1
|
Anitua E, Tierno R, Martínez de Lagrán Z, Alkhraisat MH. Impact of inflammatory skin conditions on the biological profile of plasma rich in growth factor. Tissue Cell 2024; 91:102560. [PMID: 39299031 DOI: 10.1016/j.tice.2024.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Plasma rich in growth factors (PRGF) can be used over patients suffering from dermatoses due to its anti-inflammatory effect. However, this population group might present soluble autoimmune components and there is limited information about the effect of chronic skin inflammation on PRGF bioactive properties. With the aim of characterizing PRGF composition, PRGF from healthy (H) donors and patients with atopic dermatitis (AD), psoriasis (PS), or lichen sclerosus (LS) was obtained. In order to reduce the inflammatory component, leukocyte exclusion and heat-inactivation (Immunosafe) were tested. Haematological-serological parameters, platelet functionality, clot microstructure, protein content and bioactivity were determined. Mean values and 95 % confidence intervals (mean[95 % CI]) were computed for key haematological parameters, such as platelet (410×103/mm3[371-449]) and leukocyte content (205×103/mm3[148-262]), platelet activation (resting: 4.3 %[3.1-5.5] and activated: 97.4 %[96.7-98.0]), the concentration of plasma proteins and morphogens, including immunoglobulins A (210.7 mg/dL[191.8-229.6]), G (933.1 mg/dL[887.2-978.9]), E (783.5 mg/dL[54.4-1512.6]), and M (115.0 mg/dL[97.1-133.0]), Complement Protein (31.6 mg/mL[26.6-36.6]), C-Reactive protein (3.1 mg/L[2.0-4.1]), TGF-β1 (35975.6 pg/mL[34221.3-37729.8]), fibronectin (146410.0 ng/mL[136518.3-156301.7]), PDGF-AB (13308.5 pg/mL[12401.0-14216.0]), CD40L (2389.3 pg/mL[1887.7-2890.8]), IL-4 (0.12 pg/mL[0.07-0.18]), IL-13 (35.4 pg/mL[21.0-49.7]), IL-1β (0.09 pg/mL[0.06-0.11]) and TNF-α (0.31 pg/mL[0.24-0.38]), and also for cell proliferation (332.9ngDNA/mL[317.4-348.3]), viability (135.6 %[132.0-139.2]) and migration (103.8cells/mm2[98.3-109.3]). Plasma from AD donors presented increased Immunoglobulin E (IgE) that was significantly reduced after Immunosafe along with the complement system and autoantibodies. Platelet functionality was altered for AD, but no microstructure differences were identified. Pathological groups presented reduced concentration of fibronectin (AD/LS) and Platelet-Derived Growth Factor (PDGF-AB) (P). Immunosafe treatment reduced Cluster of Differentiation 40 Protein (CD40L), interleukin 1β (IL-1β), and Tumor Necrosis Factor α (TNF-α) concentrations. Fibroblasts supplemented with PRGF obtained from pathological patients (PS/AD) showed reduced viability but Immunosafe increased cell proliferation and migration in SP (LS) and L-SP samples (PS/AD). In conclusion, PRGF derived from pathological patients present autoimmune components, but heat-inactivation or leukocyte exclusion could minimize local side effects.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain.
| | - Roberto Tierno
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| | | | - Mohammad H Alkhraisat
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| |
Collapse
|
2
|
Noddeland HK, Canbay V, Lind M, Savickas S, Jensen LB, Petersson K, Malmsten M, Koch J, Auf dem Keller U, Heinz A. Matrix metalloproteinase landscape in the imiquimod-induced skin inflammation mouse model. Biochimie 2024; 226:99-106. [PMID: 38513823 DOI: 10.1016/j.biochi.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.
Collapse
Affiliation(s)
- Heidi Kyung Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Vahap Canbay
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Simonas Savickas
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Louise Bastholm Jensen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100, Lund, Sweden
| | - Janne Koch
- Translational Sciences, Research and Early Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark; ETH Zürich, Department of Biology, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Wang W, He Y, Yao LC, Yuan Y, Lu C, Xiong LK, Ma P, Zhang YF, Yu KH, Tang ZG. Identification of m6A modification patterns and RBM15 mediated macrophage phagocytosis in pancreatic cancer: An integrative analysis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167304. [PMID: 38878830 DOI: 10.1016/j.bbadis.2024.167304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer (PC) responds weakly to conventional immunotherapy. RNA N6-methyladenosine (m6A) modification has an essential role in the immune response, while its potential role in PC tumor microenvironment (TME) immune cell infiltration remains unknown. In this study, we thoroughly assessed the m6A modification patterns of 472 PC samples using 19 m6A regulators, and we systematically correlated these modification patterns with TME immune cell infiltration characteristics. We also created the m6Ascore and evaluated the m6A modification patterns of individual tumors, identified three different m6A modification patterns, and explored the role of the important m6A "writer" RBM15 in the regulation of macrophage function in PC. Two independent PC cohorts confirmed that patients with higher m6Ascore showed significant survival benefit. We verified that knockdown of RBM15 has the ability to inhibit PC growth and to promote macrophage infiltration and enhance phagocytosis of PC cells by macrophages. In conclusion, m6A modifications play a non-negligible role in the formation of TME diversity and complexity in PC. We reveal that inhibition of RBM15 suppresses PC development and modulates macrophage phagocytosis, and provide a more effective immunotherapeutic strategy for PC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan 430060, Hubei Province, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Li-Chao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Cong Lu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Liang-Kun Xiong
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Peng Ma
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yue-Feng Zhang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kai-Huan Yu
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
4
|
Szalus K, Trzeciak M. The Role of Collagens in Atopic Dermatitis. Int J Mol Sci 2024; 25:7647. [PMID: 39062889 PMCID: PMC11276735 DOI: 10.3390/ijms25147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting both children and adults. The clinical picture of AD manifests in typical skin lesions, such as localized eczema and dry skin, with dominant, persistent itching that leads to sleep disturbances. The pathophysiology of AD has been extensively investigated with respect to epigenetic and genetic factors, skin barrier defects, as well as immunological and microbial disorders. However, to date, the involvement of extracellular matrix (ECM) elements has received limited attention. Collagen, a major component of the ECM, may serve as a therapeutic target for the future treatment of AD. This paper summarizes the role of collagens, which are the most abundant components of the extracellular matrix in AD.
Collapse
Affiliation(s)
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|
5
|
Mastronikolis NS, Kyrodimos E, Piperigkou Z, Spyropoulou D, Delides A, Giotakis E, Alexopoulou M, Bakalis NA, Karamanos NK. Matrix-based molecular mechanisms, targeting and diagnostics in oral squamous cell carcinoma. IUBMB Life 2024; 76:368-382. [PMID: 38168122 DOI: 10.1002/iub.2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a head and neck cancer (HNC) with a high mortality rate. OSCC is developed in the oral cavity and it is triggered by many etiologic factors and can metastasize both regionally and distantly. Recent research advances in OSCC improved our understanding on the molecular mechanisms involved in and the initiation of OSCC metastasis. The key roles of the extracellular matrix (ECM) in OSCC are an emerging area of intensive research as the ECM macromolecular network is actively involved in events that regulate cellular morphological and functional properties, transcription and cell signaling mechanisms in invasion and metastasis. The provisional matrix that is formed by cancer cells is profoundly different in composition and functions as compared with the matrix of normal tissue. Fibroblasts are mainly responsible for matrix production and remodeling, but in cancer, the tumor matrix in the tumor microenvironment (TME) also originates from cancer cells. Even though extensive research has been conducted on the role of ECM in regulating cancer pathogenesis, its role in modulating OSCC is less elucidated since there are several issues yet to be fully understood. This critical review is focused on recent research as to present and discuss on the involvement of ECM macromolecular effectors (i.e., proteoglycans, integrins, matrix metalloproteinases) in OSCC development and progression.
Collapse
Affiliation(s)
- Nicholas S Mastronikolis
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, Greece
| | - Efthymios Kyrodimos
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
| | - Alexander Delides
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Evangelos Giotakis
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Miranda Alexopoulou
- Department of Maxillofacial Surgery, University Hospital of Patras, Patras, Greece
| | - Nick A Bakalis
- Department of Nursing, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
6
|
Du Plessis LH, Gouws C, Nieto D. The influence of viscosity of hydrogels on the spreading and migration of cells in 3D bioprinted skin cancer models. Front Cell Dev Biol 2024; 12:1391259. [PMID: 38835508 PMCID: PMC11148284 DOI: 10.3389/fcell.2024.1391259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Various in vitro three-dimensional (3D) tissue culture models of human and diseased skin exist. Nevertheless, there is still room for the development and improvement of 3D bioprinted skin cancer models. The need for reproducible bioprinting methods, cell samples, biomaterial inks, and bioinks is becoming increasingly important. The influence of the viscosity of hydrogels on the spreading and migration of most types of cancer cells is well studied. There are however limited studies on the influence of viscosity on the spreading and migration of cells in 3D bioprinted skin cancer models. In this review, we will outline the importance of studying the various types of skin cancers by using 3D cell culture models. We will provide an overview of the advantages and disadvantages of the various 3D bioprinting technologies. We will emphasize how the viscosity of hydrogels relates to the spreading and migration of cancer cells. Lastly, we will give an overview of the specific studies on cell migration and spreading in 3D bioprinted skin cancer models.
