1
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
2
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
3
|
Ganguly A, Mukherjee S, Chatterjee K, Spada S. Factors affecting heterogeneity in breast cancer microenvironment: A narrative mini review. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:211-226. [PMID: 38663960 DOI: 10.1016/bs.ircmb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Breast cancer (BC) heterogeneity is a key trait of BC tumors with crucial implications on tumorigenesis, diagnosis, and therapeutic modalities. It is influenced by tumor intrinsic features and by the tumor microenvironment (TME) composition of different intra-tumoral regions, which in turn affect cancer progression within patients. In this mini review, we will highlight the mechanisms that generate cancer heterogeneity in BC and how they affect the responses to cancer therapies.
Collapse
Affiliation(s)
- Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, India
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
4
|
Guo L, Yang J, Wang H, Yi Y. Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy. Molecules 2023; 28:7750. [PMID: 38067480 PMCID: PMC10707962 DOI: 10.3390/molecules28237750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in nanotechnology have brought innovations to cancer therapy. Nanoparticle-based anticancer drugs have achieved great success from bench to bedside. However, insufficient therapy efficacy due to various physiological barriers in the body remains a key challenge. To overcome these biological barriers and improve the therapeutic efficacy of cancers, multistage self-assembled nanomaterials with advantages of stimuli-responsiveness, programmable delivery, and immune modulations provide great opportunities. In this review, we describe the typical biological barriers for nanomedicines, discuss the recent achievements of multistage self-assembled nanomaterials for stimuli-responsive drug delivery, highlighting the programmable delivery nanomaterials, in situ transformable self-assembled nanomaterials, and immune-reprogramming nanomaterials. Ultimately, we perspective the future opportunities and challenges of multistage self-assembled nanomaterials for cancer immunotherapy.
Collapse
Affiliation(s)
- Lamei Guo
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| |
Collapse
|
5
|
Wang L, Geng H, Liu Y, Liu L, Chen Y, Wu F, Liu Z, Ling S, Wang Y, Zhou L. Hot and cold tumors: Immunological features and the therapeutic strategies. MedComm (Beijing) 2023; 4:e343. [PMID: 37638340 PMCID: PMC10458686 DOI: 10.1002/mco2.343] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The "hotness" or "coldness" of the tumors are determined by the information of the cancer cells themselves, tumor immune characteristics, tumor microenvironment, and signaling mechanisms, which are key factors affecting cancer patients' clinical efficacy. The switch mechanism of "hotness" and "coldness" and its corresponding pathological characteristics and treatment strategies are the frontier and hot spot of tumor treatment. How to distinguish the "hotness" or "coldness" effectively and clarify the causes, microenvironment state, and characteristics are very important for the tumor response and efficacy treatments. Starting from the concept of hot and cold tumor, this review systematically summarized the molecular characteristics, influencing factors, and therapeutic strategies of "hot and cold tumors," and analyzed the immunophenotypes, the tumor microenvironment, the signaling pathways, and the molecular markers that contribute to "hot and cold tumors" in details. Different therapeutic strategies for "cold and hot tumors" based on clinical efficacy were analyzed with drug targets and proteins for "cold and hot tumors." Furthermore, this review combines the therapeutic strategies of different "hot and cold tumors" with traditional medicine and modern medicine, to provide a basis and guidance for clinical decision-making of cancer treatment.
