance of broiler chickens using the Box-Behnken response surface design. The design consisted of three factors at three levels including dietary CP (190, 210, 230 g/kg), fishmeal (0, 50, 100 g/kg), and sorghum (0, 150, 300 g/kg). A total of 390 male, off-sex Ross 308 chicks were offered experimental diets from 14 to 35 days post-hatch. Growth performance, nutrient utilisation, starch and protein digestibilities and plasma free amino acids were determined. Dietary CP had a negative linear impact on weight gain where the transition from 230 to 190 g/kg CP increased weight gain by 9.43% (1835 versus 2008 g/bird, P = 0.006). Moreover, dietary CP linearly depressed feed intake (r = -0.486. P < 0.001). Fishmeal inclusions had negative linear impacts on weight gain (r = -0.751, P < 0.001) and feed intake (r = -0.495, P < 0.001). There was an interaction between dietary CP and fishmeal for FCR. However, growth performance was not influenced by dietary inclusions of sorghum. Total plasma amino acid concentrations were negatively related to weight gain (r = -0.519, P < 0.0001). The dietary transition from 0 to 100 g/kg fishmeal increased total amino acid concentrations in systemic plasma by 35% (771 versus 1037 μg/mL, P < 0.001). It may be deduced that optimal weight gain (2157 g/bird), optimal feed intake (3330 g/bird) and minimal FCR (1.544) were found in birds offered 190 g/kg CP diets without fishmeal inclusion, irrespective of sorghum inclusions. Both fishmeal and sorghum inclusions did not alter protein and starch digestion rate in broiler chickens; however, moderate reductions in dietary CP could advantage broiler growth performance.
Collapse
Affiliation(s)
- Shemil P. Macelline
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Peter V. Chrystal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Complete Feed Solutions, Hornsby, NSW, Australia; Howick, New Zealand
| | - Shiva Greenhalgh
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Mehdi Toghyani
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Peter H. Selle
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Sonia Y. Liu
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Elshafaei H, Rashed R, Goma A, El-kazaz S, Downing J. Performance, behaviour, breast yield and AME of meat chickens fed a reduced protein finisher diet while exposed to severe acute or moderate chronic thermal challenges. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Zampiga M, Calini F, Sirri F. Importance of feed efficiency for sustainable intensification of chicken meat production: implications and role for amino acids, feed enzymes and organic trace minerals. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - F. Calini
- Advisor to the Feed & Animal Industries, Ravenna, Italy
| | - F. Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Upadhaya SD, Lee SS, Kim YH, Wu Z, Kim IH. Effects of supplementation of graded level of glutamic acid to crude protein reduced diets on the performance of growing pigs. J Anim Physiol Anim Nutr (Berl) 2021; 106:825-831. [PMID: 34423869 DOI: 10.1111/jpn.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
A total of 150 growing pigs ([Landrace × Yorkshire] × Duroc) with an initial average body weight (BW) of 24.45 kg were used in a 6-week trial to estimate the optimum lysine to glutamic acid ratio in pigs fed low-protein diets supplemented with increasing level of synthetic glutamic acid (Glu). Pigs were randomly allotted to 5 dietary treatments consisting of either control diet (CON) formulated to have 157 g crude protein (CP) or negative control diets (NC, NC1, NC2 and NC3) with 20 g CP reduction and addition of Glu (1.1, 3.9, 6.8 and 9.6 g/kg feed respectively). Supplementing the increasing level of Glu to low CP diets did not exert any linear or quadratic responses in the growth performance parameters as well as nutrient digestibility. The serum creatinine concentration in pigs receiving CON diet showed trends (p = 0.063) in increment compared with pigs receiving NC diet. However, with the increase in the supplementation of Glu, there were no linear or quadratic responses on serum blood urea nitrogen (BUN) and creatinine concentrations. There was a tendency in the reduction (p = 0.088, p = 0.064) of backfat thickness and lean percentage, respectively, at week 3 and a trend in the reduction (p = 0.092) in lean percentage at week 6 in pigs fed NC diet compared with those fed CON diet. The increase in the supplemental level of Glu tended to show quadratic responses in the backfat thickness and lean percentage at week 3 and 6. In conclusion, the growth performance parameters as well as carcass traits with Lys: Glu ratio 1: 2.71 were very close with the mean values of CON diet indicating that 6.8 g Glu when supplemented to 2% CP reduced diet could achieve the comparable growth performance and carcass trait as that of standard basal diet.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Sang Seon Lee
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Young Hwa Kim
- National Institute of Animal Science, Cheonan, Korea
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
37
|