Collapse
Affiliation(s)
- Lissinda H Du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Daniel Nieto
- Advanced Biofabrication for Tissue and Organ Engineering Group, Interdisciplinary Centre of Chemistry and Biology (CICA), Faculty of Health Sciences, University of Coruña, Campus de A Coruna, Coruna, Spain
| |
Collapse
|
7
|
Lu KY, Cheng LC, Hung ZC, Chen ZY, Wang CW, Hou HH. The Ethyl Acetate Extract of Caulerpa microphysa Promotes Collagen Homeostasis and Inhibits Inflammation in the Skin. Curr Issues Mol Biol 2024; 46:2701-2712. [PMID: 38534786 DOI: 10.3390/cimb46030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Inflammation and collagen-degrading enzymes' overexpression promote collagen decomposition, which affects the structural integrity of the extracellular matrix. The polysaccharide and peptide extracts of the green alga Caulerpa microphysa (C. microphysa) have been proven to have anti-inflammatory, wound healing, and antioxidant effects in vivo and in vitro. However, the biological properties of the non-water-soluble components of C. microphysa are still unknown. In the present study, we demonstrated the higher effective anti-inflammatory functions of C. microphysa ethyl acetate (EA) extract than water extract up to 16-30% in LPS-induced HaCaT cells, including reducing the production of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α). Furthermore, the excellent collagen homeostasis effects from C. microphysa were proven by suppressing the matrix metalloproteinase-1 (MMP-1) secretion, enhancing type 1 procollagen and collagen expressions dose-dependently in WS1 cells. Moreover, using UHPLC-QTOF-MS analysis, four terpenoids, siphonaxanthin, caulerpenyne, caulerpal A, and caulerpal B, were identified and may be involved in the superior collagen homeostasis and anti-inflammatory effects of the C. microphysa EA extract.
Collapse
Affiliation(s)
- Kuo-Yun Lu
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Li-Ching Cheng
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Zheng-Ci Hung
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
| | - Ze-Ying Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
8
|
Tjust AE, Hellman U, Giannopoulos A, Winsnes A, Strigård K, Gunnarsson U. Evaluation of Extracellular Matrix Remodeling in Full-thickness Skin Grafts in Mice. J Histochem Cytochem 2024; 72:79-94. [PMID: 38264898 PMCID: PMC10851880 DOI: 10.1369/00221554231225995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Abdominal hernia is a protruding weakness in the abdominal wall. It affects abdominal strength and life quality and can lead to complications due to intestinal entrapment. Autologous full-thickness skin graft (FTSG) has recently become an alternative material for reinforcement in the surgical repair of large abdominal hernias instead of synthetic mesh. FTSG eventually integrates with the abdominal wall, but the long-term fate of the graft itself is not fully understood. This has implications as to how these grafts should be optimally used and handled intraoperatively. This study investigates the remodeling of FTSG in either the onlay or the intraperitoneal position 8 weeks after FTSG transplantation in an experimental mouse model. There was a significant presence of fibroblasts, indicated by vimentin and S100A4 staining, but there were significant variations among animals as to how much of the graft had been remodeled into dense connective tissue. This correlated significantly with the proportion of vimentin-positive cells in the dense connective tissue. We also found that collagen hybridizing peptide staining intensity, a marker of active remodeling, was significantly associated with the proportion of S100A4-positive cells in the dense connective tissue of the FTSG.
Collapse
Affiliation(s)
- Anton Erik Tjust
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Antonios Giannopoulos
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Annika Winsnes
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Karin Strigård
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Ulf Gunnarsson
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Arif S, Moulin VJ. Extracellular vesicles on the move: Traversing the complex matrix of tissues. Eur J Cell Biol 2023; 102:151372. [PMID: 37972445 DOI: 10.1016/j.ejcb.2023.151372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles are small particles involved in intercellular signaling. They are produced by virtually all cell types, transport biological molecules, and are released into the extracellular space. Studies on extracellular vesicles have become more numerous in recent years, leading to promising research on their potential impact on health and disease. Despite significant progress in understanding the bioactivity of extracellular vesicles, most in vitro and in vivo studies overlook their transport through the extracellular matrix in tissues. The interaction or free diffusion of extracellular vesicles in their environment can provide valuable insights into their efficacy and function. Therefore, understanding the factors that influence the transport of extracellular vesicles in the extracellular matrix is essential for the development of new therapeutic approaches that involve the use of these extracellular vesicles. This review discusses the importance of the interaction between extracellular vesicles and the extracellular matrix and the different factors that influence their diffusion. In addition, we evaluate their role in tissue homeostasis, pathophysiology, and potential clinical applications. Understanding the complex interaction between extracellular vesicles and the extracellular matrix is critical in order to develop effective strategies to target specific cells and tissues in a wide range of clinical applications.
Collapse
Affiliation(s)
- Syrine Arif
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Véronique J Moulin
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
10
|
Wistner SC, Rashad L, Slaughter G. Advances in tissue engineering and biofabrication for in vitro skin modeling. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2023; 35:e00306. [PMID: 38645432 PMCID: PMC11031264 DOI: 10.1016/j.bprint.2023.e00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The global prevalence of skin disease and injury is continually increasing, yet conventional cell-based models used to study these conditions do not accurately reflect the complexity of human skin. The lack of inadequate in vitro modeling has resulted in reliance on animal-based models to test pharmaceuticals, biomedical devices, and industrial and environmental toxins to address clinical needs. These in vivo models are monetarily and morally expensive and are poor predictors of human tissue responses and clinical trial outcomes. The onset of three-dimensional (3D) culture techniques, such as cell-embedded and decellularized approaches, has offered accessible in vitro alternatives, using innovative scaffolds to improve cell-based models' structural and histological authenticity. However, these models lack adequate organizational control and complexity, resulting in variations between structures and the exclusion of physiologically relevant vascular and immunological features. Recently, biofabrication strategies, which combine biology, engineering, and manufacturing capabilities, have emerged as instrumental tools to recreate the heterogeneity of human skin precisely. Bioprinting uses computer-aided design (CAD) to yield robust and reproducible skin prototypes with unprecedented control over tissue design and assembly. As the interdisciplinary nature of biofabrication grows, we look to the promise of next-generation biofabrication technologies, such as organ-on-a-chip (OOAC) and 4D modeling, to simulate human tissue behaviors more reliably for research, pharmaceutical, and regenerative medicine purposes. This review aims to discuss the barriers to developing clinically relevant skin models, describe the evolution of skin-inspired in vitro structures, analyze the current approaches to biofabricating 3D human skin mimetics, and define the opportunities and challenges in biofabricating skin tissue for preclinical and clinical uses.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Layla Rashad
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
11
|
Pfisterer K, Wielscher M, Samardzic D, Weinzettl P, Symmank D, Shaw LE, Campana R, Huang HJ, Farlik M, Bangert C, Vrtala S, Valenta R, Weninger W. Non-IgE-reactive allergen peptides deteriorate the skin barrier in house dust mite-sensitized atopic dermatitis patients. Front Cell Dev Biol 2023; 11:1240289. [PMID: 37675143 PMCID: PMC10478000 DOI: 10.3389/fcell.2023.1240289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type 2 cytokine-driven skin inflammation and epithelial barrier dysfunction. The latter is believed to allow the increased penetration of chemicals, toxins, and allergens into the skin. House dust mite allergens, particularly Der p 2, are important triggers in sensitized individuals with AD; the precise actions of these allergens in epithelial biology remain, however, incompletely understood. In this study, we compared the effects of the protein allergen Der p 2 and a mix of non-IgE-reactive Der p 2 peptides on skin cells using patch tests in AD patients and healthy participants. We then analyzed mRNA expression profiles of keratinocytes by single-cell RNA-sequencing. We report that existing barrier deficiencies in the non-lesional skin of AD patients allow deep penetration of Der p 2 and its peptides, leading to local microinflammation. Der p 2 protein specifically upregulated genes involved in the innate immune system, stress, and danger signals in suprabasal KC. Der p 2 peptides further downregulated skin barrier genes, in particular the expression of genes involved in cell-matrix and cell-cell adhesion. Peptides also induced genes involved in hyperproliferation and caused disturbances in keratinocyte differentiation. Furthermore, inflammasome-relevant genes and IL18 were overexpressed, while KRT1 was downregulated. Our data suggest that Der p 2 peptides contribute to AD initiation and exacerbation by augmenting hallmark features of AD, such as skin inflammation, barrier disruption, and hyperplasia of keratinocytes.
Collapse
Affiliation(s)
- Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Samardzic
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pauline Weinzettl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dorte Symmank
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa E. Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Abdallah HY, Faisal S, Tawfik NZ, Soliman NH, Kishk RM, Ellawindy A. Expression Signature of Immune-Related MicroRNAs in Autoimmune Skin Disease: Psoriasis and Vitiligo Insights. Mol Diagn Ther 2023; 27:405-423. [PMID: 37016095 PMCID: PMC10151313 DOI: 10.1007/s40291-023-00646-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Psoriasis and vitiligo are both chronic, skin-specific diseases classified as autoimmune diseases due to the involvement of several biochemical pathways in their pathogenesis, similar to those altered in other autoimmune diseases. The role of miRNAs in regulating skin autoimmune function has yet to be fully characterized. AIM The aim of this study was to assess the expression profile of a panel of 11 circulating immune-related miRNAs in patients with autoimmune skin diseases, specifically psoriasis and vitiligo, and correlate their expression signature with the clinicopathological features of the diseases. SUBJECTS AND METHODS Relative gene expression quantification for 11 immune-related circulating miRNAs in plasma was done for 300 subjects-100 patients with psoriasis, 100 patients with vitiligo and 100 normal healthy volunteers-followed by different modalities of bioinformatics analysis for the results. RESULTS The expression levels of all the studied immune-related miRNAs were elevated in both autoimmune skin disorders, with much higher levels of expression in psoriasis than in vitiligo patients. There was a significant correlation between most of the studied miRNAs, suggesting shared target genes and/or pathways. Moreover, all the studied miRNAs showed significant results as biomarkers for autoimmune skin disease, with miRNA-145 being the best candidate. Regarding the clinicopathological data, miRNA-7, miRNA-9, miRNA-145, miRNA-148a, and miRNA-148b were positively correlated with age. All the miRNAs were inversely correlated with obesity and disease duration. CONCLUSION This study highlights the critical role of miRNAs in skin-specific autoimmune diseases that proved to be potential biomarkers for autoimmune skin disorders, warranting their exploration as therapeutic targets.
