1
|
Liu DA, Chen S, Hu R, Qiu Y, Chen K, Xu Y, Yuan J, Zhang X, Li X. Advances in diagnostic assays for Clostridioides difficile infection in adults. Front Cell Infect Microbiol 2024; 14:1492511. [PMID: 39720791 PMCID: PMC11666450 DOI: 10.3389/fcimb.2024.1492511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Clostridioides difficile (C. difficile) was a gram-positive anaerobic bacterium in the gut, exhibiting clinical manifestations ranging from mild diarrhoea to fatal pseudomembranous colitis. C. difficile infection (CDI) remains a serious public health problem and accounted for an estimated 360,075 cases in the United States in 2021. It has attracted the utmost attention of the world health organization (WHO). Since publication of a review of the diagnosis of CDI in adults, new clinical diagnostic assays have become available and clinical practice guidelines were updated. This paper presents a comprehensive review of contemporary laboratory diagnostic approaches for CDI in adult patients, with a focus on the utilisation and potential advancements of five sophisticated methodologies, CRISPR in conjunction with nucleic acid amplification tests (NAATs), gene sequencing technology, ultra-high performance liquid chromatography-mass spectrometry, Raman spectroscopy, and real-time cell analysis (RTCA). It can provide new perspectives and ideas for the early diagnosis of CDI in clinical settings.
Collapse
Affiliation(s)
- Dong-ang Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shiyu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiyao Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuting Qiu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keyi Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yue Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jinghua Yuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xinling Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Li G, Wang X, Guo J, Wang Y, Liu X, Wei Q, Zhang Y, Sun Y, Fan L, Xing Y, Li Q, Zhang G. Differential detection of SARS-CoV-2 variants and influenza A viruses utilizing a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies. Int J Biol Macromol 2024; 280:136067. [PMID: 39341304 DOI: 10.1016/j.ijbiomac.2024.136067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the seasonal influenza virus are spreading among humans concurrently, especially with the ongoing replacement of mutant strains. It is challenging to differentiate between symptoms for therapy due to the comparable symptoms following infection with the SARS-CoV-2 variants and influenza viruses. Meanwhile, in order to achieve rapid point-of-care testing (POCT) to manage the spread of the disease, we developed a dual lateral flow strip based on colloidal gold-labeled monoclonal antibodies that can perform differential detection of SARS-CoV-2 variants and influenza A viruses (IAV) in this study. High-affinity monoclonal antibodies (mAbs) targeting SARS-CoV-2 and IAV were prepared to capture antigens and labeled with colloidal gold nanoparticles (AuNPs). Based on high-affinity mAbs, two targets were immobilized on one nitrocellulose (NC) membrane to establish the lateral flow strip (LFS) for differential diagnosis of SARS-CoV-2 and IAV. With no reactivity to other viruses, this LFS is extremely specific and can only identify SARS-CoV-2 and IAV. The LFS showed a limit of detection (LOD) of 4.88 ng/mL for the Omicron BA.2 RBD protein and 2.44 ng/mL for the nucleoprotein (NP) protein of H1N1. When analyzing 16 SARS-CoV-2 positive clinical samples, eight IAV positive clinical samples, and six negative samples that had already been pre-confirmed by commercial kits, its clinical application is effectively and accurately proven. These results demonstrated that the LFS integrated with AuNPs has great potential to facilitate quick, easy, and reliable POCT diagnosis for promoting the control of infectious diseases.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xun Wang
- College of Food and Drug, Luoyang Polytechnic, Luoyang 471023, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Qiang Wei
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaning Sun
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lu Fan
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunrui Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingmei Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Gao R, Liu X, Xiong Z, Wang G, Ai L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res Int 2024; 193:114767. [PMID: 39160035 DOI: 10.1016/j.foodres.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.
