1
|
Chen SJ, Rai CI, Wang SC, Chen YC. Infection and Prevention of Rabies Viruses. Microorganisms 2025; 13:380. [PMID: 40005749 PMCID: PMC11858514 DOI: 10.3390/microorganisms13020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Rabies is a fatal zoonotic disease and causes about 59,000 human deaths globally every year. Especially, its mortality is almost 100% in cases where the rabies virus has transmitted to the central nervous system. The special virus life cycle and pathogenic mechanism make it difficult for the host immune system to combat rabies viruses. Vaccination including pre-exposure and post-exposure prophylaxis is an effective strategy for rabies prevention. The pre-exposure vaccination is mainly applied for animals and the post-exposure vaccination is the most application for humans. Although rabies vaccines are widely used and seem to be safe and effective, there are some disadvantages, limitations, or challenges affecting vaccine promotion and distribution. Therefore, more effective, convenient, safer, and cheaper rabies vaccines have been developed or are being developed. The development of novel human rabies vaccine is mainly focusing on vaccines based on a purified Vero cell-cultured freeze-dried rabies vaccine (PVRV). PVRV has been demonstrated to be promising to make the rabies vaccine more effective and secure in animal studies or clinical trials. Moreover, mRNA-based vaccines have been shown to have the potential to enhance the safety and efficacy of rabies vaccines for both animal and human uses.
Collapse
Affiliation(s)
- Shiu-Jau Chen
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chung-I Rai
- Department of Cosmetic Science, Vanung University, 1 Van Nung Road, Chung-Li City, Taoyuan 320676, Taiwan;
| | - Shao-Cheng Wang
- Department of Psychiatric, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Psychiatry, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Yuan-Chuan Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
| |
Collapse
|
2
|
Li J, Pan R, Yue F, Gao T, Wu X, Shi L, Wang Y, Zhao D, Lan Z, Chen H, Ye Q, Cao S. Evaluation of the Efficacy of the Vaccine Production Process in Removing Residual Host Cell DNA from the Vero Cell Rabies Vaccine. Vaccines (Basel) 2024; 12:1379. [PMID: 39772041 PMCID: PMC11680306 DOI: 10.3390/vaccines12121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The Vero cell rabies vaccine is currently the most widely used human rabies vaccine. However, owing to the presence of residual host cell DNA (HCD) in the final product and the potential tumorigenicity of the DNA of high-passage Vero cells, the WHO not only sets a limit on the number of times cells used in production can be passaged, but also imposes strict requirements on the amount of residual HCD in the final vaccine product. OBJECTIVES To systematically reduce the HCD level in the final vaccine product, multiple purification steps are included in the vaccine production process. This study investigated the effectiveness of key production steps in antigen recovery and DNA removal. METHODS The residual HCD fragment content and size distribution were detected using fluorescence quantitative PCR (qPCR) and capillary gel electrophoresis (CGE), and the rabies virus glycoprotein antigen content was detected using enzyme-linked immunosorbent assay (ELISA). The antigen recovery rate and HCD removal rate in each key process were calculated to evaluate the scientific basis and effectiveness of each production step. Additionally, the stability of the process was studied using multiple commercial batches of the product. RESULTS The results revealed that the total antigen recovery rate in the production process described in this report was no less than 8.5%, and the effective removal rate of residual HCD was not lower than 99.99%. Moreover, the amount of residual HCD in the final product was far below the quality standard of 2 ng/dose, and most of the residual HCD fragments were smaller than 200 bp. The results of the process stability studies on multiple commercial batches showed that the bulk human rabies vaccine produced by this process had excellent safety and efficacy and that the production process was stable and thus suitable for large-scale batch production. CONCLUSIONS The production process described in this study achieved effective recovery of viral antigens and efficient removal of residual HCD, and the process was stable and controllable, enabling the continuous and stable production of vaccine products that meet WHO recommendations and the relevant requirements of the current edition of the Chinese Pharmacopeia. In addition, this study provides theoretical guidance for optimizing the vaccine production process.