Collapse
Affiliation(s)
- Hoda Y Abdallah
- Medical Genetics Unit, Histology & Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
- Faculty of Medicine, Center of Excellence in Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt.
| | - Salwa Faisal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha Z Tawfik
- Dermatology, Venereology, and Andrology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nourhan Hassan Soliman
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Alia Ellawindy
- Medical Genetics Unit, Histology & Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Di Nardo A, Chang YL, Alimohammadi S, Masuda-Kuroki K, Wang Z, Sriram K, Insel PA. Mast cell tolerance in the skin microenvironment to commensal bacteria is controlled by fibroblasts. Cell Rep 2023; 42:112453. [PMID: 37120813 DOI: 10.1016/j.celrep.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Activation and degranulation of mast cells (MCs) is an essential aspect of innate and adaptive immunity. Skin MCs, the most exposed to the external environment, are at risk of quickly degranulating with potentially severe consequences. Here, we define how MCs assume a tolerant phenotype via crosstalk with dermal fibroblasts (dFBs) and how this phenotype reduces unnecessary inflammation when in contact with beneficial commensal bacteria. We explore the interaction of human MCs (HMCs) and dFBs in the human skin microenvironment and test how this interaction controls MC inflammatory response by inhibiting the nuclear factor κB (NF-κB) pathway. We show that the extracellular matrix hyaluronic acid, as the activator of the regulatory zinc finger (de)ubiquitinating enzyme A20/tumor necrosis factor α-induced protein 3 (TNFAIP3), is responsible for the reduced HMC response to commensal bacteria. The role of hyaluronic acid as an anti-inflammatory ligand on MCs opens new avenues for the potential treatment of inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Yu-Ling Chang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Shahrzad Alimohammadi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Kana Masuda-Kuroki
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Krishna Sriram
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Paul A Insel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Szalus K, Zysk W, Gleń J, Zabłotna M, Nowicki RJ, Trzeciak M. The Associations of Single Nucleotide Polymorphisms of the COL3A1, COL6A5, and COL8A1 Genes with Atopic Dermatitis. J Pers Med 2023; 13:661. [PMID: 37109047 PMCID: PMC10146150 DOI: 10.3390/jpm13040661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The pathophysiology of atopic dermatitis (AD) is complex, multifactorial, and not fully understood. Genes encoding collagens, the most abundant proteins in the extracellular matrix (ECM), may play a potential role in the pathogenesis of AD. Our study aimed to estimate the associations between Col3A1/rs1800255, Col6A5 /29rs12488457, and Col8A1/rs13081855 polymorphisms and the occurrence, course, and features of AD in the Polish population. Blood samples were collected from 157 patients with AD and 111 healthy volunteers. The genotype distribution of the investigated collagens genes did not differ significantly between the AD and control subjects (p > 0.05). The AA genotype of Col3A1/rs1800255 was significantly associated with the occurrence of mild SCORAD (OR = 0.16; 95% Cl: 0.03-0.78; p = 0.02) and mild pruritus (OR = 18.5; 95% Cl: 3.48-98.40; p = 0.0006), while the GG genotype was significantly associated with severe SCORAD (OR = 6.6; 95% Cl: 1.23-32.35; p = 0.03). Regarding Col6A5/29rs12488457 polymorphism, the average SCORAD score was significantly lower in the group of patients with genotype AA than in patients with the AC genotype (39.8 vs. 53.4; p = 0.04). Nevertheless, both average SCORAD scores were high, and represent the moderate and severe grades of the diseases, respectively. The single nucleotide polymorphisms (SNPs) of COL3A1/ rs1800255 and Col6A5/29rs12488457 seem to be associated with AD courses and symptoms, suggesting new disease biomarkers. The modulation of collagens, the major component of the ECM, may serve as a therapeutic target of AD in the future.
Collapse
Affiliation(s)
- Krzysztof Szalus
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (K.S.); (J.G.); (M.Z.); (R.J.N.)
| | - Weronika Zysk
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (K.S.); (J.G.); (M.Z.); (R.J.N.)
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (K.S.); (J.G.); (M.Z.); (R.J.N.)
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (K.S.); (J.G.); (M.Z.); (R.J.N.)
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (K.S.); (J.G.); (M.Z.); (R.J.N.)
| |
Collapse
|
15
|
Qu A, Bai Y, Wang J, Zhao J, Zeng J, Liu Y, Chen X, Ke Q, Jiang P, Zhang X, Li X, Xu P, Zhou T. Integrated mRNA and miRNA expression analyses for Cryptocaryon irritans resistance in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108650. [PMID: 36858330 DOI: 10.1016/j.fsi.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. However, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatened the healthy and sustainable development of L. crocea industry. Recently, a new C. irritans resistance strain of L. crocea (RS) has been bred using genomic selection technology in our laboratory work. However, the molecular mechanisms for C. irritans resistance of RS have not been fully understood. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that are post-transcriptional regulators, and they play vital roles in immune process of bony fish. Identification of anti-C.irritans relevant miRNA signatures could, therefore, be of tremendous translational value. In the present study, integrated mRNA and miRNA expression analysis was used to explore C. irritans resistance mechanisms of the L. crocea. RS as well as a control strain (CS) of L. crocea, were artificially infected with C. irritans for 100 h, and their gill was collected at 0 h (pre-infection), 24 h (initial infection), and 72 h (peak infection) time points. The total RNA from gill tissues was extracted and used for transcriptome sequencing and small RNA sequencing. After sequencing, 23,172 known mRNAs and 289 known miRNAs were identified. The differential expression was analyzed in these mRNAs and mRNAs and the interactions of miRNA-mRNA pairs were constructed. KEGG pathway enrichment analyses showed that these putative target mRNAs of differentially expressed miRNAs (DEMs) were enriched in different immune-related pathways after C. irritans infection in RS and CS. Among them, necroptosis was the immune-related pathway that was only significantly enriched at two infection stages of RS group (RS-24 h/RS-0h and RS-72 h/RS-0h). Further investigation indicates that necroptosis may be activated by DEMs such as miR-133a-3p, miR-142a-3p and miR-135c, this promotes inflammation responses and pathogen elimination. These DEMs were selected as miRNAs that could potentially regulate the C. irritans resistance of L. crocea. Though these inferences need to be further verified, these findings will be helpful for the research of the molecular mechanism of C. irritans resistance of L. crocea and miRNA-assisted molecular breeding of aquatic animals.
Collapse
Affiliation(s)
- Ang Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junjia Zeng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xintong Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Pengxin Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xin Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
16
|
Liu XX, Chen CY, Li L, Guo MM, He YF, Meng H, Dong YM, Xiao PG, Yi F. Bibliometric Study of Adaptogens in Dermatology: Pharmacophylogeny, Phytochemistry, and Pharmacological Mechanisms. Drug Des Devel Ther 2023; 17:341-361. [PMID: 36776447 PMCID: PMC9912821 DOI: 10.2147/dddt.s395256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Background Adaptogens are a class of medicinal plants that can nonspecifically enhance human resistance. Most of the plant adaptogens have relevant applications in dermatology, but there are still few studies related to their particular action and co-operative mechanisms in topical skin application. Methods Plant adaptogens related articles and reviews that published between 1999 and 2022 were obtained from the Web of Science Core Collection database. Various bibliographic elements were collected, including the annual number of publications, countries/regions, and keywords. CiteSpace, a scientometric software, was used to conduct bibliometric analyses. Also, the patsnap global patent database was used to analyze the patent situation of plant adaptogens in the field of cosmetics up to 2021. Results We found that the effects of plant adaptogens on skin diseases mainly involve atopic dermatitis, acne, allergic contact dermatitis, psoriasis, eczema, and androgenetic alopecia, etc. And the effects on skin health mainly involve anti-aging and anti-photoaging, anti-bacterial and anti-fungal, anti-inflammatory, whitening, and anti-hair loss, etc. Also, based on the results of patent analysis, it is found that the effects of plant adaptogens on skin mainly focus on aging retardation. The dermatological effects of plant adaptogens are mainly from Fabaceae Lindl., Araliaceae Juss. and Lamiaceae Martinov., and their mainly efficacy phytochemical components are terpenoids, phenolic compounds and flavonoids. Conclusion The plant adaptogens can repair the skin barrier and maintain skin homeostasis by regulating the skin HPA-like axis, influencing the oxidative stress pathway to inhibit inflammation, and regulating the extracellular matrix (ECM) components to maintain a dynamic equilibrium, ultimately achieving the treatment of skin diseases and the maintenance of a healthy state.
Collapse
Affiliation(s)
- Xiao-Xing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Chun-Yu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Miao-Miao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yi-Fan He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China,Correspondence: Fan Yi, Email
| |
Collapse
|
17
|
Induction of psoriasis- and atopic dermatitis-like phenotypes in 3D skin equivalents with a fibroblast-derived matrix. Sci Rep 2023; 13:1807. [PMID: 36720910 PMCID: PMC9889787 DOI: 10.1038/s41598-023-28822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Skin homeostasis is a complex regulated process relying on the crosstalk of keratinocytes, fibroblasts and immune cells. Imbalances of T-cell subsets and the cytokine environment can lead to inflammatory skin diseases such as psoriasis (Ps) and atopic dermatitis (AD). Modern tissue engineering provides several in vitro models mimicking Ps and AD phenotypes. However, these models are either limited in their pathological features, life span, sample availability, reproducibility, controlled handling or simplicity. Some models further lack intensive characterization as they solely focus on differentiation and proliferation aspects. This study introduces a self-assembly model in which the pathological T-cell-signalling of Ps and AD was simulated by subcutaneous Th1 and Th2 cytokine stimulation. The self-established dermal fibroblast-derived matrices of these models were hypothesized to be beneficial for proximal cytokine signalling on epidermal keratinocytes. Comprehensive histological and mRNA analyses of the diseased skin models showed a weakened barrier, distinct differentiation defects, reduced cellular adhesion, inflammation and parakeratosis formation. A keratin shift of declining physiological cytokeratin-10 (CK10) towards increasing inflammatory CK16 was observed upon Th1 or Th2 stimulation. Antimicrobial peptides (AMPs) were upregulated in Ps and downregulated in AD models. The AD biomarker genes CA2, NELL2 and CCL26 were further induced in AD. While Ps samples featured basal hyperproliferation, cells in AD models displayed apoptotic signs. In accordance, these well-controllable three-dimensional in vitro models exhibited Ps and AD-like phenotypes with a high potential for disease research and therapeutic drug testing.