Macelline SP, Chrystal PV, Liu SY, Selle PH. The Dynamic Conversion of Dietary Protein and Amino Acids into Chicken-Meat Protein. Animals (Basel) 2021; 11:2288. [PMID: 34438749 PMCID: PMC8388418 DOI: 10.3390/ani11082288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023] Open
Abstract
This review considers the conversion of dietary protein and amino acids into chicken-meat protein and seeks to identify strategies whereby this transition may be enhanced. Viable alternatives to soybean meal would be advantageous but the increasing availability of non-bound amino acids is providing the opportunity to develop reduced-crude protein (CP) diets, to promote the sustainability of the chicken-meat industry and is the focus of this review. Digestion of protein and intestinal uptakes of amino acids is critical to broiler growth performance. However, the transition of amino acids across enterocytes of the gut mucosa is complicated by their entry into either anabolic or catabolic pathways, which reduces their post-enteral availability. Both amino acids and glucose are catabolised in enterocytes to meet the energy needs of the gut. Therefore, starch and protein digestive dynamics and the possible manipulation of this 'catabolic ratio' assume importance. Finally, net deposition of protein in skeletal muscle is governed by the synchronised availability of amino acids and glucose at sites of protein deposition. There is a real need for more fundamental and applied research targeting areas where our knowledge is lacking relative to other animal species to enhance the conversion of dietary protein and amino acids into chicken-meat protein.
Collapse
Affiliation(s)
- Shemil P. Macelline
- Poultry Research Foundation, Department of Animal Science, The University of Sydney, Camden, NSW 2570, Australia; (S.P.M.); (P.V.C.); (S.Y.L.)
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Peter V. Chrystal
- Poultry Research Foundation, Department of Animal Science, The University of Sydney, Camden, NSW 2570, Australia; (S.P.M.); (P.V.C.); (S.Y.L.)
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Sonia Y. Liu
- Poultry Research Foundation, Department of Animal Science, The University of Sydney, Camden, NSW 2570, Australia; (S.P.M.); (P.V.C.); (S.Y.L.)
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Peter H. Selle
- Poultry Research Foundation, Department of Animal Science, The University of Sydney, Camden, NSW 2570, Australia; (S.P.M.); (P.V.C.); (S.Y.L.)
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
38
|
Cappelaere L, Le Cour Grandmaison J, Martin N, Lambert W. Amino Acid Supplementation to Reduce Environmental Impacts of Broiler and Pig Production: A Review. Front Vet Sci 2021; 8:689259. [PMID: 34381834 PMCID: PMC8350159 DOI: 10.3389/fvets.2021.689259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022] Open
Abstract
Poultry and swine farming are large contributors to environmental impacts, such as climate change, eutrophication, acidification, and air and water pollution. Feed production and manure management are identified as the main sources of these impacts. Reducing dietary crude protein levels is a nutritional strategy recognized to both decrease the use of high-impact feed ingredients and alter manure composition, reducing emissions of harmful components. For a successful implementation of this technique, feed-grade amino acid supplementation is crucial to maintaining animal performance. Reducing crude protein lowers nitrogen excretion, especially excess nitrogen excreted in urea or uric acid form, improving nitrogen efficiency. At the feed-gate, low–crude protein diets can reduce the carbon footprint of feed production through changes in raw material inclusion. The magnitude of this reduction mainly depends on the climate change impact of soybean meal and its land-use change on the feed-grade amino acids used. Reducing dietary crude protein also lowers the environmental impact of manure management in housing, storage, and at spreading: nitrogen emissions from manure (ammonia, nitrates, nitrous oxide) are reduced through reduction of nitrogen excretion. Moreover, synergetic effects exist with nitrogen form, water excretion, and manure pH, further reducing emissions. Volatilization of nitrogen is more reduced in poultry than in pigs, but emissions are more studied and better understood for pig slurry than poultry litter. Ammonia emissions are also more documented than other N-compounds. Low–crude protein diets supplemented with amino acids is a strategy reducing environmental impact at different stages of animal production, making life cycle assessment the best-suited tool to quantify reduction of environmental impacts. Recent studies report an efficient reduction of environmental impacts with low–crude protein diets. However, more standardization of limits and methods used is necessary to compare results. This review summarizes the current knowledge on mitigation of environmental impacts with low–crude protein diets supplemented with amino acids in poultry and swine, its quantification, and the biological mechanisms involved. A comparison between pigs and poultry is also included. It provides concrete information based on quantified research for decision making for the livestock industry and policy makers.