Collapse
Affiliation(s)
- Ruoxuan Gao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
5
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
6
|
Sultana A, Geethakumari AM, Islam Z, Kolatkar PR, Biswas KH. BRET-based biosensors for SARS-CoV-2 oligonucleotide detection. Front Bioeng Biotechnol 2024; 12:1353479. [PMID: 38887615 PMCID: PMC11181354 DOI: 10.3389/fbioe.2024.1353479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The need for the early detection of emerging pathogenic viruses and their newer variants has driven the urgent demand for developing point-of-care diagnostic tools. Although nucleic acid-based methods such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and loop-mediated isothermal amplification (LAMP) have been developed, a more facile and robust platform is still required. To address this need, as a proof-of-principle study, we engineered a prototype-the versatile, sensitive, rapid, and cost-effective bioluminescence resonance energy transfer (BRET)-based biosensor for oligonucleotide detection (BioOD). Specifically, we designed BioODs against the SARS-CoV-2 parental (Wuhan strain) and B.1.617.2 Delta variant through the conjugation of specific, fluorescently modified molecular beacons (sensor module) through a complementary oligonucleotide handle DNA functionalized with the NanoLuc (NLuc) luciferase protein such that the dissolution of the molecular beacon loop upon the binding of the viral oligonucleotide will result in a decrease in BRET efficiency and, thus, a change in the bioluminescence spectra. Following the assembly of the BioODs, we determined their kinetics response, affinity for variant-specific oligonucleotides, and specificity, and found them to be rapid and highly specific. Furthermore, the decrease in BRET efficiency of the BioODs in the presence of viral oligonucleotides can be detected as a change in color in cell phone camera images. We envisage that the BioODs developed here will find application in detecting viral infections with variant specificity in a point-of-care-testing format, thus aiding in large-scale viral infection surveillance.
Collapse
Affiliation(s)
- Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Yu S, Zhang D, Jiang H, Geng L, Deng Y, Xu J. Lateral flow strip assay of a gene segment in the COVID-19 virus with combined dual readout mode and preliminary multisite hybrid chain reaction amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3249-3255. [PMID: 38726641 DOI: 10.1039/d4ay00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The past and present scenario of COVID-19 has revealed the necessity of simple point-of-care tests. When combined with the great advantages of amplification, lateral flow assay nucleic acid analysis represents a more sensitive molecular diagnostic technique compared to universal protein analysis. Room temperature operation, an enzyme-free nature, and in situ elongation make hybrid chain reaction amplification (HCR) a good candidate for amplified combined lateral flow assays (LFAs). Since dual modes of detection can not only satisfy different application scenarios, but also reduce the false-negative rate, in this paper, visual and fluorescent detection based on labelling with colloidal gold nanoparticles and fluorescence labelling were incorporated into a HCR integrated with a LFA. The detection assay was finished in 30 minutes. The linear relationship between the signal and the concentration of the characteristic segment in the COVID-19 ORF gene was demonstrated. The obtained detection limits of as low as 10 fM (6.02 × 103 copies per mL) and 1 fM (6.02 × 102 copies per mL), respectively, were comparable with those in the literature. The multi-site HCR amplification integrated with LFA of a 1053 bp nucleic acid chain was also preliminarily studied, and tri-site amplification was found to exhibit higher signal intensity than single-site amplification. This study provides a promising strategy for simple, sensitive, and wide-ranging detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Shiyong Yu
- School of Life Science and Technology, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian, Beijing, China.
| | - Daoguangyao Zhang
- School of Life Science and Technology, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian, Beijing, China.
| | - Hao Jiang
- School of Life Science and Technology, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian, Beijing, China.
| | - Lina Geng
- School of Life Science and Technology, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian, Beijing, China.
| | - Yulin Deng
- School of Life Science and Technology, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian, Beijing, China.
| | - Jiandong Xu
- Beijing GeneDetective Medical Treatment Technology Co., Ltd, Floor 3, Building 1B, Yard 27, Innovation Road, Changping Science Park, Beijing, China.
