1
|
Li P, Chen P, Zheng Y, Suo G, Shen F, Li H, Zhong X, Chen X, Wu Y. Enhancement of motor neuron development and function in zebrafish by sialyllacto-N-tetraose b. Transl Pediatr 2024; 13:1201-1209. [PMID: 39144427 PMCID: PMC11319995 DOI: 10.21037/tp-24-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Background Sialyllacto-N-tetraose b (LSTb) is a component of human milk oligosaccharides. Due to its low concentration, the impact of LSTb on neurodevelopment remains largely unexplored. It is worth studying whether LSTb should be added to infant formula to simulate breast milk. This study aimed to investigate the effect of LSTb on the development of motor neurons of the central nervous system using a transgenic zebrafish model. Methods Transgenic (Tg) zebrafish line (Hb9:GFP) was incubated with LSTb, and the axonal growth of caudal primary (CaP) neurons was assessed. Locomotor behavior was evaluated, and RNA sequencing (RNA-seq) was performed to identify the differentially expressed genes (DEGs). The expression of Slit2 and Slit3, genes involved in axon guidance, was further analyzed through real-time polymerase chain reaction (real-time PCR) and whole-mount in situ hybridization. Results There was a significant increase in the number and length of CaP axon branches, suggesting that LSTb promotes CaP development. Behavioral analysis revealed enhanced locomotor activity in LSTb-treated larvae, indicating improved motor function. RNA-seq analysis identified 5,847 DEGs related to central nervous system neuron differentiation, including Slit2 and Slit3, which are known to contribute to axon guidance. In situ hybridization confirmed increased Slit2 expression in the central nervous system of LSTb-treated larvae. Conclusions LSTb significantly influences motor neuron development, potentially through the upregulation of Slit2 and Slit3. This research provides valuable insights into the role of LSTb in neurodevelopment.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Chen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pediatrics, Rugao People’s Hospital, Rugao, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Guihai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Feifei Shen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiuli Zhong
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinwei Chen
- Department of Pediatrics, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Vijayakumar S, Yesudhason BV, Anandharaj JL, Sathyaraj WV, Selvan Christyraj JRS. Impact of double-strand breaks induced by uv radiation on neuroinflammation and neurodegenerative disorders. Mol Biol Rep 2024; 51:725. [PMID: 38851636 DOI: 10.1007/s11033-024-09693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.
Collapse
Affiliation(s)
- Srilakshmi Vijayakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Doszyn O, Dulski T, Zmorzynska J. Diving into the zebrafish brain: exploring neuroscience frontiers with genetic tools, imaging techniques, and behavioral insights. Front Mol Neurosci 2024; 17:1358844. [PMID: 38533456 PMCID: PMC10963419 DOI: 10.3389/fnmol.2024.1358844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The zebrafish (Danio rerio) is increasingly used in neuroscience research. Zebrafish are relatively easy to maintain, and their high fecundity makes them suitable for high-throughput experiments. Their small, transparent embryos and larvae allow for easy microscopic imaging of the developing brain. Zebrafish also share a high degree of genetic similarity with humans, and are amenable to genetic manipulation techniques, such as gene knockdown, knockout, or knock-in, which allows researchers to study the role of specific genes relevant to human brain development, function, and disease. Zebrafish can also serve as a model for behavioral studies, including locomotion, learning, and social interactions. In this review, we present state-of-the-art methods to study the brain function in zebrafish, including genetic tools for labeling single neurons and neuronal circuits, live imaging of neural activity, synaptic dynamics and protein interactions in the zebrafish brain, optogenetic manipulation, and the use of virtual reality technology for behavioral testing. We highlight the potential of zebrafish for neuroscience research, especially regarding brain development, neuronal circuits, and genetic-based disorders and discuss its certain limitations as a model.