Collapse
|
39
|
Maize-based diets are more conducive to crude protein reductions than wheat-based diets for broiler chickens. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Kleyn FJ, Ciacciariello M. Future demands of the poultry industry: will we meet our commitments sustainably in developed and developing economies? WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1904314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- F. J. Kleyn
- Spesfeed Consulting (Pty) Ltd, South Africa
- Department and Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - M. Ciacciariello
- Department and Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
41
|
Kidd MT, Maynard CW, Mullenix GJ. Progress of amino acid nutrition for diet protein reduction in poultry. J Anim Sci Biotechnol 2021; 12:45. [PMID: 33814010 PMCID: PMC8020538 DOI: 10.1186/s40104-021-00568-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/07/2021] [Indexed: 12/23/2022] Open
Abstract
There is growing interest among nutritionists in feeding reduced protein diets to broiler chickens. Although nearly a century of research has been conducted providing biochemical insights on the impact of reduced protein diets for broilers, practical limitation still exists. The present review was written to provide insights on further reducing dietary protein in broilers. To construct this review, eighty-nine peer reviewed manuscripts in the area of amino acid nutrition in poultry were critiqued. Hence, nutritional research areas of low protein diets, threonine, glycine, valine, isoleucine, leucine, phenylalanine, histidine, and glutamine have been assessed and combined in this text, thus providing concepts into reduced protein diets for broilers. In addition, linkages between the cited work and least cost formation ingredient and nutrient matrix considerations are provided. In conclusion, practical applications in feeding reduced protein diets to broilers are advancing, but more work is warranted.
Collapse
Affiliation(s)
- M T Kidd
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA.
| | - C W Maynard
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - G J Mullenix
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| |
Collapse
|
42
|
Liu SY, Macelline SP, Chrystal PV, Selle PH. Progress towards reduced-crude protein diets for broiler chickens and sustainable chicken-meat production. J Anim Sci Biotechnol 2021; 12:20. [PMID: 33678187 PMCID: PMC7938486 DOI: 10.1186/s40104-021-00550-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
The prime purpose of this review is to explore the pathways whereby progress towards reduced-crude protein (CP) diets and sustainable chicken-meat production may be best achieved. Reduced-CP broiler diets have the potential to attenuate environmental pollution from nitrogen and ammonia emissions; moreover, they have the capacity to diminish the global chicken-meat industry's dependence on soybean meal to tangible extents. The variable impacts of reduced-CP broiler diets on apparent amino acid digestibility coefficients are addressed. The more accurate identification of amino acid requirements for broiler chickens offered reduced-CP diets is essential as this would diminish amino acid imbalances and the deamination of surplus amino acids. Deamination of amino acids increases the synthesis and excretion of uric acid for which there is a requirement for glycine, this emphasises the value of so-called "non-essential" amino acids. Starch digestive dynamics and their possible impact of glucose on pancreatic secretions of insulin are discussed, although the functions of insulin in avian species require clarification. Maize is probably a superior feed grain to wheat as the basis of reduced-CP diets; if so, the identification of the underlying reasons for this difference should be instructive. Moderating increases in starch concentrations and condensing dietary starch:protein ratios in reduced-CP diets may prove to be advantageous as expanding ratios appear to be aligned to inferior broiler performance. Threonine is specifically examined because elevated free threonine plasma concentrations in birds offered reduced-CP diets may be indicative of compromised performance. If progress in these directions can be realised, then the prospects of reduced-CP diets contributing to sustainable chicken-meat production are promising.
