1
|
Lai LH, James DR, Appleyard RC, Cadman J. Biomechanical Comparison of Three Locking Compression Plate Constructs from Three Manufacturers under Cyclic Torsional Loading in a Fracture Gap Model. Vet Comp Orthop Traumatol 2025; 38:25-33. [PMID: 39102851 DOI: 10.1055/s-0044-1788920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
OBJECTIVE The aim of the study was to compare the stiffness and cyclic fatigue of locking compression plate constructs from three manufacturers, DePuy Synthes (DPS), Knight Benedikt (KB), and Provet Veterinary Instrumentation (Vi), under cyclic torsion. METHODS The constructs of DPS, KB, and Vi were assembled by fixing a 10-hole 3.5-mm stainless steel locking compression plate 1 mm away from a validated bone model with a fracture gap of 47 mm. The corresponding drill guides and locking screws were used. Three groups of six constructs were tested in cyclic torsion until failure. RESULTS There was no significant difference in initial stiffness between DPS constructs (28.83 ± 0.84 N·m/rad) and KB constructs (28.38 ± 0.81 N·m/rad), and between KB constructs and Vi constructs (27.48 ± 0.37 N·m/rad), but the DPS constructs were significantly stiffer than the Vi constructs. The DPS constructs sustained the significantly highest number of cycles (24,833 ± 2,317 cycles) compared with KB constructs (16,167 ± 1,472 cycles) and Vi constructs (19,833 ± 4,792 cycles), but the difference between KB and Vi constructs was not significant. All constructs failed by screw damage at the shaft between the plate and the bone model. CONCLUSION DPS constructs showed superior initial torsional stiffness and cyclic fatigue life than Vi constructs, whereas KB and Vi constructs shared comparable results. Further investigation is required to assess the clinical significance of these biomechanical differences.
Collapse
Affiliation(s)
- Lik Hang Lai
- Department of Surgery, Small Animal Specialist Hospital (SASH), Sydney, New South Wales, Australia
| | - Daniel Reynolds James
- Department of Surgery, Sydney Veterinary Emergency & Specialists, Sydney, New South Wales, Australia
| | | | - Joseph Cadman
- Orthopaedic Biomechanics Research Group, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Lin Y, Rankin JW, Lamas LP, Moazen M, Hutchinson JR. Hindlimb kinematics, kinetics and muscle dynamics during sit-to-stand and sit-to-walk transitions in emus (Dromaius novaehollandiae). J Exp Biol 2024; 227:jeb247519. [PMID: 39445465 PMCID: PMC11708823 DOI: 10.1242/jeb.247519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Terrestrial animals not only need to walk and run but also lie prone to rest and then stand up. Sit-to-stand (STS) and sit-to-walk (STW) transitions are vital behaviours little studied in species other than humans so far, but likely impose biomechanical constraints on limb design because they involve near-maximal excursions of limb joints that should require large length changes and force production from muscles. By integrating data from experiments into musculoskeletal simulations, we analysed joint motions, ground reaction forces, and muscle dynamics during STS and STW in a large terrestrial, bipedal and cursorial bird: the emu (Dromaius novaehollandiae; body mass ∼30 kg). Simulation results suggest that in both STS and STW, emus operate near the functional limits (∼50% of shortening/lengthening) of some of their hindlimb muscles, particularly in distal muscles with limited capacity for length change and leverage. Both movements involved high muscle activations (>50%) and force generation of the major joint extensor muscles early in the transition. STW required larger net joint moments and non-sagittal motions than STS, entailing greater demands for muscle capacity. Whilst our study involves multiple assumptions, our findings lay the groundwork for future studies to understand, for example, how tendon contributions may reduce excessive muscle demands, especially in the distal hindlimb. As the first investigation into how an avian species stands up, this study provides a foundational framework for future comparative studies investigating organismal morphofunctional specialisations and evolution, offering potential robotics and animal welfare applications.
