1
|
Struthers S, Dunn IC, Schoenebeck JJ, Sandilands V. Examining the relationship between different naturally-occurring maxillary beak shapes and their ability to cause damage in commercial laying hens. Br Poult Sci 2024; 65:105-110. [PMID: 38334033 DOI: 10.1080/00071668.2024.2308279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/24/2023] [Indexed: 02/10/2024]
Abstract
1. Using chicken models to avoid unnecessary harm, this study examined the relationship between naturally-occurring maxillary (top) beak shapes and their ability to cause pecking damage.2. A selection of 24 Lohmann Brown laying hens from a total population of 100 were sorted into two groups based on their maxillary beak shape, where 12 were classified as having sharp beaks (SB) and 12 as having blunt beaks (BB).3. All hens were recorded six times in a test pen which contained a chicken model (foam block covered with feathered chicken skin) and a video camera. During each test session, the number of feathers removed from the model, the change in skin and block weight (proxies for tissue damage) and the percentage of successful pecks (resulting in feather and/or tissue removal) were recorded.4. SB hens removed more feathers from the model and had a greater change in skin weight than BB hens. The mean number of pecks made at the model did not differ between the beak shape groups; however, SB hens had a greater percentage of successful pecks, resulting in feather and/or tissue removal, compared to BB hens.5. In conclusion, SB hens were more capable of removing feathers and causing damage. Birds performed more successful pecks resulting in feather and/or tissue removal as they gained experience pecking at the model.
Collapse
Affiliation(s)
- S Struthers
- Department of Agriculture and Land-Based Engineering, Scotland's Rural College, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - I C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - J J Schoenebeck
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - V Sandilands
- Department of Agriculture and Land-Based Engineering, Scotland's Rural College, Midlothian, UK
| |
Collapse
|
2
|
Struthers S, Andersson B, Schmutz M, Matika O, McCormack HA, Wilson PW, Dunn IC, Sandilands V, Schoenebeck JJ. An analysis of the maxillary beak shape variation between 2 pure layer lines and its relationship to the underlying premaxillary bone, feather cover, and mortality. Poult Sci 2023; 102:102854. [PMID: 37354620 PMCID: PMC10404746 DOI: 10.1016/j.psj.2023.102854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/26/2023] Open
Abstract
Beak shape varies considerably within and between intact-beak laying hens, and aspects of beak shape appear to be heritable. As an alternative to beak treatment (an effective method of reducing damage from severe feather pecking (SFP)), this variation could be used to genetically select hens whose beak shapes are less apt to cause damage. To be able to select certain phenotypes, the beak shape variation that exists within laying hen flocks must first be characterized. The objectives of this study were to 1) describe the maxillary beak shape variation in 2 pure White Leghorn layer lines with intact beaks using geometric morphometrics to analyze images, and 2) examine the beak shape's relationship to the premaxillary bone, feather cover, and mortality. A lateral head image was taken of each hen (n = 710), and 20 landmarks were placed along each image's dorsal and ventral margins of the maxillary beak. Landmark coordinates were standardized by Procrustes superimposition, and the covariation was analyzed by principal components analysis and multivariate regression. Feather cover was scored at 3 ages and mortality was monitored throughout the production cycle. Three principal components (PCs) explained 83% of the maxillary beak shape variation and the first PC partially separated the 2 lines. Maxillary beak shapes ranged from long and narrow with pointed tips to short and wide with more curved tips. Moderate correlations were found between the maxillary beak and premaxillary bone shape (rs = 0.44) and size (rs = 0.52). Line A hens had better feather cover than Line B at all ages. Line A hens also had less total and cannibalism-related mortality than Line B (10.7 and 0.4% vs. 16.7 and 2.4%, respectively). Beak shape may be one factor contributing to the observed differences in feather cover and mortality. The results suggest that distinct maxillary beak phenotypes within each line could be selected to help reduce SFP damage and improve bird welfare.
Collapse
Affiliation(s)
- S Struthers
- Department of Agriculture, Horticulture, and Engineering Science, Scotland's Rural College, Midlothian EH25 9RG, United Kingdom; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom.
| | - B Andersson
- Lohmann Breeders GmbH, Cuxhaven DE 27472, Germany
| | - M Schmutz
- Lohmann Breeders GmbH, Cuxhaven DE 27472, Germany
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - H A McCormack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - P W Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - I C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - V Sandilands
- Department of Agriculture, Horticulture, and Engineering Science, Scotland's Rural College, Midlothian EH25 9RG, United Kingdom
| | - J J Schoenebeck
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
3
|
Bayer E, von Meyer-Höfer M, Kühl S. Hotspot analysis for organic laying hen husbandry—identification of sustainability problems as potential risk points to lose consumers’ trust. ORGANIC AGRICULTURE 2023. [PMCID: PMC10043833 DOI: 10.1007/s13165-023-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Over the last decade, there has been growing societal concern about the welfare of farmed animals. Although organic agriculture provides higher living standards, there are still critical points which can damage consumers’ trust in organic livestock farming. That is a risk, as especially organic farming relies on consumer trust. A hotspot analysis was conducted to identify critical points within the organic laying hen husbandry in Germany. This methodology aims to examine the sustainability of a product along its whole life cycle. Based on literature reviews, the life phases breeding, keeping, feeding, animal health, transport, and slaughter were assessed with ecological, social, and animal welfare criteria. Finally, the results were triangulated with various experts, and the critical points were classified in terms of their potential to diverge from consumers’ expectations. Our results show a high dependency of the organic sector on the conventional breeding process and its specialized breeds. This fact involves critical points which contradict the ideology of organic farming. The loopholes in the organic EU regulations in transport and slaughter were identified as additional threats to consumer trust in the organic system. The overall not better animal health compared to the conventional poultry system and the high numbers of poultry kept on some organic farms are also possible causes of disappointment in consumers’ vision of organic livestock farming. Therefore, we recommend an adjustment of some organic EU regulations regarding these points. Further, a linkage of the organic certification of a slaughterhouse to higher animal welfare standards during slaughter should be considered.
Collapse
Affiliation(s)
- Elisa Bayer
- grid.7450.60000 0001 2364 4210Marketing for Food and Agricultural Products, Georg-August Universität Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
| | | | - Sarah Kühl
- grid.7450.60000 0001 2364 4210Marketing for Food and Agricultural Products, Georg-August Universität Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
| |
Collapse
|
4
|
Bessei W, Tetens J, Bennewitz J, Falker-Gieske C, Hofmann T, Piepho HP. Disturbed circadian rhythm of locomotor activity of pullets is related to feather pecking in laying hens. Poult Sci 2023; 102:102548. [PMID: 36907128 PMCID: PMC10024181 DOI: 10.1016/j.psj.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Various aspects of activity, such as spontaneous activity, explorative activity, activity in open-field tests, and hyperactivity syndrome have been explored as causal factors of feather pecking in laying hens, with no clear results. In all previous studies, mean values of activity over different time intervals were used as criteria. Incidental observation of alternated oviposition time in lines selected for high (HFP) and low feather pecking (LFP), supported by a recent study which showed differentially expressed genes related to the circadian clock in the same lines, led to the hypothesis that feather pecking may be related to a disturbed diurnal activity rhythm. Hence activity recordings of a previous generation of these lines have been reanalyzed. Data sets of a total of 682 pullets of 3 subsequent hatches of HFP, LFP, and an unselected control line (CONTR) were used. Locomotor activity was recorded in pullets housed in groups of mixed lines in a deep litter pen on 7 consecutive 13-h light phases, using a radio-frequency identification antenna system. The number of approaches to the antenna system was recorded as a measure of locomotor activity and analyzed using a generalized linear mixed model including hatch, line, time of day and the interactions of hatch × time of day and line × time of day as fixed effects. Significant effects were found for time and the interaction line × time of day but not for line. All lines showed a bimodal pattern of diurnal activity. The peak activity of the HFP in the morning was lower than that of the LFP and CONTR. In the afternoon peak all lines differed with the highest mean in the LFP followed by CONTR and HFP. The present results provide support for the hypothesis that a disturbed circadian clock plays a role in the development of feather pecking.