Collapse
|
18
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
19
|
Zhu C, Ren Y, Yao H, Feng B, Liu L, Zheng M. Heparanase Contributes to Psoriatic Lesions Through Crosstalk with IL-17 Pathway. Indian J Dermatol 2023; 68:59-66. [PMID: 37151254 PMCID: PMC10162766 DOI: 10.4103/ijd.ijd_641_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Psoriasis is a chronic inflammatory disease that is considered by a network of immunocytes and cytokines. Among all, Th17 cells-derived IL-17 is a critical driving factor in the pathogenesis of psoriasis. Recently, disruption of the extracellular matrix was found to be related to psoriasis progression. In the present study, we aimed to investigate the role of heparanase (HPSE) in psoriasis and the crosstalk with the IL-17 signalling pathway. Skin tissues from non-affected areas and psoriatic lesion areas before and after 12 weeks of IL-17 monoclonal antibody treatment of 30 psoriasis patients were collected. HaCaT cells were treated with different concentrations of IL-17 antibody, and HPSE in cells and medium were measured with Western blotting assay as well as enzyme-linked immunosorbent assay (ELISA). In the imiquimod (IMQ)-induced psoriasis model, IL-17 protein and mRNA expression levels were measured, and changes in the proportion of Th17 cells were detected via flow cytometry. Our data showed that HPSE is upregulated in lesion tissues isolated from psoriasis patients, and was inhibited by anti-IL-17 treatment. In cutaneous cells and IMQ-induced psoriasis model, IL-17 promoted the synthesis of HPSE. Inversely, HPSE was also found to increase the percentage of Th17 cells derived from CD4+ T cells. Finally, we found that the combined treatments of HPSE inhibitor and IL-17 monoclonal antibody produced therapeutic effects on IMQ-induced psoriasis model. Our findings revealed the new role of HPSE in the pathogenesis of psoriasis and also provided a target for combined treatment of psoriasis.
Collapse
Affiliation(s)
- Chengyao Zhu
- From the Department of Dermatology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Dermatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunqin Ren
- Department of Dermatology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongliang Yao
- From the Department of Dermatology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Bo Feng
- From the Department of Dermatology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lunfei Liu
- From the Department of Dermatology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Feng Z, Zhang Y, Yang C, Liu X, Huangfu Y, Zhang C, Huang P, Dong A, Liu J, Liu J, Kong D, Wang W. Bioinspired and Inflammation-Modulatory Glycopeptide Hydrogels for Radiation-Induced Chronic Skin Injury Repair. Adv Healthc Mater 2023; 12:e2201671. [PMID: 36183357 DOI: 10.1002/adhm.202201671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 02/03/2023]
Abstract
Clinical wound management of radiation-induced skin injury (RSI) remains a great challenge due to acute injuries induced by excessive reactive oxygen species (ROS), and the concomitant repetitive inflammatory microenvironment caused by an imbalance in macrophage homeostasis. Herein, a cutaneous extracellular matrix (ECM)-inspired glycopeptide hydrogel (GK@TAgel ) is rationally designed for accelerating wound healing through modulating the chronic inflammation in RSI. The glycopeptide hydrogel not only replicates ECM-like glycoprotein components and nanofibrous architecture, but also displays effective ROS scavenging and radioprotective capability that can reduce the acute injuries after exposure to irradiation. Importantly, the mannose receptor (MR) in GK@TAgel exhibits high affinity and bioactivity to drive the M2 macrophage polarization, thereby overcoming the persistent inflammatory microenvironment in chronic RSI. The repair of RSI in mice demonstrates that GK@TAgel significantly reduces the hyperplasia of epithelial, promotes appendage regeneration and angiogenesis, and decreased the proinflammatory cytokine expression, which is superior to the treatment of commercial radioprotective drug amifostine. Collectively, the ECM-mimetic hydrogel dressing can protect the tissue from irradiation and heal the chronic wound in RSI, holding great potential in clinical wound management and tissue regeneration.
Collapse
Affiliation(s)
- Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunfang Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiang Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yini Huangfu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.,Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing, 100144, China
| |
Collapse
|
21
|
Tripathi D, Srivastava M, Rathour K, Rai AK, Wal P, Sahoo J, Tiwari RK, Pandey P. A Promising Approach of Dermal Targeting of Antipsoriatic Drugs via Engineered Nanocarriers Drug Delivery Systems for Tackling Psoriasis. DRUG METABOLISM AND BIOANALYSIS LETTERS 2023; 16:89-104. [PMID: 37534794 DOI: 10.2174/2949681016666230803150329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Psoriasis is a complex autoimmune skin condition with a significant genetic component. It causes skin inflammation and is characterized by flaky, silvery reddish spots that can worsen with age. This condition results from an impaired immunological response of T-cells and affects 2-5% of the global population. The severity of the illness determines the choice of treatment. Topical treatments are commonly used to treat psoriasis, but they can have several adverse effects. Biological therapy is another option for treating specific types of psoriasis. Recently, new nanoformulations have revolutionized psoriasis treatment. Various nanocarriers, such as liposomes, nanostructured lipid nanoparticles, niosomes, and nanoemulsions, have been developed and improved for drug delivery. The use of nanocarriers enhances patient compliance, precise drug delivery, and drug safety. This review aims to suggest new nanocarrier-based drug delivery systems for treating psoriasis. It discusses the importance of nanocarriers and compares them to traditional treatments. Anti-psoriatic drugs have also been investigated for cutaneous delivery using nanocarriers. The review also covers various factors that influence dermal targeting. By highlighting several relevant aspects of psoriasis treatment, the review emphasizes the current potential of nanotechnology. Using nanocarriers as a drug delivery technique may be a promising alternative treatment for psoriasis.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Mansi Srivastava
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Krislay Rathour
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Awani Kumar Rai
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Jagannath Sahoo
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, India
| | - Ritesh Kumar Tiwari
- Department of Pharmacy, Shri Ram Murti Smarak College of Engineering and Technology, Bareilly, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
22
|
Corano Scheri K, Liang X, Dalal V, Le Poole IC, Varga J, Hayashida T. SARA suppresses myofibroblast precursor transdifferentiation in fibrogenesis in a mouse model of scleroderma. JCI Insight 2022; 7:160977. [PMID: 36136606 PMCID: PMC9675568 DOI: 10.1172/jci.insight.160977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
We previously reported that Smad anchor for receptor activation (SARA) plays a critical role in maintaining epithelial cell phenotype. Here, we show that SARA suppressed myofibroblast precursor transdifferentiation in a mouse model of scleroderma. Mice overexpressing SARA specifically in PDGFR-β+ pericytes and pan-leukocytes (SARATg) developed significantly less skin fibrosis in response to bleomycin injection compared with wild-type littermates (SARAWT). Single-cell RNA-Seq analysis of skin PDGFR-β+ cells implicated pericyte subsets assuming myofibroblast characteristics under fibrotic stimuli, and SARA overexpression blocked the transition. In addition, a cluster that expresses molecules associated with Th2 cells and macrophage activation was enriched in SARAWT mice, but not in SARATg mice, after bleomycin treatment. Th2-specific Il-31 expression was increased in skin of the bleomycin-treated SARAWT mice and patients with scleroderma (or systemic sclerosis, SSc). Receptor-ligand analyses indicated that lymphocytes mediated pericyte transdifferentiation in SARAWT mice, while with SARA overexpression the myofibroblast activity of pericytes was suppressed. Together, these data suggest a potentially novel crosstalk between myofibroblast precursors and immune cells in the pathogenesis of SSc, in which SARA plays a critical role.
Collapse
Affiliation(s)
- Katia Corano Scheri
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Xiaoyan Liang
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vidhi Dalal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Departments of Dermatology and Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tomoko Hayashida
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Cramer M, Pineda Molina C, Hussey G, Turnquist HR, Badylak SF. Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33. Tissue Eng Part A 2022; 28:867-878. [PMID: 35770892 PMCID: PMC9634988 DOI: 10.1089/ten.tea.2022.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Tian Q, Gao H, Ma Y, Zhu L, Zhou Y, Shen Y, Wang B. The regulatory roles of T helper cells in distinct extracellular matrix characterization in breast cancer. Front Immunol 2022; 13:871742. [PMID: 36159822 PMCID: PMC9493030 DOI: 10.3389/fimmu.2022.871742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The ECM has been recognized as an important determinant of breast cancer progression and prognosis. Recent studies have revealed a strong link between ECM remodeling and immune cell infiltration in a variety of tumor types. However, the landscape and specific regulatory mechanisms between ECM and immune microenvironment in breast cancer have not been fully understood. Methods Using genomic data and clinical information of breast cancer patients obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we conducted an extensive multi-omics analysis to explore the heterogeneity and prognostic significance of the ECM microenvironment. Masson and Sirius red staining were applied to quantify the contents of collagen in the ECM microenvironment. Tissue immunofluorescence (IF) staining was applied to identify T helper (Th) cells. Results We classified breast cancer patients into two ECM-clusters and three gene-clusters by consensus clustering. Significant heterogeneity in prognosis and immune cell infiltration have been found in these distinct clusters. Specifically, in the ECM-cluster with better prognosis, the expression levels of Th2 and regulatory T (Treg) cells were reduced, while the Th1, Th17 and T follicular helper (Tfh) cells-associated activities were significantly enhanced. The correlations between ECM characteristics and Th cells infiltration were then validated by clinical tissue samples from our hospital. The ECM-associated prognostic model was then constructed by 10 core prognostic genes and stratified breast cancer patients into two risk groups. Kaplan-Meier analysis showed that the overall survival (OS) of breast cancer patients in the high-risk group was significantly worse than that of the low-risk group. The risk scores for breast cancer patients obtained from our prognostic model were further confirmed to be associated with immune cell infiltration, tumor mutation burden (TMB) and stem cell indexes. Finally, the half-maximal inhibitory concentration (IC50) values of antitumor agents for patients in different risk groups were calculated to provide references for therapy targeting distinct ECM characteristics. Conclusion Our findings identify a novel strategy for breast cancer subtyping based on the ECM characterization and reveal the regulatory roles of Th cells in ECM remodeling. Targeting ECM remodeling and Th cells hold potential to be a therapeutic alternative for breast cancer in the future.