Collapse
Affiliation(s)
- Yuting Lin
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Jeffery W. Rankin
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Luís P. Lamas
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
3
|
Bishop PJ, Pierce SE. Late acquisition of erect hindlimb posture and function in the forerunners of therian mammals. SCIENCE ADVANCES 2024; 10:eadr2722. [PMID: 39454012 PMCID: PMC11506245 DOI: 10.1126/sciadv.adr2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The evolutionary transition from early synapsids to therian mammals involved profound reorganization in locomotor anatomy and function, centered around a shift from "sprawled" to "erect" limb postures. When and how this functional shift was accomplished has remained difficult to decipher from the fossil record alone. Through biomechanical modeling of hindlimb force-generating performance in eight exemplar fossil synapsids, we demonstrate that the erect locomotor regime typifying modern therians did not evolve until just before crown Theria. Modeling also identifies a transient phase of increased performance in therapsids and early cynodonts, before crown mammals. Further, quantifying the global actions of major hip muscle groups indicates a protracted juxtaposition of functional redeployment and conservatism, highlighting the intricate interplay between anatomical reorganization and function across postural transitions. We infer a complex history of synapsid locomotor evolution and suggest that major evolutionary transitions between contrasting locomotor behaviors may follow highly nonlinear trajectories.
Collapse
Affiliation(s)
- Peter J. Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
da Silva Z, Shield S, Hudson PE, Wilson AM, Nicolls F, Patel A. Markerless 3D kinematics and force estimation in cheetahs. Sci Rep 2024; 14:10579. [PMID: 38720014 PMCID: PMC11584894 DOI: 10.1038/s41598-024-60731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
The complex dynamics of animal manoeuvrability in the wild is extremely challenging to study. The cheetah (Acinonyx jubatus) is a perfect example: despite great interest in its unmatched speed and manoeuvrability, obtaining complete whole-body motion data from these animals remains an unsolved problem. This is especially difficult in wild cheetahs, where it is essential that the methods used are remote and do not constrain the animal's motion. In this work, we use data obtained from cheetahs in the wild to present a trajectory optimisation approach for estimating the 3D kinematics and joint torques of subjects remotely. We call this approach kinetic full trajectory estimation (K-FTE). We validate the method on a dataset comprising synchronised video and force plate data. We are able to reconstruct the 3D kinematics with an average reprojection error of 17.69 pixels (62.94% PCK using the nose-to-eye(s) length segment as a threshold), while the estimates produce an average root-mean-square error of 171.3N ( ≈ 17.16% of peak force during stride) for the estimated ground reaction force when compared against the force plate data. While the joint torques cannot be directly validated against ground truth data, as no such data is available for cheetahs, the estimated torques agree with previous studies of quadrupeds in controlled settings. These results will enable deeper insight into the study of animal locomotion in a more natural environment for both biologists and roboticists.
Collapse
Affiliation(s)
- Zico da Silva
- Department of Electrical Engineering, University of Cape Town, Cape Town, 7700, South Africa.
| | - Stacey Shield
- Department of Electrical Engineering, University of Cape Town, Cape Town, 7700, South Africa
| | - Penny E Hudson
- Institute of Sport Nursing and Allied Health, University of Chichester, Chichester, PO19 6PE, UK
| | - Alan M Wilson
- Structure and Motion Laboratory, The Royal Veterinary College, London, NW1 0TU, UK
| | - Fred Nicolls
- Department of Electrical Engineering, University of Cape Town, Cape Town, 7700, South Africa
| | - Amir Patel
- Department of Electrical Engineering, University of Cape Town, Cape Town, 7700, South Africa
| |
Collapse
|
5
|
Triviño A, Davidson C, Clements DN, Ryan JM. Objective comparison of a sit to stand test to the walk test for the identification of unilateral lameness caused by cranial cruciate ligament disease in dogs. J Small Anim Pract 2024; 65:24-29. [PMID: 37876317 DOI: 10.1111/jsap.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/11/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate a sit to stand test with the walk test for the identification of unilateral cranial cruciate ligament rupture in dogs. MATERIALS AND METHODS Peak vertical force and vertical impulse were measured on a pressure-sensitive walkway, during a sit to stand test and walk test, and in 10 dogs with unilateral cranial cruciate ligament rupture and 18 non-lame dogs. Data collected were used to calculate symmetry indices (SI) of ipsilateral and contralateral hindlimbs (HL), diagonal limb pairs (DLP) and ipsilateral limb pairs (ILP). RESULTS The symmetry indices of peak vertical force of HL during the walk test and sit to stand test were 100% and 90% sensitive for discriminating lame and non-lame dogs respectively. The symmetry indices of vertical impulse of HLs during the walk test and sit to stand test were 100% and 50% sensitive for discriminating lame and non-lame dogs respectively. Analysis of ipsilateral and diagonal limb pairs did not improve the discrimination in either test. The time taken to collect data from the sit to stand test data was shorter than for the walk test. CLINICAL SIGNIFICANCE Whilst the sit to stand test required a shorter time for collection of data than the walk test, it did not accurately identify all dogs with lameness associated with CCLR, and thus has relatively limited clinical utility in its tested form.