Collapse
Affiliation(s)
- Werner Bessei
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany.
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Tanja Hofmann
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Hans-Peter Piepho
- Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany
| |
Collapse
|
5
|
Falker-Gieske C, Bennewitz J, Tetens J. Structural variation and eQTL analysis in two experimental populations of chickens divergently selected for feather-pecking behavior. Neurogenetics 2023; 24:29-41. [PMID: 36449109 PMCID: PMC9823035 DOI: 10.1007/s10048-022-00705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022]
Abstract
Feather pecking (FP) is a damaging nonaggressive behavior in laying hens with a heritable component. Its occurrence has been linked to the immune system, the circadian clock, and foraging behavior. Furthermore, dysregulation of miRNA biogenesis, disturbance of the gamma-aminobutyric acid (GABAergic) system, as well as neurodevelopmental deficiencies are currently under debate as factors influencing the propensity for FP behavior. Past studies, which focused on the dissection of the genetic factors involved in FP, relied on single nucleotide polymorphisms (SNPs) and short insertions and deletions < 50 bp (InDels). These variant classes only represent a certain fraction of the genetic variation of an organism. Hence, we reanalyzed whole-genome sequencing data from two experimental populations, which have been divergently selected for FP behavior for over more than 15 generations, performed variant calling for structural variants (SVs) as well as tandem repeats (TRs), and jointly analyzed the data with SNPs and InDels. Genotype imputation and subsequent genome-wide association studies, in combination with expression quantitative trait loci analysis, led to the discovery of multiple variants influencing the GABAergic system. These include a significantly associated TR downstream of the GABA receptor subunit beta-3 (GABRB3) gene, two microRNAs targeting several GABA receptor genes, and dystrophin (DMD), a direct regulator of GABA receptor clustering. Furthermore, we found the transcription factor ETV1 to be associated with the differential expression of 23 genes, which points toward a role of ETV1, together with SMAD4 and KLF14, in the disturbed neurodevelopment of high-feather pecking chickens.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Jörn Bennewitz
- grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Jens Tetens
- grid.7450.60000 0001 2364 4210Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
| |
Collapse
|
6
|
Çakmakçı C. Estimating the repeatability of behavioral traits in Norduz sheep subjected to an arena test. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Mott AC, Mott A, Preuß S, Bennewitz J, Tetens J, Falker-Gieske C. eQTL analysis of laying hens divergently selected for feather pecking identifies KLF14 as a potential key regulator for this behavioral disorder. Front Genet 2022; 13:969752. [PMID: 36061196 PMCID: PMC9428588 DOI: 10.3389/fgene.2022.969752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023] Open
Abstract
Feather pecking in chickens is a damaging behavior, seriously impacting animal welfare and leading to economic losses. Feather pecking is a complex trait, which is partly under genetic control. Different hypotheses have been proposed to explain the etiology of feather pecking and notably, several studies have identified similarities between feather pecking and human mental disorders such as obsessive-compulsive disorder and schizophrenia. This study uses transcriptomic and phenotypic data from 167 chickens to map expression quantitative trait loci and to identify regulatory genes with a significant effect on this behavioral disorder using an association weight matrix approach. From 70 of the analyzed differentially expressed genes, 11,790 genome wide significantly associated variants were detected, of which 23 showed multiple associations (≥15). These were located in proximity to a number of genes, which are transcription regulators involved in chromatin binding, nucleic acid metabolism, protein translation and putative regulatory RNAs. The association weight matrix identified 36 genes and the two transcription factors: SP6 (synonym: KLF14) and ENSGALG00000042129 (synonym: CHTOP) as the most significant, with an enrichment of KLF14 binding sites being detectable in 40 differentially expressed genes. This indicates that differential expression between animals showing high and low levels of feather pecking was significantly associated with a genetic variant in proximity to KLF14. This multiallelic variant was located 652 bp downstream of KLF14 and is a deletion of 1-3 bp. We propose that a deletion downstream of the transcription factor KLF14 has a negative impact on the level of T cells in the developing brain of high feather pecking chickens, which leads to developmental and behavioral abnormalities. The lack of CD4 T cells and gamma-Aminobutyric acid (GABA) receptors are important factors for the increased propensity of laying hens to perform feather pecking. As such, KLF14 is a clear candidate regulator for the expression of genes involved in the pathogenic development. By further elucidating the regulatory pathways involved in feather pecking we hope to take significant steps forward in explaining and understanding other mental disorders, not just in chickens.
Collapse
Affiliation(s)
| | - Andrea Mott
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
- *Correspondence: Clemens Falker-Gieske,
| |
Collapse
|
8
|
The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals (Basel) 2022; 12:ani12070870. [PMID: 35405859 PMCID: PMC8997090 DOI: 10.3390/ani12070870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Injurious behavior prevention is a critical issue in the poultry industry due to increasing social stress, leading to negative effects on bird production and survivability, consequently enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Probiotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions in humans and various experimental animals. The current data will first report that probiotic Bacillus subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain function with the potential to be an alternative to beak trimming during poultry egg production. Abstract Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.
Collapse
|
9
|
Kohno S, Ogawa S, Shimmura T, Sato K, Tokutake Y. Myeloperoxidase expression in diencephalon is potentially associated with fear‐related behavior in chicks of laying hen. Anim Sci J 2022; 93:e13779. [PMID: 36345734 DOI: 10.1111/asj.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Preventing feather pecking (FP) in adult laying hens is important for the welfare of intensively poultry farming. Fear-related behavior in growing female layer chicks may predict FP in adult hens. In this study, in two representative laying breeds (White Leghorn [WL] and Rhode Island Red [RIR]) that have different FP frequencies, we identified a candidate gene associated with fear-related behavior in chicks and FP in adult hens. In the tonic immobility test and open-field test, the behavioral activity was lower in WL chicks than in RIR chicks (P < 0.01), suggesting that WL chicks were more fearful than RIR chicks. Based on previous studies, 51 genes that have been found to be differentially expressed in the brain between high- and low-FP populations were chosen, and their expression levels were screened in the chick diencephalon. This analysis revealed that myeloperoxidase (MPO) gene expression level was higher in WL chicks than that in RIR chicks (P < 0.05). Furthermore, STRING analysis predicted the gene network including MPO and MPO-related genes and revealed the association of these genes with fear-related behavior. These results suggest that MPO is potentially associated with fear-related behavior in growing female layer chicks and FP in adult hens.