Collapse
Affiliation(s)
- Lianjie Wang
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hui Geng
- Department of Internal MedicineShanghai International Medical CenterShanghaiChina
| | - Yujie Liu
- Department of NephrologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lei Liu
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanhua Chen
- Department of the Tumor Research Center, Academy of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fanchen Wu
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhiyi Liu
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shiliang Ling
- Department of Medical OncologyNingbo Hospital of Traditional Chinese Medicine, Zhejiang ProvinceNingboChina
| | - Yan Wang
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lihong Zhou
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
6
|
He S, Jia X, Feng S, Hu J. Three Strategies in Engineering Nanomedicines for Tumor Microenvironment-Enabled Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300078. [PMID: 37226364 DOI: 10.1002/smll.202300078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Indexed: 05/26/2023]
Abstract
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiao Jia
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Sai Feng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
7
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
8
|
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, Duttaroy AK, Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol 2023; 11:1208547. [PMID: 37576994 PMCID: PMC10416113 DOI: 10.3389/fbioe.2023.1208547] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
Collapse
Affiliation(s)
| | | | - Alma L. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| |
Collapse
|
9
|
Giustarini G, Teng G, Pavesi A, Adriani G. Characterization of 3D heterocellular spheroids of pancreatic ductal adenocarcinoma for the study of cell interactions in the tumor immune microenvironment. Front Oncol 2023; 13:1156769. [PMID: 37519820 PMCID: PMC10375712 DOI: 10.3389/fonc.2023.1156769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies nowadays. The available chemo- and immunotherapies are often ineffective in treating PDAC due to its immunosuppressive and highly desmoplastic tumor immune microenvironment (TIME), which is hardly reproduced in the existing preclinical models. The PDAC TIME results from a peculiar spatial organization between different cell types. For this reason, developing new human models recapitulating the tissue organization and cell heterogeneity of PDAC is highly desirable. We developed human 3D heterocellular tumor spheroids of PDAC formed by cancer cells, endothelial cells, pancreatic stellate cells (PSC), and monocytes. As a control, we formed spheroids using immortalized epithelial pancreatic ductal cells (non-cancerous spheroids) with cellular heterogeneity similar to the tumor spheroids. Normal spheroids containing endothelial cells formed a complex 3D endothelial network significantly compromised in tumor spheroids. Monocyte/macrophages within the 4-culture tumor spheroids were characterized by a higher expression of CD163, CD206, PD-L1, and CD40 than those in the non-cancerous spheroids suggesting their differentiation towards an immunosuppressive phenotype. The heterocellular tumor spheroids presented a hypoxic core populated with PSC and monocytes/macrophages. The 4-culture tumor spheroids were characterized by spatial proximity of PSC and monocytes to the endothelial cells and a cytokine signature with increased concentrations of CXCL10, CCL2, and IL-6, which have been observed in PDAC patients and associated with poor survival. Further, 4-culture tumor spheroids decreased the concentrations of T-cell chemoattracting cytokines, i.e., CCL4, CCL5, and CXCL9, when compared with the non-cancerous spheroids, revealing a critical immunosuppressive feature of the different types of cells forming the tumor spheroids. Our results showed that the 4-culture tumor spheroids better resembled some critical features of patients' PDAC TIME than monoculture tumor spheroids. Using the proposed human 3D spheroid model for therapy testing at the preclinical stage may reveal pitfalls of chemo- and immuno-therapies to help the development of better anti-tumor therapies.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Germaine Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Huang A, Zhou W. Mn-based cGAS-STING activation for tumor therapy. Chin J Cancer Res 2023; 35:19-43. [PMID: 36910853 PMCID: PMC9992997 DOI: 10.21147/j.issn.1000-9604.2023.01.04] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/12/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapy has efficiently revolutionized the treatment of human neoplastic diseases. However, the overall responsive rate of current immunotherapy is still unsatisfactory, benefiting only a small proportion of patients. Therefore, significant attention has been paid to the modulation of tumor microenvironment (TME) for the enhancement of immunotherapy. Interestingly, recent studies have shown that cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) was initially found as an innate immune sensor to recognize cytoplasmic DNA (such as bacterial, viral, micronuclei, and mitochondrial). It is a promising signaling pathway to activate antitumor immune responses via type I interferon production. Notably, Mn2+ was found to be a critical molecule to sensitize the activation of the cGAS-STING pathway for better immunotherapy. This activation led to the development of Mn2+-based strategies for tumor immunotherapy via the activation of the cGAS-STING pathway. In this critical review, we aimed to summarize the recent progress of this field, focusing on the following three aspects. First, we briefly introduced the signaling pathway of cGAS-STING activation, and its regulation effect on the antitumor immunity cycle has been discussed. Along with this, several agonists of the cGAS-STING pathway were introduced with their potential as immunotherapeutic drugs. Then, the basic biological functions of Mn2+ have been illustrated, focusing on its critical roles in the cGAS-STING pathway activation. Next, we systematically reviewed the Mn2+-based strategies for tumor immunotherapy, which can be classified by the methods based on Mn2+ alone or Mn2+ combined with other therapeutic modalities. We finally speculated the future perspectives of the field and provided rational suggestions to develop better Mn2+-based therapeutics.