Collapse
Affiliation(s)
- Sonia Yun Liu
- Poultry Research Foundation within The University of Sydney, Camden Campus, 425 Werombi Road, Camden, NSW, 2570, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Shemil P Macelline
- Poultry Research Foundation within The University of Sydney, Camden Campus, 425 Werombi Road, Camden, NSW, 2570, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Peter V Chrystal
- Poultry Research Foundation within The University of Sydney, Camden Campus, 425 Werombi Road, Camden, NSW, 2570, Australia
- Baiada Poultry Pty Limited, Pendle Hill, NSW, 2145, Australia
| | - Peter H Selle
- Poultry Research Foundation within The University of Sydney, Camden Campus, 425 Werombi Road, Camden, NSW, 2570, Australia.
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
43
|
Cowieson AJ, Perez-Maldonado R, Kumar A, Toghyani M. Possible role of available phosphorus in potentiating the use of low-protein diets for broiler chicken production. Poult Sci 2020; 99:6954-6963. [PMID: 33248611 PMCID: PMC7705028 DOI: 10.1016/j.psj.2020.09.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/18/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022] Open
Abstract
A total of 945 male Ross 308 broiler chicks were used in a growth study to explore the interaction between dietary crude protein concentration and available phosphorus. Nine experimental treatments were constructed factorially by offering low, medium, or standard protein concentrations without or with low, standard, or high available phosphorus. Diets were based on corn, wheat, and soybean meal and all nutrients other than protein/amino acids and available phosphorus were maintained at or above breeder guidelines. Additional synthetic amino acids were used in the diets with low protein concentration in attempt to maintain digestible amino acid supply. Diets were offered to 7 replicate pens of 15 chicks per pen from day 8 to 35. Growth performance was measured during the grower (day 8-24) and finisher (day 25-35) periods. On day 35 carcass composition was determined, blood was drawn for various biochemical measurements and the tibia was excised for mechanical and compositional analyses. Birds that received the low-protein diet had lower terminal body weight and higher feed conversion ratio compared with those that received diets with adequate crude protein content. However, addition of available phosphorus to the low-protein diet resulted in significant reductions in weight-corrected feed conversion that were not evident in the diet with adequate protein content. Bone architecture was only moderately influenced by dietary treatment but birds that ingested the diets containing low and medium protein concentrations had relatively heavier abdominal fat pad weight. Blood biochemistry, especially ammonia, uric acid, and phosphorus, was influenced by both dietary protein and available phosphorus and trends suggested that both axes are involved in protein accretion and catabolism. It can be concluded that performance losses associated with feeding low protein diets to broiler chickens may be partially restored by additional available phosphorus. The implications for use of exogenous enzymes such as protease and phytase and protein nutrition per se warrants further examination.
Collapse
Affiliation(s)
- A J Cowieson
- Animal Nutrition and Health, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland.
| | - R Perez-Maldonado
- Animal Nutrition and Health, DSM Nutritional Products, Minatu Ku, Tokyo, Japan
| | - A Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - M Toghyani
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
44
|
Chrystal PV, Greenhalgh S, Selle PH, Liu SY. Facilitating the acceptance of tangibly reduced-crude protein diets for chicken-meat production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:247-257. [PMID: 33005758 PMCID: PMC7503076 DOI: 10.1016/j.aninu.2020.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Inclusions of non-bound amino acids particularly methionine, lysine and threonine, together with the "ideal protein" concept have allowed nutritionists to formulate broiler diets with reduced crude protein (CP) and increased nutrient density of notionally "essential" amino acids and energy content in recent decades. However, chicken-meat production has been projected to double between now and 2050, providing incentives to reduce dietary soybean meal inclusions further by tangibly reducing dietary CP and utilising a larger array of non-bound amino acids. Whilst relatively conservative decreases in dietary CP, in the order of 20 to 30 g/kg, do not negatively impact broiler performance, further decreases in CP typically compromise broiler performance with associated increases in carcass lipid deposition. Increases in carcass lipid deposition suggest changes occur in dietary energy balance, the mechanisms of which are still not fully understood but discourage the acceptance of diets with reductions in CP. Nevertheless, the groundwork has been laid to investigate both amino acid and non-amino acid limitations and propose facilitative strategies for adoption of tangible dietary CP reductions; consequently, these aspects are considered in detail in this review. Unsurprisingly, investigations into reduced dietary CP are epitomised by variability broiler performance due to the wide range of dietary specifications used and the many variables that should, or could, be considered in formulation of experimental diets. Thus, a holistic approach encompassing many factors influencing limitations to the adoption of tangibly reduced CP diets must be considered if they are to be successful in maintaining broiler performance without increasing carcass lipid deposition.