Collapse
Affiliation(s)
- Suzuka Kohno
- Graduate School of Agricultural Science Tohoku University Sendai Miyagi Japan
| | - Shinichiro Ogawa
- Graduate School of Agricultural Science Tohoku University Sendai Miyagi Japan
- Division of Meat Animal and Poultry Research Institute of Livestock and Grassland Science, NARO Tsukuba Ibaraki Japan
| | - Tsuyoshi Shimmura
- Department of Biological Production Tokyo University of Agriculture and Technology Tokyo Japan
| | - Kan Sato
- Graduate School of Agricultural Science Tohoku University Sendai Miyagi Japan
| | - Yukako Tokutake
- Graduate School of Agricultural Science Tohoku University Sendai Miyagi Japan
| |
Collapse
|
10
|
Falker-Gieske C, Bennewitz J, Tetens J. The light response in chickens divergently selected for feather pecking behavior reveals mechanistic insights towards psychiatric disorders. Mol Biol Rep 2021; 49:1649-1654. [PMID: 34954808 PMCID: PMC8825407 DOI: 10.1007/s11033-021-07111-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Background Feather pecking is a serious behavioral disorder in chickens that has a considerable impact on animal welfare and poses an economic burden for poultry farming. To study the underlying genetics of feather pecking animals were divergently selected for feather pecking over 15 generations based on estimated breeding values for the behavior. Methods and results By characterizing the transcriptomes of whole brains isolated from high and low feather pecking chickens in response to light stimulation we discovered a putative dysregulation of micro RNA processing caused by a lack of Dicer1. This results in a prominent downregulation of the GABRB2 gene and other GABA receptor transcripts, which might cause a constant high level of excitation in the brains of high feather pecking chickens. Moreover, our results point towards an increase in immune system-related transcripts that may be caused by higher interferon concentrations due to Dicer1 downregulation. Conclusion Based on our results, we conclude that feather pecking in chickens and schizophrenia in humans have numerous common features. For instance, a Dicer1 dependent disruption of miRNA biogenesis and the lack of GABRB2 expression have been linked to schizophrenia pathogenesis. Furthermore, disturbed circadian rhythms and dysregulation of genes involved in the immune system are common features of both conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-07111-4.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| |
Collapse
|
11
|
Determining the variation in premaxillary and dentary bone morphology that may underlie beak shape between two pure layer lines. Poult Sci 2021; 100:101500. [PMID: 34700097 PMCID: PMC8554249 DOI: 10.1016/j.psj.2021.101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Beak treatment is an effective method of reducing the damage inflicted by severe feather pecking (SFP) but there is significant pressure to eliminate these treatments and rely solely on alternative strategies. Substantial variation in beak shape exists within non-beak treated layer flocks and beak shape appears to be heritable. There is the potential to use this pre-existing variation and genetically select for hens whose beak shapes are less apt to cause damage during SFP. To do this, we must first understand the range of phenotypes that exist for both the external beak shape and the bones that provide its structure. The objective of this study was to determine the variation in premaxillary (within the top beak) and dentary (within the bottom beak) bone morphology that exists in 2 non-beak treated pure White Leghorn layer lines using geometric morphometrics to analyze radiographs. Lateral head radiographs were taken of 825 hens and the premaxillary and dentary bones were landmarked. Landmark coordinates were standardized by Procrustes superimposition and the covariation was analyzed by principal components analysis and multivariate regression using Geomorph (an R package). Three principal components (PCs) explained 85% of total premaxillary bone shape variation and showed that the shape ranged from long and narrow with pointed bone tips to short and wide with more curved tips. Two PCs explained 81% of total dentary bone shape variation. PC1 described the dentary bone length and width and PC2 explained the angle between the bone tip and its articular process. For both bones, shape was significantly associated with bone size and differed significantly between the two lines. Bone size accounted for 42% of the total shape variation for both bones. Together, the results showed a range of phenotypic variation in premaxillary and dentary bone shape, which in turn may influence beak shape. These bone phenotypes will guide further quantitative genetic and behavioral analyses that will help identify which beaks shapes cause the least damage when birds engage in SFP.
Collapse
|
12
|
Comparison of Changes in the Plumage and Body Condition, Egg Production, and Mortality of Different Non-Beak-Trimmed Pure Line Laying Hens during the Egg-Laying Period. Animals (Basel) 2021; 11:ani11020500. [PMID: 33671858 PMCID: PMC7918532 DOI: 10.3390/ani11020500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary The spread of both alternative and non-cage laying hen housing systems and the more forceful European refusal of beak trimming generate new problems in commercial egg production. The hybrid layers, which have been genetically selected under cage housing conditions for more decades, have lively temperament, are more susceptible for feather pecking and, in more cases, they are expressly aggressive, which led to permanent conflict situations in the large group keeping systems. Therefore, the omission of beak trimming could lead to an increased risk for feather pecking and consequently to a risk for increased mortality in the hen house by using the current commercial layers. Therefore, changes in the live weight, plumage and body condition, egg production, and mortality of different TETRA pure line non-beak-trimmed laying hens were compared during the egg-production period in our study, where the plumage condition was considered as an indicator trait for feather pecking. Our results confirm the findings of former studies that the genetic background of the hens is an important factor impacting feather pecking and suggest that breeding for an improved plumage condition might be a potential way to improve animal welfare in non-beak-trimmed layer flocks. Abstract The experiment was carried out with altogether 1740 non-beak-trimmed laying hens, which originated from Bábolna TETRA Ltd., representing two different types (Rhode Island Red (RIR) and Rhode Island White (RIW)) and four different lines (Lines 1–2: RIR, Lines 3–4: RIW). The plumage and body condition of randomly selected 120 hens (30 hens/line) was examined at 20, 46, and 62 weeks of age. The egg production and the mortality of the sampled hens were recorded daily. Based on the results, it was established that the lines differ clearly in most of the examined traits. It was also pointed out that injurious pecking of the hens resulted not only in damages in the plumage but also in the body condition. The results obviously demonstrated that the highest egg production and the lowest mortality rate were reached by those hens, which had the best plumage and body condition. Because the occurrence of injurious pecking seems to depend on the genetic background, selection of the hens (lines, families, individuals) for calm temperament will be very important in the future in order to maintain the high production level in non-beak-trimmed layer flocks.
Collapse
|
13
|
Iffland H, Schmid M, Preuß S, Bessei W, Tetens J, Bennewitz J. Phenotypic and genomic analyses of agonistic interactions in laying hen lines divergently selected for feather pecking. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2020.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Underwood G, Andrews D, Phung T. Advances in genetic selection and breeder practice improve commercial layer hen welfare. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modern commercial layer breeds represent the culmination of ~7000 years of natural genetic selection. This selection was driven in former times by a combination of genetic-shift and -drift events, that led to chickens being favoured as domesticated species for meat and egg production. More recently, in the early 20th century, the concept of hybrid vigour was discovered and accelerated the natural breeding progress that delivered new genetic lines and more favourable production traits. In the mid-20th century, the broiler-type and egg layer-type lines diverged and, in the 21st century, genetic analysis has further accelerated the progress made towards extended primary breeding characteristics such as egg quality, production and feed-intake traits, together with secondary breeding characteristics such as behavioural traits that have improved robustness in different housing systems, climates and feed types, which together have significantly improved welfare traits. Most recently, there has been the adoption of higher-powered computational analytics together with quantitative trait loci and single-nucleotide polymorphism assessment, which have further improved the uniformity of production traits within breeds. Most importantly, this has provided the primary breeding companies with improved and broader basis of selection of the modern commercial layer breeds, which also improved the alignment of layer strains with market requirements, and diverse variations in housing, nutritional and environmental conditions. This is also testament to the speed with which the commercial layer geneticists can respond to changing welfare policy on factors such as stocking density and beak treatment. The present paper reviews the modern approaches to genetic selection, including considerations of and benefits to the welfare state of commercial layers.