Collapse
Affiliation(s)
- Qi Tian
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Gao
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Ma
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lizhe Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhou
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanwei Shen
- Department of Surgery Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Yanwei Shen, ; Bo Wang,
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yanwei Shen, ; Bo Wang,
| |
Collapse
|
25
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| |
Collapse
|
26
|
Visscher MO, Carr AN, Narendran V. Epidermal Immunity and Function: Origin in Neonatal Skin. Front Mol Biosci 2022; 9:894496. [PMID: 35755808 PMCID: PMC9215705 DOI: 10.3389/fmolb.2022.894496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
The fascinating story of epidermal immunity begins in utero where the epidermal barrier derives from the ectoderm and evolves through carefully orchestrated biological processes, including periderm formation, keratinocyte differentiation, proliferation, cornification, and maturation, to generate a functional epidermis. Vernix caseosa derives from epidermal cells that mix with sebaceous lipids and coat the fetus during late gestation, likely to provide conditions for cornification. At birth, infants dramatically transition from aqueous conditions to a dry gaseous environment. The epidermal barrier begins to change within hours, exhibiting decreased hydration and low stratum corneum (SC) cohesion. The SC varied by gestational age (GA), transformed over the next 2–3 months, and differed considerably versus stable adult skin, as indicated by analysis of specific protein biomarkers. Regardless of gestational age, the increased infant SC proteins at 2–3 months after birth were involved in late differentiation, cornification, and filaggrin processing compared to adult skin. Additionally, the natural moisturizing factor (NMF), the product of filaggrin processing, was higher for infants than adults. This suggests that neonatal skin provides innate immunity and protection from environmental effects and promotes rapid, continued barrier development after birth. Functional genomic analysis showed abundant differences across biological processes for infant skin compared to adult skin. Gene expression for extracellular matrix, development, and fatty acid metabolism was higher for infant skin, while adult skin had increased expression of genes for the maintenance of epidermal homeostasis, antigen processing/presentation of immune function, and others. These findings provide descriptive information about infant epidermal immunity and its ability to support the newborn’s survival and growth, despite an environment laden with microbes, high oxygen tension, and irritants.
Collapse
Affiliation(s)
- Marty O Visscher
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Andrew N Carr
- The Procter and Gamble Company, Cincinnati, OH, United States
| | - Vivek Narendran
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
27
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
28
|
Sun Y, Xu L, Li Y, Lin J, Li H, Gao Y, Huang X, Zhu H, Zhang Y, Wei K, Yang Y, Wu B, Zhang L, Li Q, Liu C. Single-Cell Transcriptomics Uncover Key Regulators of Skin Regeneration in Human Long-Term Mechanical Stretch-Mediated Expansion Therapy. Front Cell Dev Biol 2022; 10:865983. [PMID: 35712657 PMCID: PMC9195629 DOI: 10.3389/fcell.2022.865983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Tissue expansion is a commonly performed therapy to grow extra skin invivo for reconstruction. While mechanical stretch-induced epidermal changes have been extensively studied in rodents and cell culture, little is known about the mechanobiology of the human epidermis in vivo. Here, we employed single-cell RNA sequencing to interrogate the changes in the human epidermis during long-term tissue expansion therapy in clinical settings. We also verified the main findings at the protein level by immunofluorescence analysis of independent clinical samples. Our data show that the expanding human skin epidermis maintained a cellular composition and lineage trajectory that are similar to its non-expanding neighbor, suggesting the cellular heterogeneity of long-term expanded samples differs from the early response to the expansion. Also, a decrease in proliferative cells due to the decayed regenerative competency was detected. On the other hand, profound transcriptional changes are detected for epidermal stem cells in the expanding skin versus their non-expanding peers. These include significantly enriched signatures of C-FOS, EMT, and mTOR pathways and upregulation of AREG and SERPINB2 genes. CellChat associated ligand-receptor pairs and signaling pathways were revealed. Together, our data present a single-cell atlas of human epidermal changes in long-term tissue expansion therapy, suggesting that transcriptional change in epidermal stem cells is the major mechanism underlying long-term human skin expansion therapy. We also identified novel therapeutic targets to promote human skin expansion efficiency in the future.
Collapse
Affiliation(s)
- Yidan Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Lin
- Department of Orthopedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hainan Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingfan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunchen Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laser Cosmetology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baojin Wu
- Department of Plastic Surgery, Shanghai Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiyue Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Alsinet C, Primo MN, Lorenzi V, Bello E, Kelava I, Jones CP, Vilarrasa-Blasi R, Sancho-Serra C, Knights AJ, Park JE, Wyspianska BS, Trynka G, Tough DF, Bassett A, Gaffney DJ, Alvarez-Errico D, Vento-Tormo R. Robust temporal map of human in vitro myelopoiesis using single-cell genomics. Nat Commun 2022; 13:2885. [PMID: 35610203 PMCID: PMC9130280 DOI: 10.1038/s41467-022-30557-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Myeloid cells are central to homeostasis and immunity. Characterising in vitro myelopoiesis protocols is imperative for their use in research, immunotherapies, and understanding human myelopoiesis. Here, we generate a >470K cells molecular map of human induced pluripotent stem cells (iPSC) differentiation into macrophages. Integration with in vivo single-cell atlases shows in vitro differentiation recapitulates features of yolk sac hematopoiesis, before definitive hematopoietic stem cells (HSC) emerge. The diversity of myeloid cells generated, including mast cells and monocytes, suggests that HSC-independent hematopoiesis can produce multiple myeloid lineages. We uncover poorly described myeloid progenitors and conservation between in vivo and in vitro regulatory programs. Additionally, we develop a protocol to produce iPSC-derived dendritic cells (DC) resembling cDC2. Using CRISPR/Cas9 knock-outs, we validate the effects of key transcription factors in macrophage and DC ontogeny. This roadmap of myeloid differentiation is an important resource for investigating human fetal hematopoiesis and new therapeutic opportunities.
Collapse
Affiliation(s)
- Clara Alsinet
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Maria Nascimento Primo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Erica Bello
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Iva Kelava
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carla P Jones
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Carmen Sancho-Serra
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrew J Knights
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Beata S Wyspianska
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David F Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Andrew Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Damiana Alvarez-Errico
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Barcelona, Catalonia, Spain.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
30
|
Low WY, Rosen BD, Ren Y, Bickhart DM, To TH, Martin FJ, Billis K, Sonstegard TS, Sullivan ST, Hiendleder S, Williams JL, Heaton MP, Smith TPL. Gaur genome reveals expansion of sperm odorant receptors in domesticated cattle. BMC Genomics 2022; 23:344. [PMID: 35508966 PMCID: PMC9069736 DOI: 10.1186/s12864-022-08561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The gaur (Bos gaurus) is the largest extant wild bovine species, native to South and Southeast Asia, with unique traits, and is listed as vulnerable by the International Union for Conservation of Nature (IUCN). Results We report the first gaur reference genome and identify three biological pathways including lysozyme activity, proton transmembrane transporter activity, and oxygen transport with significant changes in gene copy number in gaur compared to other mammals. These may reflect adaptation to challenges related to climate and nutrition. Comparative analyses with domesticated indicine (Bos indicus) and taurine (Bos taurus) cattle revealed genomic signatures of artificial selection, including the expansion of sperm odorant receptor genes in domesticated cattle, which may have important implications for understanding selection for male fertility. Conclusions Apart from aiding dissection of economically important traits, the gaur genome will also provide the foundation to conserve the species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08561-1.
Collapse
Affiliation(s)
- Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| | - Benjamin D Rosen
- Animal Genomics and Improvement LaboratoryARS USDA, Beltsville, MD, USA
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | | | - Thu-Hien To
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430, Ås, Norway
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Shawn T Sullivan
- Phase Genomics, 4000 Mason Road, Suite 225, Seattle, WA, 98195, USA
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.,Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Michael P Heaton
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Timothy P L Smith
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA.
| |
Collapse
|
31
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
32
|
García-Gareta E, Pérez MÁ, García-Aznar JM. Decellularization of tumours: A new frontier in tissue engineering. J Tissue Eng 2022; 13:20417314221091682. [PMID: 35495097 PMCID: PMC9044784 DOI: 10.1177/20417314221091682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. The tumour extracellular
matrix (ECM) has unique features in terms of composition and mechanical
properties, resulting in a structurally and chemically different ECM to that of
native, healthy tissues. This paper reviews to date the efforts into
decellularization of tumours, which in the authors’ view represents a new
frontier in the ever evolving field of tumour tissue engineering. An overview of
the ECM and its importance in cancer is given, ending with examples of research
using decellularized tumours, which has already indicated potential therapeutic
targets, unravelled malignancy mechanisms or response to chemotherapy agents.
The review highlights that more research is needed in this area, which can
answer important questions related to tumour formation and progression to
ultimately identify new and effective therapeutic targets. Within the
near-future of personalized medicine, this research can create patient-specific
tumour models and therapeutic regimes.