| |
Collapse
|
8
|
Chen J, Ho WKH, Yin B, Zhang Q, Li C, Yan J, Huang Y, Hao J, Yi C, Zhang Y, Wong SHD, Yang M. Magnetic-responsive upconversion luminescence resonance energy transfer (LRET) biosensor for ultrasensitive detection of SARS-CoV-2 spike protein. Biosens Bioelectron 2024; 248:115969. [PMID: 38154329 DOI: 10.1016/j.bios.2023.115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Upconversion nanoparticles (UCNPs) are ideal donors for luminescence resonance energy transfer (LRET)-based biosensors due to their excellent upconversion luminescence properties. However, the relatively large size of antibodies and proteins limits the application of UCNPs-based LRET biosensors in protein detection because the large steric hindrance of proteins leads to low energy transfer efficiency between UCNPs and receptors. Herein, we developed a magnetic responsive UCNPs-based LRET biosensor to control the coupling distance between antibody-functionalized UCNPs (Ab-UCNPs) as donors and antibody-PEG linker-magnetic gold nanoparticles (Ab-PEG-MGNs) as acceptors for ultrasensitive and highly selective detection of SARS-CoV-2 spike proteins. Our results showed that this platform reversibly shortened the coupling distance between UCNPs and MGNs and enhanced the LRET signal with a 10-fold increase in the limit of detection (LOD) from 20.6 pg/mL without magnetic modulation to 2.1 pg/mL with magnetic modulation within 1 h. The finite-difference time-domain (FDTD) simulation with cyclic distance change confirmed the distance-dependent LRET efficiency under magnetic modulation, which supported the experimental results. Moreover, the applications of this magnetic-responsive UCNP-based LRET biosensor could be extended to other large-size biomolecule detection.
Collapse
Affiliation(s)
- Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments Guangdong, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC, 3000, Australia
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China.
| |
Collapse
|
9
|
Cavalera S, Di Nardo F, Serra T, Testa V, Baggiani C, Rosati S, Colitti B, Brienza L, Colasanto I, Nogarol C, Cosseddu D, Guiotto C, Anfossi L. A semi-quantitative visual lateral flow immunoassay for SARS-CoV-2 antibody detection for the follow-up of immune response to vaccination or recovery. J Mater Chem B 2024; 12:2139-2149. [PMID: 38315042 DOI: 10.1039/d3tb02895j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The lateral flow immunoassay (LFIA) technique is largely employed for the point-of-care detection of antibodies especially for revealing the immune response in serum. Visual LFIAs usually provide the qualitative yes/no detection of antibodies, while quantification requires some equipment, making the assay more expensive and complicated. To achieve visual semi-quantification, the alignment of several lines (made of the same antigen) along a LFIA strip has been proposed. The numbering of the reacting lines has been used to correlate with the quantity of some biomarkers in serum. Here, we designed the first semiquantitative LFIA for detecting antibodies and applied it to classify the immune response to SARS-CoV-2 raised by vaccination or natural infection. We used a recombinant spike receptor-binding domain (RBD) as the specific capture reagent to draw two test lines. The detection reagent was selected among three possible ligands that are able to bind to anti-spike human antibodies: the same RBD, staphylococcal protein A, and anti-human immunoglobulin G antibodies. The most convenient detector, adsorbed on gold nanoparticles, was chosen based on the highest correlation with an antibody titre of 171 human sera, measured by a reference serological method, and was the RBD (Spearman's rho = 0.84). Incorporated into the semiquantitative LFIA, it confirmed the ability to discriminate high- and low-titre samples and to classify them into two classes (Dunn's test, P < 0.05). The proposed approach enabled the semiquantification of the immune response to SARS-CoV-2 by the unaided eye observation, thus overcoming the requirement of costly and complicated equipment, and represents a general strategy for the development of semiquantitative serological LFIAs.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Thea Serra
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Valentina Testa
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Ludovica Brienza
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Irene Colasanto
- Department of Veterinary Science, University of Turin, Largo Braccini 2, Grugliasco (TO), Italy
| | - Chiara Nogarol
- In3diagnostic srl, Largo Braccini 2, Grugliasco (TO), Italy
| | - Domenico Cosseddu
- A.O. Ordine Mauriziano, Ospedale Umberto I di Torino, Via Magellano 1, Turin, Italy
| | - Cristina Guiotto
- A.O. Ordine Mauriziano, Ospedale Umberto I di Torino, Via Magellano 1, Turin, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin, Italy.