Collapse
|
15
|
Falker-Gieske C, Iffland H, Preuß S, Bessei W, Drögemüller C, Bennewitz J, Tetens J. Meta-analyses of genome wide association studies in lines of laying hens divergently selected for feather pecking using imputed sequence level genotypes. BMC Genet 2020; 21:114. [PMID: 33004014 PMCID: PMC7528462 DOI: 10.1186/s12863-020-00920-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Feather pecking (FP) is damaging behavior in laying hens leading to global economic losses in the layer industry and massive impairments of animal welfare. The objective of the study was to discover genetic variants and affected genes that lead to FP behavior. To achieve that we imputed low-density genotypes from two different populations of layers divergently selected for FP to sequence level by performing whole genome sequencing on founder and half-sib individuals. In order to decipher the genetic structure of FP, genome wide association studies and meta-analyses of two resource populations were carried out by focusing on the traits 'feather pecks delivered' (FPD) and the 'posterior probability of a hen to belong to the extreme feather pecking subgroup' (pEFP). RESULTS In this meta-analysis, we discovered numerous genes that are affected by polymorphisms significantly associated with the trait FPD. Among them SPATS2L, ZEB2, KCHN8, and MRPL13 which have been previously connected to psychiatric disorders with the latter two being responsive to nicotine treatment. Gene set enrichment analysis revealed that phosphatidylinositol signaling is affected by genes identified in the GWAS and that the Golgi apparatus as well as brain structure may be involved in the development of a FP phenotype. Further, we were able to validate a previously discovered QTL for the trait pEFP on GGA1, which contains variants affecting NIPA1, KIAA1211L, AFF3, and TSGA10. CONCLUSIONS We provide evidence for the involvement of numerous genes in the propensity to exhibit FP behavior that could aid in the selection against this unwanted trait. Furthermore, we identified variants that are involved in phosphatidylinositol signaling, Golgi metabolism and cell structure and therefore propose changes in brain structure to be an influential factor in FP, as already described in human neuropsychiatric disorders.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Hanna Iffland
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstr. 109a, 3001, Bern, Switzerland
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| |
Collapse
|
16
|
Falker-Gieske C, Mott A, Preuß S, Franzenburg S, Bessei W, Bennewitz J, Tetens J. Analysis of the brain transcriptome in lines of laying hens divergently selected for feather pecking. BMC Genomics 2020; 21:595. [PMID: 32854615 PMCID: PMC7457272 DOI: 10.1186/s12864-020-07002-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background Feather pecking (FP) in laying hens reduces animal welfare and leads to economic losses for the layer industry. FP is considered a heritable condition that is influenced by dysregulation of neurotransmitter homeostasis, the gut microbiome, and the immune system. To identify genes and biological pathways responsible for FP behavior we compared the brain transcriptomes of 48 hens divergently selected for FP. In addition, we tested if high feather peckers (HFP) and low feather peckers (LFP) respond differently to light since light has been shown to trigger FP behavior. Results Of approximately 48 million reads/sample an average of 98.4% were mapped to the chicken genome (GRCg6a). We found 13,070 expressed genes in the analyzed brains of which 423 showed differential expression between HFP and LFP. Genes of uncertain function and non-coding RNAs were overrepresented among those transcripts. Functional analyses revealed the involvement of cholinergic signaling, postsynaptic activity, membrane channels, and the immune system. After the light stimulus, 28 genes were found to be differentially expressed. These included an interaction cluster of core components of the circadian clock. However, differences in the response to light between HFP and LFP were not detectable. Conclusions Genes involved in cholinergic signaling, channel activity, synaptic transmission, and immune response were found to be involved in FP behavior. We propose a model in which the gut microbiota modulates the immune system, which in turn affects cholinergic signaling. This might have an influence on monoamine signaling with possible involvement of GABA or glutamate signaling.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Andrea Mott
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| |
Collapse
|
17
|
Brito LF, Oliveira HR, McConn BR, Schinckel AP, Arrazola A, Marchant-Forde JN, Johnson JS. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding. Front Genet 2020; 11:793. [PMID: 32849798 PMCID: PMC7411239 DOI: 10.3389/fgene.2020.00793] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Genomic breeding programs have been paramount in improving the rates of genetic progress of productive efficiency traits in livestock. Such improvement has been accompanied by the intensification of production systems, use of a wider range of precision technologies in routine management practices, and high-throughput phenotyping. Simultaneously, a greater public awareness of animal welfare has influenced livestock producers to place more emphasis on welfare relative to production traits. Therefore, management practices and breeding technologies in livestock have been developed in recent years to enhance animal welfare. In particular, genomic selection can be used to improve livestock social behavior, resilience to disease and other stress factors, and ease habituation to production system changes. The main requirements for including novel behavioral and welfare traits in genomic breeding schemes are: (1) to identify traits that represent the biological mechanisms of the industry breeding goals; (2) the availability of individual phenotypic records measured on a large number of animals (ideally with genomic information); (3) the derived traits are heritable, biologically meaningful, repeatable, and (ideally) not highly correlated with other traits already included in the selection indexes; and (4) genomic information is available for a large number of individuals (or genetically close individuals) with phenotypic records. In this review, we (1) describe a potential route for development of novel welfare indicator traits (using ideal phenotypes) for both genetic and genomic selection schemes; (2) summarize key indicator variables of livestock behavior and welfare, including a detailed assessment of thermal stress in livestock; (3) describe the primary statistical and bioinformatic methods available for large-scale data analyses of animal welfare; and (4) identify major advancements, challenges, and opportunities to generate high-throughput and large-scale datasets to enable genetic and genomic selection for improved welfare in livestock. A wide variety of novel welfare indicator traits can be derived from information captured by modern technology such as sensors, automatic feeding systems, milking robots, activity monitors, video cameras, and indirect biomarkers at the cellular and physiological levels. The development of novel traits coupled with genomic selection schemes for improved welfare in livestock can be feasible and optimized based on recently developed (or developing) technologies. Efficient implementation of genetic and genomic selection for improved animal welfare also requires the integration of a multitude of scientific fields such as cell and molecular biology, neuroscience, immunology, stress physiology, computer science, engineering, quantitative genomics, and bioinformatics.