Collapse
Affiliation(s)
- A Triviño
- Lamond Veterinary Clinic, Bankton Square, Murieston, Livingston, EH54 9EY, Scotland
| | - C Davidson
- The Royal (Dick) School of Veterinary Studies, Hospital for Small Animals, The University of Edinburgh, Edinburgh, UK
| | - D N Clements
- The Royal (Dick) School of Veterinary Studies, Hospital for Small Animals, The University of Edinburgh, Edinburgh, UK
| | - J M Ryan
- The Royal (Dick) School of Veterinary Studies, Hospital for Small Animals, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Yoshikawa K, Kitazawa T, Sano T, Ino T, Miyasaka T. Kinematic characteristics of canine hindlimb movement during sit-to-stand and stand-to-sit motions. Res Vet Sci 2023; 162:104944. [PMID: 37423012 DOI: 10.1016/j.rvsc.2023.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Sit-to-stand and stand-to-sit motions are basic motions for daily animal life, and these motions are used as therapeutic exercises for dogs with functional impairments. The sit-to-stand motion is divided into several phases for kinesiological assessment in human rehabilitation and physical therapy. However, these motions in dogs have not been characterized in detail. We examined canine hindlimb kinematic characteristics during sit-to-stand/stand-to-sit motions and compared the characteristics with those during walking. In addition, we tried to classify phases of the movements based on kinematic characteristics of the transition of the range of motion of the hindlimb. We used a three-dimensional motion analysis system to evaluate the motions of eight clinically healthy beagles. During the sit-to-stand motion, the total range of motion (ROM) in the hip joint flexion/extension was half of that of during walking, but the total ROM of the hindlimb external/internal rotation relative to the pelvis and flexion/extension of the stifle and the tarsal joints were significantly larger than those of walking, suggesting that sit-to-stand exercise causes movements of hindlimb joints without marked changes in hip joint flexion/extension movement. Both sit-to-stand and stand-to-sit motions could not be divided into multiple phases only by the transition of the range of motion of the hindlimb.
Collapse
Affiliation(s)
- Kazuyuki Yoshikawa
- Japan Small Animal Medical Center, 1-10-4 Higashi-tokorozawa, Tokorozawa, 8, Saitama 359-0025, Japan; Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan.
| | - Takio Kitazawa
- Department of Veterinary Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Tadashi Sano
- Department of Veterinary Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Takumi Ino
- Department of Physical Therapy, Faculty of Health Sciences, Hokkaido University of Science, Hokkaido 006-8585, Japan
| | - Tomoya Miyasaka
- Department of Physical Therapy, Faculty of Health Sciences, Hokkaido University of Science, Hokkaido 006-8585, Japan
| |
Collapse
|
7
|
Sandberg GS, Torres BT, Budsberg SC. Comparison of Canine Forelimb Kinematic Joint Angles Collected with 2D and 3D Models. Vet Comp Orthop Traumatol 2023; 36:139-147. [PMID: 36690024 DOI: 10.1055/s-0042-1760666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this study was to compare a Joint Coordinate System (JCS) three-dimensional (3D) kinematic model of the canine forelimb with more widely used linear (LIN) and segmental (SEG) 2D models. STUDY DESIGN It was an in vivo biomechanical study. ANIMALS Normal adult mixed breed dogs were used in this study (n = 6). METHODS Nineteen retroreflective markers were applied to the skin of dogs' right forelimbs. Dogs were trotted and walked through the calibrated testing space. The first five good trials were used to generate sagittal plane (flexion and extension angle) waveforms from 3 different models (JCS, LIN and SEG) for the shoulder, elbow and carpal joints. The JCS model also generated transverse and frontal plane joint angular data (internal/external and abduction/adduction angles) for all three joints. Minimum, maximum and total angular displacement was calculated for each joint. Comparison of sagittal plane waveforms was performed before and after waveform alignment using statistical parametric mapping. RESULTS Each model produced similar sagittal plane waveforms, though the LIN model had a greater vertical shift along the y-axis for the shoulder and elbow. Before waveform alignment, differences were revealed between the LIN model when compared to JCS or SEG model at a trot. No differences were revealed at a walk. After waveform alignment, no differences were revealed between models at a walk or trot. There were no differences in angular displacement measurements between models before or after waveform alignment at a walk or trot. CONCLUSIONS The 3D JCS model reported in this study produced sagittal plane waveforms comparable to conventional 2D models while also providing joint specific information from other planes of motion.