Collapse
Affiliation(s)
- Elena García-Gareta
- Aragonese Agency for R&D (ARAID) Foundation, Zaragoza, Aragón, Spain
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| |
Collapse
|
33
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Liu RJ, Xu ZP, Li SY, Yu JJ, Feng NH, Xu B, Chen M. BAP1-Related ceRNA (NEAT1/miR-10a-5p/SERPINE1) Promotes Proliferation and Migration of Kidney Cancer Cells. Front Oncol 2022; 12:852515. [PMID: 35425712 PMCID: PMC9004599 DOI: 10.3389/fonc.2022.852515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Background BAP1 is an important tumor suppressor involved in various biological processes and is commonly lost or inactivated in clear-cell renal cell carcinoma (ccRCC). However, the role of the BAP1-deficient tumor competing endogenous RNA (ceRNA) network involved in ccRCC remains unclear. Thus, this study aims to investigate the prognostic BAP1-related ceRNA in ccRCC. Methods Raw data was obtained from the TCGA and the differentially expressed genes were screened to establish a BAP1-related ceRNA network. Subsequently, the role of the ceRNA axis was validated using phenotypic experiments. Dual-luciferase reporter assays and fluorescence in situ hybridization (FISH) assays were used to confirm the ceRNA network. Results Nuclear enriched abundant transcript 1 (NEAT1) expression was significantly increased in kidney cancer cell lines. NEAT1 knockdown significantly inhibited cell proliferation and migration, which could be reversed by miR-10a-5p inhibitor. Dual-luciferase reporter assay confirmed miR-10a-5p as a common target of NEAT1 and Serine protease inhibitor family E member 1 (SERPINE1). FISH assays revealed the co-localization of NEAT1 and miR-10a-5p in the cytoplasm. Additionally, the methylation level of SERPINE1 in ccRCC was significantly lower than that in normal tissues. Furthermore, SERPINE1 expression was positively correlated with multiple immune cell infiltration levels. Conclusions In BAP1-deficient ccRCC, NEAT1 competitively binds to miR-10a-5p, indirectly upregulating SERPINE1 expression to promote kidney cancer cell proliferation. Furthermore, NEAT1/miR-10a-5p/SERPINE1 were found to be independent prognostic factors of ccRCC.
Collapse
Affiliation(s)
- Rui-Ji Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Zhi-Peng Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shu-Ying Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, UESTC, Chengdu, China
| | - Jun-Jie Yu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Ning-Han Feng
- Department of Urology, Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.,Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
35
|
Wu YZ, Jiang HS, Han HF, Li PH, Lu MR, Tsai IJ, Wu YC. C. elegans BLMP-1 controls apical epidermal cell morphology by repressing expression of mannosyltransferase bus-8 and molting signal mlt-8. Dev Biol 2022; 486:96-108. [DOI: 10.1016/j.ydbio.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
|
36
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
37
|
Yang Q, Ouyang J, Pi D, Feng L, Yang J. Malassezia in Inflammatory Bowel Disease: Accomplice of Evoking Tumorigenesis. Front Immunol 2022; 13:846469. [PMID: 35309351 PMCID: PMC8931276 DOI: 10.3389/fimmu.2022.846469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that patients with inflammatory bowel disease (IBD) have a significantly higher risk of developing different cancers, while the exact mechanism involved is not yet fully understood. Malassezia is a lipid-dependent opportunistic yeast, which colonizes on mammalian skin and internal organs. Also, dysbiosis in fungal communities accompanied by high level of Malassezia are fairly common in inflammatory diseases such as IBD and various cancers. In cancer patients, higher levels of Malassezia are associated with worse prognosis. Once it is ablated in tumor-bearing mice, their prognostic conditions will be improved. Moreover, Malassezia manifests multiple proinflammatory biological properties, such as destruction of epithelial barrier, enrichment of inflammatory factors, and degradation of extracellular matrix (ECM), all of which have been reported to contribute to tumor initiation and malignant progression. Based on these facts, we hypothesize that high levels of Malassezia together with mycobiome dysbiosis in patients with IBD, would aggravate the microecological imbalance, worsen the inflammatory response, and further promote tumorigenesis and deterioration. Herein, we will discuss the detrimental properties of Malassezia and explore the key role of this fungus in the correlation between IBD and cancer, in order to take early surveillance and intervention to minimize the cancer risk in individuals with IBD.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Feng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| |
Collapse
|
38
|
Beksaç B, Gleason L, Baik S, Ringe JM, Porcu P, Nikbakht N. Dermal fibroblasts promote cancer cell proliferation and exhibit fibronectin overexpression in early mycosis fungoides. J Dermatol Sci 2022; 106:53-60. [PMID: 35331619 PMCID: PMC9133159 DOI: 10.1016/j.jdermsci.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) is caused by proliferation of malignant T-cells in the skin and may progress to involve blood, lymph nodes, and viscera. While the skin microenvironment is essential for the initiation and progression of MF in early stages, little is known about the impact of skin stroma on the growth and survival of malignant lymphocytes. OBJECTIVE We investigated the effect of dermal fibroblasts and their product, fibronectin, on the survival and proliferation of malignant MF cells. METHODS Fibroblasts and malignant MF CD4 T-cells were isolated from skin of patients with early-stage MF. Fibroblast-lymphocyte co-culture experiments and lymphocyte cultures on fibronectin-coated plates were established utilizing the cells derived from lesional skin, blood, and MF cell lines. The survival and proliferation rates of lymphocytes were assessed via Annexin V and carboxyfluorescein succinimidyl ester assays respectively. Additionally, integrin and fibronectin expressions in MF skin were assessed via immunofluorescence. RESULTS We found that dermal fibroblasts increased the proliferation rates of MF cells, but not normal skin or blood CD4 T-cells. However, fibroblasts did not rescue MF cells from apoptosis in co-cultures. In MF skin, we found an overexpression of a fibronectin isoform not normally found in healthy skin. MF cells expressed fibronectin-binding integrins and adhered to fibronectin but did not exhibit adhesion-mediated survival via fibronectin-integrin interactions. CONCLUSION Overall, our results suggest a direct role for fibroblasts, independent of fibronectin-mediated adhesion, in promoting MF cell proliferation. These findings have implications in understanding and targeting the malignant skin stromal microenvironment in cutaneous lymphomas.
Collapse
|
39
|
The potential inhibitory effect of ginsenoside Rh2 on mitophagy in UV-irradiated human dermal fibroblasts. J Ginseng Res 2022; 46:646-656. [PMID: 36090683 PMCID: PMC9459079 DOI: 10.1016/j.jgr.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background In addition to its use as a health food, ginseng is used in cosmetics and shampoo because of its extensive health benefits. The ginsenoside, Rh2, is a component of ginseng that inhibits tumor cell proliferation and differentiation, promotes insulin secretion, improves insulin sensitivity, and shows antioxidant effects. Methods The effects of Rh2 on cell survival, extracellular matrix (ECM) protein expression, and cell differentiation were examined. The antioxidant effects of Rh2 in UV-irradiated normal human dermal fibroblast (NHDF) cells were also examined. The effects of Rh2 on mitochondrial function, morphology, and mitophagy were investigated in UV-irradiated NHDF cells. Results Rh2 treatment promoted the proliferation of NHDF cells. Additionally, Rh2 increased the expression levels of ECM proteins and growth-associated immediate-early genes in ultraviolet (UV)-irradiated NHDF cells. Rh2 also affected antioxidant protein expression and increased total antioxidant capacity. Furthermore, treatment with Rh2 ameliorated the changes in mitochondrial morphology, induced the recovery of mitochondrial function, and inhibited the initiation of mitophagy in UV-irradiated NHDF cells. Conclusion Rh2 inhibits mitophagy and reinstates mitochondrial ATP production and membrane potential in NHDF cells damaged by UV exposure, leading to the recovery of ECM, cell proliferation, and antioxidant capacity.
Collapse
|
40
|
Boda SK, Aparicio C. Dual keratinocyte-attachment and anti-inflammatory coatings for soft tissue sealing around transmucosal oral implants. Biomater Sci 2022; 10:665-677. [PMID: 34981081 DOI: 10.1039/d1bm01649k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unlike the attachment of soft epithelial skin tissue to penetrating solid natural structures like fingernails and teeth, sealing around percutaneous/permucosal devices such as dental implants is hindered by inflammation and epidermal down growth. Here, we employed a dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium to promote oral epithelial tissue attachment. For minimizing inflammation-triggered epidermal down growth, we coated pristine and oxygen plasma pre-treated polished titanium (pTi) with conjugated linoleic acid (CLA). Further, in order to aid in soft tissue attachment via the formation of hemidesmosomes, adhesive structures by oral keratinocytes, we coated the anionic linoleic acid (LA) adsorbed titanium with cationic cell adhesive peptides (CAP), LamLG3, a peptide derived from Laminin 332, the major extracellular matrix component of the basement membrane in skin tissue and Net1, derived from Netrin-1, a neural chemoattractant capable of epithelial cell attachment via α6β4 integrins. The dual CLA-CAP coatings on pTi were characterized by X-ray photoelectron spectroscopy and dynamic water contact angle measurements. The proliferation of human oral keratinocytes (TERT-2/OKF6) was accelerated on the peptide coated titanium while also promoting the expression of Col XVII and β-4 integrin, two markers for hemidesmosomes. Simultaneously, CLA coating suppressed the production of inducible nitric oxide synthase (anti-iNOS); a pro-inflammatory M1 marker expressed in lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7) and elevated expression of anti-CD206, associated to an anti-inflammatory M2 macrophage phenotype. Taken together, the dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium can help reduce inflammation and promote permucosal/peri-implant soft tissue sealing.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,Division of Basic Research, Department of Odontology, UIC Barcelona - Universitat Internacional de Catalunya, Sant Cugat del Vallès, (Barcelona), Spain. .,BIST - Barcelona Institute for Science and Technology, Barcelona, Spain
| |
Collapse
|
41
|
Chhabra S, Dogra S, Sharma K, Raychaudhuri SK, Raychaudhuri SP. Recent Update on Immunopathogenesis of Psoriasis. Indian J Dermatol 2022; 67:360-373. [PMID: 36578729 PMCID: PMC9792009 DOI: 10.4103/ijd.ijd_569_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Psoriasis is a chronic disabling complex inflammatory disorder prevalent worldwide with environmental and genetic components that involve predominantly skin in addition to nails and joints associated with various systemic comorbidities having periods of exacerbations and remissions. Psoriasis is characterized by hyper-proliferation as well as abnormal differentiation of epidermal keratinocytes and lymphocyte infiltration (mainly T cells) with resultant inflammatory cytokines and chemokines. Immunological and genetic studies over the last decade have identified genetic susceptibility risk alleles, molecular, cellular and immunological mechanisms involved in immunopathogenesis of psoriasis. The current disease model emphasizes the role of aberrant Th1 and Th17 responses regulated by a complex network of different cytokines, including TNF-α, IL-17 and IL-23; signal transduction pathways downstream to the cytokine receptors; and various activated transcription factors, including NF-κB, interferon regulatory factors and signal transducer and activator of transcriptions. Cytokines targeting biologics (IL-17, IL-23 and TNFα) therapies have revolutionized the management of severe skin disease having beneficial effects on joints and systemic inflammation of psoriasis as well. Further better understanding of immunopathogenesis of psoriasis will pave way for precision medicine based on specific immunopathogenic targets in a given phenotype of disease. Complex interplay of psoriasis with associated comorbidities is also a future area of research for overall better patient management and to improve their quality of life.