Collapse
Affiliation(s)
- Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Betty R. McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Aitor Arrazola
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | | | - Jay S. Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, United States
| |
Collapse
|
18
|
Fresneau N, Estramil N, Müller W. Are offspring begging levels exaggerated beyond the parental optimum? Evidence from a bidirectional selection experiment. J Evol Biol 2020; 33:899-910. [PMID: 32236996 DOI: 10.1111/jeb.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/15/2020] [Indexed: 11/29/2022]
Abstract
Parental care involves elaborate behavioural interactions between parents and their offspring, with offspring stimulating their parents via begging to provision resources. Thus, begging has direct fitness benefits as it enhances offspring growth and survival. It is nevertheless subject to a complex evolutionary trajectory, because begging may serve as a means for the offspring to manipulate parents in the context of evolutionary conflicts of interest. Furthermore, it has been hypothesized that begging is coadapted and potentially genetically correlated with parental care traits as a result of social selection. Further experiments on the causal processes that shape the evolution of begging are therefore essential. We applied bidirectional artificial selection on begging behaviour, using canaries (Serinus canaria) as a model species. We measured the response to selection, the consequences for offspring development, changes in parental care traits, here the rate of parental provisioning, as well as the effects on reproductive success. After three generations of selection, offspring differed in begging behaviour according to our artificial selection regime: nestlings of the high begging line begged significantly more than nestlings of the low begging line. Intriguingly, begging less benefitted the nestlings, as reflected by on average significantly higher growth rates, and increased reproductive success in terms of a higher number of fledglings in the low selected line. Begging could thus represent an exaggerated trait, possibly because parent-offspring conflict enhanced the selection on begging. We did not find evidence that we co-selected on parental provisioning, which may be due to the lack of power, but may also suggest that the evolution of begging is probably not constrained by a genetic correlation between parental provisioning and offspring begging.
Collapse
Affiliation(s)
- Nolwenn Fresneau
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary.,Department of Limnology, University of Pannonia, Veszprém, Hungary.,Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Natalia Estramil
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Wendt Müller
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
19
|
Iffland H, Wellmann R, Schmid M, Preuß S, Tetens J, Bessei W, Bennewitz J. Genomewide Mapping of Selection Signatures and Genes for Extreme Feather Pecking in Two Divergently Selected Laying Hen Lines. Animals (Basel) 2020; 10:ani10020262. [PMID: 32041297 PMCID: PMC7070400 DOI: 10.3390/ani10020262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Feather pecking is a behavior frequently occurring in commercial layer flocks. It often leads to skin injuries and cannibalism. Besides economic losses, severe animal welfare problems cannot be ignored. Previous research has shown that the trait is heritable. Thus breeding against feather pecking is possible, but phenotyping in a commercial environment is economically unfeasible at the moment because of the lack of proper techniques. Therefore, understanding the genetic background of the trait is mandatory to establish a genomic breeding program. This would require genotypic information of the hens, which is feasible under practical conditions. In the present study, we used different methods to identify regions in the genome that influence feather pecking and extreme feather pecking. We found one trait associated with the genomic region. The use of genotypic information from this region in terms of selection against the undesired behavior may help to improve animal welfare in layer flocks. Abstract Feather pecking (FP) is a longstanding serious problem in commercial flocks of laying hens. It is a highly polygenic trait and the genetic background is still not completely understood. In order to find genomic regions influencing FP, selection signatures between laying hen lines divergently selected for high and low feather pecking were mapped using the intra-population iHS and the inter-population FST approach. In addition, the existence of an extreme subgroup of FP hens (EFP) across both selected lines has been demonstrated by fitting a mixture of negative binomial distributions to the data and calculating the posterior probability of belonging to the extreme subgroup (pEFP) for each hen. A genomewide association study (GWAS) was performed for the traits pEFP and FP delivered (FPD) with a subsequent post GWAS analysis. Mapping of selection signatures revealed no clear regions under selection. GWAS revealed a region on Chromosome 1, where the existence of a QTL influencing FP is likely. The candidate genes found in this region are a part of the GABAergic system, which has already been linked to FP in previous studies. Despite the polygenic nature of FP, selection on these candidate genes may reduce FP.
Collapse
Affiliation(s)
- Hanna Iffland
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
- Correspondence:
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Markus Schmid
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Jens Tetens
- Department of Animal Science, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany;
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| |
Collapse
|
20
|
A Novel Model to Explain Extreme Feather Pecking Behavior in Laying Hens. Behav Genet 2019; 50:41-50. [PMID: 31541310 DOI: 10.1007/s10519-019-09971-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Feather pecking (FP) is a serious economic and welfare problem in the domestic fowl. It has recently been shown that the distribution of FP bouts within groups is heterogeneous and contains a sub-population of extreme feather peckers (EFP). The present study proposed a novel model to detect EFP hens. A mixture of two negative binomial distributions was fitted to FP data of a F2 cross of about 960 hens, and, based on the results, a calculation of the posterior probability for each hen belonging to the EFP subgroup (pEFP) was done. The fit of the mixture distribution revealed that the EFP subgroup made up a proportion of one third of the F2 cross. The EFP birds came more frequently into pecking mood and showed higher pecking intensities compared to the remaining birds. Tonic immobility and emerge box tests were conducted at juvenile and adult age of the hens to relate fearfulness to EFP. After dichotomization, all traits were analyzed in a multivariate threshold model and a genomewide association study was performed. The new trait pEFP has a medium heritability of 0.35 and is positively correlated with the fear traits. Breeding for this new trait could be an interesting option to reduce the proportion of extreme feather peckers. An index of fear related traits might serve as a proxy to breed indirectly for pEFP. GWAS revealed that all traits are typical quantitative traits with many genes and small effects contributing to the genetic variance.
Collapse
|
21
|
Nie C, Ban L, Ning Z, Qu L. Feather colour affects the aggressive behaviour of chickens with the same genotype on the dominant white (I) locus. PLoS One 2019; 14:e0215921. [PMID: 31048862 PMCID: PMC6497237 DOI: 10.1371/journal.pone.0215921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/10/2019] [Indexed: 11/18/2022] Open
Abstract
Aggression in chickens is a serious economic and animal welfare issue in poultry farming. Pigmentation traits have been documented to be associated with animal behaviour. Chicken pecking behaviour has been found to be related to feather colour, with premelanosome protein 17 (PMEL17) being one of the candidate genes. In the present study, we performed a genotypic and phenotypic association analysis between chicken plumage colour (red and white) and aggressive behaviour in an F1 hybrid group generated by crossing the autosomal dominant white-feathered breed White Leghorn (WL) and the red-feathered breed Rhode Island Red (RIR). In genetic theory, all the progeny should have white feathers because WL is homozygous autosomal dominant for white feathers. However, we found a few red-feathered female chickens. We compared the aggressiveness between the red and white females to determine whether the feather colour alone affected the behaviour, given that the genetic background should be the same except for feather colour. The aggressiveness was recorded 5 days after sexual maturity at 26 weeks. Generally, white plumage hens showed significantly higher aggressiveness compared to the red ones in chasing, attacking, pecking, and threatening behaviour traits. We assessed three candidate feather colour genes—PMEL17, solute carrier family 45 member 2 (SLC45A2), and SRY-box 10 (SOX10)—to determine the genetic basis for the red and white feather colour in our hybrid population; there was no association between the three loci and feather colour. The distinct behavioural findings observed herein provide clues to the mechanisms underlying the association between phenotype and behaviour in chickens. We suggest that mixing red and white chickens together might reduce the occurrence of aggressive behaviours.