Collapse
Affiliation(s)
- Jia Li
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Ruowen Pan
- Hualan Biological Vaccine Inc., Jia No.1-1, Hualan Ave., Xinxiang 453003, China; (R.P.); (F.Y.)
| | - Fengyi Yue
- Hualan Biological Vaccine Inc., Jia No.1-1, Hualan Ave., Xinxiang 453003, China; (R.P.); (F.Y.)
| | - Tie Gao
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China; (T.G.); (Z.L.); (H.C.)
| | - Xiaohong Wu
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Leitai Shi
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Yunpeng Wang
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Danhua Zhao
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Zhaohui Lan
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China; (T.G.); (Z.L.); (H.C.)
| | - Hongxu Chen
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China; (T.G.); (Z.L.); (H.C.)
| | - Qiang Ye
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Shouchun Cao
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| |
Collapse
|
3
|
Huang R, Wang K, Flamm MH, Vazquez J, Gercke C, Ton C, Whitmer T, Mathis PK, Ploeger KJM, Rameez S. Development and qualification of 3 L scale-down model for large scale vaccine process on Vero cell culture using microcarriers. Biotechnol Bioeng 2024; 121:3402-3414. [PMID: 38993032 DOI: 10.1002/bit.28785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
Scale-down models (SDM) are pivotal tools for process understanding and improvement to accelerate the development of vaccines from laboratory research to global commercialization. In this study, a 3 L SDM representing a 50 L scale Vero cell culture process of a live-attenuated virus vaccine using microcarriers was developed and qualified based on the constant impeller power per volume principle. Both multivariate data analysis (MVDA) and the traditional univariate data analysis showed comparable and equivalent cell growth, metabolic activity, and product quality results across scales. Computational fluid dynamics simulation further confirmed similar hydrodynamic stress between the two scales.
Collapse
Affiliation(s)
- Renjing Huang
- Bioprocess Drug Substance Commercialization, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kai Wang
- Bioprocess Drug Substance Commercialization, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Matthew H Flamm
- Applied Mathematics and Modeling, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Jorge Vazquez
- Center of Mathematical Sciences, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Chris Gercke
- Bioprocess Drug Substance Commercialization, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Christopher Ton
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Travis Whitmer
- Bioprocess Drug Substance Commercialization, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Pamela K Mathis
- Global Quality Large Molecule Analytical Sciences, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kristin J M Ploeger
- Bioprocess Drug Substance Commercialization, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Shahid Rameez
- Bioprocess Drug Substance Commercialization, Merck & Co., Inc., West Point, Pennsylvania, USA
| |
Collapse
|
4
|
Guo H, Ding X, Hua D, Liu M, Yang M, Gong Y, Ye N, Chen X, He J, Zhang Y, Xu X, Li J. Enhancing Dengue Virus Production and Immunogenicity with Celcradle™ Bioreactor: A Comparative Study with Traditional Cell Culture Methods. Vaccines (Basel) 2024; 12:563. [PMID: 38932292 PMCID: PMC11209354 DOI: 10.3390/vaccines12060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 109, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.
Collapse
Affiliation(s)
- Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Maocheng Yang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yuanxin Gong
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Nan Ye
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaozhong Chen
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| |
Collapse
|
5
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
6
|
Ebrahimian A, Schalk M, Dürkop M, Maurer M, Bliem R, Kühnel H. Seed Train Optimization in Microcarrier-Based Cell Culture Post In Situ Cell Detachment through Scale-Down Hybrid Modeling. Bioengineering (Basel) 2024; 11:268. [PMID: 38534542 DOI: 10.3390/bioengineering11030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Microcarrier-based cell culture is a commonly used method to facilitate the growth of anchorage-dependent cells like MA 104 for antigen manufacturing. However, conventionally, static cell culture is employed for cell propagation before seeding the production bioreactor with microcarriers (MCs). This study demonstrates the effective replacement of the conventional method by serial subculturing on MCs with in situ cell detachment under optimal conditions in closed culture units. This study proves that MA 104 can be subcultured at least five times on Cytodex 1 MC without the need for separating cells and MC after cell harvest. Process parameters impacting cell growth were studied post in situ cell detachment in a scaled-down model. Optimization, using augmented Design of Experiments (DoE) combined with hybrid modeling, facilitated rapid screening of the design space for critical process parameters (CPPs). Optimized conditions included an inoculation density of >16 cells/bead, 3.5-4.5 g/L of Cytodex 1, and a controlled agitation speed, starting at Njs (minimum agitation speed) for the first day with a maximum increase of 25% thereafter. With these design spaces for CPPs, a cell density of 2.6 ± 0.5 × 106 cells/mL was achieved after five days. This refined bioprocess methodology offers a reliable and efficient approach for seed training in stirred tank reactors, which is particularly beneficial for viral vaccine production.