Collapse
Affiliation(s)
- Seema Chhabra
- From the Department of Immunopathology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Keshav Sharma
- From the Department of Immunopathology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Smriti K. Raychaudhuri
- Department of Medicine and Infectious Diseases, VA Northern California Health Care System, 10535 Hospital Way, Mather, CA, United States
| | - Siba P. Raychaudhuri
- Department of Medicine and Infectious Diseases, VA Northern California Health Care System, 10535 Hospital Way, Mather, CA, United States,Department of Dermatology, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, United States,Address for correspondence: Dr. Siba P. Raychaudhuri, Professor, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Program Director Rheumatology, Chief of Rheumatology, VA Northern California Health Care System, 10535 Hospital Way, Mather, CA - 95655, United States. E-mail:
| |
Collapse
|
42
|
Korolenkova MV, Poberezhnaya AA. [Morphological and functional assessment of the oral mucosa in children with dystrophic epidermolysis bullosa]. STOMATOLOGIIA 2022; 101:63-68. [PMID: 35362705 DOI: 10.17116/stomat202210102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
THE AIM OF THE STUDY To validate modified oral index (MOI) for the assessment of the oral mucosa in children with dystrophic epidermolysis bullosa (DYB). MATERIALS AND METHOS The study comprised 27 DYB children aged 4 to 18 years. Morphological component of MOI was documented by an intraoral camera with the registration of pathological elements in various of the oral cavity and differentiated scoring. Functional component included registration of ankyloglossia and microstomia measured by Bristol assessment system and orthodontic caliper, correspondingly, and then referred to normal age-matched values. RESULTS Oral mucosa condition deteriorates in DYB children with age both in morphological and functional aspects. MOI values more than 40 should be seen as prognostically unfavorable as they are always associated with severe functional restrictions. These restrictions are always present in children older than 6. If present in younger age they may indicate poor functional status in future. CONCLUSION The MOI may be a useful tool for the assessment of the efficacy of the pharmacological agents' impact on the oral mucosa and disease prognosis. Correlation of MOI and general condition of DYB children needs further investigation.
Collapse
Affiliation(s)
- M V Korolenkova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Moscow Regional Research Institute named after M.F. Vladimirskiy, Moscow, Russia
| | - A A Poberezhnaya
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
43
|
Yu Y, Liu X, Zhao Z, Xu Z, Qiao Y, Zhou Y, Qiao H, Zhong J, Dai J, Suo G. The Extracellular Matrix Enriched With Exosomes for the Treatment on Pulmonary Fibrosis in Mice. Front Pharmacol 2021; 12:747223. [PMID: 34938180 PMCID: PMC8685953 DOI: 10.3389/fphar.2021.747223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a severe respiratory disease caused by lung microenvironment changes. TGF-β/Smad3 signaling pathway plays a critical role in the fibrotic process. MicroRNA-29 (miR-29) has proved to alleviate the occurrence of PF by downregulating TGF-β/Smad3 signaling pathway. The miRNA application encounters obstacles due to its low stability in body and no targeting to lesions. Exosomes can be used for therapeutic delivery of miRNA due to their favorable delivery properties. However, low efficiency of separation and production impedes the therapeutic application of exosomes. In this study, we developed a liquid natural extracellular matrix (ECM) enriched with miR-29-loaded exosomes for PF treatment. The collagen-binding domain (CBD)-fused Lamp2b (CBD-Lamp2b) and miR-29 were overexpressed in human foreskin fibroblast (HFF) host cells for the entrapment of miR-29-loaded exosomes in ECM of the cells. The repeated freeze-thaw method was performed to prepare the liquid ECM enriched with exosomes without destroying the exosomal membrane. In summary, this study developed a novel functional ECM biomaterial for therapy of PF, and also provided a promising gene therapy platform for different diseases by treatment with liquid ECM that is, enriched with exosomes loaded with different functional miRNAs.
Collapse
Affiliation(s)
- Yanzhen Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xingzhi Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhe Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhongjuan Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yong Qiao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuanshuai Zhou
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Hong Qiao
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX, United States
| | - Junjie Zhong
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianwu Dai
- State Key Laboratory of Molecular, Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
44
|
Hilgers L, Roth O, Nolte AW, Schüller A, Spanke T, Flury JM, Utama IV, Altmüller J, Wowor D, Misof B, Herder F, Böhne A, Schwarzer J. Inflammation and convergent placenta gene co-option contributed to a novel reproductive tissue. Curr Biol 2021; 32:715-724.e4. [PMID: 34932936 PMCID: PMC8837275 DOI: 10.1016/j.cub.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/27/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
The evolution of pregnancy exposes parental tissues to new, potentially stressful conditions, which can trigger inflammation.1 Inflammation is costly2,3 and can induce embryo rejection, which constrains the evolution of pregnancy.1 In contrast, inflammation can also promote morphological innovation at the maternal-embryonic interface as exemplified by co-option of pro-inflammatory signaling for eutherian embryo implantation.1,4,5 Given its dual function, inflammation could be a key process explaining how innovations such as pregnancy and placentation evolved many times convergently. Pelvic brooding ricefishes evolved a novel “plug” tissue,6,7 which forms inside the female gonoduct after spawning, anchors egg-attaching filaments, and enables pelvic brooders to carry eggs externally until hatching.6,8 Compared to pregnancy, i.e., internal bearing of embryos, external bearing should alleviate constraints on inflammation in the reproductive tract. We thus hypothesized that an ancestral inflammation triggered by the retention of attaching filaments gave rise to pathways orchestrating plug formation. In line with our hypothesis, histological sections of the developing plug revealed signs of gonoduct injuries by egg-attaching filaments in the pelvic brooding ricefish Oryzias eversi. Tissue-specific transcriptomes showed that inflammatory signaling dominates the plug transcriptome and inflammation-induced genes controlling vital processes for plug development such as tissue growth and angiogenesis were overexpressed in the plug. Finally, mammalian placenta genes were enriched in the plug transcriptome, indicating convergent gene co-option for building, attaching, and sustaining a transient tissue in the female reproductive tract. This study highlights the role of gene co-option and suggests that recruiting inflammatory signaling into physiological processes provides a fast-track to evolutionary innovation. Pelvic brooding induces tissue-specific changes in gene expression Inflammatory signaling characterizes transcriptome of the egg-anchoring plug Similar to embryo implantation, the plug likely evolved from an inflammatory response Mammalian placenta genes were independently co-opted into the plug
Collapse
Affiliation(s)
- Leon Hilgers
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany; LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt, Germany.
| | - Olivia Roth
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany; Marine Evolutionary Biology, Kiel University, Kiel, Germany
| | | | - Alina Schüller
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Tobias Spanke
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Jana M Flury
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Ilham V Utama
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Fabian Herder
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Astrid Böhne
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Julia Schwarzer
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany.
| |
Collapse
|
45
|
Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv Transl Res 2021; 11:2394-2413. [PMID: 34176099 DOI: 10.1007/s13346-021-01018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Host immune cells interact bi-directionally with their extracellular matrix (ECM) to receive and deposit molecular signals, which orchestrate cellular activation, proliferation, differentiation, and function to maintain healthy tissue homeostasis. In response to pathogens or damage, immune cells infiltrate diseased sites and synthesize critical ECM molecules such as glycoproteins, proteoglycans, and glycosaminoglycans to promote healing. When the immune system misidentifies pathogens or fails to survey damaged cells effectively, maladies such as chronic inflammation, autoimmune diseases, and cancer can develop. In these conditions, it is essential to restore balance to the body through modulation of the immune system and the ECM. This review details the components of dysregulated ECM implicated in pathogenic environments and therapeutic approaches to restore tissue homeostasis. We evaluate emerging strategies to overcome inflamed, immune inhibitory, and otherwise diseased microenvironments, including mechanical stimulation, targeted proteases, adoptive cell therapy, mechanomedicine, and biomaterial-based cell therapeutics. We highlight various strategies that have produced efficacious responses in both pre-clinical and human trials and identify additional opportunities to develop next-generation interventions. Significantly, we identify a need for therapies to address dense or fibrotic tissue for the treatment of organ tissue damage and various cancer subtypes. Finally, we conclude that therapeutic techniques that disrupt, evade, or specifically target the pathogenic microenvironment have a high potential for improving therapeutic outcomes and should be considered a priority for immediate exploration. A schematic showing the various methods of extracellular matrix disruption/targeting in both fibrotic and cancerous environments. a Biomaterial-based cell therapy can be used to deliver anti-inflammatory cytokines, chemotherapeutics, or other factors for localized, slow release of therapeutics. b Mechanotherapeutics can be used to inhibit the deposition of molecules such as collagen that affect stiffness. c Ablation of the ECM and target tissue can be accomplished via mechanical degradation such as focused ultrasound. d Proteases can be used to improve the distribution of therapies such as oncolytic virus. e Localization of therapeutics such as checkpoint inhibitors can be improved with the targeting of specific ECM components, reducing off-target effects and toxicity.