Collapse
Affiliation(s)
- Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liping Ban
- College of grassland science and technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Piepho HP. A coefficient of determination (R 2 ) for generalized linear mixed models. Biom J 2019; 61:860-872. [PMID: 30957911 DOI: 10.1002/bimj.201800270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/19/2018] [Accepted: 03/06/2019] [Indexed: 11/09/2022]
Abstract
Extensions of linear models are very commonly used in the analysis of biological data. Whereas goodness of fit measures such as the coefficient of determination (R2 ) or the adjusted R2 are well established for linear models, it is not obvious how such measures should be defined for generalized linear and mixed models. There are by now several proposals but no consensus has yet emerged as to the best unified approach in these settings. In particular, it is an open question how to best account for heteroscedasticity and for covariance among observations present in residual error or induced by random effects. This paper proposes a new approach that addresses this issue and is universally applicable for arbitrary variance-covariance structures including spatial models and repeated measures. It is exemplified using three biological examples.
Collapse
Affiliation(s)
- Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Pellegrini S, Condat L, Caliva J, Marin R, Guzman D. Can Japanese quail male aggressions toward a female cagemate predict aggressiveness toward unknown conspecifics? Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Ellen ED, van der Sluis M, Siegford J, Guzhva O, Toscano MJ, Bennewitz J, van der Zande LE, van der Eijk JAJ, de Haas EN, Norton T, Piette D, Tetens J, de Klerk B, Visser B, Rodenburg TB. Review of Sensor Technologies in Animal Breeding: Phenotyping Behaviors of Laying Hens to Select Against Feather Pecking. Animals (Basel) 2019; 9:ani9030108. [PMID: 30909407 PMCID: PMC6466287 DOI: 10.3390/ani9030108] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The European Cooperation in Science and Technology (COST) Action GroupHouseNet aims to provide synergy among scientists to prevent damaging behavior in group-housed pigs and laying hens. One goal of this network is to determine how genetic and genomic tools can be used to breed animals that are less likely to perform damaging behavior on their pen-mates. In this review, the focus is on feather-pecking behavior in laying hens. Reducing feather pecking in large groups of hens is a challenge, because it is difficult to identify and monitor individual birds. However, current developments in sensor technologies and animal breeding have the potential to identify individual animals, monitor individual behavior, and link this information back to the underlying genotype. We describe a combination of sensor technologies and “-omics” approaches that could be used to select against feather-pecking behavior in laying hens. Abstract Damaging behaviors, like feather pecking (FP), have large economic and welfare consequences in the commercial laying hen industry. Selective breeding can be used to obtain animals that are less likely to perform damaging behavior on their pen-mates. However, with the growing tendency to keep birds in large groups, identifying specific birds that are performing or receiving FP is difficult. With current developments in sensor technologies, it may now be possible to identify laying hens in large groups that show less FP behavior and select them for breeding. We propose using a combination of sensor technology and genomic methods to identify feather peckers and victims in groups. In this review, we will describe the use of “-omics” approaches to understand FP and give an overview of sensor technologies that can be used for animal monitoring, such as ultra-wideband, radio frequency identification, and computer vision. We will then discuss the identification of indicator traits from both sensor technologies and genomics approaches that can be used to select animals for breeding against damaging behavior.
Collapse
Affiliation(s)
- Esther D Ellen
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
| | - Malou van der Sluis
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| | - Janice Siegford
- Animal Behavior and Welfare Group, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.
| | - Oleksiy Guzhva
- Department Biosystems and Technology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Michael J Toscano
- Center for Proper Housing: Poultry and Rabbits University of Bern, CH 3052 Zollikofen, Switzerland.
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Lisette E van der Zande
- Adaptation Physiology Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
| | - Jerine A J van der Eijk
- Adaptation Physiology Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
- Behavioural Ecology Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
| | - Elske N de Haas
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
- Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit, 9090 Melle, Belgium.
| | - Tomas Norton
- M3-BIORES, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium.
| | - Deborah Piette
- M3-BIORES, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium.
| | - Jens Tetens
- Functional Breeding Group, Department of Animal Sciences, Georg-August University, 37077 Göttingen, Germany.
| | | | - Bram Visser
- Hendrix Genetics Research, Technology & Services B.V., 5830 AC Boxmeer, The Netherlands.
| | - T Bas Rodenburg
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
- Adaptation Physiology Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
25
|
Lutz V, Stratz P, Preuß S, Tetens J, Grashorn MA, Bessei W, Bennewitz J. A genome-wide association study in a large F2-cross of laying hens reveals novel genomic regions associated with feather pecking and aggressive pecking behavior. Genet Sel Evol 2017; 49:18. [PMID: 28158968 PMCID: PMC5291977 DOI: 10.1186/s12711-017-0287-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background Feather pecking and aggressive pecking in laying hens are serious economic and welfare issues. In spite of extensive research on feather pecking during the last decades, the motivation for this behavior is still not clear. A small to moderate heritability has frequently been reported for these traits. Recently, we identified several single-nucleotide polymorphisms (SNPs) associated with feather pecking by mapping selection signatures in two divergent feather pecking lines. Here, we performed a genome-wide association analysis (GWAS) for feather pecking and aggressive pecking behavior, then combined the results with those from the recent selection signature experiment, and linked them to those obtained from a differential gene expression study. Methods A large F2 cross of 960 F2 hens was generated using the divergent lines as founders. Hens were phenotyped for feather pecks delivered (FPD), aggressive pecks delivered (APD), and aggressive pecks received (APR). Individuals were genotyped with the Illumina 60K chicken Infinium iSelect chip. After data filtering, 29,376 SNPs remained for analyses. Single-marker GWAS was performed using a Poisson model. The results were combined with those from the selection signature experiment using Fisher’s combined probability test. Results Numerous significant SNPs were identified for all traits but with low false discovery rates. Nearly all significant SNPs were located in clusters that spanned a maximum of 3 Mb and included at least two significant SNPs. For FPD, four clusters were identified, which increased to 13 based on the meta-analysis (FPDmeta). Seven clusters were identified for APD and three for APR. Eight genes (of the 750 investigated genes located in the FPDmeta clusters) were significantly differentially-expressed in the brain of hens from both lines. One gene, SLC12A9, and the positional candidate gene for APD, GNG2, may be linked to the monomanine signaling pathway, which is involved in feather pecking and aggressive behavior. Conclusions Combining the results from the GWAS with those of the selection signature experiment substantially increased the statistical power. The behavioral traits were controlled by many genes with small effects and no single SNP had effects large enough to justify its use in marker-assisted selection. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0287-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa Lutz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Patrick Stratz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jens Tetens
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Michael A Grashorn
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
26
|
Abstract
Feather pecking is a serious economic and welfare problem in laying hens. Feather damage occurs mainly through severe feather pecking (SFP). Selection experiments have proved that this behavior is heritable and lines have been divergently selected for high (HFP) and low feather pecking (LFP). The number of bouts of SFP per hen follows a Poisson distribution with a maximum nearby 0. A few studies indicate that the distribution within flocks is not homogenous but contains sub-groups of birds showing extremely high levels of feather pecking (EFP). It was the aim of the current study to re-analyze data on SFP of lines selected for HFP/LFP and their F2 cross so as to uncover hidden sub-populations of EFP birds. Data of seven selection generations of HFP and LFP selection lines as well as their F2 cross have been used. We fitted a two-component mixture of Poisson distributions in order to separate the sub-group of EFP from the remaining birds. HFP and LFP lines differed mainly in mean bouts per bird. The proportion of EFP was only marginal in the LFP as compared with the HFP and the F2 population. Selection for LFP did not result in total elimination of EFP. The presence of even small proportions of EFP may play an important role in initiating outbreaks of feather pecking in large flocks. Further studies on feather pecking should pay special attention to the occurrence of EFP sub-groups.