Collapse
Affiliation(s)
- Gabriella S Sandberg
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia, United States
| | - Bryan T Torres
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, United States
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia, United States.,Department of Comparative Physiology and Pharmacology, University of Georgia, Athens, Georgia, United States
| |
Collapse
|
8
|
Charles J, Kissane R, Hoehfurtner T, Bates KT. From fibre to function: are we accurately representing muscle architecture and performance? Biol Rev Camb Philos Soc 2022; 97:1640-1676. [PMID: 35388613 PMCID: PMC9540431 DOI: 10.1111/brv.12856] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
The size and arrangement of fibres play a determinate role in the kinetic and energetic performance of muscles. Extrapolations between fibre architecture and performance underpin our understanding of how muscles function and how they are adapted to power specific motions within and across species. Here we provide a synopsis of how this 'fibre to function' paradigm has been applied to understand muscle design, performance and adaptation in animals. Our review highlights the widespread application of the fibre to function paradigm across a diverse breadth of biological disciplines but also reveals a potential and highly prevalent limitation running through past studies. Specifically, we find that quantification of muscle architectural properties is almost universally based on an extremely small number of fibre measurements. Despite the volume of research into muscle properties, across a diverse breadth of research disciplines, the fundamental assumption that a small proportion of fibre measurements can accurately represent the architectural properties of a muscle has never been quantitatively tested. Subsequently, we use a combination of medical imaging, statistical analysis, and physics-based computer simulation to address this issue for the first time. By combining diffusion tensor imaging (DTI) and deterministic fibre tractography we generated a large number of fibre measurements (>3000) rapidly for individual human lower limb muscles. Through statistical subsampling simulations of these measurements, we demonstrate that analysing a small number of fibres (n < 25) typically used in previous studies may lead to extremely large errors in the characterisation of overall muscle architectural properties such as mean fibre length and physiological cross-sectional area. Through dynamic musculoskeletal simulations of human walking and jumping, we demonstrate that recovered errors in fibre architecture characterisation have significant implications for quantitative predictions of in-vivo dynamics and muscle fibre function within a species. Furthermore, by applying data-subsampling simulations to comparisons of muscle function in humans and chimpanzees, we demonstrate that error magnitudes significantly impact both qualitative and quantitative assessment of muscle specialisation, potentially generating highly erroneous conclusions about the absolute and relative adaption of muscles across species and evolutionary transitions. Our findings have profound implications for how a broad diversity of research fields quantify muscle architecture and interpret muscle function.
Collapse
Affiliation(s)
- James Charles
- Structure and Motion Lab, Comparative Biomedical SciencesRoyal Veterinary CollegeHawkshead LaneHatfieldHertfordshireAL9 7TAU.K.
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Roger Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Tatjana Hoehfurtner
- School of Life SciencesUniversity of Lincoln, Joseph Banks LaboratoriesGreen LaneLincolnLN6 7DLU.K.
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| |
Collapse
|
9
|
Torbati AHM, Jami S, Kobravi HR. Is the Hénon map able to predict the interaction dynamics between the knee and hip joints emerged during sit-to-stand movement? Biomed Phys Eng Express 2022; 8. [PMID: 35508117 DOI: 10.1088/2057-1976/ac6caa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/04/2022] [Indexed: 11/12/2022]
Abstract
In this study, the performance of a two-dimensional Hénon map in predicting the interactive dynamics of the knee and hip joints emerging during a normative sit-to-stand movement was evaluated. The instantaneous values of the knee and hip joints were the model inputs, and the next values of the knee and hip joints were predicted by the Hénon map. The map predicted the desired relative behavior of the joints, showing synergetic coordination between the joints. The experimental data were recorded from four healthy participants and used to identify the Hénon map via a genetic algorithm. Model performance was quantitatively assessed by computing the calculated prediction error and analyzing the behavioral dynamics of the state spaces reconstructed via the captured kinematic data. According to the results, there was an obvious similarity between the dynamics of the state space trajectories of the identified model and those of the recorded data, not only in terms of stretching and folding dynamics, but also concerning generalized synchrony. The acceptable performance of the proposed modeling solution can also be demonstrated through these results.