Collapse
Affiliation(s)
- Aiping Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.,Changsha Medical University, Academician Workstation, Changsha 410219, China
| |
Collapse
|
11
|
Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Clinical Outcomes in COVID-19 Patients Treated with Immunotherapy. Cancers (Basel) 2022; 14:cancers14235954. [PMID: 36497435 PMCID: PMC9735726 DOI: 10.3390/cancers14235954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction: The full impact of COVID-19 infections on patients with cancer who are actively being treated with chemotherapy or immune checkpoint inhibitors (ICIs) has not been fully defined. Our goal was to track clinical outcomes in this specific patient population. Methods: We performed a retrospective chart review of 121 patients (age > 18 years) at the University of Alabama at Birmingham from January 2020 to December 2021 with an advanced solid malignancy that were eligible to be treated with ICIs or on current therapy within 12 months of their COVID-19 diagnosis. Results: A total of 121 patients were examined in this study, and 61 (50.4%) received immunotherapy treatment within 12 months. One quarter of the patients on ICIs passed away, compared to 13% of the post-chemotherapy cohort. Patients who were vaccinated for COVID-19 had lower mortality compared to unvaccinated patients (X2 = 15.19, p < 0.001), and patients with lower ECOG (0.98) were associated with lower mortality compared to patients with worse functional status (0.98 vs. 1.52; t = 3.20; p < 0.01). Conclusions: COVID-19-related ICI mortality was higher compared to patients receiving chemotherapy. However, ICI cessation or delay is unwarranted as long there has been a risk−benefit assessment undertaken with the patient.
Collapse
|
13
|
Murugan D, Murugesan V, Panchapakesan B, Rangasamy L. Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers (Basel) 2022; 14:cancers14215438. [PMID: 36358857 PMCID: PMC9653801 DOI: 10.3390/cancers14215438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Natural killer cells are a part of the native immune response to cancer. NK cell-based immunotherapies are an emerging strategy to kill tumor cells. This paper reviews the role of NK cells, their mechanism of action for killing tumor cells, and the receptors which could serve as potential targets for signaling. In this review, the role of nanoparticles in NK cell activation and increased cytotoxicity of NK cells against cancer are highlighted. Abstract Natural killer (NK) cells are one of the first lines of defense against infections and malignancies. NK cell-based immunotherapies are emerging as an alternative to T cell-based immunotherapies. Preclinical and clinical studies of NK cell-based immunotherapies have given promising results in the past few decades for hematologic malignancies. Despite these achievements, NK cell-based immunotherapies have limitations, such as limited performance/low therapeutic efficiency in solid tumors, the short lifespan of NK cells, limited specificity of adoptive transfer and genetic modification, NK cell rejection by the patient’s immune system, insignificant infiltration of NK cells into the tumor microenvironment (TME), and the expensive nature of the treatment. Nanotechnology could potentially assist with the activation, proliferation, near-real time imaging, and enhancement of NK cell cytotoxic activity by guiding their function, analyzing their performance in near-real time, and improving immunotherapeutic efficiency. This paper reviews the role of NK cells, their mechanism of action in killing tumor cells, and the receptors which could serve as potential targets for signaling. Specifically, we have reviewed five different areas of nanotechnology that could enhance immunotherapy efficiency: nanoparticle-assisted immunomodulation to enhance NK cell activity, nanoparticles enhancing homing of NK cells, nanoparticle delivery of RNAi to enhance NK cell activity, genetic modulation of NK cells based on nanoparticles, and nanoparticle activation of NKG2D, which is the master regulator of all NK cell responses.
Collapse
Affiliation(s)
- Dhanashree Murugan
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Vasanth Murugesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Balaji Panchapakesan
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: (B.P.); (L.R.)
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (B.P.); (L.R.)
| |
Collapse
|
14
|
Parayath NN, Gandham SK, Amiji MM. Tumor-targeted miRNA nanomedicine for overcoming challenges in immunity and therapeutic resistance. Nanomedicine (Lond) 2022; 17:1355-1373. [PMID: 36255330 PMCID: PMC9706370 DOI: 10.2217/nnm-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miRNA are critical messengers in the tumor microenvironment (TME) that influence various processes leading to immune suppression, tumor progression, metastasis and resistance. Strategies to modulate miRNAs in the TME have important implications in overcoming these challenges. However, miR delivery to specific cells in the TME has been challenging. This review discusses nanomedicine strategies to achieve cell-specific delivery of miRNAs. The key goal of delivery is to activate the tumor immune landscape as well as to prevent chemotherapy resistance. Specifically, the use of hyaluronic acid-based nanoparticle miRNA delivery to the TME is discussed. The discussion is focused on miRNA-125b for reprogramming tumor-associated macrophages to overcome immunosuppression and miRNA-let-7b to overcome resistance to anticancer chemotherapeutics because both these miRNAs have been extensively evaluated for delivery with hyaluronic acid-based delivery systems.
Collapse
Affiliation(s)
- Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA,Author for correspondence: Tel.: +1 617 373 3137;
| |
Collapse
|
15
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|