Collapse
|
27
|
Brunberg EI, Rodenburg TB, Rydhmer L, Kjaer JB, Jensen P, Keeling LJ. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens. Front Vet Sci 2016; 3:57. [PMID: 27500137 PMCID: PMC4956668 DOI: 10.3389/fvets.2016.00057] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 01/15/2023] Open
Abstract
Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Emma I. Brunberg
- NORSØK – Norwegian Centre for Organic Agriculture, Tingvoll, Norway
- NIBIO – Norwegian Institute for Bioeconomy Research, Tingvoll, Norway
| | - T. Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, Wageningen, Netherlands
| | - Lotta Rydhmer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joergen B. Kjaer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Celle, Germany
| | - Per Jensen
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Linda J. Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
28
|
Automated behavioural response assessment to a feeding event in two heritage chicken breeds. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Lutz V, Kjaer JB, Iffland H, Rodehutscord M, Bessei W, Bennewitz J. Quantitative genetic analysis of causal relationships among feather pecking, feather eating, and general locomotor activity in laying hens using structural equation models. Poult Sci 2016; 95:1757-63. [PMID: 27252366 DOI: 10.3382/ps/pew146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
The objective of this research was to analyze the relationship between feather pecking (FP) and feather eating (FE) as well as general locomotor activity (GLA) using structural equation models, which allow that one trait can be treated as an explanatory variable of another trait. This provides an opportunity to infer putative causal links among the traits. For the analysis, 897 F2-hens set up from 2 lines divergently selected for high and low FP were available. The FP observations were Box-Cox transformed, and FE and GLA observations were log and square root transformed, respectively. The estimated heritabilities of FE, GLA, and FP were 0.36, 0.29, and 0.20, respectively. The genetic correlation between FP and FE (GLA) was 0.17 (0.04). A high genetic correlation of 0.47 was estimated between FE and GLA. The recursive effect from FE to FP was [Formula: see text], and from GLA to FP [Formula: see text] These results imply that an increase of FE leads to an increased FP behavior and that an increase in GLA results in a higher FP value. Furthermore, the study showed that the genetic correlation among the traits is mainly caused by indirect effects.
Collapse
Affiliation(s)
- V Lutz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - J B Kjaer
- Institute for Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Doernbergstrasse 25-27, 29223 Celle, Germany
| | - H Iffland
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - M Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - W Bessei
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - J Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
30
|
Beck P, Piepho HP, Rodehutscord M, Bennewitz J. Inferring relationships between Phosphorus utilization, feed per gain, and bodyweight gain in an F2 cross of Japanese quail using recursive models. Poult Sci 2016; 95:764-73. [PMID: 26740136 DOI: 10.3382/ps/pev376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Phosphorus utilization (PU) has received considerable attention in poultry nutrition. However, reliable estimates of genetic parameters for PU and related traits have largely not been reported until now; however, these are needed to assess whether selection for an improved PU would result in selection response. A large Japanese quail F2 cross was generated and 888 F2 individuals were phenotyped for PU, bodyweight gain (BWG), and feed per gain (F:G). Because it can reasonably be assumed that the interrelationships between these traits are complex, structural equation models were used. The structural coefficient λij describes the rate of change of trait I with respect to trait j for a model with a recursive effect of trait j on trait i Three recursive structural coefficients (λF:G,PU,λBWG,PU,λBWG,F:G) were selected a priori based on biological knowledge. The model was fitted using ASReml software. Standard errors of estimated variance components and genetic parameters were approximated using the delta method. The heritability of PU, F:G, and BWG were 0.136, 0.118, and 0.092. The structural coefficient[Formula: see text]indicates that an increase in PU leads to reduced and thus improved F:G. The estimate[Formula: see text]indicates that improved F:G leads to an increase in BWG. The overall effect of PU on BWG was[Formula: see text]i.e. an increase in PU of 1% leads to an increase of BWG of 0.374 g in the data collection period, which spanned five days. The phenotypic and genetic correlations were negative between PU and F:G as well as between BWG and F:G and were positive between PU and BWG. These correlations are driven by direct genetic effects (pleiotropic genes or genes being in linkage disequilibrium) as well as by indirect genetic effects (genes affecting trait j affected indirectly trait i). The application of structural equation models contributed to our understanding of the complex biological relationship between PU, F:G, and BWG in quails. PU shows a heritability that is sufficient to achieve a selection response when breeding for this very-hard-to-measure trait.
Collapse
Affiliation(s)
- P Beck
- Institut für Nutztierwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| | - H-P Piepho
- Institut für Kulturpflanzenwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| | - M Rodehutscord
- Institut für Nutztierwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| | - J Bennewitz
- Institut für Nutztierwissenschaften, Universität Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
31
|
Heritability of body surface temperature in hens estimated by infrared thermography at normal or hot temperatures and genetic correlations with egg and feather quality. Animal 2016; 10:1594-601. [DOI: 10.1017/s1751731116000616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Grams V, Wellmann R, Preuß S, Grashorn MA, Kjaer JB, Bessei W, Bennewitz J. Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour. Genet Sel Evol 2015; 47:77. [PMID: 26419343 PMCID: PMC4589119 DOI: 10.1186/s12711-015-0154-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background Feather pecking (FP) in laying hens is a well-known and multi-factorial behaviour with a genetic background. In a selection experiment, two lines were developed for 11 generations for high (HFP) and low (LFP) feather pecking, respectively. Starting with the second generation of selection, there was a constant difference in mean number of FP bouts between both lines. We used the data from this experiment to perform a quantitative genetic analysis and to map selection signatures. Methods Pedigree and phenotypic data were available for the last six generations of both lines. Univariate quantitative genetic analyses were conducted using mixed linear and generalized mixed linear models assuming a Poisson distribution. Selection signatures were mapped using 33,228 single nucleotide polymorphisms (SNPs) genotyped on 41 HFP and 34 LFP individuals of generation 11. For each SNP, we estimated Wright’s fixation index (FST). We tested the null hypothesis that FST is driven purely by genetic drift against the alternative hypothesis that it is driven by genetic drift and selection. Results The mixed linear model failed to analyze the LFP data because of the large number of 0s in the observation vector. The Poisson model fitted the data well and revealed a small but continuous genetic trend in both lines. Most of the 17 genome-wide significant SNPs were located on chromosomes 3 and 4. Thirteen clusters with at least two significant SNPs within an interval of 3 Mb maximum were identified. Two clusters were mapped on chromosomes 3, 4, 8 and 19. Of the 17 genome-wide significant SNPs, 12 were located within the identified clusters. This indicates a non-random distribution of significant SNPs and points to the presence of selection sweeps. Conclusions Data on FP should be analysed using generalised linear mixed models assuming a Poisson distribution, especially if the number of FP bouts is small and the distribution is heavily peaked at 0. The FST-based approach was suitable to map selection signatures that need to be confirmed by linkage or association mapping. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0154-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa Grams
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Michael A Grashorn
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Jörgen B Kjaer
- Institute for Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Doernbergstrasse 25-27, 29223, Celle, Germany.