Collapse
Affiliation(s)
| | - Shahab Jami
- Research Core of Robotic Rehabilitation and Biofeedback, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hamid Reza Kobravi
- Research Core of Robotic Rehabilitation and Biofeedback, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
10
|
Nasr A, Inkol KA, Bell S, McPhee J. InverseMuscleNET: Alternative Machine Learning Solution to Static Optimization and Inverse Muscle Modeling. Front Comput Neurosci 2022; 15:759489. [PMID: 35002663 PMCID: PMC8735851 DOI: 10.3389/fncom.2021.759489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
InverseMuscleNET, a machine learning model, is proposed as an alternative to static optimization for resolving the redundancy issue in inverse muscle models. A recurrent neural network (RNN) was optimally configured, trained, and tested to estimate the pattern of muscle activation signals. Five biomechanical variables (joint angle, joint velocity, joint acceleration, joint torque, and activation torque) were used as inputs to the RNN. A set of surface electromyography (EMG) signals, experimentally measured around the shoulder joint for flexion/extension, were used to train and validate the RNN model. The obtained machine learning model yields a normalized regression in the range of 88-91% between experimental data and estimated muscle activation. A sequential backward selection algorithm was used as a sensitivity analysis to discover the less dominant inputs. The order of most essential signals to least dominant ones was as follows: joint angle, activation torque, joint torque, joint velocity, and joint acceleration. The RNN model required 0.06 s of the previous biomechanical input signals and 0.01 s of the predicted feedback EMG signals, demonstrating the dynamic temporal relationships of the muscle activation profiles. The proposed approach permits a fast and direct estimation ability instead of iterative solutions for the inverse muscle model. It raises the possibility of integrating such a model in a real-time device for functional rehabilitation and sports evaluation devices with real-time estimation and tracking. This method provides clinicians with a means of estimating EMG activity without an invasive electrode setup.
Collapse
Affiliation(s)
- Ali Nasr
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Keaton A Inkol
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Sydney Bell
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - John McPhee
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
11
|
Bishop PJ, Wright MA, Pierce SE. Whole-limb scaling of muscle mass and force-generating capacity in amniotes. PeerJ 2021; 9:e12574. [PMID: 34909284 PMCID: PMC8638577 DOI: 10.7717/peerj.12574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle mass, architecture and force-generating capacity are well known to scale with body size in animals, both throughout ontogeny and across species. Investigations of limb muscle scaling in terrestrial amniotes typically focus on individual muscles within select clades, but here this question was examined at the level of the whole limb across amniotes generally. In particular, the present study explored how muscle mass, force-generating capacity (measured by physiological cross-sectional area) and internal architecture (fascicle length) scales in the fore- and hindlimbs of extant mammals, non-avian saurians (‘reptiles’) and bipeds (birds and humans). Sixty species spanning almost five orders of magnitude in body mass were investigated, comprising previously published architectural data and new data obtained via dissections of the opossum Didelphis virginiana and the tegu lizard Salvator merianae. Phylogenetic generalized least squares was used to determine allometric scaling slopes (exponents) and intercepts, to assess whether patterns previously reported for individual muscles or functional groups were retained at the level of the whole limb, and to test whether mammals, reptiles and bipeds followed different allometric trajectories. In general, patterns of scaling observed in individual muscles were also observed in the whole limb. Reptiles generally have proportionately lower muscle mass and force-generating capacity compared to mammals, especially at larger body size, and bipeds exhibit strong to extreme positive allometry in the distal hindlimb. Remarkably, when muscle mass was accounted for in analyses of muscle force-generating capacity, reptiles, mammals and bipeds almost ubiquitously followed a single common scaling pattern, implying that differences in whole-limb force-generating capacity are principally driven by differences in muscle mass, not internal architecture. In addition to providing a novel perspective on skeletal muscle allometry in animals, the new dataset assembled was used to generate pan-amniote statistical relationships that can be used to predict muscle mass or force-generating capacity in extinct amniotes, helping to inform future reconstructions of musculoskeletal function in the fossil record.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America.,Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Mark A Wright
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
12
|
Abstract