Collapse
Affiliation(s)
- Peter V. Chrystal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
- Baiada Poultry Pty Limited, Pendle Hill, 2145, NSW, Australia
| | - Shiva Greenhalgh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| | - Peter H. Selle
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| | - Sonia Yun Liu
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
45
|
Hafez HM, Attia YA. Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Front Vet Sci 2020; 7:516. [PMID: 33005639 PMCID: PMC7479178 DOI: 10.3389/fvets.2020.00516] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Poultry immunity, health, and production are several factors that challenge the future growth of the poultry industry. Consumer confidence, product quality and safety, types of products, and the emergence and re-emergence of diseases will continue to be major challenges to the current situation and the strategic future of the industry. Foodborne and zoonotic diseases are strictly linked with poultry. Eradication, elimination, and/or control of foodborne and zoonotic pathogens present a major challenge to the poultry industry. In addition, the public health hazards from consuming foods with high antibiotic residues will remain a critical issue. The theory of poultry production described in this review will not be limited to considering disease control. Rather, it will also incorporate the interconnection of the animals' health, welfare, and immunity. It is essential to know that chickens are not susceptible to intranasal infection by the SARS-CoV-2 (COVID-19) virus. Nevertheless, the COVID-19 pandemic will affect poultry consumption, transport, and the economics of poultry farming. It will also take into consideration economic, ethical, social dimensions, and the sustenance of the accomplishment of high environmental security. Stockholders, veterinarians, farmers, and all the partners of the chain of poultry production need to be more involved in the current situation and the strategic future of the industry to fulfill human demands and ensure sustainable agriculture. Thus, the present review explores these important tasks.
Collapse
Affiliation(s)
- Hafez M. Hafez
- Faculty of Veterinary Medicine, Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
46
|
Kamely M, He W, Wakaruk J, Whelan R, Naranjo V, Barreda DR. Impact of Reduced Dietary Crude Protein in the Starter Phase on Immune Development and Response of Broilers Throughout the Growth Period. Front Vet Sci 2020; 7:436. [PMID: 32903566 PMCID: PMC7438798 DOI: 10.3389/fvets.2020.00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Crude protein (CP) levels in commercial broiler (Gallus gallus) diets, optimized for maximum yield production vs. feed cost, have only begun to be assessed for impact on immune function. In order to study immune effects of dietary CP levels, different starter phase (day 1–14) diets were fed to 230 Ross 708 male broiler chicks randomly assigned at 1 day of age into two treatment groups. Group 1: Standard diet (STD) contained 3,000 kcal AMEn/kg energy and 23.78% CP; and Group 2: Reduced crude protein diet (RCP) contained 3,000 kcal AMEn/kg energy and 21.23% CP. From day 15–35 a common standard grower/finisher diet (3,150 kcal AMEn/kg energy and 22.18% CP) was allocated to both groups. Zymosan, a glycan derived from yeast cell walls that binds to TLR 2 and Dectin-1, was used for intra-abdominal challenge. Results demonstrated that a reduced crude protein starter diet (21.23 vs. 23.78% CP) between age 1–14, while maintaining the same levels of metabolizable energy and essential amino acids, did not affect broilers growth performance or lymphoid organ weights (P > 0.05). Interestingly, basal leukocyte levels in the RCP group significantly (P < 0.01) increased in the blood compartment at d35 in the unchallenged birds. Significant enhancements to leukocyte infiltration into the abdominal cavity were also detected post-immune challenge with zymosan (day 14 and day 35; P < 0.01). Post-challenge levels of TNF-α, IL-1β, and CXCL8 gene expression cells collected from the abdominal cavity were not affected by the diets (P > 0.05). Moreover, dietary treatments did not influence percentage of ROS producing cells in the abdominal cavity (P > 0.05). To our best knowledge, this is the first study that reports the impacts of reduced crude protein diet on the innate immune response of poultry to an acute inflammation model in the abdominal cavity. Overall, our results highlight that reduced crude protein diets can be used without negatively impacting broiler performance and may enhance the capacity of broilers to recruit leukocytes upon infection.