| |
Collapse
|
10
|
Cho HS, Noh MS, Kim YH, Namgung J, Yoo K, Shin MS, Yang CH, Kim YJ, Yu SJ, Chang H, Rho WY, Jun BH. Recent Studies on Metal-Embedded Silica Nanoparticles for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:268. [PMID: 38334538 PMCID: PMC10856399 DOI: 10.3390/nano14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded silica NPs decorated with small metal NPs around the silica core results in strong signal enhancement in localized surface plasmon resonance and surface-enhanced Raman scattering. This review summarizes recent studies on metal-embedded silica NPs, focusing on their unique designs and applications. The characteristics of the metal-embedded silica NPs depend on the type and structure of the embedded metals. Based on this progress, metal-embedded silica NPs are currently utilized in various spectroscopic applications, serving as nanozymes, detection and imaging probes, drug carriers, photothermal inducers, and bioactivation molecule screening identifiers. Owing to their versatile roles, metal-embedded silica NPs are expected to be applied in various fields, such as biology and medicine, in the future.
Collapse
Affiliation(s)
- Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Mi Suk Noh
- Bio & Medical Research Center, Bio Business Division, Korea Testing Certification, Gunpo 15809, Gyeonggi-do, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Jayoung Namgung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Min-Sup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Cho-Hee Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Seung-Ju Yu
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Yeop Rho
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| |
Collapse
|
11
|
Su YD, Lai CC, Lin TH, Chen WC, Hsueh PR. Performance evaluation of the cobas SARS-CoV-2 Duo, a novel qualitative and quantitative assay, for the detection of SARS-CoV-2 RNA. Microbiol Spectr 2023; 11:e0136923. [PMID: 37909752 PMCID: PMC10715196 DOI: 10.1128/spectrum.01369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Quantitative SARS-CoV-2 tests for viral load are necessary to guide patient treatment, as well as to determine infection control measures and policies. Although the real-time RT-PCR assays can report the Ct value to estimate the viral load, there are several serious concerns regarding the use of Ct values. Importantly, Ct values can vary significantly among between- and within-run methods. The diagnostic performance of the cobas SARS-CoV-2 Duo is appropriate. It is a precise, accurate, and sensitive method for the detection of SARS-CoV-2 RNA and is comparable to two qualitative assays (the cobas SARS-CoV-2 and the Liat cobas SARS-CoV-2 and Inf A/B). In contrast, using the Ct value to estimate viral load is not reliable, and utilization of a quantitative detection test, such as the cobas SARS-CoV-2 Duo, to accurately measure the viral load is needed.
Collapse
Affiliation(s)
- Yang-Di Su
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Division of Hospital Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Tsai-Hsiu Lin
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine,China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Infectious Diseases, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Mao X, Xu M, Luo S, Yang Y, Zhong J, Zhou J, Fan H, Li X, Chen Z. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front Bioeng Biotechnol 2023; 11:1273988. [PMID: 37885449 PMCID: PMC10598474 DOI: 10.3389/fbioe.2023.1273988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In the realm of pathogen detection, isothermal amplification technology has emerged as a swift, precise, and sensitive alternative to conventional PCR. This paper explores the fundamental principles of recombinase polymerase amplification (RPA) and recombinase-aid amplification (RAA) and reviews the current status of integrating the CRISPR-Cas system with RPA/RAA techniques. Furthermore, this paper explores the confluence of isothermal amplification and CRISPR-Cas technology, providing a comprehensive review and enhancements of existing combined methodologies such as SHERLOCK and DETECTR. We investigate the practical applications of RPA/RAA in conjunction with CRISPR-Cas for pathogen detection, highlighting how this integrated approach significantly advances both research and clinical implementation in the field. This paper aims to provide readers with a concise understanding of the fusion of RPA/RAA and CRISPR-Cas technology, offering insights into their clinical utility, ongoing enhancements, and the promising prospects of this integrated approach in pathogen detection.