Collapse
Affiliation(s)
| | | | - J. Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
4
|
Busquet F, Laperrouze J, Jankovic K, Krsmanovic T, Ignasiak T, Leoni B, Apic G, Asole G, Guigó R, Marangio P, Palumbo E, Perez-Lluch S, Wucher V, Vlot AH, Anholt R, Mackay T, Escher BI, Grasse N, Huchthausen J, Massei R, Reemtsma T, Scholz S, Schüürmann G, Bondesson M, Cherbas P, Freedman JH, Glaholt S, Holsopple J, Jacobson SC, Kaufman T, Popodi E, Shaw JJ, Smoot S, Tennessen JM, Churchill G, von Clausbruch CC, Dickmeis T, Hayot G, Pace G, Peravali R, Weiss C, Cistjakova N, Liu X, Slaitas A, Brown JB, Ayerbe R, Cabellos J, Cerro-Gálvez E, Diez-Ortiz M, González V, Martínez R, Vives PS, Barnett R, Lawson T, Lee RG, Sostare E, Viant M, Grafström R, Hongisto V, Kohonen P, Patyra K, Bhaskar PK, Garmendia-Cedillos M, Farooq I, Oliver B, Pohida T, Salem G, Jacobson D, Andrews E, Barnard M, Čavoški A, Chaturvedi A, Colbourne JK, Epps DJT, Holden L, Jones MR, Li X, Müller F, Ormanin-Lewandowska A, Orsini L, Roberts R, Weber RJM, Zhou J, Chung ME, Sanchez JCG, Diwan GD, Singh G, Strähle U, Russell RB, Batista D, Sansone SA, Rocca-Serra P, Du Pasquier D, Lemkine G, Robin-Duchesne B, Tindall A. The Precision Toxicology Initiative. Toxicol Lett 2023:S0378-4274(23)00180-7. [PMID: 37211341 DOI: 10.1016/j.toxlet.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The goal of PrecisionTox is to overcome conceptual barriers to replacing traditional mammalian chemical safety testing by accelerating the discovery of evolutionarily conserved toxicity pathways that are shared by descent among humans and more distantly related animals. An international consortium is systematically testing the toxicological effects of a diverse set of chemicals on a suite of five model species comprising fruit flies, nematodes, water fleas, and embryos of clawed frogs and zebrafish along with human cell lines. Multiple forms of omics and comparative toxicology data are integrated to map the evolutionary origins of biomolecular interactions, which are predictive of adverse health effects, to major branches of the animal phylogeny. These conserved elements of adverse outcome pathways (AOPs) and their biomarkers are expect to provide mechanistic insight useful for regulating groups of chemicals based on their shared modes of action. PrecisionTox also aims to quantify risk variation within populations by recognizing susceptibility as a heritable trait that varies with genetic diversity. This initiative incorporates legal experts and collaborates with risk managers to address specific needs within European chemicals legislation, including the uptake of new approach methodologies (NAMs) for setting precise regulatory limits on toxic chemicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nico Grasse
- Helmholtz Centre for Environmental Research, DE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bragato C, Pistocchi A, Bellipanni G, Confalonieri S, Balciunie J, Monastra FM, Carra S, Vitale G, Mantecca P, Cotelli F, Gaudenzi G. Zebrafish dnm1a gene plays a role in the formation of axons and synapses in the nervous tissue. J Neurosci Res 2023. [PMID: 37031448 DOI: 10.1002/jnr.25197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.
Collapse
Affiliation(s)
- Cinzia Bragato
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Jorune Balciunie
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Federica Maria Monastra
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Giovanni Vitale
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
6
|
Mohamed WMY, Ekker M. Editorial: Zebrafish as a translational neuroscience model: today's science and tomorrow's success. Front Physiol 2023; 14:1202198. [PMID: 37153225 PMCID: PMC10154676 DOI: 10.3389/fphys.2023.1202198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Wael M. Y. Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- *Correspondence: Wael M. Y. Mohamed,
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
8
|
Uthaiah CA, Devaru NC, Shivakumar NH, R R, Madhunapantula SV. Vitamin D Mitigates Hyperglycemia-Induced Cognition Decline in Danio rerio (Zebrafish) through the Activation of Antioxidant Mechanisms. Antioxidants (Basel) 2022; 11:antiox11112114. [PMID: 36358486 PMCID: PMC9686813 DOI: 10.3390/antiox11112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperglycemia contributes to the development of cognition impairment and related disorders, induces oxidative stress in neuronal cells; thereby, impairs normal signaling mechanisms involved in cognition processes. Studies have shown a significant decrease in the vitamin D in individuals with hyperglycemia and cognition impairment. But whether supplementing vitamin D has any beneficiary impact on mitigating hyperglycemia-induced cognition impairment is unknown. We have first tested the impact of hyperglycemia on the induction of cognition deficiency in a zebrafish model. Next, the molecular mechanisms related to oxidative stress, which are deregulated in hyperglycemic zebrafish brains, have been explored. Subsequently, the impact of supplementing the water with vitamin D and a known activator of nuclear factor erythroid-2 related factor 2 (Nrf2) i.e., sulforaphane (SFN) on learning and memory functions were assessed. We showed a significant increase in the oxidative stress in the brain tissue of zebrafish residing in hyperglycemic water (111 mM glucose). Addition of vitamin D and SFN increased Nrf2, but differentially modulated its target genes (NQO1, SOD, GPx etc) activity in zebrafish and neuronal cell lines thereby improved the hyperglycemia-induced decline of cognition impairment. Mechanistically, vitamin D binds to the Keap1 protein; thereby, interfering with its binding to Nrf2, which leads to the activation of antioxidant mechanisms in the cells. In summary, reducing the oxidative stress through vitamin D treatment is a possible option for controlling the cognition impairment in diabetic population, but studies testing this possibility in clinical trials are currently needed.