Collapse
Affiliation(s)
- Mohammad Kamely
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | | | - Daniel R Barreda
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Greenhalgh S, Chrystal PV, Selle PH, Liu SY. Reduced-crude protein diets in chicken-meat production: justification for an imperative. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1789024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- S. Greenhalgh
- Poultry Research Foundation within the University of Sydney, Camden, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - P. V. Chrystal
- Poultry Research Foundation within the University of Sydney, Camden, Australia
- Baiada Poultry Pty Limited, Pendle Hill, Australia
| | - P. H. Selle
- Poultry Research Foundation within the University of Sydney, Camden, Australia
| | - S. Y. Liu
- Poultry Research Foundation within the University of Sydney, Camden, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Attia YA, Bovera F, Wang J, Al-Harthi MA, Kim WK. Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions. Animals (Basel) 2020; 10:E973. [PMID: 32503244 PMCID: PMC7341316 DOI: 10.3390/ani10060973] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the effect of low-protein diets with amino acid supplementation on growth performance, carcass yield, meat quality and nitrogen excretion of broilers raised under hot climate conditions during the finisher period. In trial 1, broilers from 28 to 49 days of age were fed 18% crude protein (CP) as a positive control or 15% CP supplemented with (1) DL-methionine (Met) + L-lysine (Lys), (2) Met + Lys + L-Arginine (Arg), or (3) Met + Lys + L-Valine (Val). In trial 2, broilers from 30 to 45 days of age, were fed an 18% CP diet as a positive control or 15% CP supplemented with Met, Lys, Arg, Val, L-Isoleucine (Ile) or combination with glycine (Gly) and/or urea as nitrogen sources: (1) Met + Lys, (2) Met + Lys + Arg, (3) Met + Lys + Val, (4) Met + Lys + Ile, (5) Met + Lys + Arg +Val + Ile + Gly, and (6) Met+ Lys + Arg + Val + Ile + Gly + urea. Protein use was improved by feeding low-protein amino acid-supplemented diets as compared to the high-protein diet. Feeding 15% crude protein diet supplemented with only methionine and lysine had no negative effects on carcass yield, CP, total lipids and moisture% of breast meat while decreasing nitrogen excretion by 21%.
Collapse
Affiliation(s)
- Youssef A. Attia
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via F. Delpino1, 80137 Napoli, Italy
| | - Jinquan Wang
- Department of Poultry science, University of Georgia, Athens, GA 30602, USA;
| | - Mohammed A. Al-Harthi
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Woo Kyun Kim
- Department of Poultry science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
49
|
Selle PH, Dorigam JCDP, Lemme A, Chrystal PV, Liu SY. Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production. Animals (Basel) 2020; 10:E729. [PMID: 32331461 PMCID: PMC7222841 DOI: 10.3390/ani10040729] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
: This review explores the premise that non-bound (synthetic and crystalline) amino acids are alternatives to soybean meal, the dominant source of protein, in diets for broiler chickens. Non-bound essential and non-essential amino acids can partially replace soybean meal so that requirements are still met but dietary crude protein levels are reduced. This review considers the production of non-bound amino acids, soybeans, and soybean meal and discusses the concept of reduced-crude protein diets. There is a focus on specific amino acids, including glycine, serine, threonine, and branched-chain amino acids, because they may be pivotal to the successful development of reduced-crude protein diets. Presently, moderate dietary crude protein reductions of approximately 30 g/kg are feasible, but more radical reductions compromise broiler performance. In theory, an 'ideal' amino acid profile would prevent this, but this is not necessarily the case in practice. The dependence of the chicken-meat industry on soybean meal will be halved if crude protein reductions in the order of 50 g/kg are attained without compromising the growth performance of broiler chickens. In this event, synthetic and crystalline, or non-bound, amino acids will become viable alternatives to soybean meal in chicken-meat production.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation, The University of Sydney, Camden NSW2570, Australia; (P.H.S.); (P.V.C.)