Collapse
Affiliation(s)
- Atefeh Ebrahimian
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- Department of Applied Life Science, Bioengineering, FH-Campus Wien, 1100 Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Mona Schalk
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- Department of Applied Life Science, Bioengineering, FH-Campus Wien, 1100 Vienna, Austria
| | | | - Michael Maurer
- Department of Applied Life Science, Bioengineering, FH-Campus Wien, 1100 Vienna, Austria
| | - Rudolf Bliem
- Department of Applied Life Science, Bioengineering, FH-Campus Wien, 1100 Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Harald Kühnel
- Department of Applied Life Science, Bioengineering, FH-Campus Wien, 1100 Vienna, Austria
| |
Collapse
|
7
|
Zeng YJ, Hsu MK, Cai JR, Wang HY. A strategy of novel molecular hydrogen-producing antioxidative auxiliary system improves virus production in cell bioreactor. Sci Rep 2024; 14:4092. [PMID: 38374429 PMCID: PMC10876984 DOI: 10.1038/s41598-024-54847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
In the increasing demand for virus vaccines, large-scale production of safe, efficient, and economical viral antigens has become a significant challenge. High-cell-density manufacturing processes are the most commonly used to produce vaccine antigens and protein drugs. However, the cellular stress response in large-scale cell culture may directly affect host cell growth and metabolism, reducing antigen production and increasing production costs. This study provided a novel strategy of the antioxidant auxiliary system (AAS) to supply molecular hydrogen (H2) into the cell culture media via proton exchange membrane (PEM) electrolysis. Integrated with a high-density cell bioreactor, the AAS aims to alleviate cellular stress response and increase viral vaccine production. In the results, the AAS stably maintained H2 concentration in media even in the high-air exposure tiding cell bioreactor. H2 treatment was shown safe to cell culture and effectively alleviated oxidative stress. In two established virus cultures models, bovine epidemic fever virus (BEFV) and porcine circovirus virus type 2 (PCV-2), were employed to verify the efficacy of AAS. The virus yield was increased by 3.7 and 2.5 folds in BEFV and PCV-2 respectively. In conclusion, the AAS-connected bioreactor effectively alleviated cellular oxidative stress and enhanced virus production in high-density cell culture.
Collapse
Affiliation(s)
- Yu-Jing Zeng
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Min-Kung Hsu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Animal Biologics Pilot Production Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Innovative Bioproducts Technical Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Jia-Rong Cai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsian-Yu Wang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
8
|
García-Murria MJ, Gadea-Salom L, Moreno S, Rius-Salvador M, Zaragoza O, Brun A, Mingarro I, Martínez-Gil L. Identification of small molecules capable of enhancing viral membrane fusion. Virol J 2023; 20:99. [PMID: 37226231 DOI: 10.1186/s12985-023-02068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Several approaches have been developed to analyze the entry of highly pathogenic viruses. In this study, we report the implementation of a Bimolecular Multicellular Complementation (BiMuC) assay to safely and efficiently monitor SARS-CoV-2 S-mediated membrane fusion without the need for microscopy-based equipment. Using BiMuC, we screened a library of approved drugs and identified compounds that enhance S protein-mediated cell-cell membrane fusion. Among them, ethynylestradiol promotes the growth of SARS-CoV-2 and Influenza A virus in vitro. Our findings demonstrate the potential of BiMuC for identifying small molecules that modulate the life cycle of enveloped viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Mª Jesús García-Murria
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Laura Gadea-Salom
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Marina Rius-Salvador
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC, Health Institute Carlos III, CB21/13/00105), Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain.
| |
Collapse
|