Giant land vertebrates have evolved more than 30 times, notably in dinosaurs and mammals. The evolutionary and biomechanical perspectives considered here unify data from extant and extinct species, assessing current theory regarding how the locomotor biomechanics of giants has evolved. In terrestrial tetrapods, isometric and allometric scaling patterns of bones are evident throughout evolutionary history, reflecting general trends and lineage-specific divergences as animals evolve giant size. Added to data on the scaling of other supportive tissues and neuromuscular control, these patterns illuminate how lineages of giant tetrapods each evolved into robust forms adapted to the constraints of gigantism, but with some morphological variation. Insights from scaling of the leverage of limbs and trends in maximal speed reinforce the idea that, beyond 100-300 kg of body mass, tetrapods reduce their locomotor abilities, and eventually may lose entire behaviours such as galloping or even running. Compared with prehistory, extant megafaunas are depauperate in diversity and morphological disparity; therefore, turning to the fossil record can tell us more about the evolutionary biomechanics of giant tetrapods. Interspecific variation and uncertainty about unknown aspects of form and function in living and extinct taxa still render it impossible to use first principles of theoretical biomechanics to tightly bound the limits of gigantism. Yet sauropod dinosaurs demonstrate that >50 tonne masses repeatedly evolved, with body plans quite different from those of mammalian giants. Considering the largest bipedal dinosaurs, and the disparity in locomotor function of modern megafauna, this shows that even in terrestrial giants there is flexibility allowing divergent locomotor specialisations.
Collapse
Affiliation(s)
- John R. Hutchinson
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA,UK
| |
Collapse
|
13
|
Abstract
The domestic dog is interesting to investigate because of the wide range of body size, body mass, and physique in the many breeds. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. Collecting this data through in vivo measurements/records of joint forces and loads on deep/small muscles is complex, invasive, and sometimes unethical. The use of detailed musculoskeletal models may help fill the knowledge gap. We describe here the methods we used to create a detailed musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: three-dimensionality, scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a walking Beagle. We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified three muscle synergy groups by using hierarchical clustering. The activation patterns predicted from the model exhibit good agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how body size, physique, agility, and disease influence neuronal control and joint loading in dog locomotion.
Collapse
|
14
|
Bishop PJ, Michel KB, Falisse A, Cuff AR, Allen VR, De Groote F, Hutchinson JR. Computational modelling of muscle fibre operating ranges in the hindlimb of a small ground bird (Eudromia elegans), with implications for modelling locomotion in extinct species. PLoS Comput Biol 2021; 17:e1008843. [PMID: 33793558 PMCID: PMC8016346 DOI: 10.1371/journal.pcbi.1008843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
The arrangement and physiology of muscle fibres can strongly influence musculoskeletal function and whole-organismal performance. However, experimental investigation of muscle function during in vivo activity is typically limited to relatively few muscles in a given system. Computational models and simulations of the musculoskeletal system can partly overcome these limitations, by exploring the dynamics of muscles, tendons and other tissues in a robust and quantitative fashion. Here, a high-fidelity, 26-degree-of-freedom musculoskeletal model was developed of the hindlimb of a small ground bird, the elegant-crested tinamou (Eudromia elegans, ~550 g), including all the major muscles of the limb (36 actuators per leg). The model was integrated with biplanar fluoroscopy (XROMM) and forceplate data for walking and running, where dynamic optimization was used to estimate muscle excitations and fibre length changes throughout both gaits. Following this, a series of static simulations over the total range of physiological limb postures were performed, to circumscribe the bounds of possible variation in fibre length. During gait, fibre lengths for all muscles remained between 0.5 to 1.21 times optimal fibre length, but operated mostly on the ascending limb and plateau of the active force-length curve, a result that parallels previous experimental findings for birds, humans and other species. However, the ranges of fibre length varied considerably among individual muscles, especially when considered across the total possible range of joint excursion. Net length change of muscle-tendon units was mostly less than optimal fibre length, sometimes markedly so, suggesting that approaches that use muscle-tendon length change to estimate optimal fibre length in extinct species are likely underestimating this important parameter for many muscles. The results of this study clarify and broaden understanding of muscle function in extant animals, and can help refine approaches used to study extinct species.