| | | | - Andreas Lemme
- Evonik Nutrition and Care GmbH, 63457 Hanau-Wolfgang, Germany (A.L.)
| | - Peter V. Chrystal
- Poultry Research Foundation, The University of Sydney, Camden NSW2570, Australia; (P.H.S.); (P.V.C.)
- Baiada Poultry Pty Limited, Pendle Hill NSW2145, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden NSW2570, Australia
| | - Sonia Y. Liu
- Poultry Research Foundation, The University of Sydney, Camden NSW2570, Australia; (P.H.S.); (P.V.C.)
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden NSW2570, Australia
| |
Collapse
|
50
|
Greenhalgh S, McInerney BV, McQuade LR, Chrystal PV, Khoddami A, Zhuang MAM, Liu SY, Selle PH. Capping dietary starch:protein ratios in moderately reduced crude protein, wheat-based diets showed promise but further reductions generated inferior growth performance in broiler chickens. ACTA ACUST UNITED AC 2020; 6:168-178. [PMID: 32542197 PMCID: PMC7283513 DOI: 10.1016/j.aninu.2020.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/18/2022]
Abstract
The hypothesis that capping dietary starch:protein ratios would enhance the performance of broiler chickens offered reduced-crude protein (CP) diets was tested in this experiment. A total of 432 off-sex, male Ross 308 chicks were allocated to 7 dietary treatments from 7 to 35 d post-hatch. The experimental design consisted of a 3 × 2 factorial array of treatments with the seventh treatment serving as a positive control. Three levels of dietary CP (197.5, 180.0 and 162.5 g/kg) with either uncapped or capped dietary starch:protein ratios constituted the factorial array of treatments, whilst the positive control diet contained 215.0 g/kg CP. The positive control diet had an analysed dietary starch:protein ratio of 1.50 as opposed to a ratio of 1.68 in the uncapped 197.5 g/kg CP diet and 1.41 in the corresponding capped diet and the capped 197.5 g/kg CP diet displayed promise. The growth performance this diet matched the positive control but outperformed the uncapped 197.5 g/kg CP diet by 10.4% (2,161 vs. 1,958; P = 0.009) in weight gain, by 3.10% (3,492 vs. 3,387; P = 0.019) in feed intake on the basis of pair-wise comparisons and numerically improved FCR by 4.04% (1.616 vs. 1.684). However, the growth performance of birds offered the 180.0 and 162.5 g/kg CP dietary treatments was remarkably inferior, irrespective of dietary starch:protein ratios. This inferior growth performance was associated with poor feathering and even feather-pecking and significant linear relationships between feather scores and parameters of growth performance were observed. The amino acid profile of feathers was determined where cysteine, glutamic acid, glycine, proline and serine were dominant in a crude protein content of 931 g/kg. Presumably, the feathering issues observed were manifestations of amino acid inadequacies or imbalances in the more reduced-CP diets and consideration is given to the implications of these outcomes.
Collapse
Affiliation(s)
- Shiva Greenhalgh
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
| | - Bernard V McInerney
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Leon R McQuade
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Peter V Chrystal
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia.,Baiada Poultry Pty Limited, Pendle Hill, NSW, Australia
| | - Ali Khoddami
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Molly A M Zhuang
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
| | - Sonia Y Liu
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Peter H Selle
- Poultry Research Foundation, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|