Collapse
Affiliation(s)
- Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Minghui Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuyin Luo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yi Yang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
13
|
Rong G, Xu Y, Sawan M. Machine Learning Techniques for Effective Pathogen Detection Based on Resonant Biosensors. BIOSENSORS 2023; 13:860. [PMID: 37754094 PMCID: PMC10526989 DOI: 10.3390/bios13090860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
We describe a machine learning (ML) approach to processing the signals collected from a COVID-19 optical-based detector. Multilayer perceptron (MLP) and support vector machine (SVM) were used to process both the raw data and the feature engineering data, and high performance for the qualitative detection of the SARS-CoV-2 virus with concentration down to 1 TCID50/mL was achieved. Valid detection experiments contained 486 negative and 108 positive samples, and control experiments, in which biosensors without antibody functionalization were used to detect SARS-CoV-2, contained 36 negative samples and 732 positive samples. The data distribution patterns of the valid and control detection dataset, based on T-distributed stochastic neighbor embedding (t-SNE), were used to study the distinguishability between positive and negative samples and explain the ML prediction performance. This work demonstrates that ML can be a generalized effective approach to process the signals and the datasets of biosensors dependent on resonant modes as biosensing mechanism.
Collapse
Affiliation(s)
| | | | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China; (G.R.); (Y.X.)
| |
Collapse
|
14
|
Mousavi SM, Kalashgrani MY, Gholami A, Omidifar N, Binazadeh M, Chiang WH. Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19. BIOSENSORS 2023; 13:786. [PMID: 37622872 PMCID: PMC10452855 DOI: 10.3390/bios13080786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The COVID-19 pandemic has spurred demand for efficient and rapid diagnostic tools that can be deployed at point of care to quickly identify infected individuals. Existing detection methods are time consuming and they lack sensitivity. Point-of-care testing (POCT) has emerged as a promising alternative due to its user-friendliness, rapidity, and high specificity and sensitivity. Such tests can be conveniently conducted at the patient's bedside. Immunodiagnostic methods that offer the rapid identification of positive cases are urgently required. Quantum dots (QDs), known for their multimodal properties, have shown potential in terms of combating or inhibiting the COVID-19 virus. When coupled with specific antibodies, QDs enable the highly sensitive detection of viral antigens in patient samples. Conventional lateral flow immunoassays (LFAs) have been widely used for diagnostic testing due to their simplicity, low cost, and portability. However, they often lack the sensitivity required to accurately detect low viral loads. Quantum dot (QD)-based lateral flow immunoassays have emerged as a promising alternative, offering significant advancements in sensitivity and specificity. Moreover, the lateral flow immunoassay (LFIA) method, which fulfils POCT standards, has gained popularity in diagnosing COVID-19. This review focuses on recent advancements in QD-based LFIA for rapid POCT COVID-19 diagnosis. Strategies to enhance sensitivity using QDs are explored, and the underlying principles of LFIA are elucidated. The benefits of using the QD-based LFIA as a POCT method are highlighted, and its published performance in COVID-19 diagnostics is examined. Overall, the integration of quantum dots with LFIA holds immense promise in terms of revolutionizing COVID-19 detection, treatment, and prevention, offering a convenient and effective approach to combat the pandemic.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
15
|
Sotnikov DV, Byzova NA, Zherdev AV, Xu Y, Dzantiev BB. Comparison of Three Lateral Flow Immunoassay Formats for the Detection of Antibodies against the SARS-CoV-2 Antigen. BIOSENSORS 2023; 13:750. [PMID: 37504148 PMCID: PMC10376990 DOI: 10.3390/bios13070750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Reliable detection of specific antibodies against pathogens by lateral flow immunoassay (LFIA) greatly depends on the composition of the detectable complex and the order of its assembly. We compared three LFIA formats for revealing anti-SARS-CoV-2 antibodies in sera with the following detected complexes in the analytical zone of the strip: antigen-antibodies-labeled immunoglobulin-binding protein (Scheme A); antigen-antibodies-labeled antigen (Scheme B); and immunoglobulin-binding protein-antibodies-labeled antigen (Scheme C). The lowest detection limit was observed for Scheme C, and was equal to 10 ng/mL of specific humanized monoclonal antibodies. When working with pooled positive sera, Scheme C had a detection limit 15 times lower than Scheme B and 255 times lower than Scheme A. Due to the high sensitivity of Scheme C, its application for the panel of human sera (n = 22) demonstrated 100% diagnostic specificity and sensitivity. These consistent results be useful for designing the format of LFIA serodiagnosis for other diseases.
Collapse
Affiliation(s)
- Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Youchun Xu
- State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
16
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|