Collapse
Affiliation(s)
- Peter J. Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
- Geosciences Program, Queensland Museum, Brisbane, Australia
| | - Krijn B. Michel
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Antoine Falisse
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Andrew R. Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Vivian R. Allen
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
15
|
Development of a three-dimensional computer model of the canine pelvic limb including cruciate ligaments to simulate movement. Res Vet Sci 2021; 136:430-443. [PMID: 33812286 DOI: 10.1016/j.rvsc.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Gait analysis as subjective visual assessment forms the foundation of the veterinarian's lameness examination. Pelvic limb lameness is frequently seen in dogs and the stifle joint with its cruciate ligaments, is a main cause of lameness due to cruciate ligament deficiency. In this study, we developed an open-source three-dimensional musculoskeletal pelvic limb model of a 30 kg Labrador Retriever including cruciate ligaments, simulating the gait cycle of the walking movement with the open-source programs NMSBuilder (Institutio Ortopedico Rizzoli, Bologna, Italy) and OpenSim (National Center for Simulation in Rehabilitation Research (NCSRR), Stanford, CA, USA). The computer model generated muscle activations based on motion data. The computed activations were similar to experimental electromyogram data. Highest joint torque was in extension/flexion in the stifle joint at 54 Nm at 14% of the gait cycle with cruciate ligaments. Highest stifle joint reaction force was 408 N at 16% of the gait cycle and was reduced after adding cruciate ligaments. Especially the cranial cruciate ligament loads up to 102 N (34% body weight). Cranial cruciate ligament forces increase with stifle extension and decrease with stifle flexion. On the contrary, the caudal cruciate ligament loads up to 27 N (9% body weight) during the swing phase with a flexed stifle joint. The model was validated with electromyogram data. The model's predictions are plausible because joint torques and forces match the applied ground reaction forces in curve progression and in timing. This model forms a basis for further investigations into stifle surgery after cruciate ligament deficiency.
Collapse
|
16
|
Farr BD, Ramos MT, Otto CM. The Penn Vet Working Dog Center Fit to Work Program: A Formalized Method for Assessing and Developing Foundational Canine Physical Fitness. Front Vet Sci 2020; 7:470. [PMID: 32903560 PMCID: PMC7438591 DOI: 10.3389/fvets.2020.00470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
Fit to Work is a formalized working dog foundational physical fitness assessment and development program. The Penn Vet Working Dog Center developed this program to address the needs of working dog handlers, trainers, and programs for simple, effective, and efficient methods to develop and assess working dog physical fitness. Fit to Work focuses on the foundational fitness modalities of strength, stability, mobility, and proprioception. The Penn Vet Working Dog Center piloted and refined this program over 3 months in a closed population of 31 working dogs in training. Fit to Work consists of posture development and maintenance, warm-up and cool-down routines, training exercises, and assessment methods. To simplify implementation for dogs and personnel, the foundational training program incorporates a discrete number of exercises, standardized progression steps, defined criteria for progression, and a reduced emphasis on learned behaviors. Fit to Work also enables safe and progressive assessment of foundational fitness through a tiered and inexpensive process. Future research will focus on validation of training and assessment methods, development of assessment standards, and correlation of physical fitness with operational performance.