Collapse
Affiliation(s)
- Chinnappa A Uthaiah
- Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College; JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Nandini C Devaru
- Department of Pharmacology, JSS College of Pharmacy; JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Nandini H Shivakumar
- Department of Pharmacology, JSS College of Pharmacy; JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rajalakshmi R
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College; JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
9
|
Carvalho E, Morais M, Ferreira H, Silva M, Guimarães S, Pêgo A. A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials 2022; 283:121427. [DOI: 10.1016/j.biomaterials.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
10
|
Keskus AG, Tombaz M, Arici BI, Dincaslan FB, Nabi A, Shehwana H, Konu O. Functional analysis of co-expression networks of zebrafish ace2 reveals enrichment of pathways associated with development and disease. Genome 2021; 65:57-74. [PMID: 34606733 DOI: 10.1139/gen-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Angiotensin I Converting Enzyme 2 (ACE2) plays an essential role in blood pressure regulation and SARS-CoV-2 entry. ACE2 has a highly conserved, one-to-one ortholog (ace2) in zebrafish, which is an important model for human diseases. However, the zebrafish ace2 expression profile has not yet been studied during early development, between genders, across different genotypes, or in disease. Moreover, a network-based meta-analysis for the extraction of functionally enriched pathways associated with differential ace2 expression is lacking in the literature. Herein, we first identified significant development-, tissue-, genotype-, and gender-specific modulations in ace2 expression via meta-analysis of zebrafish Affymetrix transcriptomics datasets (ndatasets = 107); and the correlation analysis of ace2 meta-differential expression profile revealed distinct positively and negatively correlated local functionally enriched gene networks. Moreover, we demonstrated that ace2 expression was significantly modulated under different physiological and pathological conditions related to development, tissue, gender, diet, infection, and inflammation using additional RNA-seq datasets. Our findings implicate a novel translational role for zebrafish ace2 in organ differentiation and pathologies observed in the intestines and liver.
Collapse
Affiliation(s)
- Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Burcin Irem Arici
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Afshan Nabi
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| |
Collapse
|
11
|
Zebrafish model for human gut microbiome-related studies: advantages and limitations. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
Razali K, Othman N, Mohd Nasir MH, Doolaanea AA, Kumar J, Ibrahim WN, Mohamed Ibrahim N, Mohamed WMY. The Promise of the Zebrafish Model for Parkinson's Disease: Today's Science and Tomorrow's Treatment. Front Genet 2021; 12:655550. [PMID: 33936174 PMCID: PMC8082503 DOI: 10.3389/fgene.2021.655550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
The second most prevalent neurodegenerative disorder in the elderly is Parkinson's disease (PD). Its etiology is unclear and there are no available disease-modifying medicines. Therefore, more evidence is required concerning its pathogenesis. The use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is the basis of most animal models of PD. MPTP is metabolized by monoamine oxidase B (MAO B) to MPP + and induces the loss of dopaminergic neurons in the substantia nigra in mammals. Zebrafish have been commonly used in developmental biology as a model organism, but owing to its perfect mix of properties, it is now emerging as a model for human diseases. Zebrafish (Danio rerio) are cheap and easy to sustain, evolve rapidly, breed transparent embryos in large amounts, and are readily manipulated by different methods, particularly genetic ones. Furthermore, zebrafish are vertebrate species and mammalian findings obtained from zebrafish may be more applicable than those derived from genetic models of invertebrates such as Drosophila melanogaster and Caenorhabditis elegans. The resemblance cannot be taken for granted, however. The goal of the present review article is to highlight the promise of zebrafish as a PD animal model. As its aminergic structures, MPTP mode of action, and PINK1 roles mimic those of mammalians, zebrafish seems to be a viable model for studying PD. The roles of zebrafish MAO, however, vary from those of the two types of MAO present in mammals. The benefits unique to zebrafish, such as the ability to perform large-scale genetic or drug screens, should be exploited in future experiments utilizing zebrafish PD models.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | | | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| |
Collapse
|
13
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|