Collapse
Affiliation(s)
| | - Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Kim N, Lee S, Kang J, Kwon TK, Khang D, Kim SH. Gomisin M2 alleviates psoriasis‑like skin inflammation by inhibiting inflammatory signaling pathways. Mol Med Rep 2021; 24:859. [PMID: 34664681 PMCID: PMC8548952 DOI: 10.3892/mmr.2021.12499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/22/2021] [Indexed: 11/05/2022] Open
Abstract
Psoriasis, a chronic inflammatory skin disease, is characterized by the excessive proliferation and impaired differentiation of epidermal keratinocytes and is accompanied by the increased infiltration of inflammatory cells. The condition requires long‑term treatment and has no definitive cure. Hence, supplements and therapeutic agents have been intensely investigated. Gomisin M2 (GM2), a lignan extracted from Schisandra chinensis (Turcz). Baill. (Schisandraceae; S. chinensis), has demonstrated diverse pharmacological properties, including anticancer, anti‑inflammatory and antiallergic effects. Based on these findings, the present study examined the effects of GM2 on an imiquimod (IMQ)‑induced psoriasis mouse model and on keratinocytes stimulated by tumor necrosis factor (TNF)‑α and interferon‑γ. IMQ was topically applied to the back skin of mice for 7 consecutive days, and the mice were orally administered CD. These results showed that the oral administration of GM2 suppressed the symptoms of psoriasis, as evidenced by reductions in skin thickness, psoriasis area severity index scores for psoriasis lesions, transepidermal water loss and myeloperoxidase (MPO)‑associated cell infiltration. Furthermore, GM2 reduced the pathologically increased levels of immunoglobulin G2a, MPO and TNF‑α in the serum and T helper (Th)1 and Th17 cell populations in the spleen. GM2 decreased the gene expression of inflammatory‑related cytokines and chemokines and inhibited the expression of signal transducer and activator of transcription 1 and nuclear factor‑κB in the activated keratinocytes. These results suggested that GM2 from S. chinensis is a potential therapeutic candidate to alleviate psoriasis‑like skin inflammation.
Collapse
Affiliation(s)
- Namkyung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Jinjoo Kang
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Yeonsu, Incheon 21999, Republic of Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
47
|
Jacob M, Masood A, Shinwari Z, Abdel Jabbar M, Al-Mousa H, Arnaout R, AlSaud B, Dasouki M, Alaiya AA, Abdel Rahman AM. Proteomics Profiling to Distinguish DOCK8 Deficiency From Atopic Dermatitis. FRONTIERS IN ALLERGY 2021; 2:774902. [PMID: 35386989 PMCID: PMC8974780 DOI: 10.3389/falgy.2021.774902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 8 deficiency is an autosomal recessive primary immune deficiency disease belonging to the group of hyperimmunoglobulinemia E syndrome (HIES). The clinical phenotype of dedicator of cytokinesis 8 (DOCK8) deficiency, characterized by allergic manifestations, increased infections, and increased IgE levels, overlaps with the clinical presentation of atopic dermatitis (AD). Despite the identification of metabolomics and cytokine biomarkers, distinguishing between the two conditions remains clinically challenging. The present study used a label-free untargeted proteomics approach using liquid-chromatography mass spectrometry with network pathway analysis to identify the differentially regulated serum proteins and the associated metabolic pathways altered between the groups. Serum samples from DOCK8 (n = 10), AD (n = 9) patients and healthy control (Ctrl) groups (n = 5) were analyzed. Based on the proteomics profile, the PLS-DA score plot between the three groups showed a clear group separation and sample clustering (R2 = 0.957, Q2 = 0.732). Significantly differentially abundant proteins (p < 0.05, FC cut off 2) were identified between DOCK8-deficient and AD groups relative to Ctrl (n = 105, and n = 109) and between DOCK8-deficient and AD groups (n = 85). Venn diagram analysis revealed a differential regulation of 24 distinct proteins from among the 85 between DOCK8-deficient and AD groups, including claspin, haptoglobin-related protein, immunoglobulins, complement proteins, fibulin, and others. Receiver-operating characteristic curve (ROC) analysis identified claspin and haptoglobin-related protein, as potential biomarkers with the highest sensitivity and specificity (AUC = 1), capable of distinguishing between patients with DOCK8 deficiency and AD. Network pathway analysis between DOCK8-deficiency and AD groups revealed that the identified proteins centered around the dysregulation of ERK1/2 signaling pathway. Herein, proteomic profiling of DOCK8-deficiency and AD groups was carried out to determine alterations in the proteomic profiles and identify a panel of the potential proteomics biomarker with possible diagnostic applications. Distinguishing between DOCK8-deficiency and AD will help in the early initiation of treatment and preventing complications.
Collapse
Affiliation(s)
- Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zakiya Shinwari
- Proteomics Unit, Stem-Cell and Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mai Abdel Jabbar
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rand Arnaout
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bandar AlSaud
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayodele A. Alaiya
- Proteomics Unit, Stem-Cell and Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
- *Correspondence: Anas M. Abdel Rahman
| |
Collapse
|
48
|
Wagner MFMG, Theodoro TR, Filho CDASM, Oyafuso LKM, Pinhal MAS. Extracellular matrix alterations in the skin of patients affected by psoriasis. BMC Mol Cell Biol 2021; 22:55. [PMID: 34715781 PMCID: PMC8555298 DOI: 10.1186/s12860-021-00395-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/15/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease dependent upon a complex interaction between genetic predisposition and immunological factors. It is characterized by skin lesions throughout the body, causing great morbidity and affecting life quality. The present study aimed to evaluate the protein and mRNA expression of heparanase-1 (HPSE), heparanase-2 (HPSE2), syndecan-1 (SYND1), metalloproteinases (MMP2, MMP9), and tissue inhibitor metalloproteinases 2 (TIMP2) in skin samples. METHODS From each psoriasis patient, two samples were collected, one sample from a psoriasis plaque (n = 23) and the other sample from non-affected skin (n = 23), as well as tissue collected by blepharoplasty from control individuals (n = 18). Protein expression was investigated by immunohistochemistry, followed by digital quantification. Quantitative RT-PCR obtained mRNA expression. Statistical analyses were done, and p values < 0.05 were considered significant. RESULTS A significant increase in protein and mRNA expression was observed in both heparanases (HPSE and HPSE2), and higher protein levels of MMP9 and TIMP2 were observed in the psoriasis plaque compared to the non-affected skin. The data point to a probable activation of MMP2 by TIMP2. Moreover, there was a significant increase in HPSE2, SYND1, MMP9, and TIMP2 in non-affected skin samples from patients with psoriasis than in the control sample (tissue obtained by individuals who do not have psoriasis). CONCLUSIONS These results show a possible correlation between the characteristic inflammatory process and alterations in the expression of the extracellular matrix in psoriasis. The increased expression of HPSE2, SYND1, MMP9, and TIMP2, even in the absence of psoriatic plaque, indicates that these molecules may be involved with extracellular matrix changes in the initial alterations the psoriatic process and may be candidates for the development of target treatments.
Collapse
Affiliation(s)
| | - Thérèse Rachell Theodoro
- Biochemistry Department of Centro Universitário Saúde ABC (FMABC), Avenida Lauro Gomes 2000, Santo André, São Paulo, CEP 09060870, Brazil
| | | | | | - Maria Aparecida Silva Pinhal
- Biochemistry Department of Centro Universitário Saúde ABC (FMABC), Avenida Lauro Gomes 2000, Santo André, São Paulo, CEP 09060870, Brazil.
| |
Collapse
|
49
|
Visscher MO, Hu P, Carr AN, Bascom CC, Isfort RJ, Creswell K, Adams R, Tiesman JP, Lammers K, Narendran V. Newborn infant skin gene expression: Remarkable differences versus adults. PLoS One 2021; 16:e0258554. [PMID: 34665817 PMCID: PMC8525758 DOI: 10.1371/journal.pone.0258554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
At birth, human infants are poised to survive in harsh, hostile conditions. An understanding of the state of newborn skin development and maturation is key to the maintenance of health, optimum response to injury, healing and disease. The observational study collected full-thickness newborn skin samples from 27 infants at surgery and compared them to skin samples from 43 adult sites protected from ultraviolet radiation exposure, as the standard for stable, mature skin. Transcriptomics profiling and gene set enrichment analysis were performed. Statistical analysis established over 25,000 differentially regulated probe sets, representing 10,647 distinct genes, in infant skin compared to adult skin. Gene set enrichment analysis showed a significant increase in 143 biological processes (adjusted p < 0.01) in infant skin, versus adult skin samples, including extracellular matrix (ECM) organization, cell adhesion, collagen fibril organization and fatty acid metabolic process. ECM organization and ECM structure organization were the biological processes in infant skin with the lowest adjusted P-value. Genes involving epidermal development, immune function, cell differentiation, and hair cycle were overexpressed in adults, representing 101 significantly enriched biological processes (adjusted p < 0.01). The processes with the highest significant difference were skin and epidermal development, e.g., keratinocyte differentiation, keratinization and cornification intermediate filament cytoskeleton organization and hair cycle. Enriched Gene Ontology (GO) biological processes also involved immune function, including antigen processing and presentation. When compared to ultraviolet radiation-protected adult skin, our results provide essential insight into infant skin and its ability to support the newborn's preparedness to survive and flourish, despite the infant's new environment laden with microbes, high oxygen tension and potential irritants. This fundamental knowledge is expected to guide strategies to protect and preserve the features of unperturbed, young skin.
Collapse
Affiliation(s)
- Marty O. Visscher
- Skin Sciences, Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ping Hu
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Andrew N. Carr
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Charles C. Bascom
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Robert J. Isfort
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Kellen Creswell
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Rachel Adams
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Jay P. Tiesman
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Karen Lammers
- Skin Sciences, Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Vivek Narendran
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
50
|
Van Hove L, Hoste E. Activation of Fibroblasts in Skin Cancer. J Invest Dermatol 2021; 142:1026-1031. [PMID: 34600919 DOI: 10.1016/j.jid.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Fibroblasts have emerged as a dominant component of the tumor microenvironment, but despite the surging interest in the activation of fibroblasts and their role in cancer, they remain an elusive and complex cell type. In this perspective, we discuss the phenotypic plasticity of cancer-associated fibroblasts (CAFs) in melanoma and nonmelanoma skin cancer identified by genome-wide transcriptomic studies and focus on the molecular pathways underlying their activation. These studies reveal distinct fibroblast activation profiles depending on tumor type and stage. A better understanding of skin CAF heterogeneity in origin and function will guide novel therapeutic approaches targeting this cell type in clinical cancer care.
Collapse
Affiliation(s)
- Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|