Collapse
Affiliation(s)
- Brian D. Farr
- Army Medical Department Student Detachment, 187th Medical Battalion, Medical Professional Training Brigade, Joint Base San Antonio - Fort Sam Houston, San Antonio, TX, United States
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Meghan T. Ramos
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia M. Otto
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Charles JP, Grant B, D'Août K, Bates KT. Subject-specific muscle properties from diffusion tensor imaging significantly improve the accuracy of musculoskeletal models. J Anat 2020; 237:941-959. [PMID: 32598483 PMCID: PMC7542200 DOI: 10.1111/joa.13261] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Musculoskeletal modelling is an important platform on which to study the biomechanics of morphological structures in vertebrates and is widely used in clinical, zoological and palaeontological fields. The popularity of this approach stems from the potential to non-invasively quantify biologically important but difficult-to-measure functional parameters. However, while it is known that model predictions are highly sensitive to input values, it is standard practice to build models by combining musculoskeletal data from different sources resulting in 'generic' models for a given species. At present, there are little quantitative data on how merging disparate anatomical data in models impacts the accuracy of these functional predictions. This issue is addressed herein by quantifying the accuracy of both subject-specific human limb models containing individualised muscle force-generating properties and models built using generic properties from both elderly and young individuals, relative to experimental muscle torques obtained from an isokinetic dynamometer. The results show that subject-specific models predict isokinetic muscle torques to a greater degree of accuracy than generic models at the ankle (root-mean-squared error - 7.9% vs. 49.3% in elderly anatomy-based models), knee (13.2% vs. 57.3%) and hip (21.9% vs. 32.8%). These results have important implications for the choice of musculoskeletal properties in future modelling studies, and the relatively high level of accuracy achieved in the subject-specific models suggests that such models can potentially address questions about inter-subject variations of muscle functions. However, despite relatively high levels of overall accuracy, models built using averaged generic muscle architecture data from young, healthy individuals may lack the resolution and accuracy required to study such differences between individuals, at least in certain circumstances. The results do not wholly discourage the continued use of averaged generic data in musculoskeletal modelling studies but do emphasise the need for to maximise the accuracy of input values if studying intra-species form-function relationships in the musculoskeletal system.
Collapse
Affiliation(s)
- James P Charles
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Barbara Grant
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kristiaan D'Août
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Brown NP, Bertocci GE, States GJR, Levine GJ, Levine JM, Howland DR. Development of a Canine Rigid Body Musculoskeletal Computer Model to Evaluate Gait. Front Bioeng Biotechnol 2020; 8:150. [PMID: 32219092 PMCID: PMC7079575 DOI: 10.3389/fbioe.2020.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Background Kinematic and kinetic analysis have been used to gain an understanding of canine movement and joint loading during gait. By non-invasively predicting muscle activation patterns and forces during gait, musculoskeletal models can further our understanding of normal variability and muscle activation patterns and force profiles characteristic of gait. Methods Pelvic limb kinematics and kinetics were measured for a 2 year old healthy female Dachshund (5.4 kg) during gait using 3-D motion capture and force platforms. A computed tomography scan was conducted to acquire pelvis and pelvic limb morphology. Using the OpenSim modeling platform, a bilateral pelvic limb subject-specific rigid body musculoskeletal computer model was developed. This model predicted muscle activation patterns, muscle forces, and angular kinematics and joint moments during walking. Results Gait kinematics determined from motion capture matched those predicted by the model, verifying model accuracy. Primary muscles involved in generating joint moments during stance and swing were predicted by the model: at mid-stance the adductor magnus et brevis (peak activation 53.2%, peak force 64.7 N) extended the hip, and stifle flexor muscles (biceps femoris tibial and calcaneal portions) flexed the stifle. Countering vertical ground reaction forces, the iliopsoas (peak activation 37.9%, peak force 68.7 N) stabilized the hip in mid-stance, while the biceps femoris patellar portion stabilized the stifle in mid-stance and the plantar flexors (gastrocnemius and flexor digitorum muscles) stabilized the tarsal joint during early stance. Transitioning to swing, the iliopsoas, rectus femoris and tensor fascia lata flexed the hip, while in late swing the adductor magnus et brevis impeded further flexion as biceps femoris tibial and calcaneal portions stabilized the stifle for ground contact. Conclusion The musculoskeletal computer model accurately replicated experimental canine angular kinematics associated with gait and was used to predict muscle activation patterns and forces. Thus, musculoskeletal modeling allows for quantification of measures such as muscle forces that are difficult or impossible to measure in vivo.
Collapse
Affiliation(s)
- Nathan P Brown
- Canine Rehabilitation and Biomechanics Laboratory, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Gina E Bertocci
- Canine Rehabilitation and Biomechanics Laboratory, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Gregory J R States
- Canine Rehabilitation and Biomechanics Laboratory, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Gwendolyn J Levine
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX, United States
| | - Dena R Howland
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, United States.,Research Service, Robley Rex VA Medical Center, Louisville, KY, United States
| |
Collapse
|