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
33
|
Daigle CL, Rodenburg TB, Bolhuis JE, Swanson JC, Siegford JM. Individual Consistency of Feather Pecking Behavior in Laying Hens: Once a Feather Pecker Always a Feather Pecker? Front Vet Sci 2015; 2:6. [PMID: 26664935 PMCID: PMC4672280 DOI: 10.3389/fvets.2015.00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/21/2015] [Indexed: 01/19/2023] Open
Abstract
The pecking behavior [severe feather, gentle feather, and aggressive pecks (AP)] of individual White Shaver non-cage laying hens (n = 300) was examined at 21, 24, 27, 32, and 37 weeks. Hens were housed in 30 groups of 10 hens each and on 3 cm litter with access to a feeder, perch, and two nest boxes. The number of severe feather pecks given (SFPG) and received (SFPR) was used to categorize hens as feather peckers (P), victims (V), neutrals (N), or feather pecker-victims (PV) at each age. Hens categorized as PV exhibited pecking behaviors similar to P and received pecks similar to V. SFP given were correlated with APs given, but not with gentle feather pecks (GFP) given throughout the study. State-transition plot maps illustrated that 22.5% of P remained P, while 44% of PV remained PV throughout the duration of the study. Lifetime behavioral categories identified hens as a consistent feather pecker (5%), consistent neutral (3.9%), consistent victim (7.9%), consistent feather pecker-victim (29.4%), or inconsistent (53.8%) in their behavioral patterns throughout their life. Consistent feather peckers performed more SFP than hens of other categories, and consistent neutral hens received fewer GFP than consistent feather PV. No differences in corticosterone or whole blood serotonin levels were observed among the categories. Approximately, half of the population was classified as a feather pecker at least once during the study, while the remainder was never categorized as a feather pecker. Therefore, even if the development and cause of feather pecking may be multifactorial, once the behavior has been developed, some hens may persist in feather pecking. However, as some hens were observed to never receive or perform SFP, emphasis should be made to select for these hens in future breeding practices.
Collapse
Affiliation(s)
- Courtney L. Daigle
- Animal Behavior and Welfare Group, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - T. Bas Rodenburg
- Behavioural Ecology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Janice C. Swanson
- Animal Behavior and Welfare Group, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Janice M. Siegford
- Animal Behavior and Welfare Group, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
34
|
Grams V, Bögelein S, Grashorn MA, Bessei W, Bennewitz J. Quantitative Genetic Analysis of Traits Related to Fear and Feather Pecking in Laying Hens. Behav Genet 2014; 45:228-35. [DOI: 10.1007/s10519-014-9695-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
|
35
|
Kops MS, Kjaer JB, Güntürkün O, Westphal KGC, Korte-Bouws GAH, Olivier B, Bolhuis JE, Korte SM. Serotonin release in the caudal nidopallium of adult laying hens genetically selected for high and low feather pecking behavior: an in vivo microdialysis study. Behav Brain Res 2014; 268:81-7. [PMID: 24720936 DOI: 10.1016/j.bbr.2014.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/12/2023]
Abstract
Severe feather pecking (FP) is a detrimental behavior causing welfare problems in laying hens. Divergent genetic selection for FP in White Leghorns resulted in strong differences in FP incidences between lines. More recently, it was shown that the high FP (HFP) birds have increased locomotor activity as compared to hens of the low FP (LFP) line, but whether these lines differ in central serotonin (5-hydroxytryptamine, 5-HT) release is unknown. We compared baseline release levels of central 5-HT, and the metabolite 5-HIAA in the limbic and prefrontal subcomponents of the caudal nidopallium by in vivo microdialysis in adult HFP and LFP laying hens from the ninth generation of selection. A single subcutaneous d-fenfluramine injection (0.5 mg/kg) was given to release neuronal serotonin in order to investigate presynaptic storage capacity. The present study shows that HFP hens had higher baseline levels of 5-HT in the caudal nidopallium as compared to LFP laying hens. Remarkably, no differences in plasma tryptophan levels (precursor of 5-HT) between the lines were observed. d-fenfluramine increased 5-HT levels in both lines similarly indirectly suggesting that presynaptic storage capacity was the same. The present study shows that HFP hens release more 5-HT under baseline conditions in the caudal nidopallium as compared to the LFP birds. This suggests that HFP hens are characterized by a higher tonic 5-HT release.
Collapse
Affiliation(s)
- Marjolein S Kops
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Joergen B Kjaer
- Friedrich Loeffler Institut, Institute for Animal Welfare and Animal Husbandry, Celle, Germany.
| | - Onur Güntürkün
- Department of Psychology, Ruhr-University of Bochum, Bochum, Germany.
| | - Koen G C Westphal
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Gerdien A H Korte-Bouws
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Berend Olivier
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University, Wageningen, The Netherlands.
| | - S Mechiel Korte
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
36
|
De Silva NH, Gea L, Lowe R. Genetic analysis of resistance to Pseudomonas syringae pv. actinidiae (Psa) in a kiwifruit progeny test: an application of generalised linear mixed models (GLMMs). SPRINGERPLUS 2014; 3:547. [PMID: 26034671 PMCID: PMC4447754 DOI: 10.1186/2193-1801-3-547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
Linear Mixed models (LMMs) that incorporate genetic and spatial covariance structures have been used for many years to estimate genetic parameters and to predict breeding values in animal and plant breeding. Although the theoretical aspects for extending LMM to generalised linear mixed models (GLMMs) have been around for some time, suitable software has been developed only within the last decade or so. The GLIMMIX procedure in SAS® is becoming popular for fitting GLMMs in various disciplines. Applications of GLMMs to genetic analysis have been limited, probably because of the complexity of the models used. This is particularly so for Proc GLIMMIX because, unlike ASReml software, it is not specifically tailored for analysis of breeding data and some pre-procedure coding is necessary. Binary data that fits the GLMM framework is commonly encountered in breeding experiments, such as when evaluating individuals for resistance by observing the presence or absence of disease. Bacterial canker (Psa) caused by Pseudomonas syringae pv. actinidiae is a serious disease of kiwifruit in New Zealand and other kiwifruit-producing countries. Data from a progeny test trial was available to identify parents with high breeding values for resistance. We successfully applied the GLIMMIX procedure for this purpose. Heritability for resistance was moderate, and we identified two parents and their family as having high potential for Psa resistance breeding. There are several potential pitfalls when using GLMMs with binary data and these are briefly discussed.
Collapse
Affiliation(s)
- Nihal H De Silva
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert Research Centre, 120 Mt Albert Road, Auckland, 1142 New Zealand
| | - Luis Gea
- PFR, Te Puke Research Centre, 412 No. 1 Road, RD 2, Te Puke, 3182 New Zealand
| | - Russell Lowe
- PFR, Te Puke Research Centre, 412 No. 1 Road, RD 2, Te Puke, 3182 New Zealand
| |
Collapse
|